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Abstract

Background

Appropriately formulated quantitative computational models can support researchers

in understanding the dynamic behaviour of biological pathways and support

hypothesis formulation and selection by “in silico” experimentation. An obstacle to

widespread adoption of this approach is the requirement to formulate a biological

pathway as machine executable computer code. We have proposed a novel,

biologically intuitive, narrative-style modelling language for biologists to formulate

the pathway which is then automatically translated into an executable format.

Results

We introduce the approach by presenting a computational model of the

gp130/JAK/STAT signalling pathway derived from a biological narrative and show

that the model reproduces the dynamic behaviour of the pathway derived by

biological observation. We then “experiment” on the model by simulation and

sensitivity analysis to define those parameters which dominate the dynamic behaviour

of the pathway. The model predicts that nuclear compartmentalisation and

phosphorylation status of STAT are key determinants of the pathway and that

alternative mechanisms of signal attenuation exert their influence on different

timescales.

Conclusions

The described language allows researchers to model biological systems without

explicitly dealing with formal notations and mathematical expressions, nevertheless

making it possible to obtain simulation and analysis results. We present the model

and the sensitivity analysis results we have obtained, that allow us to identify the
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parameters which are most sensitive to perturbations. The results are shown to be in

agreement with existing mathematical models of the gp130/JAK/STAT pathway.

Background
Biological signalling pathways of even modest complexity cannot be

comprehensively analysed within a feasible timescale by currently available

experimental tools. However appropriate pathway models can be used to generate,

explore and refine hypothesises guiding the formulation and prioritisation of

experimental interventions. This has conventionally been approached by the use of

models inspired by chemical kinetics and articulated mathematically in the form of

ordinary differential equations. Recently an alternative approach: “molecules as

computation” has been proposed in which a pathway is formulated as an executable

computer programme [1,2] which can be interrogated to determine the dynamic

behaviour, robustness and parameter sensitivities of the model [3]. The outcomes of in

silico experimentation on the computer model can then be used to inform the design

of biological interventions in vitro.

One key challenge of this approach is the accurate description of biological pathways

in the form of an executable computer language. From the biologist’s perspective the

formulation has to capture the biologically interesting features of the pathway and be

readily understood by other biologists. From the computer science perspective the

formulation has to conform to the rules of formal methods in computer science: it

must be logically precise and unambiguous. There is therefore a potential language

gap between what the biologist understands and what the computer model encodes.

We have recently described a high level biologically-intuitive textual language in

which the signalling pathway is articulated in the form of a narrative of events
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concerning the interactions between components located in different compartments

[4]. This articulation of the pathway is then translated into an executable computer

programme for further analysis. In this paper we describe, develop and interrogate

such an executable model of the gp130/JAK/STAT signalling pathway [5] using the

Narrative Language approach and explore its predictions by in silico experimentation.

The gp130/JAK/STAT signalling pathway (see for example [5]) is the subject of

significant clinical and biological interest, not least due to the key role it plays in

human fertility, neuronal repair, haematological development and embryonic stem

cell renewal [6]. Members of the gp130 cytokine family, such as LIF or OSM, bind to

the common signal transducing receptor chain gp130 and a second signalling receptor

LIFR or OSMR [7]. Homo- or hetero-dimerisation of gp130, LIFR and OSMR

induces activation of the receptor associated kinase JAK which in turn phosphorylates

the latent transcription factor STAT which, as a consequence, undergoes homo-

dimerisation, translocates to the nucleus and activates the transcription of downstream

gene targets (Figure 1). Several features of this pathway make it an attractive case

study for a computer programme based modelling approach. A characteristic feature

of the gp130/JAK/STAT system is the role of spatial confinement in which the

transcription factor STAT undergoes nuclear/cytoplasmic shuttling which is regulated

by JAK-mediated phosphorylation at the plasma membrane and T-Cell Protein

Tyrosine Phosphatase (TC-PTP)-mediated de-phosphorylation in the nucleus [8,9].

Aside from gp130/JAK activation by ligand the dynamics of the pathway can be

regulated by a variety of mechanisms, which include STAT-mediated induction of

Suppressor of Cytokine Signalling (SOCS) family proteins, which suppress JAK

activation [10] and the Protein Inhibitor of Activated STAT (PIAS), an E3 family
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ubiquitin ligase which induces proteolytic degradation of phospho-STAT [11,12].

Chronic nuclear STAT activation and/or JAK activation [13,14] have been implicated

as a predisposing event in a variety of tumour types indicating that pathway dynamics

have significant impact on cell behaviour. Elucidating the relative influence of

different pathway parameters on the activity of STAT will guide the evaluation of

therapeutic interventions.

Much experimental data is available on the gp130/JAK/STAT pathway and several

mathematical models have been developed based on ordinary differential equations

(see for example [15-17]). We present a different approach to modelling this pathway

based on formal computational methods. We use a novel textual language for

modelling biochemical systems, and perform simulations through the BetaWB

simulator, an existing tool [18] based on Gillespie’s stochastic simulation

algorithm [19]. A key feature of the formal computational approach is the ability to

rigorously explore, by in silico experimentation, the dynamic behaviour of the model

to determine both the role of signal modifiers such as SOCS and the importance of

parameter values. We validate our computational model by showing that it produces

outputs which conform to those produced by experiment. We then perform in silico

experiments on the model to determine first and second order parameter sensitivities

and the effects of various types of pathway modulators. We show that the dynamic

behaviour of the pathway is dominated by the rate of STAT de-phosphorylation and

nuclear export and that these two variables result in bistable pathway behaviour when

combined together in the model.
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Methods

Narrative Modelling Language

We use a novel modelling language expressly designed to describe dynamically

regulated and spatially -confined biochemical pathways.

The basic entities of the language are molecules (components) and sub-cellular

locations (compartments). In the language molecules can interact (e.g. bind/unbind),

undergo biochemical modification (e.g. phosphorylation/de-phosphorylation) and re-

locate between compartments. The time dependent behaviour of the pathway is

described in the form of a narrative of events involving these basic entities and

functions, which imposes a temporal sequence and defines inter-dependencies and

contingencies. In the narrative approach each of the elements can denote ‘real’ (i.e.

experimentally defined) or abstract (e.g. hypothetical) entities. In silico exploration of

the pathway model is simply enabled by modifying the narrative description and/or

changing parameter values.

We now describe the detailed implementation of the Narrative Language as illustrated

in the gp130/JAK/STAT pathway model (Additional files 1-8).

A compartment represents a cellular or subcellular compartment (e.g. nucleus,

cytosol, cell membrane) or an abstract location; it is described by an identifier, a

name, the size, and the number of spatial dimensions (to distinguish between 2D

compartments, i.e. membranes, and 3D ones).

A component represents a molecule involved in the system, and it is identified by a

name, an informal description, a list of interaction sites, a list of states, a list of
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locations, and the initial quantity of molecules present. Since a biochemical reaction

may describe the modification of interaction sites, a component is seen as a list of

interaction sites, each defined by a name and a state (e.g. active, bound,

phosphorylated). In the even that interaction sites are not known, states can also be

associated with the entity itself representing modifications of generic interaction sites.

A label associated with each state and site specifies the status of the component at

system initialisation. If the location of the protein is relevant to the model, the

compartments in which it can be located during the evolution of the system are

specified. A label is associated with each compartment which is set to “true” if the

protein is in that compartment in the initial configuration. Finally, the initial quantity

of the component is set.

A reaction represents a biochemical modification occurring among the components of

the system; it is described by an identifier, an informal description, the reaction type

(e.g. binding, unbinding, dimerization, phosphorylation, relocation), the reaction rate

(i.e. the kinetic constant), and the reaction volume; a reliability value can be

associated to reaction rate and reaction volume.

A feature of this implementation of the narrative approach is the use of reliability

values associated with numerical parameters. This is a percentage value which

describes the reliability of the associated numerical value, and it can be used to

distinguish between values that are highly certain because obtained from high quality

biological experiment, and others which are inferred as a result of un-verified

assumptions or ‘guesswork’ (e.g. 100% indicates high precision data, while 0%

indicates a value which has no experimental evidence). Reliability values do not
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influence the behaviour of the programme but are annotations to inform use of the

model. In particular modellers can employ reliability values to identify parameter

dependencies to be explored during model refinement.

A narrative of events describes the evolution of the system; it is a sequence of basic

events, each of which is a constrained textual description of a biochemical reaction

involving at most two components. Events can be grouped into processes. An event is

described by an identifier, an informal description, a semiformal description, the

identifier of the reaction associated with the event, and the identifier of the alternative

events (if present). The semiformal description specifies the occurring reaction (e.g.

phosphorylates, relocates to, binds, unbinds) and the involved component(s), and it

can be prefixed by conditions (on the state of components/sites, or on their position).

We assume that each event involves an interaction or a modification of one site for

each involved protein. If the site is known, it can be specified; otherwise, it is

assumed that one of the component’s defined states is involved; a list of sites can be

specified as a shortcut for simultaneous steps involving different sites (e.g.

simultaneous phosphorylation of two sites of one protein).

The last feature of the language concerns the order of events in the evolution of the

system. Two events occurring in a generic system of interacting entities can be

concurrent (independent events, e.g. events involving different proteins), sequential

(one event can occur only after the other one has occurred, e.g. a phosphorylation of a

site of a protein is allowed only after it is bound to another protein), or alternative

(mutually exclusive events, i.e. if one event occurs, the other one cannot occur, e.g.

competitive binding of different ligands to a receptor). We distinguish between
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concurrent, sequential, and alternative events as follows. Conditions are used to

enforce the ordering of sequential events; an additional parameter is specified to

handle alternative events; events that are not explicitly declared either alternative or

sequential, are considered independent and are treated as concurrent events.

Model Description & Simulation

We developed a model of the gp130/JAK/STAT signalling pathway in the proposed

Narrative Language. The full model is supplied as Additional files (Tables 1-8). The

entities we consider in the model are: two ligands (LIF and OSM), three membrane-

bound receptors (gp130, LIFR and OSMR), one effector (STAT3), and two inhibitors

(SOCS3 and PIAS3). The receptor associated kinase JAK and TC-PTP phosphatase

are implicitly modelled.

Each receptor contains at least one ligand binding site (OSMR has only one site for

OSM, while LIFR and gp130 also have one site for LIF), one binding site for SOCS3

inhibitor, and some phosphorylation sites. Moreover, receptors can be in dimeric state

(an additional site in gp130 allows us to distinguish between the two types of OSM

receptors). STAT3 has one phosphorylation and four binding sites (for receptors and

PIAS3 inhibitor), and it can be monomeric or dimeric (STAT3 can form

homodimers).

Four compartments are involved in the system: the exosol (the extracellular space,

where the ligands are located), the cell membrane (location of the receptors), the

cytosol (initial location of the STAT3 effector), and the nucleus (to which the effector

can translocate).
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Tables 1 and 2 show the definition of compartments and components involved in the

gp130/JAK/STAT pathway. The compartment volumes are calculated based on the

average cell radius and ratio between intra-cellular compartment volumes stated

in [20], and the initial amount of ligands are calculated based on the known

extracellular concentration (500pM).

Table 3 shows the definition of reactions occurring in the pathway. Some of the

reaction rates have been obtained from wet experiments, while others have been

estimated based on information about similar reactions, or extracted from other

models [15-17]; reliability values are assigned to reaction rates.

Finally, Tables 4-8 show the definition of the narrative of events, which describe the

binding/unbinding of ligand/receptor pairs, the downstream LIF and OSM pathways

(formation and activation of receptor complexes), the downstream STAT3 pathway

(recruitment and activation of STAT3, and its nuclear/cytoplasmic shuttling), and the

inhibition mechanisms.

Table 4 models the binding of ligands to receptors (reaction r1 in the graphical

representation of the pathway shown in Figure 1 and events 1, 3, 5, 7 and 9 in the

Narrative Language model), and the inverse unbinding reaction (r2, events 2, 4, 6, 8

and 10).

Table 5 models the dimerization of pairs of receptor subunits to form receptor

complexes (gp130-LIFR or gp130-OSMR), which is triggered by the binding of a
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ligand to one of the receptors (r3, events 11, 13, 15, 17, 19 and 21), and the

dissociation of the receptor complexes (r4, events 12, 14, 16, 18, 20 and 22).

Table 6 models the activation (JAK-mediated phosphorylation) of the receptor

complexes, the binding of STAT3 to a receptor complex, and the activation

(phosphorylation) of STAT3. Once the receptor dimeric complex is formed, each

receptor subunit (gp130, LIFR and OSMR) can phosphorylate on specific sites (r5,

events 23, 25, 27 and 29). STAT3 can bind on receptors’ phosphorylated sites (r7,

events 31, 32 and 33), and the binding of STAT3 allows the phosphorylation of

STAT3 on site Y705 (r8, events 37, 38 and 39).

Table 7 models the unbinding of STAT3 from receptor complexes, its

homodimerization, and nuclear/cytoplasmic shuttling (relocation into the nucleus, de-

phosphorylation by TC-PTP, dehomodimerization and relocation into the cytoplasm).

Once phosphorylated, STAT3 can dissociate from the receptor complex (r10,

events 41, 42 and 43); the phosphorylated site allows STAT3 to homodimerize (r11,

event 44). When STAT3 is in dimeric form, it can translocate into the nucleus (r12

and r15, event 45) where it can carry out its specific functions (not modelled here):

STAT3 binds to the DNA, activating the transcription of downstream gene targets.

Nuclear STAT3 is inactivated through de-phosphorylation by TC-PTP (r13, event 46),

which leads to its dedimerization (r14, event 47), and its export to the cytoplasm (r15,

event 48), where STAT3 can undergo additional cycles of activation.

Table 8 models SOCS3 and PIAS3 inhibition mechanisms. SOCS3 is produced by

active STAT3 (event 49) and degraded (event 50), and it acts by competing with
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STAT3 in binding to receptors (events 51, 52 and 53). PIAS3 acts by binding to

active nuclear STAT3 (event 57).

We developed a tool [21], N2BB, which implements an automatic translation of

models described in the biologically-intuitive Narrative Language into executable

computable models formulated in BlenX [22], a programming language inspired on

the Beta-binders process calculus [23]. Process calculi, originally developed for

modelling mobile communicating systems, have recently been proposed as

appropriate for simulating biological processes [1], and they have proved themselves

as powerful tools for dynamical modelling of complex biological systems [24-27].

Differently from differential equations, process calculi also allow for analysis of

models (e.g. model-checking, equivalence, reachability, causality, and locality

analysis).

The BlenX model derived from the Narrative Language model is compatible with the

BetaWB [18], a collection of tools for modelling, simulating, and analysing BlenX

models. Hence, the model can be imported into the BetaWB designer, or directly

simulated by means of the BetaWB simulator; the time evolution of the simulation

can be visualised by means of the BetaWB plotter or the Snazer tool [28]. For a

detailed description of the BlenX language and of the implementation of the

simulator, see [18,22].

Cells, Reagents & Cytokines

MCF-7 human breast cancer cells were obtained from American Type Culture

Collection (Manassas, VA) and cultured as described [6]. The human oncostatin M
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recombinant expression plasmid, pGEX-3C-OSM, was prepared, expressed and

purified as described previously [6].

Western Blot, Immunofluorescence and Data Analysis

Serum starved MCF-7 cells were stimulated with 10ng/ml oncostatin M for increasing

times (up to 480 minutes) at 37°C. For Western blot analysis, cell lysates were

prepared and analysed as described [6] and monoclonal anti-phospho STAT3

(Tyr705) and STAT3 (Cell Signalling Technology) antibodies used for

immunodetection. The density of the bands representing phospho-STAT3 and STAT3

were measured using ImageJ [29] and expressed as the ratio of phospho-STAT3 to

STAT3. For immunofluorescence studies, MCF7 cells grown on coverslips were fixed

with 4% paraformaldehyde (10 min, RT), permeabilised with 0.1% saponin solution

(0.02M glycine, 0.1% saponin, 0.1M Tris/HCl pH8.5) for 20 min and blocked for 1

hour in 0.1% saponin solution (0.1% saponin, 0.1M Tris/HCl pH8.5) plus 2.5% foetal

calf serum. Cells were immunostained with monoclonal anti-STAT3 antibody for 1 h

at RT and incubated with Texas Red-conjugated secondary antibody containing

Hoechst (Molecular Probes) for 45 min at RT. Coverslips were mounted with 5µl of

Mowiol solution (10% Mowiol 4-88, 25% glycerol, 0.1M Tris/HCl pH8.5) on the

slide and observed under confocal microscope. For localisation analysis, images

captured were converted to greyscale and total STAT3 fluorescence calculated from

the sum of pixel density values (ImageJ). Nuclear STAT3 fluorescence was calculated

from selection of nuclear area (as determined by Hoechst staining) and cytoplasmic

STAT3 fluorescence calculated by subtracting nuclear staining from total cellular

staining. For each time-point analysis was performed on between 60 -100 cells (from

multiple coverslips) and mean values ± 2SD were calculated for total nuclear and

cytoplasmic STAT (expressed as percentage of total STAT).
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Results and discussion
We used the N2BB tool to automatically translate the gp130/JAK/STAT pathway

model into BlenX and we simulated the derived model using BetaWB. Our intention

in the simulations that follow was to firstly define the behaviour of the full model and

then to study the behaviour of the model in response to perturbations such as

modifying numerical values and/or removing components from the model. A

particular feature of the narrative approach is that it is very simple to change

parameters or modify the narrative of events in the process of model exploration.

Our aim is to define those features, which exert the dominating influence on the

dynamic behaviour of the pathway in the model for evaluation by biological

experiment. This is an example of using computer models to explore a wide range of

scenarios in silico to guide the formulation of the more laborious and expensive

laboratory –based experiments.

The time evolution resulting from the simulation of the model is shown in the

following pictures. Figure 2A reports the time evolution of the full model, while

Figure 2B-2D show the evolution when different inhibitors are removed (in silico

genetics). The amounts of different STAT3 forms are plotted: monomeric

cytoplasmic, dimeric cytoplasmic, monomeric nuclear, and dimeric nuclear.

Figure 2A shows that in the initial configuration STAT3 is present in monomeric

form in the cytoplasm. As the system undergoes dynamic evolution, STAT3 is rapidly

phosphorylated, dimerized and translocated into the nucleus. At the same time

cytoplasmic STAT3 is dramatically reduced. The system reaches a plateau for some
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time and then slowly reverses as nuclear STAT3 levels fall and cytoplasmic levels

rise. This behaviour conforms well to that obtained experimentally by observing the

time-evolution of STAT3 phosphorylation (Additional file 9) and the re-location of

STAT3 to the nuclear compartment in response to Gp130 activation (Additional file

10). However it is important to note that, whilst the model and experimental data are

in quantitative agreement for early time points (0-200 minutes), the experimental data

reveals a faster rate of recovery of cytoplasmic STAT3 than predicted from the model

over longer time periods. We were unable to accelerate the rate of relocalisation of

STAT3 in the model by parameter variation (data not shown) which we interpret as

indicating that the current model does not include biological processes that influence

the rate of nuclear/cytoplasmic shuttling at later time points. In this context we remark

that the current model takes no account of the induction of new gene expression [6]

by gp130 signalling over this time period which could include components that

influence the rate of nuclear/cytoplasmic transfer.

We conclude that the computer model derived from the original narrative is able to

capture the dynamic behaviour of the real pathway, demonstrating the validity of the

approach.

In the next phase we explored the dependency of the model on the presence of various

components which were ‘knocked out” by removal from the programme.

By comparing Figure 2A and 2B, in which we run the simulation in the absence of

SOCS3, we observe that the effect of SOCS3 expression in response to STAT3

activation is to activate the slow attenuation process observed in the full model:

removal of SOCS3 suppresses the delayed re-appearance of cytoplasmic STAT3 and

the pathway exhibits prolonged and stable nuclear occupancy of STAT3.
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The role PIAS3, which binds to phosphorylated nuclear STAT3 preventing it binding

to DNA, is revealed by comparing Figure 2A and 2C. In this case removal of PIAS3

yields an initial increase of active STAT3, but the nuclear STAT3 signal attenuates

with a faster time course than in the full model, leading to an increase in cytoplasmic

(and therefore inactive) STAT3.

Figure 2D shows the outcomes of removing the nuclear phosphatase TC-PTP from the

model. In this case there is a rapid accumulation of nuclear STAT3 which reaches

steady state and fails to attenuate. In this case cytoplasmic STAT3 is rapidly

eliminated and does not re-appear.

Comparing the consequences of removing three different types of inhibitor from the

model it is clear that each has characteristic temporal effects. The consequences of

TC-PTP inhibition are significantly more rapid than removal of SOCS3 or PIAS3.

Inhibition of SOCS3 and TC-PTP lead to prolonged and stable activated STAT3,

whereas inhibition of PIAS3 accelerates the rate of activated STAT3 decay by

inducing accumulation of cytoplasmic STAT3.

Single parameter sensitivity analysis

We next turned to analysis of the parameter sensitivities of the model. In this case we

ran simulations in which individual parameters were systematically varied to observe

the dependency of model behaviour on individual values. The aim here is to define

those values, which have greatest impact on model behaviour.

We first examined the dependency of the model on the amount of STAT3 in the

system. In this case we ran simulations containing different numbers of STAT3
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molecules at initialisation (Figure 3). We observe that the duration of nuclear

occupancy is relatively stable to STAT3 perturbation until it drops below a threshold

value (in this case between 30-300 molecules) when it collapses into ‘noise’.

However the number of STAT3 molecules had a significant effect on peak amplitude

where there was an approximately linear relationship between the maximum number

of activated STAT3 molecules reached and the total number of molecules in the

system.

We next examined the rate of TC-PTP de-phosphorylation, the amount of ligand, the

rate of JAK kinase phosphorylation and the rate of nuclear export (Figure 4A-4D).

The outcomes of these simulations show that the behaviour of the model is

differentially dependent on particular values.

Slowing the rate of phospho-STAT3 dephosphorylation exhibited significant effects

on activated STAT3 amplitude and duration noted over the complete range analysed

(Figure 4C). De-phosphorylation rates impacted on both the peak amplitude and

duration of activated STAT3 indicating, as reported by others [30], that nuclear de-

phosphorylation of activated STAT3 is a an important determinant of signalling

dynamics. Similar sensitivities were found on varying the rate of nuclear export

(Figure 4D): although in this case nuclear export had no impact on peak signal

amplitude and its main effect was on signal duration.

By contrast the model was relatively robust to variations in either the amount of

ligand in the system or the rate of JAK activation (Figure 4A and 4B) where

significant impacts on signal dynamics only become apparent at extreme values.
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Indeed similar to the dependency on STAT3 numbers it appears as though behaviour

of the model is relatively robust to parameter changes in these processes over several

orders of magnitude.

Multi-dimensional parameter sensitivity

The foregoing in silico experiments revealed that the dynamic behaviour of the

gp130/JAK/STAT pathway is most sensitive to two parameters: the rate of nuclear

STAT3 de-phosphorylation and the rate of STAT3 nuclear export. We were interested

to learn if the model exhibited higher order dependencies when parameters were

varied in combinations. Exhaustive implementation of this approach is currently

computationally expensive. For this study we therefore chose to study the interaction

between nuclear de-phosphorylation of STAT3 and export of de-phosphorylated

STAT3. To this end 35 simulations were run in which each parameter was changed

simultaneously (Figure 5). The results of this experiment were surprising. Instead of

exhibiting a graded response across the whole parameter landscape, as might be

predicted from the behaviour of each individual value, the system exhibits a bistable

response in which, for the majority of conditions, the system is either constitutively

activated or constitutively repressed. The system only exhibits sensitivity to parameter

variation in a narrow region of values towards the middle of the ranges chosen. In this

region both peak amplitude and signal duration were dependant upon the interplay

between nuclear export and STAT3 de-phosphorylation.

Conclusions
Our purpose in this study was to explore the practical utility of the biological narrative

approach for in silico exploration of a complex signalling pathway. We show that the

biologist-specified narrative yields outcomes which conform well to experimental

data. By ‘experimenting’ on the model by parameter exploration and component



- 19 -

removal we were able to explore the influence of different elements on the dynamic

behaviour of the pathway. These studies showed that the rate of STAT nuclear export

and nuclear localised dephosphorylation were key determinants of signalling

dynamics. This conclusion is supported by in vitro experimental data in which

inhibition of nuclear export by either drug treatment [31,32] or mutation of the

Nuclear Export Sequence [33] results in prolonged nuclear accumulation of

phosphorylated STAT.

This outcome indicates that the model captures the dynamic behaviour of the real

pathway well and encouraged further exploration of the model into issues which

would be resource intensive – or technically challenging – to address by biological

experimentation. In particular we were interested in exploring the potential for

interactions between parameters which are not currently addressable by biological

experiment. We found, combining nuclear export and nuclear dephosphorylation, that

the two parameters interact strongly yielding a ‘switch-like’ behaviour. This type of

modelling analysis may inform future considerations of multi-step mutagenesis or

combination drug therapy scenarios in the gp130/JAK/STAT pathway.

We have demonstrated in this study that a language can be used to describe biological

signalling pathways in a way, which is formal and unambiguous for computational

execution but intuitive to the biologist. The approach exploits the particular

advantages of the “molecule as computation” paradigm of Regev and Shapiro [1]: the

resulting models are computable, relevant and understandable. There are also practical

advantages to process calculus models in that they can be readily modified to explore

different scenarios and interrogated using model checking tools [3] to formally verify
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the model and explore its quantitative behaviour. Collectively the approach is

therefore extensible in that, as new biological information on the pathway becomes

available, it can be readily incorporated into the model.

The Narrative Language has a number of explicit features which capture some

cardinal features of biological signalling pathways. It defines the temporal

relationships between events (i.e. sequential, concurrent and competing events). It

defines the location of proteins and the reaction volumes, and it deals with multi-

compartmental models thereby making spatial location and confinement a central

feature. Species in the model can exist in multiple states and locations. The Narrative

Language can therefore be employed to model any biological process involving state

transitions of different types; inter-molecular interactions; spatial confinement and

temporal evolution. Moreover, the biochemical entities, interactions and information

which can be modelled in the Narrative Language are very similar to the ones

modelled in the representation used in the NCI-Nature Pathway Interaction Database

(PID) [34], a curated collection of biomolecular pathways represented in a graphical

language. Considered the analogies between the PID and our proposal, we are

currently developing a mapping between the PID representation and the Narrative

Language. This translation would provide us with a significant number of well-

understood pathways, which can be directly simulated into the BetaWB.

Finally we present a translation into the BlenX language [22] in this paper but, in

principle, translation of the Narrative Language into other current or future languages

is possible. Thus the biological formulation of the pathway is separable from the

computer method employed for simulation and analysis.
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Figures

Figure 1 - Graphical representation of the gp130/JAK/STAT pathway

Closed arrows represent biochemical reactions, dotted arrows represent transports.

Figure 2 - Role of inhibitors in the gp130/JAK/STAT pathway

(A) Full model. (B) SOCS3 knock out. (C) PIAS3 knock out. (D) TC-PTP knock out.

For each experiment the amounts of different STAT3 forms are plotted: monomeric

cytoplasmic (STAT3-C), dimeric cytoplasmic (STAT3-PDC), monomeric nuclear

(STAT3-N), and dimeric nuclear (STAT3-PDN).

Figure 3 - Single parameter sensitivity analysis: variation of STAT3 initial
amount

The evolution of the system has been observed varying the initial amount of STAT3.

(A) 30 molecules. (B) 300 molecules. (C) 3000 molecules. (D) 30000 molecules. The

amount of active nuclear STAT3 (STAT3-PDN) is plotted.

Figure 4 - Single parameter sensitivity analysis

The evolution of the system has been observed varying each parameter individually.

(A) Ligands initial amount. (B) JAK-mediated phosphorylation. (C) TC-PTP-

mediated dephosphorylation. (D) Nuclear export. The amount of active nuclear

STAT3 (STAT3-PDN) is plotted.

Figure 5 - Multi-dimensional parameter sensitivity

The evolution of the system has been observed varying simultaneously the rate of

nuclear STAT3 de-phosphorylation and the rate of STAT3 nuclear export. The

considered values are as in Figure 4C and 4D. The rows (A-G) refer to the export rate,

while the columns (i-v) refer to the dephosphorylation rate. The amounts of active

nuclear STAT3 (STAT3-PDN) and monomeric nuclear STAT3 (STAT3-N) are

plotted.
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Additional file 10 - Nuclear localisation of STAT3
(A) Time-course of STAT3 nuclear/cytoplasmic localisation.

(B) Images representative of STAT3 localisation after stimulation with Oncostatin M:

(i) control; (ii) 20 minutes; (iii) 4 hours; (iv) 8 hours.
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(C) Simulation time-course of STAT3 nuclear/cytoplasmic localisation.
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Table 1 - Gp130/JAK/STAT pathway: list of compartments 
 

id name size unit of measure dimensions 
1 exosol 121091.9 −×   L 3 
2 cellMembrane 71026.1 −×   dm2 2 
3 cytosol 121009.2 −×   L 3 
4 nucleus 121025.0 −×   L 3 

   
 
Table 2 - Gp130/JAK/STAT pathway: list of components 

 
name descr site site_state site_act state state_act comp comp_act init_amount rel 

LIF ligand    bound false 1 true 3000 100%
OSM ligand    bound false 1 true 3000 100%
gp130 receptor LIF bound false bound false 2 true 1000 50%
  OSM bound false     
  Y767 phospho false     
  Y814 phospho false     
  Y905 phospho false     
  Y915 phospho false     
  SOCS3 bound false     
  typeI dimer false     
  typeII dimer false     
LIFR receptor LIF bound false bound false 2 true 1000 50%
  OSM bound false dimer false   
  Y981 phospho false     
  Y1001 phospho false     
  Y1028 phospho false     
  SOCS3 bound false     
OSMR receptor OSM bound false bound false 2 true 1000 50%
  Y917 phospho false dimer false   
  Y945 phospho false     
  SOCS3 bound false     
STAT3 effector Y705 phospho false dimer false 3 true 3000 30%
  gp130 bound false   4 false 
  LIFR bound false     
  OSMR bound false     
  PIAS3 bound false     
SOCS3 inhibitor    bound false 3 true 0 100%
PIAS3 inhibitor    bound false 4 true 1000 20%
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Table 3 - Gp130/JAK/STAT pathway: list of reactions 
 

id type rate unit rel react_vol unit rel 
1binding 7108.4 ×  M−1Min−1 80% 9.91⋅10−12 l 50%
2unbinding 1106.3 −×  Min−1 80% 9.91⋅10−12 l 50%
3binding 7108.4 ×  M−1Min−1 80% 9.91⋅10−12 l 50%
4unbinding 2106.3 −×  Min−1 80% 9.91⋅10−12 l 50%
5binding 7108.4 ×  M−1Min−1 80% 9.91⋅10−12 l 50%
6unbinding 2106.3 −×  Min−1 80% 9.91⋅10−12 l 50%
7binding 7108.4 ×  M−1Min−1 80% 9.91⋅10−12 l 50%
8unbinding 1106.3 −×  Min−1 80% 9.91⋅10−12 l 50%
9binding 7108.4 ×  M−1Min−1 80% 9.91⋅10−12 l 50%

10unbinding 2106.3 −×  Min−1 80% 9.91⋅10−12 l 50%
11dimerization inf M−1Min−1 50% 9.91⋅10−12 l 50%
12dedimerization 0 M−1Min−1 0% 9.91⋅10−12 l 50%
13phosphorylation 0.2 Min−1 80% 9.91⋅10−12 l 50%
14dephosphorylation 0 Min−1 0% 9.91⋅10−12 l 50%
15binding 8108.4 ×  M−1Min−1 20% 2.09⋅10−12 l 50%
16unbinding 0.06 Min−1 30% 2.09⋅10−12 l 50%
17phosphorylation 0.2 Min−1 80% 2.09⋅10−12 l 50%
18dephosphorylation 0 Min−1 0% 2.09⋅10−12 l 50%
19unbinding inf Min−1 10% 2.09⋅10−12 l 50%
20homodimerization inf Min−1 50% 2.09⋅10−12 l 50%
21relocation 1 Min (t1/2) 10% 2.09⋅10−12 l 50%
22dephosphorylation 0.04 Min−1 20% 0.25⋅10−12 l 50%
23dehomodimerization inf Min−1 20% 0.25⋅10−12 l 50%
24relocation 15 Min (t1/2) 10% 0.25⋅10−12 l 50%
25synthesis 0.01 Min−1 50% 0.25⋅10−12 l 50%
26binding 7100.6 ×  M−1Min−1 20% 2.09⋅10−12 l 50%
27unbinding 0.006 Min−1 30% 2.09⋅10−12 l 50%
28binding 8100.1 ×  M−1Min−1 20% 0.25⋅10−12 l 50%
29unbinding 0.06 Min−1 30% 0.25⋅10−12 l 50%
30degradation 0.01 Min−1 50% 0.25⋅10−12 l 50% 
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Table 4 - Gp130/JAK/STAT pathway: list of events (ligand-receptor bindings) 
 

id description react alt 
LIF-gp130 binding 

1if gp130.LIF is not bound and LIF is not bound and gp130.typeI is 
not dimer and gp130.typeII is not dimer then LIF binds gp130 on 
LIF 

1 

2if gp130.LIF is bound and LIF is bound and gp130.typeI is not dimer 
and gp130.typeII is not dimer and gp130.Y767 is not phospho then 
LIF unbinds gp130 on LIF 

2  

LIF-LIFR binding 
3if LIFR.LIF is not bound and LIF is not bound and LIFR is not 

dimer then LIF binds LIFR on LIF 
3  

4if LIFR.LIF is bound and LIF is bound and LIFR is not dimer and 
LIFR.Y981 is not phospho then LIF unbinds LIFR on LIF 

4  

OSM-gp130 binding 
5if gp130.OSM is not bound and OSM is not bound and gp130.typeI is 

not dimer and gp130.typeII is not dimer then OSM binds gp130 on 
OSM 

5 1 

6if gp130.OSM is bound and OSM is bound and gp130.typeI is not 
dimer and gp130.typeII is not dimer and gp130.Y767 is not phospho 
then OSM unbinds gp130 on OSM 

6  

OSM-LIFR binding 
7if LIFR.OSM is not bound and OSM is not bound and LIFR is not 

dimer then OSM binds LIFR on OSM 
7 3 

8if LIFR.OSM is bound and OSM is bound and LIFR is not dimer 
and LIFR.Y981 is not phospho then OSM unbinds LIFR on OSM 

8  

OSM-OSMR binding 
9if OSMR.OSM is not bound and OSM is not bound and OSMR is not 

dimer then OSM binds OSMR on OSM 
9  

10if OSMR.OSM is bound and OSM is bound and OSMR is not dimer 
and OSMR.Y917 is not phospho then OSM unbinds OSMR on OSM 

10  
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Table 5 - Gp130/JAK/STAT pathway: list of events (receptor complexes formation) 

 
id description react alt 

LIF pathway → type I receptor gp130:LIFR 
11 if gp130.LIF is bound and LIFR.LIF is not bound and gp130.OSM is 

not bound and LIFR.OSM is not bound and LIFR is not dimer and 
gp130.typeI is not dimer and gp130.typeII is not dimer then LIFR 
dimerizes with gp130 on typeI 

11 2

12 if gp130.LIF is bound and LIFR.LIF is not bound and gp130.OSM is 
not bound and LIFR.OSM is not bound and LIFR is dimer and 
gp130.typeI is dimer and gp130.typeII is not dimer and LIFR.Y981 is 
not phospho and gp130.Y767 is not phospho then LIFR dedimerizes 
from gp130 on typeI 

12 

13 if LIFR.LIF is bound and gp130.LIF is not bound and LIFR.OSM is 
not bound and gp130.OSM is not bound and LIFR is not dimer and 
gp130.typeI is not dimer and gp130.typeII is not dimer then LIFR 
dimerizes with gp130 on typeI 

11 4

14 if LIFR.LIF is bound and gp130.LIF is not bound and LIFR.OSM is 
not bound and gp130.OSM is not bound and LIFR is dimer and 
gp130.typeI is dimer and gp130.typeII is not dimer and LIFR.Y981 is 
not phospho and gp130.Y767 is not phospho then LIFR dedimerizes 
from gp130 on typeI 

12 

OSM pathway → type I receptor gp130:LIFR 
15 if gp130.OSM is bound and LIFR.OSM is not bound and gp130.LIF 

is not bound and LIFR.LIF is not bound and LIFR is not dimer and 
gp130.typeI is not dimer and gp130.typeII is not dimer then LIFR 
dimerizes with gp130 on typeI 

11 6

16 if gp130.OSM is bound and LIFR.OSM is not bound and gp130.LIF 
is not bound and LIFR.LIF is not bound and LIFR is dimer and 
gp130.typeI is dimer and gp130.typeII is not dimer and LIFR.Y981 is 
not phospho and gp130.Y767 is not phospho then LIFR dedimerizes 
from gp130 on typeI 

12 

17 if LIFR.OSM is bound and gp130.OSM is not bound and LIFR.LIF is 
not bound and gp130.LIF is not bound and LIFR is not dimer and 
gp130.typeI is not dimer and gp130.typeII is not dimer then LIFR 
dimerizes with gp130 on typeI 

11 8

18 if LIFR.OSM is bound and gp130.OSM is not bound and LIFR.LIF is 
not bound and gp130.LIF is not bound and LIFR is dimer and 
gp130.typeI is dimer and gp130.typeII is not dimer and LIFR.Y981 is 
not phospho and gp130.Y767 is not phospho then LIFR dedimerizes 
from gp130 on typeI 

12 
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OSM pathway → type II receptor gp130:OSMR 
19 if gp130.OSM is bound and OSMR.OSM is not bound and gp130.LIF 

is not bound and OSMR.LIF is not bound and OSMR is not dimer 
and gp130.typeI is not dimer and gp130.typeII is not dimer then 
OSMR dimerizes with gp130 on typeII 

11 6

20 if gp130.OSM is bound and OSMR.OSM is not bound and gp130.LIF 
is not bound and OSMR.LIF is not bound and OSMR is dimer and 
gp130.typeI is not dimer and gp130.typeII is dimer and OSMR.Y917 
is not phospho and gp130.Y767 is not phospho then OSMR 
dedimerizes from gp130 on typeII 

12 

21 if OSMR.OSM is bound and gp130.OSM is not bound and 
OSMR.LIF is not bound and gp130.LIF is not bound and OSMR is 
not dimer and gp130.typeI is not dimer and gp130.typeII is not 
dimer then OSMR dimerizes with gp130 on typeII 

11 10

22 if OSMR.OSM is bound and gp130.OSM is not bound and 
OSMR.LIF is not bound and gp130.LIF is not bound and OSMR is 
dimer and gp130.typeI is not dimer and gp130.typeII is dimer and 
OSMR.Y917 is not phospho and gp130.Y767 is not phospho then 
OSMR dedimerizes from gp130 on typeII 

12 

  
 
 
 Table 6 - Gp130/JAK/STAT pathway: list of events (STAT3 activation) 

 
id description react alt 

Receptors phosphorylation 
23 if gp130.typeI is dimer and gp130 is not bound then gp130 phospho 

on Y767;Y814;Y905;Y915 
13  

24 if gp130.typeI is dimer and gp130 is not bound then gp130 
dephospho on Y767;Y814;Y905;Y915 

14  

25 if LIFR is dimer and LIFR is not bound then LIFR phospho on 
Y981;Y1001;Y1028 

13  

26 if LIFR is dimer and LIFR is not bound then LIFR dephospho on 
Y981;Y1001;Y1028 

14  

27 if gp130.typeII is dimer and gp130 is not bound then gp130 phospho 
on Y767;Y814;Y905;Y915 

13  

28 if gp130.typeII is dimer and gp130 is not bound then gp130 
dephospho on Y767;Y814;Y905;Y915 

14  

29 if OSMR is dimer and OSMR is not bound then OSMR phospho on 
Y917;Y945 

13  

30 if OSMR is dimer and OSMR is not bound then OSMR dephospho 
on Y917;Y945 

14  
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STAT3 binding 
31 if gp130.Y767 is phospho and STAT3 is in 3 and STAT3 is not dimer 

and gp130 is not bound and gp130.SOCS3 is not bound and 
STAT3.gp130 is not bound and STAT3.LIFR is not bound and 
STAT3.OSMR is not bound and STAT3.Y705 is not phospho then 
gp130 binds STAT3 on gp130 

15  

32 if LIFR.Y981 is phospho and STAT3 is in 3 and STAT3 is not dimer 
and LIFR is not bound and LIFR.SOCS3 is not bound and 
STAT3.LIFR is not bound and STAT3.gp130 is not bound and 
STAT3.OSMR is not bound and STAT3.Y705 is not phospho then 
LIFR binds STAT3 on LIFR 

15  

33 if OSMR.Y917 is phospho and STAT3 is in 3 and STAT3 is not 
dimer and OSMR is not bound and OSMR.SOCS3 is not bound and 
STAT3.OSMR is not bound and STAT3.gp130 is not bound and 
STAT3.LIFR is not bound and STAT3.Y705 is not phospho then 
OSMR binds STAT3 on OSMR 

15  

34 if gp130.Y767 is phospho and STAT3 is in 3 and STAT3 is not dimer 
and gp130 is bound and gp130.SOCS3 is not bound and 
STAT3.gp130 is bound and STAT3.LIFR is not bound and 
STAT3.OSMR is not bound and STAT3.Y705 is not phospho then 
gp130 unbinds STAT3 on gp130 

16  

35 if LIFR.Y981 is phospho and STAT3 is in 3 and STAT3 is not dimer 
and LIFR is bound and LIFR.SOCS3 is not bound and STAT3.LIFR 
is bound and STAT3.gp130 is not bound and STAT3.OSMR is not 
bound and STAT3.Y705 is not phospho then LIFR unbinds STAT3 
on LIFR 

16  

36 if OSMR.Y917 is phospho and STAT3 is in 3 and STAT3 is not 
dimer and OSMR is bound and OSMR.SOCS3 is not bound and 
STAT3.OSMR is bound and STAT3.gp130 is not bound and 
STAT3.LIFR is not bound and STAT3.Y705 is not phospho then 
OSMR unbinds STAT3 on OSMR 

16  

STAT3 phosphorylation 
37 if STAT3.gp130 is bound then STAT3 phosphorylates on Y705 17  
38 if STAT3.LIFR is bound then STAT3 phosphorylates on Y705 17  
39 if STAT3.OSMR is bound then STAT3 phosphorylates on Y705 17  
40 if STAT3 is in 3 then STAT3 dephosphorylates on Y705 18  
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Table 7 - Gp130/JAK/STAT pathway: list of events (STAT3 unbinding and shuttling) 
 

id description react alt 
STAT3 unbinding and homodimerization 

41 if gp130.Y767 is phospho and STAT3 is in 3 and STAT3 is not dimer 
and gp130 is bound and gp130.SOCS3 is not bound and 
STAT3.gp130 is bound and STAT3.LIFR is not bound and 
STAT3.OSMR is not bound and STAT3.Y705 is phosphorylated 
then gp130 unbinds STAT3 on gp130 

19  

42 if LIFR.Y981 is phospho and STAT3 is in 3 and STAT3 is not dimer 
and LIFR is bound and LIFR.SOCS3 is not bound and STAT3.LIFR 
is bound and STAT3.gp130 is not bound and STAT3.OSMR is not 
bound and STAT3.Y705 is phosphorylated then LIFR unbinds 
STAT3 on LIFR 

19  

43 if OSMR.Y917 is phospho and STAT3 is in 3 and STAT3 is not 
dimer and OSMR is bound and OSMR.SOCS3 is not bound and 
STAT3.OSMR is bound and STAT3.gp130 is not bound and 
STAT3.LIFR is not bound and STAT3.Y705 is phosphorylated then 
OSMR unbinds STAT3 on OSMR 

19  

44 if STAT3.Y705 is phospho and STAT3 is not dimer and 
STAT3.gp130 is not bound and STAT3.LIFR is not bound and 
STAT3.OSMR is not bound then STAT3 homodimerizes 

20  

STAT3 shuttling 
45 if STAT3 is in 3 and STAT3 is dimer and STAT3.gp130 is not bound 

and STAT3.LIFR is not bound and STAT3.OSMR is not bound then 
STAT3 relocates to 4 

21  

46 if STAT3 is in 4 and STAT3 is dimer and STAT3.PIAS3 is not 
bound then STAT3 dephospho on Y705 

22  

47 if STAT3 is in 4 and STAT3 is dimer and STAT3.Y705 is not 
phospho then STAT3 dehomodimerizes 

23  

48 if STAT3 is in 4 and STAT3 is not dimer and STAT3.Y705 is not 
phospho then STAT3 relocates to 3 

24  
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Table 8 - Gp130/JAK/STAT pathway: list of events (SOCS3 and PIAS3 inhibition) 
 

id description react alt 
SOCS3 synthesis, degradation and inhibition 

49 if STAT3 is in 4 and STAT3 is dimer and STAT3.Y705 is phospho 
and STAT3.PIAS3 is not bound then STAT3 synthesises SOCS3 

25  

50 SOCS3 degrades 30  
51 if gp130.Y767 is phospho and gp130.SOCS3 is not bound and 

SOCS3 is not bound and gp130.STAT3 is not bound then SOCS3 
binds gp130 on SOCS3 

26  

52 if LIFR.Y981 is phospho and LIFR.SOCS3 is not bound and SOCS3 
is not bound and LIFR.STAT3 is not bound then SOCS3 binds LIFR 
on SOCS3 

26  

53 if OSMR.Y917 is phospho and OSMR.SOCS3 is not bound and 
SOCS3 is not bound and OSMR.STAT3 is not bound then SOCS3 
binds OSMR on SOCS3 

26  

54 if gp130.Y767 is phospho and gp130.SOCS3 is bound and SOCS3 is 
bound and gp130.STAT3 is not bound then SOCS3 unbinds gp130 
on SOCS3 

27  

55 if LIFR.Y981 is phospho and LIFR.SOCS3 is bound and SOCS3 is 
bound and LIFR.STAT3 is not bound then SOCS3 unbinds LIFR on 
SOCS3 

27  

56 if OSMR.Y917 is phospho and OSMR.SOCS3 is bound and SOCS3 
is bound and OSMR.STAT3 is not bound then SOCS3 unbinds 
OSMR on SOCS3 

27  

PIAS3 inhibition 
57 if STAT3 is in 4 and STAT3 is dimer and STAT3.Y705 is phospho 

and STAT3.PIAS3 is not bound and PIAS3 is not bound then PIAS3 
binds STAT3 on PIAS3 

28  

58 if STAT3 is in 4 and STAT3 is dimer and STAT3.Y705 is phospho 
and STAT3.PIAS3 is bound and PIAS3 is bound then PIAS3 
unbinds STAT3 on PIAS3 

29  
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