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Abstract

Anonymization (Mix) networks are based on the delivery of messages
through a sequence of overlay hops devised to avoid end-to-end linkage of
the information, thus protecting users’ identities (when needed) and privacy.
Most Mix networks are based on hops built either on TLS or directly built by
proprietary protocols. In the first part of this paper we analyze the method-
ology chosen so far to build Mix networks and Tor in particular and show,
through experiments supported by a theoretical explanation, that overlays
based on congestion-controlled transport level tunnels may incur in devas-
tating performance degradation. The second part of the paper is devoted to
the discussion of anonymous networks based on layer-3 standard solutions,
like IPsec and NATs, and to the description of a Linux-based implementation
that is scalable, performing and fulfills all anonymity requirements.

1 Introduction

Anonymization, also called “Mix”, networks have been proposed almost three
decades ago by David Chaum [1]. They originate by the recognition that the end-
point addresses involved in a communication (e.g., IP addresses or application-
layer source/destination information such as email addresses) may reveal private
information, such as who is connecting with (or sending a message to) whom,
which site a user is visiting, and so on.
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Encryption alone, such as that provided by the ordinary IPsec or TLS secu-
rity protocols, cannot prevent disclosure of end-point addresses. These are in
fact strictly necessary to route data inside the network and, unlike data payload,
they cannot be encrypted. Mix networks achieve address protection by properly
combining encryption with routing. The idea of first-generation Mixes [1] was to
deliver whole messages, such as emails, using a store-and-forward approach, rely
on source-routing, and use public key encryption to protectthe routing informa-
tion added to every message, so that every intermediate nodecould only know the
address of the previous and next node in the overlay.

It was soon understood that such a pure store-and-forward approach could not
support low latency or real-time communication. Starting from the mid of the
nineties [2], a number of new Mix network designs flourished.Specific designs,
such as Tor [3], Freedom [4], Tarzan [5], Crowds [6], Herbivore [7], etc., signif-
icantly differ each other in terms of key functionalities (route setup/selection, node
discovery, centralized/distributed/hierarchical operation, protection/anonymization
mechanisms, data delivery approaches, . . . ), but all work asapplications over
transport protocols. In the majority of the cases, we can roughly visualize them
as overlays which provide effective and low latency data delivery mechanisms,
for instance employing virtual circuit switching-like techniques over paths setup
through a carefully crafted signaling approach devised to preserve anonymity.
Among the proposed approaches, Tor [3] is by far the one that has achieved the
most significant deployment (almost two thousand overlay nodes and several hun-
dred thousand users), and for this reason we use Tor as example.

An enormous amount of literature has discussed all facets ofthe security, pri-
vacy and anonymity issues emerging in either general Mix networking scenarios
and in the particularly important practical case of Tor. However, only a limited
amount of work has provided insights on Tor / Mix networks from a performance
point of view. And even in such cases, performance issues have been mostly tack-
led from the point of view of their impact on anonymity [8, 9].Performance may
be perhaps considered to be a marginal issue when compared toanonymity, the
only reason why Mix networks exist; and Mix network users maybe willing to
trade-off performance for anonymity (indeed, they are accepting to exploit sig-
nificantly longer and sub-optimal network paths). Nevertheless, we believe that
performance issues should be tackled for two reasons, one general and one more
specific.

First, we believe that an anonymization overlay whose performance degrada-
tion remains at reasonable levels attracts more users. If the download time of
a web page over an anonymous overlay is only slightly greaterthan its direct
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download, even users not strictly concerned with anonymitymay decide to rely
on such networks. This would turn out to be a great advantage also in terms of
level of anonymity provided: it is a commonly accepted principle that anonymity
increases with the number of users.

Second, in several Mix designs, including Tor, the overlay is formed through
TSL tunnels. As such, they enforce TCP’s congestion controlon a per-hop basis.
When also the information delivery on top of the overlay is further controlled by
some form of congestion control (either TCP or a simplified congestion control
protocol, as in Tor’s case), as shown in Sect. 2, the two different control loops may
negatively interact, and reduce (possibly to a significant extent) performance1. We
remark that such a performance impairment would not be the consequence of a
benefit in terms of level of anonymity or privacy provided, but it is a mere con-
sequence of a technical implementation decision (congestion controlled tunnels
used as overlay hops).

The specific contributions of this paper are the following:

• We show, with both experimental assessment and simplified analytical con-
siderations, the possibly severe side consequences of a double congestion
control loop. This is addressed for both the TCP over TCP case, as well for
the specific Tor’s case;

• Having concluded that, for performance reasons, anonymization overlays
should rely on non congestion controlled hops (e.g., DTLS orIPsec tun-
nels), we propose a novel IPsec-based anonymization overlay approach. We
experimentally show that our approach does not exhibits theshortcomings
discussed above.

• Finally, our approach is designed with ease of deployment inmind, includ-
ing the possibility to deploy it over standard IP routers. Weindeed believe
that usingstandard-basedapproaches may foster anonymous networking as
a future core networking service. To this purpose, i) our approach relies on
the widely deployed IPsec standard; ii) it provides anonymization and fast
data delivery through a smart usage of network address translation, and iii)

1Indeed this is somewhat expected by networking experts, butperhaps less straightforward for
the anonymity research community. Despite this, the problem described in this paper may apply
also to layer 4/7 Virtual Private Networks, when they use TLSor SSH as tunneling technology.
Quite surprisingly, to the best of our knowledge, the side performance issues that such a TCP over
TCP scenario originate have never been extensively tackledin the literature.
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it can be extended to support dynamic setup of overlay paths (through a Tor-
like telescope approach) with no need for a proprietary signaling protocol,
but using IPsec’s IKEv2 for this purpose.

2 Performance Shortcomings of TCP-based Over-
lays

First we discuss, through experimental results, the performance shortcomings of
TCP over TCP tunnels. Then we show how Tor exhibits comparable shortcomings
even if it does not directly use TCP as overlay congestion control mechanism. An
explanation based on simplified analytical considerationsis provided next.

2.1 The case of TCP over TCP-tunnels

TLS or SSH connections supporting tunneled traffic are common in many applica-
tions. OpenVPN [10] is one of the most popular examples, but many other exam-
ples exists, including commercial products like ‘NeoAccelSSL VPN-Plus’TM [11]
where it is declared that performance problems of conventional TLS-VPNs are re-
lated to slow and inefficient processing in user space.

N1 N2

Figure 1: The simplest possible TCP over TCP tunneling scenario: M TCP con-
nections share a TLS tunnel.

In order to verify that performance degradation of TCP over TCP is not related
to inefficiencies, but to the inherent algorithmic interaction of multiple nested
control loops, we ran the trivial experiment depicted in Fig. 1: one TCP tunnel
between nodesN1 andN2 supportsM TCP connections. The tunnel is not even
encrypted to ensure that processing is not a bottleneck and it is built using the
standard Tun-Tap interface.N1 andN2 are Linux-based routers without any other
application, and we forced theN1–N2 connection through a network emulator that
restricts capacity to 10 Mbit/s and introduces controllable random losses. Neither
processing nor information passing withinN1 andN2 introduce any measurable
delay in information transfer.
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Figure 2: Performance of TCP over TCP-tunnels, applicationlevel delay (left
plot) and throughput (right plot) versus loss rate on a 10 Mbit/s bottleneck com-
pared with the performance of non-tunneled TCP connectionstraversing the same
bottleneck.
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Fig. 2 reports the application level throughput (goodput) and delay measured
in six scenarios. Three of these, marked with dashed lines, refer to cases where
TCP-tunneling is used. Different point styles indicate thenumber (one, two, or
five) of concurrent TCP connections running through the sameTCP-tunnel. In
the remaining three cases, marked with solid lines, the samenumber of TCP con-
nections share the same bottleneck, but without the tunnel.The Thrulay [12]
measurement tool was used to generate traffic and to measure values. Reported
goodput values are aggregates of all streams. Since Tor breaks the end-to-end TCP
loop, we measure application level round trip time (RTT) instead of the usual TCP
RTT throughout the paper, in order to allow comparison with Tor. Each experi-
ment was run 10 times, averages and standard deviations are plotted.

Lines referring to a single connection provide a reference case that allows
measuring the intrinsic overhead of the when losses are set to zero. All other
measured points clearly show that, while multiplexing TCP flows on a lossy bot-
tleneck allows for a better and better exploitation of the resources as the number
of TCP flows increases (as taught in any book), if there is a TCPtunnel on top
of the bottleneck, then, as the number of connections sharing tunnel and bottle-
neck increase, the throughput is not improved, while the delay increases steadily.
Sect. 2.3.1 presents the (simple) theoretical reason for this behavior.

2.2 Tor case

Tor overlay architecture is more complex than a simple tunneling. Appendix A
presents a short primer on Tor, but we refer the interested reader to the Tor web-
site and specific literature. First of all, its internal control mechanisms forbids to
have any topology with less than three Tor hops2. Then, the ingress OP termi-
nates incoming TCP connections, building a shared, per destination-OR connec-
tion which is flow-controlled with a fixed size window protocol whose window
sizeWf is expressed inTor cells. These streams are transported to the destina-
tion on a chain of TLS tunnels that implements the Tor ‘telescope’. Fig. 3 depicts
the simplest possible Tor topology. We set up this topology in our lab network
with similar conditions to the TCP over TCP experiment. The lossy 10 Mbit/s
bottleneck is between OR1 and OR2.

Fig. 4 reports goodput and application layer delay for Tor (with different val-
ues of the flow control window sizeWf ) compared with the performance of the

2Indeed, two is the minimum number of hops needed to ensure anonymity, but Tor is devised
to use three to reduce the chances success of some specific attacks.
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OP OR3OR1 OR2

Figure 3: Minimal Tor overlay: 3 hops with one exit OR.
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Figure 4: Performance of TCP connections in the simplest possible Tor network:
application level delay (left plot) and throughput (right plot) versus loss rate on a
10 Mbit/s bottleneck, compared with the solution we propose(named IPpriv).

7



anonymous network architecture we are proposing in this paper in the same cir-
cumstances. First of all, observe that Tor throughput is comparable with the
throughput of TCP over TCP connections, while the performance of our approach
is comparable with no tunneling at all. For allWf values the Tor ‘ack trig-
ger’, i.e., the relative value of buffer filling at which the destination OR sends
a RELAY SENDME cell back to the ingress OP is set to 1/10. This has a small
influence on the goodput.

The really striking feature is however the delay (left hand side plot), which
grows with bothWf and the number of tunneled connections and is, in any case,
too large to support any kind of interactive or transactional service, not to speak
about real-time ones.

2.3 A simple theoretical explanation

2.3.1 TCP over TCP-tunnels

Consider the simple tunneling scenario of Fig. 1. Letτi(t) be the round trip time
of connectioni crossing the tunnel, andτT (t) < τi(t); ∀i, t be the round trip time
of the tunnel itself.

Consider a generic congestion control function based on thetransmitter evalu-
ation of the loss probability. Without loss of generality wecan consider an AIMD
(Additive Increase Multiplicative Decrease) function. The same arguments dis-
cussed here can be applied to AIAD (Additive Increase Additive Decrease) or any
other regulation technique. Such a congestion control strategy can be expressed
in terms of the following differential equation:

dR(t)

dt
= αt − βR(t − τ(t))Pl(t − τ(t)) (1)

whereR(·) is the connection throughput andPl(·) is a generic loss probability
function. α andβ < 1 are the additive increase and multiplicative decrease con-
stants respectively3.

We consider tunnelingM layer-4 (congestion controlled) connections within
the single layer-4 (congestion controlled) tunnel betweenN1 andN2. The dy-
namic behavior of the queueQN1

at the ingress of the tunnel at nodeN1 is then

3Recall that throughputR(t) and transmission window sizeW (t) are related byR(t) = W (t)
τ(t)

so that controlling congestion through window or throughput regulation is equivalent.
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the following:

QN1
= max

{

0,

∫

t

[

M
∑

i=1

Ri(t) − RT (t)

]}

(2)

whereRT (·) is the tunnel throughput andRi(·) is the throughput of connectioni.
We can now prove the following:

Lemma 1 TunnelingM congestion controlled connections into a single conges-
tion controlled tunnel, ifM > 1 then the queuing delay inQN1

is unbounded
unlessPl(t) ≡ 0; ∀t.

Let first analyze the casePl(t) ≡ 0; ∀t. In this case it is straightforward that
Rmax

T ≥
∑M

i=1 Rmax
i guarantees thatQN1

is empty since the capacity of the tunnel
is larger than the sum of all throughputs carried within it. This case might be
of little practical interest, at least for largeMs, but shows that without losses a
transport layer tunnel can be configured to work steadily.

In presence of losses4, each lost packet will lead to a throughput reduction of
a factorβ for the tunnel, in addition to a period of time devoted to the recovery of
the lost packet when the tunnel throughput is zero. This timelapse depends on the
specific protocol, for TCP it is normallyτ(t). The transmission windows of the
tunneled connections, which is the offered load to the tunnel, will normally not
change at all, because the tunnel window is large and the packet is recovered with
a fast retransmit in oneτ(t), which is necessarily smaller than any retransmission
timeout of the tunneled connections and fast retransmits cannot be triggered.

Therefore, each packet loss implies an excess traffic being offered to the tunnel
and accumulating inQN1

.
Let’s now analyze the evolution between losses, i.e., during a time lapseT be-

tween two consecutive losses. Since the increase is linear with parameterα, it fol-
lows immediately that the additional traffic offered to the tunnel is

∑M

i=1
αT

ET [τi(t)]

while the throughput increase of the tunnel isαT

ET [τ(t)]
, i.e. roughlyM times

smaller, where ET [·] is the average over the time lapseT .
Since the entire life of the system is a sequence of losses andloss free periods

and both events leads to an excess of traffic being offered to the tunnel,QN1
grows

without limit.
4We are not interested here in the stochastic characteristics of the loss process, nor it is impor-

tant whether the losses are due to overload of the tunneled traffic or due to independent reasons.
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Lemma1 neatly explains the observations in Fig. 2. The left hand plot show
that, independently from the loss rate, the average delay experienced at the ap-
plication level grows with the number of tunneled connections, while the same
number of connection on the same bottleneck do not experience a similar delay
growth.

One can argue that the size ofQN1
is finite, so that when the buffer fills addi-

tional losses will slow down the tunneled connections, finally leading to a stable
scenario. While this observation is partially correct, it is clearly undesirable that
a single loss due to real congestion in the network is transformed into multiple
losses at the transport and application layer. Additionally, we can observe that,
unless the size ofQN1

is really small, then it will dominateτi, ∀i.
In practice, to avoid the phenomenon just described, the congestion control

algorithm of the tunnel should be tailored to the number of tunneled connections
M trying to guaranteeing thatαT ≥

∑M

i=1 αi andβT ≤
E[βi]
M

, which is not only
difficult to realize, but will also affect the overall stability and fairness of the
network.

Specializing this analysis for the actual behavior of TCP, using for instance
the window evolution models developed in [13, 14] does not add any insight in
the problem.

2.3.2 Tor-like overlays

Consider the Tor networks described in Fig. 3. We focus on thecase where a net-
work level bottleneck leads to losses on the tunnel between OR1 and OR2. Once
again the origin of losses and the stochastic characteristics ofPl(t) are irrelevant
for our problem.

In Tor each TLS tunnel between ORs is terminated in the receiver OR and
an unlimited5 buffer of Tor cellsQOR in available. Additionally, Tor maintains
an edge-to-edge window-based flow control. The size of this buffer is normally
set to 1000 cells, i.e., 512 kBytes, but can be changed at installation time. Given
the use of reliable overlay links (TLS) flow control is enforced with the use of
non-tagged tokens: OR3 sends messages which are transmission tokens, but never
acknowledge the reception of specific cells. Assume that OR3 does not experience
any bottleneck in sending packets outside the Tor network, so that it can generate

5The buffer is only limited by the memory reserved for the Tor process, which is, in standard
instances of Tor, only limited by the RAM and virtual memory available, which is to our purposes
practically unlimited
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tokens arbitrarily fast. This assumption simplifies the description and does not
change the nature of the phenomenon we are analyzing.

Let M ≥ 1 be the number of streams or flows, and (1) be the congestion
control of TLS tunnels6; we now analyze the different cases that might occur as
a function ofM andPl, although the overall behavior is fundamentally the one
of an overloaded store-and-forward system, where the delayis dominated by the
dimension of the buffer in front of the bottleneck of the system.

M = 1; Pl(t) ≡ 0; ∀t: This is the simplest case, and we only have two
possible behaviors, based on the relative throughput of theOR1–OR2 tunnel (call
it RT ) and the OP1–OR1 tunnelR1. If RT > R1 then the bufferQOR1

is drained
faster than it is filled, OR3 can send tokens to OP1 faster than OP1 can send cells
and no queue builds inQOR1

. Otherwise ifRT < R1, QOR1
will fill up until

OP1 stops sending more data than it is drained, and this happens only when it runs
out of tokens. As a result the delay incurred by information in crossing the Tor
network will beDtor =

Wf

RT
+ δ whereδincludes all other delays packets incur in

the Tor network.
M > 1; Pl(t) ≡ 0; ∀t: Following the same reasoning as before we can con-

clude that in this case we have a negligible delay only ifRT >
∑M

i=1 Ri, otherwise
the delay will jump toDtor =

MWf

RT
+ δ. If instead of the trivial network depicted

in Fig. 3 we have a more realistic and complex meshed network,then the analysis
becomes cumbersome and the result might depend on specific routing and mixing;
however, in any case, each Tor tunnel will be in one of the two possible conditions
defined above, and the delay of the information crossing the Tor network will be
either negligible or jump toDtor >

MWf

RT
.

Pl(t) 6= 0: Indeed, since TLS tunnels are terminated in ORs and buffering
in QORj

is done at the application level, the presence of losses doesnot change
the problem significantly, since the dominating effect is the average throughput
obtained by tunnels and losses simply decrease the throughput further.

Concluding, the delay in Tor networks is due to the use of a store-and-forward
technique at the application level, and its amount is strictly related to the dimen-
sion of the edge-to-edge flow control window. Reducing this window below a
certain (fairly larger) threshold, is however not feasible, since the throughput will
be affected.

6Once more, using actual TCP behavior instead of the more general behavior described by (1)
will not add any insight in the problem.
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2.4 Analysis insights

The analysis above, both for Tor and for TCP-over-TCP tunneling is simple to
the point of being trivial, but explain very well the observed performance impair-
ments.

Indeed, we observed and explained two different phenomena:one related to
nesting of TCP-like closed loop congestion control mechanisms, and the other one
related to the use of a store-and-forward technique with large buffers and loose
flow control. Both phenomenon are not new to science, being itwell known in the
theoretic control community that nested control loops may lead to instability and
in the networking community that store and forward techniques with large buffers
induce long delays.

These performance issues appear to be inherent to the use of transport-level
tunneling, and not related to tuning or implementation problems. Both problems
can be easily solved using tunneling at the network level andnot at the transport
level. In the following we present a solution for anonymous networking based
on IPsec, preserving Tor-like anonymous properties yet solving the performance
impairments.

3 NAT-based forwarding for anonymous overlays

We propose to improve the data forwarding in anonymous overlays7 taking into
account the following three key challenges:

• No impact on native end-to-end congestion control. We believe (and in this
we found full support in the recent paper [15]) that anonymous networking
should not be overloaded with cross-layer functionalities, but should sim-
ply provide support for anonymouspacketdelivery. It should seamlessly
support, without affecting or breaking them, the native transport-layer op-
eration of supported connections.

7It is not a goal of this paper to describe a new complete architecture for anonymous network-
ing. Indeed, this is composed by several components, such asoverlay management through direc-
tory servers, routing path selection and anonymous path setup signaling, anonymity mechanisms
such as packet batching and traffic covert, etc. Our goal is here restricted to describe a solution for
performance effective data forwarding. We believe that it is easier (although not nearly trivial) to
adapt already existing anonymous networking frameworks toforward the information data as here
proposed, rather than redesign from scratch a new architecture on top of such a functionality.
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• IP layer operation. As anetworkingfunctionality, an anonymous network
should directly operate on IP packets. As such, it should seamlessly support
any traffic carried on top of IP packets.

• standard-based operation. We believe that any new networking paradigm
should build, if technically possible, on already existingand widely de-
ployed standards.

For the sake of clarity the next subsections we assume that: i) paths are pre-
established, and ii) tunneled packets are not encrypted. The solutions needed
overcame these assumptions are presented in Sect. 4.

3.1 NAT as anonymity mechanism

The Network Address Translation functionality (and specifically the standard state-
ful NAPT [16]) is an effective and performance-efficient anonymization mecha-
nism for what concerns the source address information.

Originally, the need for IP Address translation arises whena local network
uses private IP addresses which are not valid over the Internet. The need for
Address and Port translation (NAPT) further arises when thenumber of avail-
able public IP addresses is lower than the number of private IP addresses. Stan-
dard NAPT supports most of the IP based protocols. To providethe ability to
route return packets to the proper source, NAPT keeps a binding from the tuple
<private address, private TCP/UDP port> to the tuple<assigned address, as-
signed TCP/UDP port>. This binding is determined when the outgoing session is
initiated.

NAT may as well translate public IP addresses. In doing this,it can be con-
sidered as a widely deployed technique for achieving IP layer anonymity. In fact,
without having access to the binding information, there is no way, for a public
Internet Server, not only to discern which specific IP address is associated to a
received NAT-ted request, but also to understand whether the request is originally
NAT-ted or not.

IP layer anonymity is not sufficient to guarantee privacy, and the user identity
may be disclosed from higher layer information. This is a well known issue which
affects any anonymous networking approach. Specific filtering solutions, such as
Privoxy [17] for HTTP, have been designed to remove private information from
application layer requests.
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3.2 NAT as a “label-switching” mechanism

NAT can also be considered as a form of label-switching applied to the return
path. This statement, which might perhaps seem questionable at a first look, is
indeed self-evident if we analyze what happens to the returnpackets. In terms of
routing, these return packets undergo three subsequent steps. First, packets are
delivered from the server to the NAT device. In this step, thefinal destination
is that of the NAT device. Second, NAT provides what can be considered to all
extents a label switching functionality: it switches traffic arriving from an inbound
“IP pipe”, namely the server-NAT pipe, to an outbound pipe, namely the NAT-
source pipe. This is accomplished by changing the “label” used in the server-NAT
pipe (namely, the destination IP and TCP/UDP port address) into a new label that
identifies the NAT-source pipe (namely the source IP and portaddresses). Third,
IP packets whose destination IP/port addresses have been properly changed are
IP-routed towards the source.

Although obvious to most (or all) readers, we remark that this operation does
not break the end-to-end scope of the transport protocol. Even if the sockets are
identified by a different tuple at the two ends, all transportlayer functionalities
(including congestion and flow control) remains implemented on an end-to-end
basis.

3.3 Anonymous routing through NAT extensions

The considerations separately provided in the previous twoSubsections can be
integrated to achieve, at least in principle, anonymous routing. We say “in princi-
ple”, as in practice the level of protection provided by the approach described in
what follows is not nearly close to prevent from attacks against anonymity as well
as denial of service attacks, and a more elaborate solution,as presented in Section
4 is needed.

Using NAPT translation extended also to destination IP/port addresses (i.e.,
DNAT), packets originated by a source nodeS with source portPS, may be
anonymously delivered to a destination nodeD with destinationPD through a
pre-established overlay path (say three overlay routers: an “entry” routerA, an
“intermediate” routerB and an “exit” routerC) as follows:

1. packets are sent fromS to A to an anonymous delivery service running over
a dedicated portPANON. RouterA retrieves from a pre-established NAPT
table, an entry configured forS in terms of i) IP address of the next overlay
router, B, and ii) source portLA to be used as label;

14



2. when the packet originated from nodeA with port LA arrives to nodeB
under portPANON, the router looks up the binding associated to the pair
< A, LA >, retrieving nodeC and the source port valueLB to be used as
label, and accordingly NATs and delivers the packet;

3. finally, nodeC will find that the binding associated to the pair< B, LB >

is the destination nodeD and the destination portPD;

4. return packets are then routed back to the source as in the case of ordinary
NAPT. Note that while the NAPT bindings for the forward path must be
pre-configured, this is not necessary for the reverse path.

We finally remark that, as discussed for the case of the singleNAT case, also
in the case of a chain of NATs the end-to-end scope of the transport protocol is not
broken, and as such this approach does not suffer of the performance drawbacks
discusses in Section 2.

3.4 Shortcomings

The approach described so far is highly efficient and based onstandard network-
ing mechanisms (the NAPT operation described before can be supported over
legacy routers), and helps understanding the basic principles of the framework we
promote; however it suffers several shortcomings.

First, the level of protection is insufficient and even basicattacks would break
anonymity. An external observer could in fact trivially confront the payload of
the packets entering and exiting a node, and when they do match, reconstruct
the binding rule enforced by the node, and hence the path. Similarly, colluding
overlay routers could do the same: for instance if the entry node (which knows
the real source address) and the exit node (which knows the real destination ad-
dress) compare the delivered packets and find matching payloads, the association
between source and destination addresses would be reconstructed.

Second, the proposed NAT-based approach suffers of scalability problems. Es-
pecially in the backbone links, the number of available source ports to be used as
labels might be insufficient to carry the possibly large number of flows to be mul-
tiplexed.

Third, the usage of a known portPANON is subject to denial of service attacks,
as well as many other attacks (e.g., injection of spoofed IP packets, etc).

Fourth, the set-up of the NAT translated path is not trivial.Not only it requires
a custom signaling protocol (as indeed the case in all the Mixnetworks we are
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Figure 5: Nodes of a circuit-based anonymous routing overlay connected by over-
lay tunnels. The onion encapsulated tunnels (telescope) ofone circuit are shown.

aware of), but would also need to be specifically designed forsetting up labels
consistently across the path, in addition to signaling the next hop information at
each router.

4 IPsec forwarding in anonymous overlays

Anonymity is impossible to achieve without proper encryption. Not only packets
entering and exiting an overlay router should be at least8 protected throughdistinct
per-overlay-hop encryption, to protect them from analysiscarried out by external
observers, but encryption should also protect the contentsof the packets from
inspection (and related deriving attacks) by overlay routers.

In the proposed framework, for reasons that will be clarifiedin what follows,
these needs are separately accomplished by i) encrypted tunnels deployed between
pairs of overlay nodes, and ii) re-encryption mechanisms applied by each node
over every forwarded packet. Note that this design inheritsthe same ideas of
anonymous overlays such as Tor, Tarzan or Freedom; the difference resides in
the architectural placement of tunnels and encryption. In both cases, our design
approach is to reuse existing standards, specifically IPsec, and hence achieve an

8Encryption, albeit being an essential component of any anonymous routing mechanism, is not
sufficient to defend against all forms of statistical analysis attacks. State of the art Mix networking
solutions, such as packet reshaping, batching, traffic marking and so on, can be integrated in our
framework without requiring a re-think of the whole system operation. As such, these issues are
out of the scopes of the present paper.
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operation that can be supported over ordinary routers. As sketched in Fig. 4, this
is accomplished by i) deploying long-term overlay point-to-point IPsec tunnels
between pairs of overlay routers, and ii) inside these tunnels, build short/medium-
term IPsec “telescopes”, namely a series of nested IPsec encapsulations, devised
to carry the data delivered by a single client.

Throughout the following subsections, we assume the readerto be familiar
with both the IPsec architecture [18] as well as the related family of standards,
and especially ESP [19] and IKEv2 [20].

4.1 IPsec telescopes

Let S be a source node, andA, B, C three subsequent overlay routers along the
path. We define an IPsec telescope as a sequence of nested IPsec ESP tunnels
constructed as follows.

• S establishes a first IPsec ESP tunnel withA;

• Using this tunnel as first hop,S establishes a second IPsec tunnel withB.
This implies that this second ESP encapsulation is delivered as encrypted
payload in the first tunnel; once the end of the first tunnel is reached, the
IPsec ESP packet is delivered toward nodeB. The fundamental property of
such tunnel is that it usesA as the source address for the IP header of the
ESP packet.

• Similarly, a third IPsec ESP tunnel is created between the sourceS and the
last overlay nodeC. The IP source used is in this case is that ofB, and the
path used to reach nodeC is through the previously created tunnels.

As illustrated in Fig. 4, this operation implements an onionof IPsec ESP encap-
sulations. On the link connectingS to A, an IPsec ESP packet will deliver, as
encrypted payload, a second IPsec ESP packet. This will be extracted when the
first packet exits the tunnel fromS to A: at this stage the next destinationB ap-
pears, and the original source node address is not disclosedbecause this second
IPsec ESP packet is constructed withA as its source IP address. And so on until
the final IP packet is de-wrapped and delivered to the end destination starting from
C (and having setC as the origin address).

This operation allows the deployment of a fully standard transformation of the
packet at each node. Actually, rather than re-encryption, an IPsec ESP wrap is
removed at every hop (and the corresponding decryption is performed), and hence
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the new packet payload will be different. This is perhaps a costly operation in
terms of resulting overhead. Every extra hop requires to adda level of tunneling,
hence an extra 20 bytes IP header plus, in general, 24 extra bytes of ESP header,
which may be reduced to 12 by using only ESP encryption without authentication.
However it accomplishes, in a fully standard way, the task oftransforming the
packet at each overlay router.

In terms of anonymous data forwarding, this operation is completely identical
to the previously described NAT-based approach for theforward path. Indeed, at
every step it appears that both the source and the destination IP addresses changed.
However, this NAT-like change of IP source address is not actually performed by a
NAT function inside the node, but it is prepared beforehand by the source node. As
such, there is no need to pre-establish NAT tables at each node. The required state
information is instead encoded in the IPsec databases, which can be established
dynamically using IKE signaling.

NAPT is still needed in the forward path at the exit node, but no pre-established
state is required. The exit node should make the<source port, destination port,
destination address> 3-tuple unique by changing the source port in case several
anonymous clients try to communicate with the same server using the same source
and destination port numbers.

In the forward path routing is based on IP addresses embeddedin internal
IP headers, and therefore it is straightforward. Support routing in thebackward
path and deliver return packets from the destinationD to the source node requires
some extra tricks. We propose to rely on a somewhat creative extension of stateful
NAT-ting. The key idea is the following.

In the backward path, the overlay node should recognize the incoming packet
as belonging to a given telescope, and encapsulate it in the next telescope accord-
ingly. “Entry” (A) and “intermediate” (B) overlay routers can easily identify the
telescope based on the unique SPI (Security Parameters Index) of the outermost
encryption of the incoming packet9.

E.g., in the case ofB, the packet coming fromC will already be encrypted in
the third tunnel, and its SPI is unique for the given telescope. Based on the SPI,
using an appropriately configured security policy,B selects the next telescope
layer and encapsulates accordingly.

The case of the “exit” node (C) is more complex. Here the incoming packet
is a response from an ordinary server, therefore it is not ESPencrypted and not

9Uniqueness of the SPI is guaranteed among the SPIs used betweenC andB, by enforcing it
during telescope setup
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identified by any SPI10.
The connection is identified by the stateful NAT, but then it should be encap-

sulated in the corresponding telescope. The key problem is creating the binding
between the NAT connection state information and the IPsec SA. We discuss two
possible solutions:

• extension to stateful NAT: in this case the reverse NAT process directly
triggers the IPsec encryption. This integration between the NAT module
and the SPD is possible in some routers through packet marking, but it is
not standard. Therefore we present a second option that resolves the binding
problem through standard means.

• binding through private IP address: In this caseC assigns a private IP ad-
dressSC to S during telescope setup. The address should be unique only
among the addresses assigned byC. Such an assignment is supported by
IKEv2. While constructing the packet,S uses this address as source address
in the innermost (end-to-end) IP header.SC creates the necessary binding
as follows: in the forward path, the NAT applied inC replacesSC by the
public address ofC, while in the reverse path it restoresSC . Being unique,
an SP can be bound toSC by placing it as the source address in its selec-
tor (actually, this binding is automatically created in assigning the address
during IKE negotiation).

4.2 Overlay tunnels

Long-term overlay tunnels protect against external attackers by multiplexing all
the telescopes that have a section between the given two overlay nodes in one
encrypted tunnel. Without this, the SPI value of the outermost layer of every
telescope is seen by an observer, which allows the differentiation of individual
streams and leads to easy matching or statistical traffic analysis attacks.

The disadvantage of overlay tunnels is the extra overhead added, as well as
an extra decryption and encryption operation in each overlay hop. Furthermore,
if TCP based tunnels are used like in the case of Tor, it leads to the performance
degradation demonstrated in 2.3.1. By using IPsec overlay tunnels, the presented
system is free of this latter performance bottleneck.

A positive side-effect of IPsec overlay tunnels is that theyensure delivery of
packets from one overlay node to another, independent of thesource and des-

10The end-to-end communication can also be encrypted if needed.
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tination IP addresses of the internal IP header. In fact, betweenA andB, the
packet should travel withA as source address. Without overlay tunnels, this can
be achieved either by filling the source IP address withA address already inS, or
by NAT-ting the packet inA after decapsulation from theS–A telescope tunnel.
Both of these solutions have shortcomings: the former breaches the principle of
generating IP headers only with own IP address as source, thelatter introduces
NAT traversal problems during IKE tunnel setup [21].

If instead overlay tunnels are used, the IP header of the overlay tunnel (the
external IP header) containsA as source, while the source addresses inside the
overlay tunnel can be chosen freely. This allows the use of the same private ad-
dress assignment we have introduced for the exit node also for intermediate and
entry nodes: Every intermediate node can be an exit node as well, which makes it
possible an incremental IKE-based telescope setup.

4.3 A proposal for IKE-based telescope setup

Although our current implementation is restricted to data path operation, we briefly
discuss how standard IKEv2 can be used to set-up the telescopes incrementally.

Designing a proprietary signaling protocol, as it was done in Tor (and to the
best of our knowledge all other anonymity systems) is clearly possible. Indeed,
Tor’s signaling can easily be adapted to our case with small modifications, namely
changing the role of circuit identifiers to that of private IPaddresses. The chal-
lenge we face however is different, we would like to design the signaling needed
for telescope setup using standard IKEv2 message primitives. The introduction of
such a signaling would mean that IKEv2 compliant routers cantake on the role of
ORs not just on the data plane, but also on the signaling plane, without even the
need for an external entity handling signaling.

In what follows, we discuss incremental telescope setup using standard IKEv2
for the complete case, when overlay tunnels are employed andprivate IP addresses
are assigned in each overlay node.

The use of IKEv2 presents the following challenges:

S.1 negotiation messages should not useS as their source address, instead these
must be anonymized by the existing part of the telescope.

S.2 IKEv2 communicates the address of the negotiating parties as part of the
Traffic Secector during negotiation. We should make sure that the address
is not communicated.
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S.3 we should make sure that no other identifiers ofS are communicated during
the negotiat.

S.4 IKEv2 can automatically figure-out if a NAT device is in the path and en-
force UDP encapsulation according to the NAT-T specification. We would
like to avoid the use of UDP encapsulation.

S.5 The state generated during negotiation should enforce backward path rout-
ing.

To resolve S.1, negotiation is done incrementally. Establishing the first tunnel
betweenS andA is trivial. Here the use ofS does not present any problem, the
first OR must know this address for proper routing. During thenegotiation, an
internal unique private IP addressSA is assigned toS by A using the standard
Configuration Payload (CP) option.

While negotiating the IPsec tunnel betweenS andB, S sends out IKE packets
using the source address (SA) assigned to him byA. It also usesSA in the Traffic
Selector (TS) payload, thus avoiding S.2. Moreover,S should also remain anony-
mous during key negotiation, therefore it uses one side authentication as defined
in [22]. This also resolves S.3.

Packets used during the negotiation withB are first destined (in their outer IP
headers) toA. After decapsulation inA, however, the remaining part of the packet
is destined toB. Therefore it is encapsulated automatically in theA-B overlay
tunnel. This also means that no source NAT-ting is needed inA, the packet can
keep its source address ofSA. With this, we avoid the problem of S.4

Finally, we should ensure that backward path routing of packets fromB is cor-
rectly done inA. This should hold both for packets sent during IKEv2 negotiation
betweenS andB, as well as for later data packets. Backward path routing inA

is based on the uniqueSA being the destination address. SinceSA is assigned us-
ing the Configuration Payload mechanism, the required binding is automatically
created.

B also assigns a unique private IP address (SB), and the process continues
incrementally till the required telescope length is reached.

5 Performance

We have implemented the data plane of the architecture we presented in the previ-
ous sections, called IPpriv, over the 2.6 Linux kernel. We should emphasize that
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no modifications to the kernel code were necessary, the architecture uses exist-
ing IPsec functions to achieve anonymous routing. The implementation merely
configures the routing and IPsec behaviour through standardAPIs in a way that
anonymous routing is achieved.

The performances reported in Sect. 2 refer to this implementation. Provided an
IKEv2 signaling framework, the system can also make use of standard commercial
routers.

To evaluate the performance of IPpriv, we have conducted three types of mea-
surememts:

• first, in order to get a detailed picture on how different architectural choices
influence data path performance, we have measured performance using well
known througput and latency measuremt tools in a controlledenvironment.
For this, we have constructed an isoloated testbed in our laboratory with
configurable network characteristics;

• second, to get a more precise picture of how IPpriv performs in real en-
vironemts, we were measuring application level performance, namely (in-
spired by the most frequently used service) web page download times. Mea-
surements were conducted both in the local testbed by connecting its exit
node to the Internet, as well as in a testbed forming a real overlay over the
Internet;

• finally, we have also performed measuremnts to verify the stability and scal-
ability of the presented architecture.
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5.1 Synthetic performance benchmarks

The performance comparision presented in Fig. 4 plots alonejustifies our work,
however, some deeper inspection is useful.

Fig. 6 reports experiments with Tor and IPpriv as the bottleneck bandwidth
changes from 0 to 10 Mbit/s with a random loss rate of 3%. Similar experiments
with other loss rates yields coherent results. In the goodput (lower) plot, we report
Tor only with a window size of 1000 in order not to clutter up the figure, since all
other Tor veriants had equal goodput.

IPpriv goodput exploits all the resources (lower plot) as soon as a few con-
nections are multiplexed on the IPsec tunnels; only where there are just one or
two connections then the loss rate diminishes the exploitation of resources. It can
clearly be seen that even in the case of one stream, IPpriv largely outperforms
Tor in these conditions, as soon as the available bandwidth grows over 2 Mbit/s.
Tor, independently from the flow control windowWf , is not able to achieve high
resource utilization.

Besides, and most important, in the case of IPpriv, the application level delay
(upper plot, measured on 1024 bytes chunks) becomes negligible as soon as the
bandwidth available is sufficient, and remains negligible even if many connections
are multiplexed together. Tor introduces a delay that, although it diminuishes with
the reduction of the flow control window, is always above one second. Moreover,
as soon as the number of connections increases the delay jumps to several seconds.
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Figure 7: Testbed configuration and experiment setup

5.2 Web page download performance

Fig. 7 describes the measurement setup. We compare the performance of Tor and
our IPsec-based anonymous networking solution. Protecting privacy and enforc-
ing anonymous networking implies performance degradation. To evaluate this
“cost”, we choose two measures:web page download timeandtraffic overhead,
the first one being the price a user has to pay for anonymity, while the second
measuring the cost for the network to support it. As an example we have selected
the download of the main page of CNN with Firefox, but other web-pages, the
use of other protocols (e.g., ftp or POP/smtp for e-mail), orthe use of different
browsers do not change the scenario, yielding similar results.

Our goal is to verify if the IPsec based solution can perform better than Tor,
a service which has already about 200.000 users despite its performance bot-
tlenecks, which are normally described as a price which mustbe paid to have
anonymity. We have configured IPsec tunnels with the same cyphers as used in
Tor (AES-CBC 128-bit encryption and SHA-1 data authentication) in order to
guarantee a fair comparison between the systems and be sure that differences are
not due to the different efficiency of the encryption algorithm.

To better understand the impact of the overlay networking and the anonymiza-
tion ‘price’ we have used two sets of overlay nodes for our tests: a circuit of three
nodes in our lab (local testbed); and a circuit of three nodes in different Euro-
pean universities (Internet testbed). In both circuits, the exit node was the same
router in our University, therefore the last unencrypted part of the path to CNN
was always the same. In both circuits we had Tor as well as IPsec-based anony-
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Figure 8: Traffic received to complete the web page download

mous routing installed11, thus having five different cases, including the direct, non
anonymous download.

Additionally, to evaluate the performance also in an “ideal” scenario, where
the Internet does not interfere with the download speed, andthere is no need for
an exit node, we have prepared a local copy of the CNN main pageon our own
server, having five more cases marked withlocal copy. Notice that the on-line
CNN page is dynamic and changes continuously, while the local copy was always
the same (indeed, it turned out to be a page slightly larger than the average), so
that on-line and local results are not directly comparable.

Thedirect connectionresults refer in both scenarios to non anonymous down-
load of the same information, thus representing the baseline performance of the
service. All downloads were repeated 10 times averaging theresults; error bars
refer to± the standard deviation.

Fig. 8 shows the total amount of traffic generated in each scenario. Privacy
protection with onion routing induces significant overheadin bytes: around50%
for both solutions. The price of privacy protection is relatively high, but not ex-
cessive, and it can be applied selectively on sensitive traffic. From the network
perspective, further overhead is induced by routing packets over multiple overlay
links instead of using shortest path routing. As we already discussed, this is a
shortcoming of all current anonymous networking solutions.

11To achieve comparable results, our private Tor network was not connected to the global Tor
network thus guaranteeing that no other traffic is using the same node modifying performances
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Figure 9 shows average download times for all cases. With no bottlenecks
(local testbed - local copy), layer 3 operation is clearly much faster than Tor.
There is almost no delay that can be ascribed to IPsec-based OR operation, in
contrast to Tor where the average download time increases threefold (from 1 s to
3 s). Tor’s performance degradation is rooted in architectural choices and the use
of TLS tunneling in each overlay hop, and it is not due to bad implementation. The
Internet testbed obviously increases RTT and thus downloadtime, since packets
are routed around Europe to distribute trust to different countries. Here Tor’s
disadvantage grows significantly (24 s vs. 6 s with IPsec, again threefold), having
a page download time clearly noticeable by the user and thus annoying.

Looking at downloads directly from CNN through the local testbed (right side
of figure 9), our IPsec based solution increases the downloadtime compared to
direct download by roughly 50%. Surprisingly, Tor over the local testbed is slower
(14 s) than IPsec over the Internet testbed (10 s), indicating that the performance
bottlenecks are to be sought for in Tor itself and not in the Internet. Finally,
the performance of Tor with the Internet testbed makes it almost unusable with
interactive services.
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5.3 Scalability and stability

In order to be able to perform CPU load measurements and to avoid bandwidth
bottlenecks between the overlay routers, we were using fouridentical 2.6GHz
Pentium4 machines with 512 Mb of RAM, connected by a full-duplex gigabit
LAN.

First, we analyze goodput and CPU load characteristics in this controlled test
environment. When nodes were running at full speed, we have measured 44
Mbits/s with IPsec when the client was sending data and 47 Mbits/s when it was
receiving data. With Tor, achievable bandwidth was 24 and 16Mbits/s respec-
tively. In all cases the the client was the weakest link in thechain, having the
highest CPU usage among the nodes.

In order to measure the CPU load of every node as a function of goodput, we
needed a trick: we lowered the CPU freqency of the node under test to 650 Mhz,
this way it became the weakest in the circuit. Figure 5.3 shows the CPU utilization
of each node as a function of the application level traffic (obviously achieved
goodput is lower due to the CPU slowdown). We have used the Linux traffic
control framework with a token bucket to limit bandwidth, the thrulay tool to
generate symmetric bi-directional traffic and sysstat to measure CPU utilization.

The resource usage of the client and of OR3 is different from other nodes for
several reasons: they serve as traffic end points, they perform different number of
encryption/decryption operations and they should also handle end-to-end SHA1
authentication.

Figure 5.3 shows significant performance improvements overTor, however we
should not overestimate the importance of these measurements. Even if huge dif-
ferences can certainly be seen for the current implementations, part of this might
easily be due to factors we can’t control in the test environment, e.g. differences
in the underlying crypto implementation.

Rather, we would like to emphasize differences due to systemarchitecture
design. In the case of IPsec, all of the measured CPU utilization was in kernel
space. In the case of Tor, most of the CPU time was spent in userspace (around
90% user space, 10% kernel space) which might explain some ofthe performance
differences: Tor involves much more copying, context switching and buffer man-
agement, which all takes precious CPU time.

In our system, kernel space operation is possible since the data path is handled
entirely at the IP level, in contrast to the application level processing applied by
Tor. This allows for new deployment models, as we have discussed earlier. It
should be emphasized that no changes are needed to the kernel, any operating
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system (or router in general) that supports IPsec tunnels can be configured to work
as an overlay router.

Kernel space operation also ensures that the data path of an overlay router is
not affected by user space processes. Figure 5 shows data path performance when
OR2 is busy running other applications (we use the stress program to load the
overlay router).

Stress was running from the 20th second of the connection in OR2, putting
high load on the CPU for 20 seconds. The cycle continued with 20 seconds periods
of no load and 20 seconds of different types of load: I/O, memory subsystem
and finally load on the HDD (in each case, stress was configuredto create 20
processes). Routing performance is highly affected in the case of Tor, while it
stays stable for the IPsec based solution. This is of course achieved at the price
of slower application execution, which should not be a problem in the case of a
router.

To deepen our measurement, we were also running Tor with increased priority
(renice -20). As shown on Figure 5, load on the memory subsystem still affects Tor
routing performance heavily. Same results were achieved with other prioritization
methods (i.e changing Tor’s scheduling class with chrt).
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6 Conclusions

Anonymous networks, as well as VPNs, for the protection of users’ privacy are
already standard pieces of the global Internet. Available solutions for anonymiza-
tion and many VPN too, are however plagued by unacceptable performance degra-
dation.

In this work we have shown that performance impairments are neither intrinsi-
cally related to anonymization, nor due simply to poor implementation, but instead
they are rooted in the architectural choice of building overlays on top of transport
layer, flow and congestion controlled tunnels.

Given the above observation, we have proposed an entirely new architecture
for anonymization based on the extension of standard IP-layer tools and protocols.
This architecture ensures the same level of anonymity guaranteed by state-of-the-
art solution like Tor and at the same time contains performance degradation (in
terms of application level throughput and delays) to a smallfraction of the perfor-
mance obtained by direct, non anonymized flows.

Experiments run on a Linux-based implementation of the proposed architec-
ture shows that in standard operating conditions the user-perceiver performance
of our systems hardly distinguishable form a standard network, while the penalty
paid by Tor and similar systems, just for the choice of using TLS tunnels, makes
it impossible to use real-time and also interactive applications on anonymous net-
works, hampering the diffusion of these systems.
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