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Abstract

Anonymization (Mix) networks are based on the delivery ofssages
through a sequence of overlay hops devised to avoid endediekage of
the information, thus protecting users’ identities (wheeaded) and privacy.
Most Mix networks are based on hops built either on TLS orddliyebuilt by
proprietary protocols. In the first part of this paper we gpalthe method-
ology chosen so far to build Mix networks and Tor in particidad show,
through experiments supported by a theoretical explamatttat overlays
based on congestion-controlled transport level tunnelg imaur in devas-
tating performance degradation. The second part of therpsoevoted to
the discussion of anonymous networks based on layer-3at@dusolutions,
like IPsec and NATSs, and to the description of a Linux-basgglémentation
that is scalable, performing and fulfills all anonymity reements.

1 Introduction

Anonymization, also called “Mix”, networks have been prepd almost three
decades ago by David Chaum [1]. They originate by the retogrihat the end-

point addresses involved in a communication (e.g., |IP aseeor application-
layer source/destination information such as email adgésganay reveal private
information, such as who is connecting with (or sending asags to) whom,

which site a user is visiting, and so on.



Encryption alone, such as that provided by the ordinarydRseTLS secu-
rity protocols, cannot prevent disclosure of end-pointradses. These are in
fact strictly necessary to route data inside the network antike data payload,
they cannot be encrypted. Mix networks achieve addresggion by properly
combining encryption with routing. The idea of first-gertema Mixes [1] was to
deliver whole messages, such as emails, using a storesandfl approach, rely
on source-routing, and use public key encryption to prdteetrouting informa-
tion added to every message, so that every intermediateaoadié only know the
address of the previous and next node in the overlay.

It was soon understood that such a pure store-and-forwgmbaph could not
support low latency or real-time communication. Startingnf the mid of the
nineties [2], a number of new Mix network designs flourishBgecific designs,
such as Tor [3], Freedom [4], Tarzan [5], Crowds [6], Herlb&/§/], etc., signif-
icantly differ each other in terms of key functionalities\jte setup/selection, node
discovery, centralized/distributed/hierarchical opiera protection/anonymization
mechanisms, data delivery approaches, ...), but all worgpgdications over
transport protocols. In the majority of the cases, we caghbuvisualize them
as overlays which provide effective and low latency datavdel mechanisms,
for instance employing virtual circuit switching-like tegiques over paths setup
through a carefully crafted signaling approach devisedresgrve anonymity.
Among the proposed approaches, Tor [3] is by far the one thatakhieved the
most significant deployment (almost two thousand overlalesand several hun-
dred thousand users), and for this reason we use Tor as exampl

An enormous amount of literature has discussed all facdtsea$ecurity, pri-
vacy and anonymity issues emerging in either general Miwolding scenarios
and in the particularly important practical case of Tor. Hwer, only a limited
amount of work has provided insights on Tor / Mix networkstira performance
point of view. And even in such cases, performance issueslbe®n mostly tack-
led from the point of view of their impact on anonymity [8, $lerformance may
be perhaps considered to be a marginal issue when compassdhymity, the
only reason why Mix networks exist; and Mix network users rbaywilling to
trade-off performance for anonymity (indeed, they are pting to exploit sig-
nificantly longer and sub-optimal network paths). Nevdebg, we believe that
performance issues should be tackled for two reasons, arergjeand one more
specific.

First, we believe that an anonymization overlay whose perémce degrada-
tion remains at reasonable levels attracts more users.elfithvnload time of
a web page over an anonymous overlay is only slightly grettn its direct
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download, even users not strictly concerned with anonymidly decide to rely
on such networks. This would turn out to be a great advantlgeiaterms of
level of anonymity provided: it is a commonly accepted pipresthat anonymity
increases with the number of users.

Second, in several Mix designs, including Tor, the overtajormed through
TSL tunnels. As such, they enforce TCP’s congestion conin@ per-hop basis.
When also the information delivery on top of the overlay ighear controlled by
some form of congestion control (either TCP or a simplifiedgestion control
protocol, as in Tor’s case), as shown in Sect. 2, the twordiffecontrol loops may
negatively interact, and reduce (possibly to a significater) performance We
remark that such a performance impairment would not be theemuence of a
benefit in terms of level of anonymity or privacy providedt fus a mere con-
sequence of a technical implementation decision (cormesntrolled tunnels
used as overlay hops).

The specific contributions of this paper are the following:

¢ We show, with both experimental assessment and simplifiely&cal con-
siderations, the possibly severe side consequences oftdedocangestion
control loop. This is addressed for both the TCP over TCP, caseell for
the specific Tor’s case;

e Having concluded that, for performance reasons, anonyioizaverlays
should rely on non congestion controlled hops (e.g., DTL3PsecC tun-
nels), we propose a novel IPsec-based anonymization g\agsf@oach. We
experimentally show that our approach does not exhibitstimetcomings
discussed above.

e Finally, our approach is designed with ease of deploymentind, includ-
ing the possibility to deploy it over standard IP routers. Weed believe
that usingstandard-basedpproaches may foster anonymous networking as
a future core networking service. To this purpose, i) ouraagh relies on
the widely deployed IPsec standard; ii) it provides anoraation and fast
data delivery through a smart usage of network addresddatans and iii)

lindeed this is somewhat expected by networking expertgdmniaps less straightforward for
the anonymity research community. Despite this, the proldescribed in this paper may apply
also to layer 4/7 Virtual Private Networks, when they use TrSSSH as tunneling technology.
Quite surprisingly, to the best of our knowledge, the sidéggemance issues that such a TCP over
TCP scenario originate have never been extensively tadkldgt literature.



it can be extended to support dynamic setup of overlay p#thsugh a Tor-
like telescope approach) with no need for a proprietaryaiigg protocol,
but using IPsec’s IKEv2 for this purpose.

2 Performance Shortcomings of TCP-based Over-
lays

First we discuss, through experimental results, the perdoice shortcomings of
TCP over TCP tunnels. Then we show how Tor exhibits comparsiixbrtcomings

even if it does not directly use TCP as overlay congestiotrobmechanism. An

explanation based on simplified analytical consideratispsovided next.

2.1 The case of TCP over TCP-tunnels

TLS or SSH connections supporting tunneled traffic are commaany applica-
tions. OpenVPN [10] is one of the most popular examples, aryther exam-
ples exists, including commercial products like ‘NeoAcCBSIL VPN-Plus™ [11]
where it is declared that performance problems of conveatioLS-VPNs are re-
lated to slow and inefficient processing in user space.

Ny

|\|1 N>

Figure 1: The simplest possible TCP over TCP tunneling sezn&/ TCP con-
nections share a TLS tunnel.

In order to verify that performance degradation of TCP ow@PTs not related
to inefficiencies, but to the inherent algorithmic interastof multiple nested
control loops, we ran the trivial experiment depicted in.Rigone TCP tunnel
between noded/; and N, supportsM TCP connections. The tunnel is not even
encrypted to ensure that processing is not a bottlenecktanduilt using the
standard Tun-Tap interfac&/; and /N, are Linux-based routers without any other
application, and we forced th€,—/N, connection through a network emulator that
restricts capacity to 10 Mbit/s and introduces controbtalaindom losses. Neither
processing nor information passing with\y and /N, introduce any measurable
delay in information transfer.
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Figure 2: Performance of TCP over TCP-tunnels, applicatwel delay (left
plot) and throughput (right plot) versus loss rate on a 10tMitiottleneck com-
pared with the performance of non-tunneled TCP connectramsrsing the same
bottleneck.



Fig. 2 reports the application level throughput (goodput) delay measured
in six scenarios. Three of these, marked with dashed liedésr to cases where
TCP-tunneling is used. Different point styles indicate thienber (one, two, or
five) of concurrent TCP connections running through the s@a@B-tunnel. In
the remaining three cases, marked with solid lines, the sanmder of TCP con-
nections share the same bottleneck, but without the tuniibe Thrulay [12]
measurement tool was used to generate traffic and to measluesy Reported
goodput values are aggregates of all streams. Since Tdtdtteaend-to-end TCP
loop, we measure application level round trip time (RTT}&asl of the usual TCP
RTT throughout the paper, in order to allow comparison witih TEach experi-
ment was run 10 times, averages and standard deviation&#edp

Lines referring to a single connection provide a referermgecthat allows
measuring the intrinsic overhead of the when losses areosatrb. All other
measured points clearly show that, while multiplexing TG on a lossy bot-
tleneck allows for a better and better exploitation of theorteces as the number
of TCP flows increases (as taught in any book), if there is a Ti@RAel on top
of the bottleneck, then, as the number of connections sipammnel and bottle-
neck increase, the throughput is not improved, while theydeicreases steadily.
Sect. 2.3.1 presents the (simple) theoretical reason ib#havior.

2.2 Torcase

Tor overlay architecture is more complex than a simple tlinge Appendix A
presents a short primer on Tor, but we refer the interesiadereto the Tor web-
site and specific literature. First of all, its internal aamhimechanisms forbids to
have any topology with less than three Tor hop$hen, the ingress OP termi-
nates incoming TCP connections, building a shared, pematisin-OR connec-
tion which is flow-controlled with a fixed size window protdashose window
sizeW; is expressed ifor cells These streams are transported to the destina-
tion on a chain of TLS tunnels that implements the Tor ‘tebgsc. Fig. 3 depicts
the simplest possible Tor topology. We set up this topolaggur lab network
with similar conditions to the TCP over TCP experiment. Tbssly 10 Mbit/s
bottleneck is between QRind OR.

Fig. 4 reports goodput and application layer delay for Tath{wlifferent val-
ues of the flow control window siz8/;) compared with the performance of the

2Indeed, two is the minimum number of hops needed to ensuneyarity, but Tor is devised
to use three to reduce the chances success of some speatiflcsatt
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Figure 3: Minimal Tor overlay: 3 hops with one exit OR.
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Figure 4: Performance of TCP connections in the simplestiptesTor network:
application level delay (left plot) and throughput (righd) versus loss rate on a
10 Mbit/s bottleneck, compared with the solution we propEsened IPpriv).



anonymous network architecture we are proposing in thigpegpthe same cir-
cumstances. First of all, observe that Tor throughput is pamable with the
throughput of TCP over TCP connections, while the perforeeanf our approach

is comparable with no tunneling at all. For alf; values the Tor ‘ack trig-
ger, i.e., the relative value of buffer filling at which thestination OR sends

a RELAY_SENDME cell back to the ingress OP is set to 1/10. This has a small
influence on the goodpuit.

The really striking feature is however the delay (left harde plot), which
grows with bothi¥/; and the number of tunneled connections and is, in any case,
too large to support any kind of interactive or transactigeavice, not to speak
about real-time ones.

2.3 A simple theoretical explanation
2.3.1 TCP over TCP-tunnels

Consider the simple tunneling scenario of Fig. 1. L€t) be the round trip time
of connectiony crossing the tunnel, ang-(t) < 7;(¢); Vi, t be the round trip time
of the tunnel itself.

Consider a generic congestion control function based otréinemitter evalu-
ation of the loss probability. Without loss of generality ean consider an AIMD
(Additive Increase Multiplicative Decrease) function. efeame arguments dis-
cussed here can be applied to AIAD (Additive Increase Addibecrease) or any
other regulation technique. Such a congestion contralegiyacan be expressed
in terms of the following differential equation:

%it) =at — BR(t —71(t))P(t — 7(t)) (1)
where R(-) is the connection throughput arfél(-) is a generic loss probability
function. « and < 1 are the additive increase and multiplicative decrease con-
stants respectively

We consider tunneling/ layer-4 (congestion controlled) connections within
the single layer-4 (congestion controlled) tunnel betwagnand N,. The dy-
namic behavior of the queugy, at the ingress of the tunnel at nodg is then

W (t)

3Recall that throughpu®(¢) and transmission window si& (¢) are related byR(¢) = =0)

so that controlling congestion through window or througimegulation is equivalent.




the following:

Z R;i(t) — Rp(t)

Qw, = max {o, / } 2)

whereRr(-) is the tunnel throughput anBi;(-) is the throughput of connectian
We can now prove the following:

Lemma 1 TunnelingM congestion controlled connections into a single conges-
tion controlled tunnel, ifA/ > 1 then the queuing delay i@y, is unbounded
unlessp,(t) = 0; Vi.

Let first analyze the casB(t) = 0;Vt. In this case it is straightforward that
Ry > Zﬁ | Ri" guarantees tha) y, is empty since the capacity of the tunnel
is larger than the sum of all throughputs carried within ithisSTcase might be
of little practical interest, at least for large's, but shows that without losses a
transport layer tunnel can be configured to work steadily.

In presence of loss&seach lost packet will lead to a throughput reduction of
a factor/ for the tunnel, in addition to a period of time devoted to theavery of
the lost packet when the tunnel throughputis zero. This lapse depends on the
specific protocol, for TCP it is normally(¢). The transmission windows of the
tunneled connections, which is the offered load to the tyrwd normally not
change at all, because the tunnel window is large and thespactecovered with
a fast retransmit in one(¢), which is necessarily smaller than any retransmission
timeout of the tunneled connections and fast retransmitsatsbe triggered.

Therefore, each packet loss implies an excess traffic béieged to the tunnel
and accumulating i)y, .

Let’s now analyze the evolution between losses, i.e., duihme lapsé’ be-
tween two consecutive losses. Since the increase is lindaparametery, it fol-

lows immediately that the additional traffic offered to toarnel istZ1 E—[T@)}
T | Ti

while the throughput increase of the tunneld [T(m, l.e. roughly M times
T|T

smaller, where [[] is the average over the time lagse

Since the entire life of the system is a sequence of lossekasdree periods
and both events leads to an excess of traffic being offerdgettutinel (), grows
without limit.

4We are not interested here in the stochastic characteristitie loss process, nor it is impor-
tant whether the losses are due to overload of the tunneiffit tor due to independent reasons.



Lemmal neatly explains the observations in Fig. 2. The laftchplot show
that, independently from the loss rate, the average delpgreenced at the ap-
plication level grows with the number of tunneled connetiiowhile the same
number of connection on the same bottleneck do not experiargmilar delay
growth.

One can argue that the size@4, is finite, so that when the buffer fills addi-
tional losses will slow down the tunneled connections, niglading to a stable
scenario. While this observation is partially correctsitlearly undesirable that
a single loss due to real congestion in the network is tramsfd into multiple
losses at the transport and application layer. Additignale can observe that,
unless the size apy, is really small, then it will dominate;, V.

In practice, to avoid the phenomenon just described, thgestion control
algorithm of the tunnel should be tailored to the number aheled connections
M trying to guaranteeing that; > S a; and gy < 2121 which is not only
difficult to realize, but will also affect the overall stabyl and fairness of the
network.

Specializing this analysis for the actual behavior of TGSng for instance
the window evolution models developed in[13, 14] does nat aady insight in
the problem.

2.3.2 Tor-like overlays

Consider the Tor networks described in Fig. 3. We focus orcéise where a net-
work level bottleneck leads to losses on the tunnel betwedgnadd OR. Once
again the origin of losses and the stochastic charactexistiP,(¢) are irrelevant
for our problem.

In Tor each TLS tunnel between ORs is terminated in the recédR and
an unlimited buffer of Tor cellsQoR in available. Additionally, Tor maintains
an edge-to-edge window-based flow control. The size of thitebis normally
set to 1000 cells, i.e., 512 kBytes, but can be changed atllasdn time. Given
the use of reliable overlay links (TLS) flow control is enfedcwith the use of
non-tagged tokens: QRends messages which are transmission tokens, but never
acknowledge the reception of specific cells. Assume thatdaies not experience
any bottleneck in sending packets outside the Tor networkhat it can generate

5The buffer is only limited by the memory reserved for the Tovgess, which is, in standard
instances of Tor, only limited by the RAM and virtual memowa#able, which is to our purposes
practically unlimited
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tokens arbitrarily fast. This assumption simplifies thecdgsion and does not
change the nature of the phenomenon we are analyzing.

Let M > 1 be the number of streams or flows, and (1) be the congestion
control of TLS tunnel§ we now analyze the different cases that might occur as
a function of M and P, although the overall behavior is fundamentally the one
of an overloaded store-and-forward system, where the deldgminated by the
dimension of the buffer in front of the bottleneck of the gyst

M = 1; B(t) = 0;Vt: This is the simplest case, and we only have two
possible behaviors, based on the relative throughput dd®Re-OR, tunnel (call
it Rr) and the OP-OR, tunnelR;. If Ry > R, then the buffe)gR, is drained
faster than it is filled, ORcan send tokens to QFaster than OPcan send cells
and no queue builds iQgR,. Otherwise if Ry < Ri, Qor, Will fill up until
OP, stops sending more data than it is drained, and this happdye/ben it runs
out of tokens. As a result the delay incurred by informatiorciossing the Tor
network will be Digr = ;V—qf + 6 wheredincludes all other delays packets incur in
the Tor network.

M > 1; P(t) = 0;Vt: Following the same reasoning as before we can con-
clude that in this case we have a negligible delay onlyif> Zf‘il R;, otherwise
the delay will jump toDtor = “77£ + . If instead of the trivial network depicted
in Fig. 3 we have a more realistic and complex meshed netwioek, the analysis
becomes cumbersome and the result might depend on speatfitgand mixing;
however, in any case, each Tor tunnel will be in one of the tessfble conditions
defined above, and the delay of the information crossing tnen&twork will be
either negligible or jump ttgr > 5~

P(t) # 0: Indeed, since TLS tunnels are terminated in ORs and baofjeri
in QORj is done at the application level, the presence of losses mateshange
the problem significantly, since the dominating effect is #verage throughput
obtained by tunnels and losses simply decrease the thraufirther.

Concluding, the delay in Tor networks is due to the use of eestod-forward
technique at the application level, and its amount is $yrretlated to the dimen-
sion of the edge-to-edge flow control window. Reducing thisdew below a
certain (fairly larger) threshold, is however not feasjlsi@ce the throughput will
be affected.

60nce more, using actual TCP behavior instead of the morergimehavior described by (1)
will not add any insight in the problem.
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2.4 Analysis insights

The analysis above, both for Tor and for TCP-over-TCP tungdk simple to
the point of being trivial, but explain very well the obsedvgerformance impair-
ments.

Indeed, we observed and explained two different phenomena:related to
nesting of TCP-like closed loop congestion control mecérasi and the other one
related to the use of a store-and-forward technique witheldouffers and loose
flow control. Both phenomenon are not new to science, bewglitknown in the
theoretic control community that nested control loops neagdlto instability and
in the networking community that store and forward techagwith large buffers
induce long delays.

These performance issues appear to be inherent to the ussnsport-level
tunneling, and not related to tuning or implementation peots. Both problems
can be easily solved using tunneling at the network levelreotdat the transport
level. In the following we present a solution for anonymoe$working based
on IPsec, preserving Tor-like anonymous properties yeftirsgplthe performance
impairments.

3 NAT-based forwarding for anonymous overlays

We propose to improve the data forwarding in anonymous aysrtaking into
account the following three key challenges:

¢ No impact on native end-to-end congestion contvéé believe (and in this
we found full support in the recent paper [15]) that anonysoetworking
should not be overloaded with cross-layer functionaljtiezg should sim-
ply provide support for anonymoysacketdelivery. It should seamlessly
support, without affecting or breaking them, the nativas$gort-layer op-
eration of supported connections.

’It is not a goal of this paper to describe a new complete achite for anonymous network-
ing. Indeed, this is composed by several components, suatesiay management through direc-
tory servers, routing path selection and anonymous patip s#gnaling, anonymity mechanisms
such as packet batching and traffic covert, etc. Our goalristestricted to describe a solution for
performance effective data forwarding. We believe that gasier (although not nearly trivial) to
adapt already existing anonymous networking frameworksrteard the information data as here
proposed, rather than redesign from scratch a new aralnigeoh top of such a functionality.
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¢ |P layer operation As anetworkingfunctionality, an anonymous network
should directly operate on IP packets. As such, it shoulchiessly support
any traffic carried on top of IP packets.

e standard-based operatioriVe believe that any new networking paradigm
should build, if technically possible, on already existisugd widely de-
ployed standards.

For the sake of clarity the next subsections we assume thpé#ths are pre-
established, and ii) tunneled packets are not encryptece sbhutions needed
overcame these assumptions are presented in Sect. 4.

3.1 NAT as anonymity mechanism

The Network Address Translation functionality (and speaify the standard state-
ful NAPT [16]) is an effective and performance-efficient agmization mecha-
nism for what concerns the source address information.

Originally, the need for IP Address translation arises whdocal network
uses private IP addresses which are not valid over the ktterihe need for
Address and Port translation (NAPT) further arises whenniln@ber of avail-
able public IP addresses is lower than the number of privaddresses. Stan-
dard NAPT supports most of the IP based protocols. To prothdeability to
route return packets to the proper source, NAPT keeps argrfdom the tuple
<private address, private TCP/UDP perto the tuple<assigned address, as-
signed TCP/UDP port. This binding is determined when the outgoing session is
initiated.

NAT may as well translate public IP addresses. In doing thisan be con-
sidered as a widely deployed technique for achieving IPrlagenymity. In fact,
without having access to the binding information, thereasaay, for a public
Internet Server, not only to discern which specific IP adglissassociated to a
received NAT-ted request, but also to understand whetleerettpuest is originally
NAT-ted or not.

IP layer anonymity is not sufficient to guarantee privacyl #re user identity
may be disclosed from higher layer information. This is alwebwn issue which
affects any anonymous networking approach. Specific figesiolutions, such as
Privoxy [17] for HTTP, have been designed to remove privatermation from
application layer requests.

13



3.2 NAT as a “label-switching” mechanism

NAT can also be considered as a form of label-switching &pplo the return
path. This statement, which might perhaps seem questiersla first look, is
indeed self-evident if we analyze what happens to the regtackets. In terms of
routing, these return packets undergo three subsequest skerst, packets are
delivered from the server to the NAT device. In this step, fihal destination
is that of the NAT device. Second, NAT provides what can besered to all
extents a label switching functionality: it switches trairriving from an inbound
“IP pipe”, namely the server-NAT pipe, to an outbound pipamely the NAT-
source pipe. This is accomplished by changing the “labedtius the server-NAT
pipe (namely, the destination IP and TCP/UDP port address) new label that
identifies the NAT-source pipe (namely the source IP and guadtesses). Third,
IP packets whose destination IP/port addresses have beparfyr changed are
IP-routed towards the source.

Although obvious to most (or all) readers, we remark thag dperation does
not break the end-to-end scope of the transport protocanfvthe sockets are
identified by a different tuple at the two ends, all transpayer functionalities
(including congestion and flow control) remains implemdnde@ an end-to-end
basis.

3.3 Anonymous routing through NAT extensions

The considerations separately provided in the previousSwlsections can be
integrated to achieve, at least in principle, anonymousmguWe say “in princi-
ple”, as in practice the level of protection provided by tipp@ach described in
what follows is not nearly close to prevent from attacks agis@anonymity as well
as denial of service attacks, and a more elaborate sol@sgoresented in Section
4 is needed.

Using NAPT translation extended also to destination IR/pddresses (i.e.,
DNAT), packets originated by a source nofewith source portPs, may be
anonymously delivered to a destination nalewith destinationP, through a
pre-established overlay path (say three overlay routers’eatry” router A, an
“intermediate” router3 and an “exit” routelC) as follows:

1. packets are sent fromto A to an anonymous delivery service running over
a dedicated porPanoN- RouterA retrieves from a pre-established NAPT
table, an entry configured fdf in terms of i) IP address of the next overlay
router, B, and ii) source pori, to be used as label,

14



2. when the packet originated from nodewith port L, arrives to nodeB
under portPanon. the router looks up the binding associated to the pair
< A, L, >, retrieving node”' and the source port valueg to be used as
label, and accordingly NATs and delivers the packet;

3. finally, nodeC" will find that the binding associated to the pairB, L >
is the destination nodP and the destination poRp;

4. return packets are then routed back to the source as irasieect ordinary
NAPT. Note that while the NAPT bindings for the forward patlushbe
pre-configured, this is not necessary for the reverse path.

We finally remark that, as discussed for the case of the siglecase, also
in the case of a chain of NATs the end-to-end scope of thegahprotocol is not
broken, and as such this approach does not suffer of therpeafiwe drawbacks
discusses in Section 2.

3.4 Shortcomings

The approach described so far is highly efficient and basexdasdard network-
ing mechanisms (the NAPT operation described before carupposted over
legacy routers), and helps understanding the basic ptascgs the framework we
promote; however it suffers several shortcomings.

First, the level of protection is insufficient and even badtacks would break
anonymity. An external observer could in fact trivially domt the payload of
the packets entering and exiting a node, and when they dohmegconstruct
the binding rule enforced by the node, and hence the pathila8liyncolluding
overlay routers could do the same: for instance if the entigen(which knows
the real source address) and the exit node (which knows #ghelestination ad-
dress) compare the delivered packets and find matching gdgthe association
between source and destination addresses would be ragtiesir

Second, the proposed NAT-based approach suffers of skigla@boblems. Es-
pecially in the backbone links, the number of available seynorts to be used as
labels might be insufficient to carry the possibly large nemddf flows to be mul-
tiplexed.

Third, the usage of a known paPhnon IS Subject to denial of service attacks,
as well as many other attacks (e.g., injection of spoofechlékgts, etc).

Fourth, the set-up of the NAT translated path is not triiNt only it requires
a custom signaling protocol (as indeed the case in all therdixworks we are
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@Overlay tunnel

(:.Onion encapsulation

Figure 5: Nodes of a circuit-based anonymous routing oyedanected by over-
lay tunnels. The onion encapsulated tunnels (telescopm)@tircuit are shown.

aware of), but would also need to be specifically designedétting up labels
consistently across the path, in addition to signaling e hop information at
each router.

4 IPsec forwarding in anonymous overlays

Anonymity is impossible to achieve without proper encrgptiNot only packets
entering and exiting an overlay router should be at fgarsttected througHistinct
per-overlay-hop encryption, to protect them from analgsisied out by external
observers, but encryption should also protect the contintse packets from
inspection (and related deriving attacks) by overlay nsute

In the proposed framework, for reasons that will be clarifred/hat follows,
these needs are separately accomplished by i) encryptedlsuaeployed between
pairs of overlay nodes, and ii) re-encryption mechanisnmdieg by each node
over every forwarded packet. Note that this design inh¢héssame ideas of
anonymous overlays such as Tor, Tarzan or Freedom; theatiffe resides in
the architectural placement of tunnels and encryption. ol ltases, our design
approach is to reuse existing standards, specifically |Rsethence achieve an

8Encryption, albeit being an essential component of any yamois routing mechanism, is not
sufficient to defend against all forms of statistical anmlgstacks. State of the art Mix networking
solutions, such as packet reshaping, batching, traffic imgind so on, can be integrated in our
framework without requiring a re-think of the whole systepemation. As such, these issues are
out of the scopes of the present paper.
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operation that can be supported over ordinary routers. AgBkd in Fig. 4, this
is accomplished by i) deploying long-term overlay poiriptmint IPsec tunnels
between pairs of overlay routers, and ii) inside these tisnbaild short/medium-
term IPsec “telescopes”, namely a series of nested IPsepsulations, devised
to carry the data delivered by a single client.
Throughout the following subsections, we assume the retadbe familiar

with both the IPsec architecture [18] as well as the relatadilfy of standards,
and especially ESP [19] and IKEV2 [20].

4.1 IPsec telescopes

Let S be a source node, amtl B, C three subsequent overlay routers along the
path. We define an IPsec telescope as a sequence of nestecElBRdunnels
constructed as follows.

e S establishes a first IPsec ESP tunnel with

e Using this tunnel as first hog establishes a second IPsec tunnel with
This implies that this second ESP encapsulation is delivaseencrypted
payload in the first tunnel; once the end of the first tunneka&ched, the
IPsec ESP packet is delivered toward ndtielhe fundamental property of
such tunnel is that it use4 as the source address for the IP header of the
ESP packet.

e Similarly, a third IPsec ESP tunnel is created between theced and the
last overlay nod€’. The IP source used is in this case is thaBofind the
path used to reach nodeéis through the previously created tunnels.

As illustrated in Fig. 4, this operation implements an onodriPsec ESP encap-
sulations. On the link connecting to A, an IPsec ESP packet will deliver, as
encrypted payload, a second IPsec ESP packet. This will trect&d when the
first packet exits the tunnel froifi to A: at this stage the next destinatighap-
pears, and the original source node address is not dischEsmaise this second
IPsec ESP packet is constructed withas its source IP address. And so on until
the final IP packet is de-wrapped and delivered to the endhdeisin starting from
C' (and having set’ as the origin address).

This operation allows the deployment of a fully standardsfarmation of the
packet at each node. Actually, rather than re-encryptianPaec ESP wrap is
removed at every hop (and the corresponding decryptiorrienpeed), and hence
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the new packet payload will be different. This is perhaps stlgmperation in

terms of resulting overhead. Every extra hop requires toaaestel of tunneling,

hence an extra 20 bytes IP header plus, in general, 24 extea biyESP header,
which may be reduced to 12 by using only ESP encryption withathentication.

However it accomplishes, in a fully standard way, the taskrafsforming the

packet at each overlay router.

In terms of anonymous data forwarding, this operation isetely identical
to the previously described NAT-based approach forftineard path Indeed, at
every step it appears that both the source and the destinBtaxdresses changed.
However, this NAT-like change of IP source address is natalyt performed by a
NAT function inside the node, butitis prepared beforehanthk source node. As
such, there is no need to pre-establish NAT tables at each Adek required state
information is instead encoded in the IPsec databaseshveaic be established
dynamically using IKE signaling.

NAPT is still needed in the forward path at the exit node, laypre-established
state is required. The exit node should make4ts®urce port, destination port,
destination address3-tuple unique by changing the source port in case several
anonymous clients try to communicate with the same servegtise same source
and destination port numbers.

In the forward path routing is based on IP addresses embeddetkernal
IP headers, and therefore it is straightforward. Suppartimg in thebackward
path and deliver return packets from the destinafioio the source node requires
some extra tricks. We propose to rely on a somewhat creatteagion of stateful
NAT-ting. The key idea is the following.

In the backward path, the overlay node should recognizenttaming packet
as belonging to a given telescope, and encapsulate it iretktd@lescope accord-
ingly. “Entry” (A) and “intermediate” B) overlay routers can easily identify the
telescope based on the unique SPI (Security Parameters) loididhe outermost
encryption of the incoming pacKet

E.g., in the case aB, the packet coming fromd’ will already be encrypted in
the third tunnel, and its SPI is unique for the given telescdpased on the SPI,
using an appropriately configured security poli¢y,selects the next telescope
layer and encapsulates accordingly.

The case of the “exit” node() is more complex. Here the incoming packet
is a response from an ordinary server, therefore it is not &®8fypted and not

SUniqueness of the SPI is guaranteed among the SPIs useddmefinand B, by enforcing it
during telescope setup
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identified by any SP?.

The connection is identified by the stateful NAT, but therhibgld be encap-
sulated in the corresponding telescope. The key problemeging the binding
between the NAT connection state information and the IPged\& discuss two
possible solutions:

e extension to stateful NAT: in this case the reverse NAT psecdirectly
triggers the IPsec encryption. This integration betweenNIT module
and the SPD is possible in some routers through packet ntgrkirt it is
not standard. Therefore we present a second option thawesdbe binding
problem through standard means.

¢ binding through private IP address: In this cdasassigns a private IP ad-
dressS¢ to S during telescope setup. The address should be unique only
among the addresses assigned’bySuch an assignment is supported by
IKEv2. While constructing the packet,uses this address as source address
in the innermost (end-to-end) IP headéf; creates the necessary binding
as follows: in the forward path, the NAT applied @1 replacesSq by the
public address of’, while in the reverse path it restor§s. Being unique,
an SP can be bound t&- by placing it as the source address in its selec-
tor (actually, this binding is automatically created inigaég the address
during IKE negotiation).

4.2 Overlay tunnels

Long-term overlay tunnels protect against external atdescky multiplexing all
the telescopes that have a section between the given twtapverdes in one
encrypted tunnel. Without this, the SPI value of the outesiniayer of every
telescope is seen by an observer, which allows the diffext@ot of individual
streams and leads to easy matching or statistical traffiysisattacks.

The disadvantage of overlay tunnels is the extra overhedddadhs well as
an extra decryption and encryption operation in each oydrtgp. Furthermore,
if TCP based tunnels are used like in the case of Tor, it leadise performance
degradation demonstrated in 2.3.1. By using IPsec oveaulayels, the presented
system is free of this latter performance bottleneck.

A positive side-effect of IPsec overlay tunnels is that teegure delivery of
packets from one overlay node to another, independent o$ahece and des-

10The end-to-end communication can also be encrypted if nkede
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tination IP addresses of the internal IP header. In factvéen A and B, the
packet should travel witil as source address. Without overlay tunnels, this can
be achieved either by filling the source IP address witiddress already i, or

by NAT-ting the packet inA after decapsulation from thg&-A telescope tunnel.
Both of these solutions have shortcomings: the former Iwesthe principle of
generating IP headers only with own IP address as sourcéattiee introduces
NAT traversal problems during IKE tunnel setup [21].

If instead overlay tunnels are used, the IP header of thday&innel (the
external IP header) containt as source, while the source addresses inside the
overlay tunnel can be chosen freely. This allows the use@ttme private ad-
dress assignment we have introduced for the exit node atdatBymediate and
entry nodes: Every intermediate node can be an exit nodelgswaeh makes it
possible an incremental IKE-based telescope setup.

4.3 A proposal for IKE-based telescope setup

Although our current implementation is restricted to datthpperation, we briefly
discuss how standard IKEv2 can be used to set-up the telesaogrementally.

Designing a proprietary signaling protocol, as it was don&ar (and to the
best of our knowledge all other anonymity systems) is cjepossible. Indeed,
Tor’s signaling can easily be adapted to our case with smadlifications, namely
changing the role of circuit identifiers to that of privatedBdresses. The chal-
lenge we face however is different, we would like to designglgnaling needed
for telescope setup using standard IKEv2 message primitiMee introduction of
such a signaling would mean that IKEv2 compliant routerstaka on the role of
ORs not just on the data plane, but also on the signaling platieout even the
need for an external entity handling signaling.

In what follows, we discuss incremental telescope setumustiandard IKEv2
for the complete case, when overlay tunnels are employegrarate IP addresses
are assigned in each overlay node.

The use of IKEv2 presents the following challenges:

S.1 negotiation messages should not$ise their source address, instead these
must be anonymized by the existing part of the telescope.

S.2 IKEv2 communicates the address of the negotiatinggsads part of the
Traffic Secector during negotiation. We should make surettieaaddress
iS not communicated.
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S.3 we should make sure that no other identifierS afe communicated during
the negotiat.

S.4 IKEv2 can automatically figure-out if a NAT device is irethath and en-
force UDP encapsulation according to the NAT-T specificatid/e would
like to avoid the use of UDP encapsulation.

S.5 The state generated during negotiation should enf@aceward path rout-
ing.

To resolve S.1, negotiation is done incrementally. Essaiblg the first tunnel
betweenS and A is trivial. Here the use of does not present any problem, the
first OR must know this address for proper routing. During rilegotiation, an
internal unique private IP address is assigned t& by A using the standard
Configuration Payload (CP) option.

While negotiating the IPsec tunnel betweeand B, S sends out IKE packets
using the source address,() assigned to him by. It also usesS 4 in the Traffic
Selector (TS) payload, thus avoiding S.2. Moreoyeshould also remain anony-
mous during key negotiation, therefore it uses one sideemtittation as defined
in [22]. This also resolves S.3.

Packets used during the negotiation wittare first destined (in their outer IP
headers) tol. After decapsulation ial, however, the remaining part of the packet
is destined taB. Therefore it is encapsulated automatically in theé3 overlay
tunnel. This also means that no source NAT-ting is neededl, ithe packet can
keep its source address ®f. With this, we avoid the problem of S.4

Finally, we should ensure that backward path routing of peeckomB is cor-
rectly done inA. This should hold both for packets sent during IKEv2 nediutra
betweenS and B, as well as for later data packets. Backward path routing in
is based on the unigug, being the destination address. Sirtteis assigned us-
ing the Configuration Payload mechanism, the required bgqd automatically
created.

B also assigns a unique private IP addreSg)( and the process continues
incrementally till the required telescope length is reache

5 Performance

We have implemented the data plane of the architecture veepted in the previ-
ous sections, called IPpriv, over the 2.6 Linux kernel. Weuthemphasize that
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no modifications to the kernel code were necessary, thetaothie uses exist-
ing IPsec functions to achieve anonymous routing. The implgation merely
configures the routing and IPsec behaviour through stand@tsl in a way that
anonymous routing is achieved.

The performances reported in Sect. 2 refer to this impleatemt. Provided an
IKEV2 signaling framework, the system can also make useanistrd commercial
routers.

To evaluate the performance of IPpriv, we have conductegkttypes of mea-
surememts:

o first, in order to get a detailed picture on how different a&esttural choices
influence data path performance, we have measured perfoemamg well
known througput and latency measuremt tools in a contr@tegronment.
For this, we have constructed an isoloated testbed in owrdadry with
configurable network characteristics;

e second, to get a more precise picture of how IPpriv performeeal en-
vironemts, we were measuring application level perforreamamely (in-
spired by the most frequently used service) web page dowanioes. Mea-
surements were conducted both in the local testbed by ctingets exit
node to the Internet, as well as in a testbed forming a realaywever the
Internet;

o finally, we have also performed measuremnts to verify thalgiaand scal-
ability of the presented architecture.
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5.1 Synthetic performance benchmarks

The performance comparision presented in Fig. 4 plots glestdies our work,
however, some deeper inspection is useful.

Fig. 6 reports experiments with Tor and IPpriv as the bo#tdnbandwidth
changes from 0 to 10 Mbit/s with a random loss rate of 3%. Singkperiments
with other loss rates yields coherent results. In the goodpuwer) plot, we report
Tor only with a window size of 1000 in order not to clutter ug tirgure, since all
other Tor veriants had equal goodput.

IPpriv goodput exploits all the resources (lower plot) asrsas a few con-
nections are multiplexed on the IPsec tunnels; only wheseetlare just one or
two connections then the loss rate diminishes the expioitaif resources. It can
clearly be seen that even in the case of one stream, IPpgeljaoutperforms
Tor in these conditions, as soon as the available bandwidtggover 2 Mbit/s.
Tor, independently from the flow control windo/, is not able to achieve high
resource utilization.

Besides, and most important, in the case of IPpriv, the egiptin level delay
(upper plot, measured on 1024 bytes chunks) becomes ri#glag soon as the
bandwidth available is sufficient, and remains negligibvieraf many connections
are multiplexed together. Tor introduces a delay thatpaig it diminuishes with
the reduction of the flow control window, is always above oeeosid. Moreover,
as soon as the number of connections increases the delag jorsgveral seconds.
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Figure 6: Performance of Tor and IPpriv as a function of thitléoeeck capacity
with 3% loss rate: application level delay (upper plot) ambughput (lower plot)
for 1 and 5 tunneled connections.
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Figure 7: Testbed configuration and experiment setup

5.2 Web page download performance

Fig. 7 describes the measurement setup. We compare therparfoe of Tor and
our IPsec-based anonymous networking solution. Protggtiivacy and enforc-
ing anonymous networking implies performance degradatiom evaluate this
“cost”, we choose two measureseb page download timendtraffic overhead
the first one being the price a user has to pay for anonymityievthe second
measuring the cost for the network to support it. As an examg have selected
the download of the main page of CNN with Firefox, but othebwpages, the
use of other protocols (e.qg., ftp or POP/smtp for e-mail)ther use of different
browsers do not change the scenario, yielding similar tesul

Our goal is to verify if the IPsec based solution can perfoettdy than Tor,
a service which has already about 200.000 users despiteeritsrmance bot-
tlenecks, which are normally described as a price which rhbagpaid to have
anonymity. We have configured IPsec tunnels with the sambergpas used in
Tor (AES-CBC 128-bit encryption and SHA-1 data authentegtin order to
guarantee a fair comparison between the systems and béhatidsfterences are
not due to the different efficiency of the encryption alguomit

To better understand the impact of the overlay networkirtgtha anonymiza-
tion ‘price’ we have used two sets of overlay nodes for ousstes circuit of three
nodes in our labl¢cal testbegi and a circuit of three nodes in different Euro-
pean universitieslifiternet testbel In both circuits, the exit node was the same
router in our University, therefore the last unencrypted pathe path to CNN
was always the same. In both circuits we had Tor as well axiPased anony-
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Figure 8: Traffic received to complete the web page download

mous routing installed, thus having five different cases, including the direct, non
anonymous download.

Additionally, to evaluate the performance also in an “ide&lenario, where
the Internet does not interfere with the download speed tlage is no need for
an exit node, we have prepared a local copy of the CNN main pagair own
server, having five more cases marked wabal copy Notice that the on-line
CNN page is dynamic and changes continuously, while thd tmgay was always
the same (indeed, it turned out to be a page slightly largar the average), so
that on-line and local results are not directly comparable.

Thedirect connectiomesults refer in both scenarios to non anonymous down-
load of the same information, thus representing the baselarformance of the
service. All downloads were repeated 10 times averagingdbelts; error bars
refer to+ the standard deviation.

Fig. 8 shows the total amount of traffic generated in eachasaen Privacy
protection with onion routing induces significant overh@ablytes: around0%
for both solutions. The price of privacy protection is ralaly high, but not ex-
cessive, and it can be applied selectively on sensitivedrafFrom the network
perspective, further overhead is induced by routing pao&eer multiple overlay
links instead of using shortest path routing. As we alreadgu$sed, this is a
shortcoming of all current anonymous networking solutions

170 achieve comparable results, our private Tor network veasonnected to the global Tor
network thus guaranteeing that no other traffic is using #dmeesnode modifying performances
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Figure 9: CNN web page download time

Figure 9 shows average download times for all cases. Withattlebecks
(local testbed - local copy), layer 3 operation is clearlycindiaster than Tor.
There is almost no delay that can be ascribed to IPsec-baRedp@ration, in
contrast to Tor where the average download time increasesftid (from 1s to
3s). Tor’'s performance degradation is rooted in architattthoices and the use
of TLS tunneling in each overlay hop, and it is not due to baplementation. The
Internet testbed obviously increases RTT and thus dowrtioz&] since packets
are routed around Europe to distribute trust to differentintnes. Here Tor’s
disadvantage grows significantly (24 s vs. 6 s with IPsednaeeefold), having
a page download time clearly noticeable by the user and thugyang.

Looking at downloads directly from CNN through the localtbesl (right side
of figure 9), our IPsec based solution increases the downloacompared to
direct download by roughly 50%. Surprisingly, Tor over thedl testbed is slower
(14 s) than IPsec over the Internet testbed (10s), indigdhiat the performance
bottlenecks are to be sought for in Tor itself and not in theerimet. Finally,
the performance of Tor with the Internet testbed makes ibatnanusable with
interactive services.
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5.3 Scalability and stability

In order to be able to perform CPU load measurements and id aemdwidth
bottlenecks between the overlay routers, we were using ittentical 2.6GHz
Pentium4 machines with 512 Mb of RAM, connected by a fulldéxpgigabit
LAN.

First, we analyze goodput and CPU load characteristicsisnctintrolled test
environment. When nodes were running at full speed, we havasored 44
Mbits/s with IPsec when the client was sending data and 4id¥&bivhen it was
receiving data. With Tor, achievable bandwidth was 24 and/b@s/s respec-
tively. In all cases the the client was the weakest link in ¢hain, having the
highest CPU usage among the nodes.

In order to measure the CPU load of every node as a functioonadgut, we
needed a trick: we lowered the CPU fregency of the node urdétd 650 Mhz,
this way it became the weakest in the circuit. Figure 5.3 shibwe CPU utilization
of each node as a function of the application level trafficviobsly achieved
goodput is lower due to the CPU slowdown). We have used thaxLtraffic
control framework with a token bucket to limit bandwidthetthrulay tool to
generate symmetric bi-directional traffic and sysstat tasnes CPU utilization.

The resource usage of the client and of OR3 is different frémeronodes for
several reasons: they serve as traffic end points, theyrpediferent number of
encryption/decryption operations and they should alsaleaend-to-end SHA1
authentication.

Figure 5.3 shows significant performance improvements deethowever we
should not overestimate the importance of these measutentéren if huge dif-
ferences can certainly be seen for the current implementtpart of this might
easily be due to factors we can’t control in the test envirentne.g. differences
in the underlying crypto implementation.

Rather, we would like to emphasize differences due to systerhitecture
design. In the case of IPsec, all of the measured CPU utdizavas in kernel
space. In the case of Tor, most of the CPU time was spent inspsee (around
90% user space, 10% kernel space) which might explain sothe plerformance
differences: Tor involves much more copying, context skig and buffer man-
agement, which all takes precious CPU time.

In our system, kernel space operation is possible sinceatagpéth is handled
entirely at the IP level, in contrast to the application lgu@cessing applied by
Tor. This allows for new deployment models, as we have dssdi®arlier. It
should be emphasized that no changes are needed to the, lkemealperating
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Figure 10: CPU utilization as a function of goodput. Clientermediate node

and exit node are studied. (Entry node showed identicabpeence to an inter-

mediate node, therefore it is omitted from the figure )

system (or router in general) that supports IPsec tunnalbeaonfigured to work
as an overlay router.

Kernel space operation also ensures that the data path afeslayrouter is
not affected by user space processes. Figure 5 shows datpgridrmance when
ORZ2 is busy running other applications (we use the stresgramo to load the
overlay router).

Stress was running from the 20th second of the connectiorRA, @utting
high load on the CPU for 20 seconds. The cycle continued véige2onds periods
of no load and 20 seconds of different types of load: 1/0, mgnsabsystem
and finally load on the HDD (in each case, stress was configioredeate 20
processes). Routing performance is highly affected in #s® ©f Tor, while it
stays stable for the IPsec based solution. This is of cowisiexaed at the price
of slower application execution, which should not be a peobin the case of a
router.

To deepen our measurement, we were also running Tor witeased priority
(renice -20). As shown on Figure 5, load on the memory subasystill affects Tor
routing performance heavily. Same results were achievédatier prioritization
methods (i.e changing Tor’s scheduling class with chrt).
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6 Conclusions

Anonymous networks, as well as VPNs, for the protection @frsiprivacy are
already standard pieces of the global Internet. Availablet®ns for anonymiza-
tion and many VPN too, are however plagued by unacceptabiierpgence degra-
dation.

In this work we have shown that performance impairments art@er intrinsi-
cally related to anonymization, nor due simply to poor inmpdstation, but instead
they are rooted in the architectural choice of building tases on top of transport
layer, flow and congestion controlled tunnels.

Given the above observation, we have proposed an entirghyanghitecture
for anonymization based on the extension of standard IBx-kayls and protocols.
This architecture ensures the same level of anonymity gteed by state-of-the-
art solution like Tor and at the same time contains perfogaategradation (in
terms of application level throughput and delays) to a sfrettion of the perfor-
mance obtained by direct, non anonymized flows.

Experiments run on a Linux-based implementation of the psefd architec-
ture shows that in standard operating conditions the usereprer performance
of our systems hardly distinguishable form a standard ndtwehile the penalty
paid by Tor and similar systems, just for the choice of usib& Tunnels, makes
it impossible to use real-time and also interactive appbos on anonymous net-
works, hampering the diffusion of these systems.
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