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Abstract. The problem of finding an agreement on the meaning
of heterogeneous knowledge sources is one of the key issues in the
development of the distributed knowledge management applications.
In this paper, we propose a new algorithm for discovering semantic
mappings across heterogeneous schemas. This approach shifts the
problem of semantic coordination from the problem of computing
linguistic or structural similarities (what most other proposed ap-
proaches do) to the problem of deducing relations between sets of
logical formulas that represent the meaning of nodes belonging to
different schemas. We show how to apply the approach and the algo-
rithm to an interesting family of schemas, namely hierarchical clas-
sifications. Finally, we argue why this is a significant improvement
on previous approaches.

1 INTRODUCTION

Is well known how one of the major challenges that organizations are
increasingly facing is to develop a capacity to manage knowledge as-
sets [17]. Such challenge, although agreeable in principle, can be ad-
dressed in fundamentally different ways depending on how the very
nature of knowledge is described. As shown elsewhere in more detail
(see [8]), assuming knowledge as a ‘content’ that can be standardized
in order to be shared, KM system will be configured as centralized
repositories in which knowledge objects are semantically organized
around a shared conceptualization (e.g an ontology or a taxonomy).
On the other hand, assuming knowledge as a intrinsically contextual
matter whose value lies in its relation with local perspectives and
practices, KM systems will tend to be configured as constellations of
autonomous knowledges. Here, each knowledge is organized around
a local and often private conceptualization, and, as a consequence,
knowledge exchange is achieved by means of semantic coordina-
tion rather than standardization. That is, different knowledge holders
(such as informal groups or communities of practice [29]) need to
establish communication rules and protocols able to create semantic
bridges across heterogeneous semantic configurations ([5]).

In favour of the second approach, here named Distributed Knowl-
edge Management [7]5, there are of course theoretical arguments; in
particular, in the domains of organization sciences [28], social sci-
ences ([12, 13, 21]) and cognitive studies of learning [3], an increas-
ingly extended school of thought underlines how distributedness and
diversity is a source of value, innovation, flexibility and adaptability
(For a review see [10]. But here we want to underline a more practical
issue. In fact, it is evident to practitioners how knowledge is increas-
ingly spread across a wide set of technologies and applications and,
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moreover, how such diversity resembles different working practices.
As a matter of fact, although organizational intelligence pursues the
dream of collecting all the relevant knowledge within a single ho-
mogeneous source, technological and semantic heterogeneity seems
to move in the opposite direction. Instead of being reduced, it seems
rather that explodes.

One of the key challenge in the development of open distributed
systems is the attempt of enabling the exchange of meaningful infor-
mation across applications which (i) may use autonomously devel-
oped schemas for organizing locally available data (a local context),
and (ii) need to discover relations between schemas (or contexts) to
achieve their users’ goals. Typical examples are databases using dif-
ferent schemas, and document repositories using different classifica-
tion structures.

In restricted environments, like a small corporate Intranet, this
problem is typically addressed by introducing shared models (e.g.,
ontologies) throughout the entire organization6. The idea is that, once
local schemas are mapped onto a shared ontology, the required rela-
tions between them is completely defined. However, in open environ-
ments (like the Web, large and complex firms, networked companies
and networks of companies), for the theoretical reasons we said be-
fore, and for technical reasons, including the difficulty of ‘negotiat-
ing’ a shared model of data that suits the needs of all parties involved,
and the practical impossibility of maintaining such a shared model in
a highly dynamic environment, such an approach can’t work. In this
kind of scenarios, a more dynamic and flexible method is needed,
where no shared model can be assumed to exist, and semantic rela-
tions between concepts belonging to different schemas must be dis-
covered on-the-fly. In other words, we need a sort of peer-to-peer
form of semantic coordination, in which two or more semantic peers
(i.e., agents with autonomous data schemas) discover relations across
their schemas and use them to provide the required services.

In this paper, we propose a very general approach to the problem
of coordinating schemas of two or more semantic peers. The method
is based on the idea that the mappings across local schemas we
are interested in are semantic relations, namely must have a model-
theoretic interpretation. This allows us to use standard theorem prov-
ing techniques to infer mappings across schemas, and to validate the
results. We’ll stress that this is extremely different from what other
methods for discovering mappings across heterogeneous models do,
as they are mostly based on a notion of similarity which is not –
strictly speaking – semantic.

The method is then demonstrated on a significant instance of the
problem, namely the problem of coordinating hierarchical classifica-
tions (HCs). HCs are tree–structures used for organizing/classifying
data (such as documents, goods, activities, services). Some well-
known examples of HCs are web directories (see e.g. the GoogleTM
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Directory or the Yahoo!TMDirectory), file systems and document
databases in content/knowledge management systems. The main
technical contribution of this part is an algorithm, called CTX-
MATCH, which takes in input two HCs H and H ′ and, for each pair
of concepts k ∈ H and k′ ∈ H ′, returns their semantic relation
r (the whole set of triples 〈k, k′, r〉 is called ‘mapping’). The idea
is that mappings across semantic models can then be used by other
application to answer queries (e.g., by finding documents classified
under an unknown category in another HC) or more in general to pro-
vide services which require an agreement on the meaning of terms.

With respect to other methods proposed in the literature (often un-
der different “headings”, such as schema matching, ontology map-
ping, semantic integration), the main innovation of our approach is
that mappings across concepts belonging to different models are de-
duced via logical reasoning, rather then derived through some more
or less complex heuristic procedure, and thus can be assigned a
clearly defined model-theoretic semantics. This shits the problem of
coordinating semantic peers from the problem of computing linguis-
tic or structural similarities (possibly with the help of a thesaurus
and of other information about the type of arcs between nodes), to
the problem of deducing relations between formulas that represent
the meaning of each concept in a model. This explains, for exam-
ple, why our approach performs much better than other ones when
two concepts are intuitively equivalent, but occur in structurally very
different HCs.

The paper goes as follows. In Section 2 we introduce the main
conceptual assumptions of the new approach we propose to semantic
coordination. In Section 3, we present the main features of CTX-
MATCH, the proposed algorithm for coordinating HCs. In the final
part of the paper, we sum-up the results of testing the algorithm on
web directories and catalogs (Section 4) and compare our approach
with other proposed approaches for matching schemas (Section 5).

2 OUR APPROACH

The method we propose assumes that we deal with a network of se-
mantic peers, namely physically connected entities which can au-
tonomously decide how to organize locally available data (in a sense,
are semantically autonomous agents). Each peer organizes its data
using one or more abstract schemas (e.g., database schemas, directo-
ries in a file system, classification schemas, taxonomies, and so on).
Different peers may use different schemas to organize the same data
collection, and conversely the same schemas can be used to organize
different data collections.

We also assume that semantic peers need to exchange data (e.g.
documents classified under different categories in their local classifi-
cation schemas) to execute complex tasks. To do this, each semantic
peer needs to compute mappings between its local schema and other
peers’ schemas. Intuitively, a mapping can be viewed as a set of pair-
wise relations between elements of two distinct schemas.

The first idea behind our approach is that mappings must be
semantic relations, namely relations with a well-defined model-
theoretic interpretation. This is an important difference with respect
to approaches based on matching techniques, where a mapping is
a measure of (linguistic, structural, . . . ) similarity between schemas
(e.g., a real number between 0 and 1). The main problem with the
latter techniques is that the interpretation of their results is an open
problem. For example, how should we interpret a 0.9 similarity?
Does it mean that one concept is slightly more general than the other
one? Or maybe slightly less general? Or that their meaning 90% over-
laps (whatever that means)? Instead, our method returns semantic re-

lations, e.g. that the two concepts are (logically) equivalent, or that
one is (logically) more/less general, or that they are mutually exclu-
sive. As we will argue, this gives us many advantages, essentially
related to the consequences we can infer from the discovery of such
a relation7.
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Figure 1. Mapping abstract structures

The second idea is that, to discover semantic relations, one must
make explicit the meaning implicit in each element of a schema. The
claim is that making explicit the meaning of elements in a schema is
the only way of computing semantic relations between elements of
distinct schemas, and that this can be done only for schemas in which
meaningful labels are used. If this is true, then addressing the prob-
lem of discovering semantic relations as a problem of matching ab-
stract graphs is conceptually wrong. To illustrate this point, consider
the difference between the problem of mapping abstract schemas
(like those in Figure 1) and the problem of mapping schemas with
meaningful labels (like those in Figure 2). Nodes in abstract schemas
do not have an implicit meaning, and therefore, whatever technique
we use to map them, we will find that there is some relation between
the two nodes D in the two schemas which depends only on the ab-
stract form of the two schemas. The situation is completely different
for schemas with meaningful labels, as we can make explicit a lot of
information that we have about the terms which appear in the graph,
and their relations (e.g., that Tuscany is part of Italy, that Florence
is in Tuscany, and so on). It’s only this information which allows
us to understand why the semantic relation between the two nodes
MOUNTAIN and the two nodes FLORENCE is different, despite the
fact that the two pairs of schemas are structurally equivalent between
them, and both are structurally isomorphic with the pair of abstract
schemas in Figure 1. Indeed, for the first pair of nodes, the set of
documents we would classify under the node MOUNTAIN on the left
hand side is a subset of the documents we would classify under the
node MOUNTAIN on the right; whereas the set of documents which
we would classify under the node FLORENCE in the left schema is
exactly the same as the set of documents we would classify under the
node FLORENCE on the right hand side.

As a consequence, our method is mainly applied to schemas with
labels which are meaningful for the community of their users. This
gives us the chance of exploiting the complex degree of semantic
coordination implicit in the way a community uses the language
from which the labels are taken. Notice that the status of this lin-
guistic coordination at a given time is already ‘codified’ in arti-
facts (e.g., dictionaries, but today also ontologies and other formal-
ized models), which provide senses for words and more complex
expressions, relations between senses, and other important knowl-

7 For a more detailed discussion of the distinction between syntactic and se-
mantic methods, see [19].

2



MOUNTAINBEACH MOUNTAIN BEACH

ITALY

less than

IMAGES

TUSCANY

ITALY

LUCCA FLORENCELUCCA FLORENCE

equivalent

TUSCANY

IMAGES

IMAGES

IMAGES

Figure 2. Mapping schemas with meaningful labels

edge about them. Our aim is to exploit these artifacts as an essential
source of constraints on possible/acceptable mappings across struc-
tures. The method is based on the explicitation of the meaning as-
sociated to each node in a schema (notice that schemas such as the
two classifications in Figure 2 are not semantic models themselves,
as they do not have the purpose of defining the meaning of terms
they contain; however, they presuppose a semantic model, and indeed
that’s the only reason why we humans can read them quite easily).
The explicitation process uses three different levels of knowledge:

Lexical knowledge : It is the knowledge about the words used in
the labels. For example, the fact that the word ‘Florence’ can be
used to indicate ‘a city in Italy’ or ‘a city in the South Carolina’,
and to handle the synonymy;

Knowledge Base : It is the knowledge about the relation between
the concepts expressed by words. For example, the fact that Tus-
cany is part of Italy, or that Florence is in Italy;

Structural knowledge : It is the knowledge deriving from how la-
beled nodes are arranged in a given schema. For example, the fact
that the node labeled MOUNTAIN is below a node IMAGES tells
us that it classifies images of mountains, and not, say, books about
mountains.

As an example of how the three levels are used, consider again
the mapping between the two nodes MOUNTAIN of Figure 2. Lexi-
cal knowledge is used to determine what concepts can be expressed
by each label, e.g. that the word ‘Images’ can denote the concept ‘a
visual representation produced on a surface’. Knowledge Base tells
us, among other things, that Tuscany is part of Italy. Finally, struc-
tural knowledge tells us that the intended meanings of the two nodes
MOUNTAIN is ‘images of Tuscan mountains’ on the left hand side,
and ‘images of Italian mountains’ on the right hand side. Using this
information, human reasoners (i) understand the meaning expressed
by the left hand node, (‘images of Tuscan mountains’, denoted by
P ), (ii) understand the meaning expressed by the right hand node
(‘images of Italian mountains’, denoted by P ′), and finally (iii) un-
derstand the semantic relation between the meaning of the two nodes,
namely that P ⊆ P ′.

These three levels of knowledge are used to produce a new, richer
representation of the schema, where the meaning of each node is

made explicit and encoded as a logical formula and a set of axioms.
This formula is an approximation of the meaning of the node when it
occurs in that schema. The problem of discovering the semantic rela-
tion between two nodes can now be stated not as a matching problem,
but as a relatively simple problem of logical deduction. Intuitively, as
we will say in a more technical form in the rest of the paper, deter-
mining whether there is an equivalence relation between the meaning
of two nodes can be encoded as a problem of testing whether the first
implies the second and vice versa (given a suitable collection of ax-
ioms, which acts as a sort of background theory); and determining
whether one is less general than the other one amounts to testing if
the first implies the second. As we will say, in the current version of
the algorithm we encode this reasoning problem as a problem of logi-
cal satisfiability, and then compute mappings by feeding the problem
to a standard SAT solver.

3 THE ALGORITHM: CTXMATCH

In this section we show how to apply the general approach described
in the previous section to the problem of coordinating Hierarchi-
cal Classifications (hereafter HCs), namely concept hierarchies [14]
used for grouping documents in categories.

In our approach, we assume the presence of a network of semantic
peers, where each peer is defined as follows:

Definition 1 A semantic Peer is a triple 〈D,S, 〈L,O〉〉, where:

• D is a set of documents;
• S represents the set of schemas used by the peer for organizing its

data;
• 〈L,O〉 is a pair composed by a lexicon L and a knowledge base

representation O.

The structure of the semantic peer reflects the three levels of
knowledge we showed before: S represents structural knowledge, L
contains lexical knowledge, and O is knowledge base. Formally, L is
a repository of pairs 〈w, C〉, where w is a word and C is a set of con-
cepts. Each pair 〈w,C〉 represents the set of concepts C denoted by
a word w. For example, a possible entry for a lexicon should express
that the word ‘fish’ can denote at least two concepts: ‘an aquatic ver-
tebrate’ and ‘the twelfth sign of zodiac’. An important example of
this kind of repository is represented by WORDNET [20]. A knowl-
edge base O expresses the set of relations holding between different
concepts. For example, a knowledge base O should express that the
concept ‘an aquatic vertebrate’ denoted by the word ‘fish’ stays in
a IsA relation with the concept of ‘animal’ (‘fish are animals’) and
that the concept ‘the twelfth sign of zodiac’ denoted by the same
word ‘fish’ stays in a IsA relations with a geometrical shape (‘fish is
a geometrical shape’). Formally, knowledge base is a logical theory
written is a specific language, as for example Prolog clauses, RDF
triples, DAML/OIL, OWL.

Our method is designed for the following scenario: a peer A
(called the seeker) needs to find new documents relative to some cat-
egory in one of its HCs, S. Imagine that peer A knew that peer B
(the provider) owns interesting documents, and imagine that B clas-
sify its documents by means of a HC S′. The problem of finding such
documents can be solved in a standard way: discovering a mapping
between the two structures. Formally, a mapping can be defined as:

Definition 2 A mappingM between two schemas S and S′ is a set
of triples {〈m,n,R〉 | m ∈ S, n ∈ S′}, where R is a semantic
relation between m and n.
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In this version of the algorithm, five relations are allowed between
nodes of different HCs: m ⊇ n (m is more general than n); m ⊆ n

(m is less general than n); m ≡ n (m is equivalent to n); m ∩ n (m
is compatible with n); m⊥n (m is disjoint from n).

The algorithm CTXMATCH takes as inputs the HC S of the seeker
and the HC S′, the lexicon L and the knowledge base O of the
provider8. As we will show in the following, the lexicon L and the
knowledge base O play a major part in determining the mapping be-
tween schemas. But, from the definition of semantic peer follows that
each peer has its own lexicon and knowledge base. A consequence
of this consideration is that the mapping returned by the algorithm
expresses the point of view (regarding the mapping) of the provider,
and, consequently, is directional: the seeker, mutata mutandis, can
find a different mapping. The output of the algorithm will be a map-
pingM.

Algorithm 1 CTXMATCH(S ,S′L,O)
. Hierarchical classifications S,S′

. Lexicon L

. knowledge base O
VarDeclarations

contextualized concept 〈φ,Θ〉 , 〈ψ,Υ〉
relation R
mappingM

1 for each pair of nodes m,n, m ∈ S and n ∈ S′ do
2 〈φ,Θ〉← SEMANTIC–EXPLICITATION(m,S, L, O);
3 〈ψ,Υ〉← SEMANTIC–EXPLICITATION(n,S′, L,O);
4 R← SEMANTIC–COMPARISON(〈φ,Θ〉 , 〈ψ,Υ〉 , O);
5 M←M∪ 〈m,n, R〉;
6 Return M ;

The algorithm has essentially the following two main macro steps.

Steps 2–3 : in this phase, called Semantic explicitation, the algo-
rithm tries to interpret pair of nodes m,n in the respective HCs S
and S′ by means of the lexicon L and the knowledge base O. The
idea is trying to generate a formula approximating the meaning
expressed by a node in a structure (φ), and a set of axioms for-
malizing the suitable knowledge base (Θ). Consider, for example,
the node FLORENCE in left lower HC of Figure 2: steps 2–3 will
generate a formula approximating the statement ‘Images of Flo-
rence in Tuscany’ (φ) and an axiom approximating the statement
‘Florence is in Tuscany’ (Θ). The pair 〈φ,Θ〉, called contextual-
ized concept, expresses, in our opinion, the meaning of a node in
a structure.

Step 4 : in this phase, called Semantic comparison, the problem of
finding the semantic relation between two nodes m and n is en-
coded as the problem of finding the semantic relation holding be-
tween two contextualized concepts, 〈φ,Θ〉 and 〈ψ,Υ〉.

Finally, step 5 generates the mapping simply by reiteration of the
same process over all the possible pair of nodes m ∈ S n ∈ S′ and
step 6 returns the mapping.

The two following sections describe in detail these two
top-level operations, implemented by the functions SEMANTIC–
EXPLICITATION and SEMANTIC–COMPARISON.

8 In the version of the algorithm presented here, we use WORDNET as a
source of both lexical and knowledge base. However, WORDNET could be
replaced by another combination of a linguistic resource and a knowledge
base resource.

3.1 SEMANTIC EXPLICITATION

In this phase we make explicit in a logical formula9 the meaning of
a node into a structure, by means of a lexical and a knowledge base.
In steps 1 and 2, the function EXTRACT–CANDIDATE–CONCEPTS

uses lexical knowledge to associate to each word occurring in the
nodes of an HC all the possible concepts denoted by the word itself.
Consider the lower left structure of Figure 2. The label ‘Florence’ is
associated with two concepts, provided by the lexicon (WORDNET),
corresponding to ‘a city in central Italy on the Arno’ (florence#1)
or a ‘a town in northeast South Carolina’ (florence#2). In order
to maximize the possibility of finding an entry into the Lexicon, we
use both a postagger and a lemmatizator over the labels.

Algorithm 2 SEMANTIC–EXPLICITATION(t,S, L,O)
. t is a node in S
. structure S
. lexicon L
. knowledge base O

VarDeclarations
single concept con[]
set of formulas Σ
formula δ

1 for each node n in S do
2 con[n]← EXTRACT–CANDIDATE–CONCEPTS(n,L);
3 Σ← EXTRACT–LOCAL-AXIOMS(t,S, con[], O);
4 con[]← FILTER–CONCEPTS(S,Σ, con[]);
5 δ← BUILD–COMPLEX–CONCEPT(t,S, con[]);
6 Return 〈δ,Σ〉;

In the step 3, the function EXTRACT–LOCAL–AXIOMS tries to
define the ontological relations existing between the concepts in a
structure. Consider again the left lower structure of Figure 2. Imag-
ine that the concept ‘a region in central Italy’ (tuscany#1) has
been associated to the node TUSCANY. The function EXTRACT–
LOCAL–AXIOMS has the aim to discover if it exists some kind
of relation between the concepts tuscany#1, florence#1
and florence#2 (associated to node FLORENCE). Exploit-
ing knowledge base resource we can discover, for example, that
‘florence#1 PartOf tuscany#1’, i.e. that exists a ‘part of’ re-
lation between the first sense of ‘Florence’ and the first sense of Tus-
cany.

Knowledge base relations are translated into logical axioms,
according to Table 1. So, the relation ‘florence#1 PartOf
tuscany#1’ is encoded as ‘florence#1→ tuscany#1’10.

WORDNET relation axiom

s#k synonym t#h s#k ≡ t#h
s#k { hyponym | PartOf }t#h s#k → t#h
s#k { hypernym | HasPart }t#h t#h → s#k

s#k contradiction t#h ¬(t#k ∧ s#h)

Table 1. WORDNET relations and their axioms.

Step 4 has the goal of filtering out unlikely senses associated
to each node. Going back to the previous example, we try to dis-
card one of the senses associated to node FLORENCE. Intuitively,

9 The choice of the logics depends on how expressive one wants to be in the
approximation of the meaning of nodes, and on the complexity of the NLP
techniques used to process labels. In our first implementation we adopted
propositional logic, where each propositional letter corresponds to a con-
cept (synset) provided by WORDNET.

10 For heuristical reasons – see [11] – we consider only relations between
concepts on the same path of a HC and their siblings.
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the sense 2 of ‘Florence’, as ‘a town in northeast South Carolina’
(florence#2), can be discarded, because the node FLORENCE
refers clearly to the city in Tuscany. We reach this result by ana-
lyzing the extracted local axioms: the presence of an axiom such as
‘florence#1 PartOf tuscany#1’ is used to make the conjecture
that the contextually relevant sense of Florence is the city in Tuscany,
and not the city in USA. When ambiguity persists (axioms related to
different senses or no axioms at all), all the possible senses are left
and encoded as a disjunction.

Step 5 has the objective of building a complex concept (i.e., the
meaning of a node label when it occurs in a specific position in a
schema) for nodes in HCs. As described in [11], node labels are sin-
gularly processed by means of NLP techniques and translated into
a logical formula11. The result of this first process is that each node
has a preliminary interpretation, called simple concept, which doesn’t
consider the position of the node in the structure. For example, the
simple concept associated to the node FLORENCE of the lower left
hand structure of Figure 2 is trivially the atom florence#1 (i.e.
one of the two senses provided by WORDNET and not discarded by
the filtering). Then, these results are combined for generating a for-
mula approximating the meaning expressed by a node into a struc-
ture. In this version of the algorithm, we choose to express the mean-
ing of a node n as the conjunction of the simple concepts associated
to the nodes lying in the path from root to n. So, the formula approxi-
mating the meaning expressed by the same node FLORENCE into the
HC is (image#1∨. . .∨image#8)∧tuscany#1∧florence#1.

Step 6 returns the formula expressing the meaning of the node and
the set of local axioms founded by step 3.

3.2 SEMANTIC COMPARISON

This phase has the goal of finding the semantic relation holding be-
tween two contextualized concepts (associated to two nodes in dif-
ferent HCs).

Algorithm 3 SEM–COMP(〈φ,Θ〉,〈ψ,Υ〉,O)
. contextualized concept 〈φ,Θ〉
. contextualized concept 〈ψ,Υ〉
. knowledge base O

VarDeclarations
set of formulas Γ
relation R

1 Γ← EXTRACT–RELATIONAL–AXIOMS(φ,ψ, O);
2 R← FIND–SEM–REL(〈φ,Θ〉, 〈ψ,Υ〉, Γ)
3 Return R;

In Step 1, the function EXTRACT–RELATIONAL–AXIOMS tries to
find axioms which connect concepts belonging to different HCs. The
process is the same as that of function EXTRACT–LOCAL–AXIOMS,
described above. Consider, for example, the senses italy#1
and tuscany#1 associated respectively to nodes ITALY and
TUSCANY of Figure 2: the relational axioms express the fact that,
for example, ‘Tuscany PartOf Italy’ (tuscany#1→ italy#1).

The problem of finding the semantic relation between two nodes n
and m (line 2) is encoded into a satisfiability problem involving both
the contextualized concepts associated to the nodes and the relational
axioms extracted in the previous phases. In particular, the function
FIND-SEM-REL is defined in the algorithm 4.

11 Although in this paper we present very simple examples, the NLP tech-
niques exploited in this phase allow us to handle labels containing complex
expressions, as conjunctions, commas, prepositions, expressions denoting
exclusion, like ‘except’ or ‘but not’, multiwords and so on.

Algorithm 4 FIND–SEM–REL(〈φ,Θ〉 , 〈ψ,∆〉 ,Γ)
. contextualized concept 〈φ,Θ〉 , 〈ψ,∆〉
. set of formulas Γ

VarDeclarations
semantic relation R

1 if Θ,∆,Γ |= ¬(φ ∧ ψ) then R←⊥;
2 else if Θ,∆,Γ |= (φ ≡ ψ) thenR←≡;
3 else if Θ,∆,Γ |= (φ→ ψ) thenR←⊆;
4 else if Θ,∆,Γ |= (ψ → φ) thenR←⊇;
5 else R←∩;
6 Return R;

So, to prove whether the two nodes labeled FLORENCE in Figure 2
are equivalent, we check the logical equivalence between the
formulas approximating the meaning of the two nodes, given the
local and the relational axioms. Formally, we have the following
satisfiability problem:

Θ florence#1→ tuscany#1
φ (image#1 ∨ . . . ∨ image#8) ∧ tuscany#1 ∧ florence#1
∆ florence#1→ italy#1
ψ (image#1 ∨ . . . ∨ image#8) ∧ italy#1 ∧ florence#1
Γ tuscany#1→ italy#1
It is simple to see that the returned relation is ‘≡’. Note that the

satisfiability problem for finding the semantic relation between the
nodes MOUNTAIN of Figure 2 is the following:

Θ ∅
φ (image#1 ∨ . . . ∨ image#8) ∧ tuscany#1 ∧ mountain#1
∆ ∅
ψ (image#1 ∨ . . . ∨ image#8) ∧ italy#1 ∧ mountain#1
Γ tuscany#1→ italy#1

The returned relation is ‘⊆’.

4 TESTING THE ALGORITHM

In this section, we report from [23] some results of the first test on
CTXMATCH on real HCs (i.e., pre-existing classifications used in
real applications).

4.1 USE CASE PRODUCT
RE-CLASSIFICATION

In order to centrally manage all the company acquisition processes,
the headquarter of a well known worldwide telecommunication com-
pany had realized an e-procurement system12, which all the company
branch-quarters were required to join. Each single office was also re-
quired to migrate from the product catalogue they used to manage,
to this new one managed within the platform. This catalogue is ex-
tracted from the Universal Standard Products and Services Classifi-
cation (UNSPSC), which is an open global coding system that clas-
sifies products and services. The UNSPSC is used extensively around
the world in the electronic catalogues, search engines, procurement
application systems and accounting systems. UNSPSC is a four-level
hierarchical classification; an extract is reported in the following ta-
ble:

Level 1 Furniture and Furnishings
Level 2 Accommodation furniture
Level 3 Furniture
Level 4 Stands
Level 4 Sofas
Level 4 Coat racks

12 An e-procurement system is a technological platform which supports a
company in managing its procurement processes and, more in general, the
re-organization of the value chain on the supply side.
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The Italian office asked us to apply the matching algorithm to re-
classify into UNSPSC (version 5.0.2) the catalogue of office equip-
ment and accessories used to classify company suppliers. The result
of running CTXMATCH over UNSPSC and the catalogue can be cleary
interpreted in terms of re-classification: if the algorithm returns that
the item i of the catalogue is equivalent to, or more specific than, the
node cUNSPSC of UNSPSC, then i can be classified under cUNSPSC of
UNSPSC.

The items to be re-classified are mainly labeled with Italian
phrases, but labels also contain abbreviations, acronyms, proper
names, some English phrases and some typing errors. The English
translation of an extract of this list is reported in the following table.
The italic parts were contained in the original labels.

Code Description
ENT.21.13 cartridge hp desk jet 2000c
ENR.00.20 magnetic tape cassette exatape 160m xl 7,0gb
ESA.11.52 hybrid roller pentel red

EVM.00.40 safety scissors, length 25 cm

The item list was matched with two UNSPSC’s-segments, namely:
Office Equipment and Accessories and Supplies (segment 44) and
Paper Materials and Products (segment 14).

Notice that the company item catalogue we had to deal with was
a plain list of items, each identified with a numerical code composed
of two numbers, the first referring to a set of more general categories.
For example, the number 21 at the beginning of 21.13-cartridge hp
desk jet 2000c corresponds to printer tapes, cartridge and toner. We
first normalized and matched the plain list against UNSPSC. This did
not lead us to a satisfactory result. The algorithm performed much
better when we made the hierarchical classification contained in the
item codes explicit. This was done by substituting the first numerical
code of each item with their textual description provided by experts
of the company.

After running CTXMATCH, the validation phase of our results was
made by comparing them with the results of a simple keyword-based
algorithm. Obviously, in order to establish the correctness of results
in terms of precision and recall we have to compare them with a
correct and complete matching list. Not having such a list, we asked a
domain expert, Alessandro Cederle, Managing Director of Kompass
Italia13 to manually validate them.

4.2 RESULTS

This section presents the results of the re-classification phase. Con-
sider first the baseline matching process. The baseline was performed
by a simple keyword-based matching that worked according to the
following rule:

for each item description (made up of one or more words) re-
turn the set of nodes, and their paths, which maximize the oc-
currences of the item words

The following tables summarizes the results of the baseline match-
ing:

13 Kompass (www.kompass.com) is a company which provides product in-
formation, contacts and other information about 1.8 million companies
worldwide. All companies are classified under the Kompass Product Clas-
sification with more than 52,000 products and services.

Baseline
classification

Total items 194 100%
Rightly classified 75 39%
Wrongly classified 92 47%
Non classified 27 14%

Given the 193 items to be re-classified, the baseline process found
1945 possible nodes in UNSPSC. This means that for each item the
baseline found an average of 6 possible classifications. What is cru-
cial is that only 75 out of the 1945 proposed nodes are correct. The
baseline, being a simple string matching, is able to capture a certain
number of re-classifications. However the percentage of error is quite
high (47%) with respect to the one of correctness (39%). The results
of the matching algorithm are reported in the following table:

CTXMATCH

classification

Total items 194 100%
Rightly classified 136 70%
Wrongly classified 16 8%
Non classified 42 22%

In this case, the percentage of success is sensibly higher (70%) and,
even more relevant, the percentage of error is minimal (8%)14. This is
also confirmed by the values of precision and recall, computed with
respect to the validated list:

Total matches Precision Recall

Baseline 1945 4% 39%
CTXMATCH 641 21% 70%

The baseline precision level is quite small, while the matching one
is not excellent, but definitely better. The same observations can be
made also for the recall values.

If there are not enough information to infer semantic relation,
CTXMATCH returns a percentage, which is intended to represent the
degree of compatibility between the two elements. Degree of com-
patibility is computed on the basis of a linguistic co-occurrence mea-
sures.

As far as the Non Classified items, notice that:

• In some cases, the item to be re-classified were not correctly clas-
sified in the company catalogue. Therefore, CTXMATCH could not
compute the relations with the node and its father node, in the right
way. Examples are: ashtray was classified under tape dispenser;
wrapping paper was classified under adhesive labels.

• In other cases, semantic coordination was not discovered due to a
lack of knowledge base. For instance to match paper for hp with
UNSPSC class of printer paper it would have been necessary to
know that hp stands for Helwett Packard, and that it is a company
which produces printers.

In a further experiment, we run CTXMATCH between the com-
pany catalogue (in italian) and the English version of UNSPSC. This
was possible because the matching is computed on the basis of the
WORDNET sense IDs, and in the version of WORDNET we used,
wordnet-senses ID of italian and english words are aligned (i.e., the
wordnet-sense ID associated to word and its translation in the other

14 Notice that the algorithm did not take into account just the UNSPSC level
4 category, since in some cases catalogues items can be matched with UN-
SPSC level 3 category nodes.
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language is the same). This experiment allows us to find more se-
mantic matches.

More in general, this way allows us to approach and manage mul-
tilanguage environments and to exploit the richness which typically
characterizes the English version of linguistic resources15.

5 RELATED WORK

CTXMATCH shifts the problem of semantic coordination from the
problem of matching (in a more or less sophisticated way) semantic
structures (e.g., schemas) to the problem of deducing semantic rela-
tions between sets of logical formulae. Under this respect, to the best
of our knowledge, there are no other works to which we can compare
ours.

However, it is important to see how CTXMATCH compares with
the performance of techniques based on different approaches to se-
mantic coordination. There are four other families of approaches that
we will consider: graph matching, automatic schema matching, semi-
automatic schema matching, and instance based matching. For each
of them, we will discuss the proposal that, in our opinion, is more
significant. The comparison is based on the following five dimen-
sions: (1) if and how structural knowledge is used; (2) if and how
lexical knowledge is used; (3) if and how knowledge base is used;
(4) if instances are considered; (5) the type of result returned. The
general results of our comparison are reported in Table 2.

In graph matching techniques, a concept hierarchy is viewed as
a tree of labelled nodes, but the semantic information associated to
labels is substantially ignored. In this approach, matching two graphs
G1 and G2 means finding a sub-graph of G2 which is isomorphic
to G2 and report as a result the mapping of nodes of G1 into the
nodes of G2. These approaches consider only structural knowledge
and completely ignore lexical knowledge and knowledge base. Some
examples of this approach are described in [30, 27, 26, 24, 16].

CUPID [22] is a completely automatic algorithm for schema
matching. Lexical knowledge is exploited for discovering linguistic
similarity between labels (e.g., using synonyms), while the schema
structure is used as a matching constraint. That is, the more the struc-
ture of the subtree of a node s is similar to the structure of a subtree
of a node t, the more s is similar to t. For this reason CUPID is more
effective in matching concept hierarchies that represent data types
rather than hierarchical classifications. With hierarchical classifica-
tions, there are cases of equivalent concepts occurring in completely
different structures, and completely independent concepts that be-
long to isomorphic structures. Two simple examples are depicted in
Figure 3. In case (a), CUPID does not match the two nodes labelled
with ITALY; in case (b) CUPID finds a match between the node
labelled with FRANCE and ENGLAND. The reason is that CUPID
combines in an additive way lexical and structural information, so
when structural similarity is very strong (for example, all neighbor
nodes do match), then a relation between nodes is inferred without
considering labels. So, for example, FRANCE and ENGLAND match
because the structural similarity of the neighbor nodes is so strong
that labels are ignored.

MOMIS (Mediator envirOnment for Multiple Information
Sources) [4] is a set of tools for information integration of (semi-
)structured data sources, whose main objective is to define a global
schema that allow an uniform and transparent access to the data
stored in a set of semantically heterogeneous sources. One of the key

15 The results of this experiment is not reported as they are not compara-
ble with our simple keyword-based baseline, which makes no sense with
multiple languages.
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Figure 3. Example of right and wrong mapping

steps of MOMIS is the discovery of overlappings (relations) between
the different source schemas. This is done by exploiting knowledge
in a Common Thesaurus together with a combination of clustering
techniques and Description Logics. The approach is very similar to
CUPID and presents the same drawbacks in matching hierarchical
classifications. Furthermore, MOMIS includes an interactive process
as a step of the integration procedure, and thus, unlike CTXMATCH,
it does not support a fully automatic and run-time generation of map-
pings.

GLUE [18] is a taxonomy matcher that builds mappings taking ad-
vantage of information contained in instances, using machine learn-
ing techniques and domain-dependent constraints, manually pro-
vided by domain experts. GLUE represents an approach complemen-
tary to CTXMATCH. GLUE is more effective when a large amount
of data is available, while CTXMATCH is more performant when less
data are available, or the application requires a quick, on-the-fly map-
ping between structures. So, for instance, in case of product classifi-
cation such as UNSPSC or Eclss (which are pure hierarchies of con-
cepts with no data attached), GLUE cannot be applied. Combining
the two approaches is a challenging research topic, which can prob-
ably lead to a more precise and effective methodology for semantic
coordination.

6 CONCLUSIONS

In this paper we presented a new approach to semantic coordina-
tion in open and distributed environments, and an algorithm (called
CTXMATCH) that implements this method for hierarchical classifi-
cations16.

Furthermore, this approach to Distributed Knowledge Manage-
ment has been applied to a series of practical applications. In par-
ticular, the EDAMOK (http://edamok.itc.it) project devel-
oped a P2P technology called KEEx (Knowledge Enhancement and
Exchange), which is coherent with the vision of DKM. Indeed, P2P
systems seem particularly suitable to implement a DKM system. In
KEEx, each community is represented by a knowledge peer (K-peer),
and a DKM system is implemented in a quite straightforward way:
(i) each K-peer provides all the services needed by a knowledge node
to create and organize its own local knowledge, and (ii) social struc-
tures and protocols of meaning negotiation are introduced to achieve
semantic coordination (e.g., when searching documents from other
peers – for more details see [6]). Throughout the EDAMOK project,
KEEx has been applied and tested in several business cases such as
healthcare [25], in which different actors, like hospital doctors, home

16 CTXMATCH has been successfully tested on real HCs (i.e., pre-existing
classifications used in real applications) and the results are described
in [23].
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graph
matching CUPID MOMIS GLUE CTXMATCH

Structural
knowledge • • • •

Lexical
knowledge • • • •

Knowledge
base • •

Instance-based
knowledge •

Type of
result

Pairs of nodes Similarity measure ∈ [0..1]
between pairs of nodes

Similarity measure ∈ [0..1]
between pairs of nodes

Similarity measure ∈ [0..1]
between pairs of nodes

Semantic relations between
pairs of nodes

Table 2. Comparing CTXMATCH with other methods

doctors, nurses, technical and administrative staff and patients them-
selves, have to cooperate in order to achieve the main goal of health-
care organizations, that is, having patients well treated. Another in-
teresting business case regards the B2B sector and, in particular, digi-
tal marketplaces and e-procurement [9]. In order to coordinate differ-
ent procurement and supply processes, marketplace participants need
to share heterogeneous information such as products and services
catalogues. A third business case deals with inter-organizational co-
operation and, in particular, refers to the Balearic Island Tourism sys-
tem Here the problem is how to support the collaboration among a
set of public and private entities, all involved in promoting a sus-
tainable development of tourism. Planning sustainable development
means taking into account different information that belong to dif-
ferent domains such as economy, socio-politics, and ecology. For an
extended analysis of these business cases see [10]. Currently KEEx
has become a business application owned by Distributed Thinking
(WWW.Dthink.biz), that is both using DKM technologies as an inte-
gral part of KM projects, and as an embedded P2P software in SUNs
Star Office called PKM (Personal Knowledge Manager).

Furthermore, this approach is going to be applied in a peer-to-peer
wireless system for ambient intelligence [15].

An important lesson we learned from this work is that methods for
semantic coordinations should not be grouped together on the basis
of the type of abstract structure they aim at coordinating (e.g., graphs,
concept hierarchies), but on the basis of the intended use of the struc-
tures under consideration. In this paper, we addressed the problem
of coordinating concept hierarchies when used to build hierarchical
classifications. Other possible uses of structures are: conceptualizing
some domain (ontologies), describing services (automata), describ-
ing data types (schemas). This “pragmatic” level (i.e., the use) is es-
sential to provide the correct interpretation of a structure, and thus to
discover the correct mappings with other structures.

The importance we assign to the fact that HCs are labelled with
meaningful expressions does not mean that we see the problem of
semantic coordination as a problem of natural language processing
(NLP). On the contrary, the solution we provided is mostly based
on knowledge representation and automated reasoning techniques.
However, the problem of semantic coordination is a fertile field for
collaboration between researchers in knowledge representation and
in NLP. Indeed, if in describing the general approach one can as-
sume that some linguistic meaning analysis for labels is available
and ready to use, we must be very clear about the fact that real ap-
plications (like the one we described in Section 3) require a massive
use of techniques and tools from NLP, as a good automatic analysis
of labels from a linguistic point of view is a necessary precondition
for applying the algorithm to HC in local applications, and for the
quality of mappings resulting from the application of the algorithm.

The work we presented in this paper is only the first step of a
very ambitious scientific challenge, namely to investigate what is
the minimal common ground needed to enable communication be-
tween autonomous entities (e.g., agents) that cannot look into each
others head, and thus can achieve some degree of semantic coordina-
tion only through other means, like exchanging examples, pointing to
things, remembering past interactions, generalizing from past com-
munications, and so on. To this end, a lot of work remains to be done.
On our side, the next steps will be: extending the algorithm beyond
classifications (namely to structures with purposes other than clas-
sifying things, as for example catalogues); generalizing the types of
structures we can match (for example, structures with non hierarchi-
cal relations, e.g. roles); going beyond WORDNET as a source of lex-
ical and domain knowledge; allowing different lexical and/or domain
knowledge sources for each of the local structures to be coordinated,
migrating from propositional logics to description logics for a more
powerful expressivity. The last problem is perhaps the most challeng-
ing one, as it introduces a situation is which the space of ‘senses’ is
not necessarily shared, and thus we cannot rely on that information
for inferring a semantic relation between labels of distinct structures.
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[23] B. M. Magnini, L. Serafini, A. Doná, L. Gatti, C. Girardi, , and M. Sper-
anza, ‘Large–scale evaluation of context matching’, Technical Report
0301–07, ITC–IRST, Trento, Italy, (2003).

[24] Tova Milo and Sagit Zohar, ‘Using schema matching to simplify het-
erogeneous data translation’, in Proc. 24th Int. Conf. Very Large Data
Bases, VLDB, pp. 122–133, (24–27 1998).

[25] A. Molani, A. Perini, E. Yu, and P. Bresciani, ‘Analysing the require-
ments for knowledge management using intentional requirements’, in
to appear in Proceedings AAAI Spring Symposium on Agent Mediated
Knowledge Management (AMKM-03), Stanford, USA, March 24-26,
(2003).

[26] Marcello Pelillo, Kaleem Siddiqi, and Steven W. Zucker, ‘Matching hi-
erarchical structures using association graphs’, Lecture Notes in Com-
puter Science, 1407, 3–??, (1998).

[27] Jason Tsong-Li Wang, Kaizhong Zhang, Karpjoo Jeong, and Dennis
Shasha, ‘A system for approximate tree matching’, Knowledge and
Data Engineering, 6(4), 559–571, (1994).

[28] E.K. Weick, ‘What theory is not, theorizing is’, Adminstrative Science
Quarterly, 40, (1995).

[29] E. Wenger, Communities of Practice. Learning, Meaning, and Identity,
Cambridge University Press, 1998.

[30] K. Zhang, J. T. L. Wang, and D. Shasha, ‘On the editing distance be-
tween undirected acyclic graphs and related problems’, in Proceedings
of the 6th Annual Symposium on Combinatorial Pattern Matching, eds.,
Z. Galil and E. Ukkonen, volume 937, pp. 395–407, Espoo, Finland,
(1995). Springer-Verlag, Berlin.

9


