
Technical Report CoSBi 13/2007

A formal and integrated framework to simulate
evolution of biological pathways

Lorenzo Dematté

The Microsoft Research - University of Trento
Centre for Computational and Systems Biology

dematte@cosbi.eu

Corrado Priami

The Microsoft Research - University of Trento
Centre for Computational and Systems Biology

priami@cosbi.eu

Alessandro Romanel

The Microsoft Research - University of Trento
Centre for Computational and Systems Biology

romanel@cosbi.eu

Orkun S. Soyer

The Microsoft Research - University of Trento
Centre for Computational and Systems Biology

soyer@cosbi.eu

This is the preliminary version of a paper that will appear in
Theoretical Computer Science

available at http://www.elsevier.com/wps/find/journaldescription.cws_home/

505625/description#description

Abstract

We present a formal approach to the study of evolution of biological
pathways. The basic idea is to use the Beta Workbench to model
and simulate pathway in connection with evolutionary algorithms to
implement mutations. A fitness function is used to select individuals
at any generation. The feasibility of the approach is demonstrated on
the MAPK pathway.

1 Introduction

Biological pathways are studied using several methods, including but not
limited to analysis of their single components, reconstruction of their series
of chemical reactions and simulation of their dynamics.

Many approaches include modelling techniques to represent and analyse
dynamics of complex pathways. In particular, process calculi have been
recently applied to model and simulate biological systems [1]. The main
activities up to now have been oriented to define new primitives and to
show their feasibility for describing biological phenomena. Some simulation
engines have been developed especially based on the stochastic π-calculus [2]
like SPiM [3] or BIOSPI [4], and recently on an extension of the Beta-binders
language [5]1.

Recently, there is an interest in using evolutionary approaches to study
pathways. Understanding how pathways emerged during evolution can help
us to understand their basic properties, such as the role of complexity and
the importance of topology and feedback loops. Existing approaches to
study evolution are commonly based on comparative genomics or proteomics
and on phylogenetic analysis [6, 7]. These studies compare pathways from
different organisms to see how evolution affects the internal structure of the
network of interactions.

An alternative approach is to simulate evolution in silico, using an al-
gorithm that mimic this process, as in [8, 9, 10, 11]. However, these ap-
proaches use ad-hoc tools and representations of pathway dynamics, while
current available tools to model and simulate pathway dynamics, discussed
above, do not allow for evolutionary simulations.

On the other hand, tools that mimic evolution are also known in the
Computer Science domain. However, these tools and algorithms are de-
signed for specific tasks, such as machine learning and optimization or search
problems [12], and therefore they lost their strict connection with biology
and they are no more adequate to study biological evolution in a realistic
way.

Here, we aim at developing a specific framework to allow straightforward
study of pathway evolution based on the Beta Workbench (BetaWB) [5].

1Available at url http://www.cosbi.eu/Rpty Soft BetaWB.php

1

The great flexibility of the Beta-binders process calculus in the definition
of the structure of proteins allows us to introduce interesting primitives for
mutations used to build domain-based interaction and mutation models.
Moreover, pathway dynamics can be easily modelled, and the interactions
of emerged pathways analysed. Our formal framework aims at extending
the features of the BetaWB to obtain a full integration with the existing
software environment. In this paper we describe the novelty of the approach
unravelling the formal theory on which it is based, and we show the feasibility
of the proposed solution to study evolution of pathways.

The paper is organised as follows. In the next section we briefly recall
the language and the software tool BetaWB on top of which we built our
work for simulating the evolution of biological pathways. The model we used
to describe the general structure of signalling pathways is also introduced
and explained. Sect. 3 discusses the evolutionary framework, the integra-
tion of the BetaWB simulation engine within an evolutionary algorithm and
how mutations are performed on the model. An example of application of
the whole framework is given in Sect. 4, and conclusions and future work
directions close the paper.

2 Description of pathway dynamics

To study biological evolution of pathways, we need to describe pathway
dynamics and an algorithm to simulate pathway evolution from a generation
to the next one. We start describing the modeling and simulation tool.

2.1 The Beta Workbench

The Beta Workbench is a software framework for modelling and simulating
biological processes [5]. It incorporates a language, a compiler to a stochastic
abstract machine, the execution environment and some graphical interface
components. The BetaWB language is based on β-binders [13], a process
calculus developed for better representing the interactions between biological
entities.

2.1.1 The Language

A BetaWB program, called also β-system, is a tuple Z=〈B,E, ξ〉 made up
of a bio-process B, a list of events E and ambient ξ. The bio-process B
intuitively represents the structure of the system, that is a set of entities
interacting in the same environment, E represents the list of possible events
enabled on the system and the ambient ξ contains information about the
environment, like the set T of the considered types (ranged over by ∆, Γ0,

2

Σ′, · · ·), a function ρ : N → R that associates stochastic rates2 to names
in N and the function α : T 2 → R3, which describes the affinity relation
between couples of types. In particular, given two types ∆ and Γ, the
application of α(∆,Γ) returns a triple of stochastic rates (r, s, t), where the
value r, denoted with αc(∆,Γ), represents the complexation rate, the value
s, denoted with αd(∆,Γ), represents decomplexation rate and the value t,
denoted with αi(∆,Γ), represents the inter-communication rate of the two
entities exposing the types ∆ and ∆.

The syntax of the BetaWB language is the following.

B ::= Nil | ~B[P] | B||B
~B ::= β̂(x, r, ∆) | β̂(x, r, ∆) ~B

β̂ ::= β | βh | βc

P ::= nil | P |P | !π.P | M
M ::= π.P | M + M
π ::= x(y) | x〈y〉 | (τ, r) | (die, r) | (ch(x,∆), r) |

(hide(x), r) | (unhide(x), r) | (expose(x, s,∆), r)
cond ::= ~B[P] : r | | ~B[P]| = n | ~B[P], ~B[P] : r

verb ::= new(~B[P], n) | split(~B[P], ~B[P]) | join(~B[P]) | delete
event ::= • | (cond) verb
E ::= event | event :: E

where x, y ∈ N , n ∈ N and r ∈ R+ ∪ {∞} is a stochastic rate.
Processes generated by the non terminal symbol P are referred as pi-

processes. Bio-processes(boxes) are defined as pi-processes prefixed by spe-
cialised binders ~B that represent interaction capabilities. An elementary beta
binder β̂ has the form β(x, r, Γ) (active), βh(x, r, Γ) (hidden) or βc(x, r, Γ)
(complexed), where the name x is the subject of the beta binder and Γ
represents the type of x. Although types can be any general structure for
which exist a decidable equality relation, without loss of generality we as-
sume here that types are names taken from a countably infinit set T such
that T ∩N = ∅. A bio-process B is either the deadlock beta-process Nil or
a parallel composition of boxes ~B[P]. A box ~B[P] models a single biological
entity, where intuitively the beta binders list ~B represents the interface of
the entity, while the pi-process P represents its internal structure or process-
unit. Moreover, the language is provided with a graphical representation of
boxes:

P

(x1 : ∆1)r (x2 : ∆2)h
s (x3 : ∆3)t

2A stochastic rate is the single parameter defining an exponential distribution that
drives the stochastic behaviour of an action. The rate ∞ is used to denote immediate
actions, i.e., actions that are executed as soon as they become enabled.

3

The pairs xi : ∆i represent the sites through which the box may interact
with other boxes. Types ∆i express the interaction capabilities at xi. The
value r represents the stochastic rate associated to the name x inside the
box, h represents the hidden status and the black line over the last beta
binder represents the complexed status.

The dynamics of the system is formally specified through the opera-
tional semantics of the language available in [5], which uses a notion of
structural congruence ≡. Intuitively, that two β-systems Z=〈B,E, ξ〉 and
Z ′=〈B′, E′, ξ′〉 are structurally congruent (Z ≡ Z ′), if their bio-processes
B and B′ and their list of events E and E′ are identical up to structure
(B ≡b B′ and E ≡e E′) and their ambients are equal (ξ=ξ′). Moreover, two
boxes representing interacting entities, are considered of the same species
only if they are structurally congruent. Given a β-system, its temporal
evolution is described by three types of actions.

Monomolecular actions describe the dynamics of single boxes. More
precisely, an intra-boxes communication allows components to interact within
the same box, the expose action adds a new site of interaction to the inter-
face of the box containing the expose, the change action modifies the type
of an interaction site, hide and unhide actions make respectively invisible
and visible an interaction site. Finally, the die action eliminates the box
that performs the action and, recursively, all the boxes directly or indirectly
complexed with them.

Bimolecular actions describe interactions that involves two boxes. The
complex operation creates a dedicated communication binding between boxes
over compatible and unhidden elementary beta binders, while the decomplex
operation destroys an already existing dedicated binding. The stochastic
rates associated to complex and decomplex operations are, respectively, the
complexation and decomplexation rates derived from the affinity function.
In the example, the complexation rate is αc(∆,Γ), while the decomplexa-
tion rate is αd(∆,Γ). The information about the existing dedicated bind-
ings is maintained in the environment. The last bimolecular action is the
inter-boxes communication, which enables interaction between boxes over
compatible and unhidden elementary beta binders. Suppose ∆ and Γ be the
types associated to the involved elementary beta binders. If αc(∆,Γ) > 0,
then the inter-communication is enabled, with rate αi(∆,Γ), only after a
dedicated communication binding, over the involved beta binders, has been
created by a complex operation. Otherwise, the inter-boxes communication
is simply enabled with rate αi(∆,Γ).

An Event is the composition of a condition cond and an action verb and
it is triggered only when the condition associated with the event is satisfied.
Events can be considered as global rules of the system which can substitute,
create and delete boxes from the system. In particular, the list E can contain
five types of events: join, which substitutes two boxes with single ones; split,
which substitutes a box with two boxes; new, which introduces a specified

4

number of instances of a box; delete, which eliminates boxes.

Definition 1 The BetaWB Stochastic Transition System (STS) is referred
as S = (Z,

r−→s , Z0), where Z is the set of β-systems, Z0 ∈ Z is the initial
β-system and r−→s ⊆ Z×R×Z is the stochastic transition relation, where r
is a stochastic rate constant and is derived using information in the syntax
and in the ambient of the β-system.

For a more detailed and formal description of the language, its opera-
tional semantics and the laws of its structural congruence relation we refer
the reader to [5].

2.1.2 Simulator and Companion Tools

The BetaWB simulator is the core part of the Beta Workbench and it is
built as a composition of three logical blocks: the compiler, the runtime
environment and the stochastic simulation engine.

The BetaWB simulator is a command-line application that takes as input
two text files that describe an initial β-system Z=〈B,E, ξ〉. The first file
describes the bio-process B and the list of events E with a simple functional-
like syntax, while the second one contains the specification of the set of types
T, the affinity function α and the function ρ.

The compiler translates these files into a runtime representation that
is then stored into the runtime environment. The runtime environment
provides the stochastic simulation engine with primitives for checking the
current state of the system and for modifying it. The stochastic simulation
engine handles the time evolution of the environment in a stochastic way and
preserves the semantics of the language. The stochastic simulation engine
implements an efficient variant of the Gillespie’s algorithm described in [14].

The BetaWB designer is a graphical tool that allows the user to write β-
system in a graphical way (Fig.1). In particular, it is possible to draw boxes,
pi-processes, interactions, events and to form complexes using graphs. The
graphical format and the textual description of the β-system are interchange-
able: the tool can parse and generate the graphical representation from any
valid β-system, and generate the textual representation from the graphical
form. The textual representation can then be used as input of the BetaWB
simulator.

The BetaWB plotter is a graphical tool that parses and display simulation
outputs.

2.2 A compositional model for signalling pathways

A signalling pathway is any biological process that converts one kind of
signal or stimulus into another; this conversion is also called signal trans-
duction. In general, a signalling pathway results in a composition or cascade

5

Figure 1: BetaWB designer: example of graphical representation.

of biochemical reactions that are carried out by proteins and linked through
second messengers. Biological signal transduction allows a cell or organism
to sense its environment and react accordingly. Typically, a signalling path-
way has one (or more) input, represented by any environmental stimulus,
and one (or more) output, represented by an active protein.

In the BetaWB language we represent a protein as a biological entity
composed by a set of sensing domains, a set of effecting domains and an
internal structure. Sensing domains are the places where the protein receives
signals, effecting domains are the places that a protein uses for propagating
signals, and the internal structure codifies for the mechanism that transforms
an input signal into a protein conformational change, which can result in
the activation or deactivation of another domain. This is inspired by the
available knowledge of protein structure and function (see for example [15]).

As explained in Sec.2.1, the Beta Workbench is a general framework
for modeling and simulating biological processes; each biological entity is
modelled with a box, which is a composition of an interface and an internal
process unit. This gives an effective way for modeling proteins by decompos-
ing the domains of interaction and the internal structure into two different
constructs. Moreover, the compositional nature of the language allows us to
design and apply mutations on biological entities in an effective, simple and
intuitive way.

In this application of evolutionary algorithms to β-systems we designed
a general methodology for modeling proteins by providing patterns for mod-
eling interaction domains and internal structures. Domains are represented
using beta binders (A+ and A−), interaction sites with an affinity. As shown

6

in Fig. 2 (where we omit subjects and rates of beta binders for the sake of
readability and where arrows indicate that types associated to binders are
compatible), the sensing domain is represented by a pair of binders, one
for receiving a signal of activation (e.g. phosphorylation) and the other for
receiving a signal of deactivation (e.g. dephosphorylation) sent to the pro-
tein. The effecting domain (Ao) is instead used to communicate, and so to
activate or inhibit, other proteins.

Pattern of pi-processes and boxes for modeling proteins with single sens-
ing and effecting domains are the following:

ps1 , act〈ε〉.(unhide(o),∞).deact〈ε〉.(hide(o),∞).x〈ε〉.nil

pr1 , !x().ps1 | ps1

pss2 , deact〈ε〉.(hide(o),∞).xp〈ε〉.nil

ps2 , !xp().(act〈ε〉.(unhide(o),∞).pss2 + deact〈ε〉.x〈ε〉.nil)
pr2 , !x().act〈ε〉.xp〈ε〉.nil | act〈ε〉.xp〈ε〉.nil

Adeact1 , βh(o, r,∆o)β(act, r, ∆+)β(deact, r, ∆−)
[pr1 | !o〈ε〉]

Aact1 , β(o, r,∆o)β(act, r, ∆+)β(deact, r, ∆−)
[!x().ps1 | deact〈ε〉.(hide(o),∞).x〈ε〉.nil | !o〈ε〉]

Adeact2 , βh(o, r,∆o)β(act, r, ∆+)β(deact, r, ∆−)
[ps2 | pr2 | !o〈ε〉]

Aact2 , β(o, r,∆o)β(act, r, ∆+)β(deact, r, ∆−)
[!x().act〈ε〉.xp〈ε〉.nil | pss2 | ps2 | !o〈ε〉]

where ρ(x) = ρ(xp) = ∞. The boxes Adeact1 and Aact1, which uses the
pi-processes ps1 and pr1, represent respectively the deactive and active state
of a protein which can be activated by a single external signal. In particular,
if the box Adeact1 executes an inter-boxes communication through the ele-
mentary beta binder β(act, r, ∆+), the action act〈ε〉 in Adeact1 is consumed
and immediately also the action (unhide(o),∞) is consumed (because its
rate is ∞). The obtained box is structurally congruent to Aact1 and hence
the protein has reached its active form, where the elementary beta binder
β(o, r,∆o) is now unhide and the box can execute inter-communications
through it. Now, if the box Aact1 executes an inter-boxes communication
through the elementary beta binder β(deact, r, ∆−), the reverse mechanism
is executed and the protein returns back in its deactive form Adeact1.

The boxes Adeact2 and Aact2, which uses the pi-processes ps2, pss2 and
pr2, represent respectively the deactive and active state of a protein which
can be activated by receiving a signal twice. The activation and deactivation
mechanism is similar to the one described for single signal activation.

Obviously these patterns can be easily extended for modelling proteins
with more than one sensing and effecting domains and for modeling mecha-
nisms of activation based on the reception of more than two external signals.

7

Figure 2: Our representation of protein interaction through sensing and
effecting domains. For simplicity we omit subjects and rates of beta binders.
Moreover, arrows indicate compatibility of the types, according to the α
function specification reported on the right of the figure.

3 Evolutionary framework

We design a framework for simulating the evolution of pathways in silico.
Evolution proceeds through selection acting on the variance generated by
random mutation events. Individuals replicate in proportion to their per-
formance, referred to as fitness. This process can be modelled as shown
in Tab. 1. This algorithm differs slightly from the generic evolutionary

EvolutionAlgorithm ():
Population := GenerateInitialPopulation();
for i = 0 to generations do

for each Individual in Population do
output := Simulate(Individual);
fitnesses[Individual] := ComputeFitness(output);

NewPopulation := ReplicateAndMutate(fitnesses, Population);
Population := NewPopulation;

Table 1: Generic EvolutionAlgorithm.

algorithms used in computer science, being more closer to real biological
observations made for the asexual reproduction of organisms.

There are four main procedures in the algorithm:

• GenerateInitialPopulation: the initial population can be generated
randomly, from a predefined pathway configuration to be used as a
starting point, or it can be a pathway with no interactions. All the
individuals in the initial population can be equal at the beginning, as
they will be differentiated later by the mutation phase.

• Simulate: each individual in the population is simulated separately
using the BetaWB stochastic simulator, introduced in Sec. 2.1.

8

• ComputeFitness: the output of the simulation is used to compute
the fitness value of the current individual. Note that the fitness value
is problem-dependent; for an example, refer to Sec. 4.

• ReplicateAndMutate: this is the most important part of the algo-
rithm; like in a real environment, individuals with the highest fitness
values are more likely to survive, replicate and produce a progeny that
resembles them, being not, however, completely equal to them.

ReplicateAndMutate (fitnesses, Population):
for i = 0 to i < Population.Size do

Individual := ChooseOneIndividual(Population, fitnesses);
for each Protein in Individual.Proteins do

if Random() < DuplicationProbabily then
Protein2 := Protein.Duplicate();
Individual.Proteins.Add(Protein2);

for each Domain in Protein.Domains do
if Random() < MutationProbability then

MutationType := GetRandomMutation();
if IsMutationFeasible(Domain, MutationType) then

Domain2 := Individual.PickCompatibleDomain(Domain, MutationType);
Individual.Mutate(Domain, Domain2, MutationType);

NewPopulation.Add(Individual);

return NewPopulation;

Table 2: The ReplicateAndMutate algorithm.

The ReplicateAndMutate algorithm (Tab. 2) creates a new population
with the same number of individuals of the current generation, using as
a base the current individuals. At each step it chooses one individual,
with probability proportional to its fitness (ChooseOneIndividual in the
code above). This is achieved by constructing a cumulative probability ar-
ray a from the fitness array, generating a random number in the range
0...a[Population.Size], and then finding the index into which the random
number falls.

The selected individual will replicate and pass to the next generation.
During the replication, each protein in the “genome” of the individual is
given the chance to mutate, according to a probability.

A mutation is selected among all the possible types by the GetRandom-
Mutation function, and this mutation is applied. Finally the individual,
that can be equal to its predecessor or can be mutated, is added to the new
population. We now define in more detail the kind of mutations that we
consider in our framework.

9

3.1 Mutations

The different types of mutations we consider are based on real biological
processes where mutations can happen at DNA and protein level. These
ultimately effect pathway dynamics. For example, point mutations in a DNA
sequence can change the protein amino-acid sequence, leading to changes
in its tertiary structure with implications on the affinity of this protein
with other proteins or substrates. Similarly, events at DNA level as gene
duplication or domain shuffling can alter pathway structure and dynamics.

A computer program that wants to mimic evolution of a specie have to
implement random mutations in individual during replication as well. Here,
we can easily implement these molecular processes using the domain and
pathway model we discussed in Sect. 2.2.

(a) (b)

(c) (d)

Figure 3: Different kinds of mutations: in (a) the initial configuration, dis-
playing the α function as a list of tuples; in (b) duplication of protein C
followed by mutation of domain ∆Co in (c). Finally, (d) displays how the
internal structure could change to accommodate the duplication of a domain.

We will take as an example the three-protein pathway represented in
Fig. 3(a) and we will illustrate how different mutations are possible using
the BetaWB language.

Duplication and deletion of proteins:

the implementation of this mutation consist in duplicating the associated
bio-processes. Obviously the name of the bio-processes, as well as the name

10

of the types of its binders, must be changed with fresh names. The new
types will have the same interaction capabilities, i.e. the same affinities
of the original types. Duplication of types is needed because subsequent
mutations on one of the binders of the duplicated protein must not affect
the original one. Furthermore since the new protein is a new separated
entity it must not be structural equivalent to the original one. Following the
model presented in Sec. 2.2, the bio-process for protein C

Cdeact1 , βh(o, r,∆Co)β(act, r, ∆C+)β(deact, r, ∆C−)[pr1 | !o〈ε〉]

will be duplicated to

Cdeact1 , βh(o, r,∆Co)β(act, r, ∆C+)β(deact, r, ∆C−)[pr1 | !o〈ε〉]

C ′deact1 , βh(o, r,∆C′o)β(act, r, ∆C′+)β(deact, r, ∆C′−)[pr1 | !o〈ε〉]

The same duplication will be done also for the bio-process representing the
active forms of the protein. Deletion can be implemented removing the
associated bio-process, or setting its cardinality to zero.

Mutation of domains:

the mutation of a domain changes the interaction capabilities of the protein
to which it belongs. In our formalism, this is achieved by changing the α
function on the two domains that take part in the interaction. More specif-
ically, the mutation on a domain can be a change of interaction, for which
we modify the affinity adding a number sampled from a normal distribution
with mean zero and a little variance, an addition of an interaction between
two domains d1 and d2, modelled as the addition of an affinity α(d1, d2) = x,
whit x > 0, and finally a removal of an interaction, between two domains
d1 and d2, setting α(d1, d2) = 0. For example, the mutation on domain
oC that can be observed in Fig.3(c) is obtained by changing the α function
from α(Co,B−) = 1.0 to α(Co,B−) = 0.0,α(Co,B+) = 0.9

Duplication and deletion of domains:

the last possible mutation, domain duplication or deletion due to shuffling,
is more complex as it requires modification of the internal behaviour in
response to stimuli. Duplicating or removing domains can be easily done
acting on the binders list and on the affinity function α; however, for these
domains to act as sensing or effecting domains in cooperation or in antag-
onism with the existing ones, the internal behaviour of the process must
also be changed. We devised several possible modifications of the behaviour
when a domain is added, such as require communication on all the sens-
ing domains before activating the protein (double phosphorilation, as in

11

Figure 4: MAPK cascade as described in [16]. KKK denotes MAPKKK,
KK denotes MAPKK and K denotes MAPK. The signal E1 transforms
KKK to KKKp, which in turn transforms KK to KKp to KKpp, which
in turn transforms K to Kp to Kpp. In particular, when an input E1
is added, the output of Kpp increases rapidly. The transformations in the
reverse direction are the result of the signal E2, the KKpase and the Kpase.
In particular, by removing the signal E1, the output level of Kpp revert back
to zero.

Fig. 3(d)), different patterns of activation when more than an effecting do-
main exists, and so on. All these modifications can be done manipulating the
abstract syntax tree of the bio-process, duplicating parts of it in a regular
way. However, not all of the possible combinations of transformations have
a correspondent biological meaning; a more rigorous investigation on these
kind of mutations is to be done before including them in our framework and
tool.

3.2 Measure of fitness

The measure of fitness is problem dependent: it varies with the kind of
pathways, with the characteristics a scientist wants to investigate, and so
on. This measure can be done in various ways, including stability analysis,
integration of the signal, measure of the derivative. We will illustrate in our
example how fitness can be computed using integration of a response.

4 An example: MAPK cascade

The mitogen-activated protein kinase cascade (MAPK cascade) is a series
of three protein kinases, which is responsible for cell response to growth
factors. In [16], an model for the MAPK cascade was presented (Fig.4) and
analysed using ODEs; the cascade was shown to perform the function of
an ultrasensitive switch and the response curves were shown to be steeply
sigmoidal. A process calculi based analysis of the MAPK cascade was pre-
sented in [17]. For simplicity, in this paper we rely on a simplified version
of the model, where all the enzymatic reactions of the form:

E + S
KES

K−1
ES

ES ⇀KEP EP ⇀∞ E + P

12

are substituted with simplest reactions of the form:

E + S ⇀KEP E + P

Using the design patterns presented in 2, a β-system for the MAPK cascade
has been developed (Appendix A). Following [17], we set all the reaction
rates to a nominal value of 1.0 and we initialize the system with two of E1,
E2, KKPase and KPase, 20 of KKK and 200 of KK and K. Simulating
the MAPK β-system with the BetaWB simulator, similar response profiles
(modulo timescale) were observed for the output of Kpp with respect to the
model presented in [16], despite the differences in the simulation parameters;
the system still behaves as an ultrasensitive switch (Appendix A).

Figure 5: (a) Basic individual of the initial configuration. Only signals
E1 and E1 are enabled. (b) A particular individual we obtained, with a
“reverse” cascade. (c) A simil-mapk we obtained, with a good fitness value.

We use this simplified MAPK cascade β-system as a toy model for testing
our evolutionary framework. In particular, we want to analyse the evolution
of a population according to a fitness function which captures the essential
behaviour of our MAPK cascade model.

In detail, we generate an initial population of 500 individuals contain-
ing the pathway shown in Fig.5a. This pathway resembles the observed
MAPK cascade, in that it contains three kinases, two phosphatases and
two signalling molecules. However, it lacks any interactions among these.
In other words, we consider an ancestral organism that possessed all these
proteins but lacked a signalling system similar to the MAPK cascade as
observed today. The dynamic of each individual is then simulated; we run
each individual for 7000 simulation steps and we remove the signal E1 at
the step 1500. Using the output of the simulation, we then measure for each
individual the corresponding fitness. The fitness function we implemented
measures how rapidly the output of Kpp increases, how much the output

13

(a) (b)

Figure 6: (a) Time course of the Kpp concentration over the simulation time,
superimposed to the integral areas for the fitness function we implemented.
The fitness parameters are i1 = 0, e1 = 2000, i2 = 5000 and e2 = 7000. (b)
An individual with high fitness.

of Kpp persists after removing the signal E1 and how rapidly the output of
Kpp returns back to zero. Let out = {n0, n1, ..., n7000} be the tuple repre-
senting the Kpp dynamics in time of an individual, then the fitness for out
is formally computed by the following formula:

fitness(out) = µ +
(∑e1

j=i1
nj

KppM ∗ (e1− i1)
−

(
γ ∗

∑e2
j=i2

nj

KppM ∗ (e2− i2)

))
The two sums, that we denote respectively with A1 and A2, represent dis-
crete integrals and are normalized with respect to their possible maximum
values (see Fig.6). The values i1, e1, i2 and e2 are changeable parameters
that define the boundaries for the computation of the two discrete integrals
present in the formula, and the value KppM represents the maximum value
for the Kpp respose. Moreover, µ represents the minimum fitness and γ
controls the relative importance to responding to a signal and turning the
response off after its removal. The reported results are for i1 = 0, e1 = 2000,
i2 = 5000, e2 = 7000, KppM = 200, µ = 0.1 and γ = 0.65.

According to the algorithms presented in the previous section, the popu-
lation is evolved. In this case study only mutations of domains are applied.
Moreover, in order to maintain a biological validity for the new individuals,
possible mutations are the one that satisfies the following constraints: (1)
Signals E1 and E2 act only on KKK; (2) signal E1 and E2 cannot be
removed; (3) a kinase can only activate other kinases or itself; (4) phos-
phatases are not specific but can only deactivate kinases. We iterate the
evolution algorithm for 1000 generations, for different values of fitness func-
tion parameters. The dynamic for one of the obtained pathways is shown in
Fig.6(b). Examples of obtained individuals are in Fig. 5, while the variation
of fitness during a simulation is depicted in Fig. 7. In particular, we do not

14

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324 341 358 375 392 409 426 443 460 477 494 511 528 545 562 579 596 613 630 647 664 681 698 715 732 749 766 783 800 817 834 851 868 885 902 919 936 953 970 987 1004 1021 1038 1055 1072 1089 1106 1123 1140 1157 1174 1191 1208 1225 1242 1259

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324 341 358 375 392 409 426 443 460 477 494 511 528 545 562 579 596 613 630 647 664 681 698 715 732 749 766 783 800 817 834 851 868 885 902 919 936 953 970 987 1004 1021 1038 1055 1072 1089 1106 1123 1140 1157 1174 1191 1208 1225 1242 1259

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193 201 209 217 225 233 241 249 257 265 273 281 289 297 305 313 321 329 337 345 353 361 369 377 385 393 401 409 417 425 433 441 449 457 465 473 481 489 497 505 513 521 529 537 545 553 561 569 577 585 593 601 609 617 625 633 641 649 657 665 673 681

Figure 7: The modification of fitness during three different runs of the in
silico evolution.

obtain individuals with a perfect MAPK cascade pathway, but individuals
in (b) and (c) are only a reordering and a protein duplication event away
from it.

Moreover, we observe three different plateaus on the average fitness vari-
ation shown by the first chart in Fig. 7. The first one is obtained after
pathways evolve a kinase interaction, the second one is obtained after path-
ways evolve addition of a phosphatase interaction, and the third one, which
persists till the final generation, is obtained after addition of other two in-
teractions -one from a kinase and one from a phosphatase-.

5 Conclusions and Future work

In this paper we present a formal approach for simulating the evolution
of pathways in silico. Pathway dynamics are described with the BetaWB
language, a process algebra that, thanks to its biological-inspired nature,
allows for modelling proteins, domains and interactions in a modular way.

We developed a modular description of signalling pathways, an evolution-
ary algorithm and a prototype to test our concepts. The prototype showed
the potential of our approach, and the beta-binders language proved to be
well-suited for this task. As presented in the small example in Sec. 4, by
simulating evolution we can gain interesting insights in pathway structure

15

and on the role of different processes.
We implemented the simpler kinds of mutations, but other interesting

variations like modification of internal process structure are feasible and it
will surely be a subject worth of future investigation and development.

Also, an easy to use and integrated tool for the simulation and analysis
of pathway evolution under development. Finally, we plan to use the same
framework also from an optimization perspective to help discovering new
pathways.

References

[1] Regev, A., Shapiro, E.: Cells as computation. Nature (2002)

[2] Priami, C., Regev, A., Shapiro, E., Silvermann, W.: Application of a stochastic
name-passing calculus to representation and simulation of molecular processes. Inf.
Process. Lett. 80(1) (2001) 25–31

[3] Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus.
In: Bioconcur’04, ENTCS (August 2004)

[4] Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical
processes using the pi-calculus process algebra. Pac Symp Biocomput (2001) 459–470

[5] Romanel, A., Dematté, L., Priami, C.: The beta workbench. Technical Report TR-
03-2007, The Microsoft Research - University of Trento Centre for Computational
and Systems Biology (2007)

[6] Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T.,
Karp, R.M., Ideker, T.: Conserved patterns of protein interaction in multiple species.
Proc Natl Acad Sci 6(102) (2005) 1974–79

[7] Babu, M., Teichmann, S., Aravind, L.: Evolutionary dynamics of prokaryotic tran-
scriptional regulators. J. Mol. Biol. (358) (2006) 614–633

[8] Soyer, O., Bonhoeffer, S.: Evolution of complexity in signaling pathways. PNAS
(103) (2006) 16337–16342

[9] Pfeiffer, T., Schuster, S.: Game-theoretical approaches to studying the evolution of
biochemical systems. Trends Biochem Sci. 1(30) (Jan 2005) 20–5

[10] Pfeiffer, T., Soyer, O., Bonhoeffer, S.: The evolution of connectivity in metabolic
networks. PLoS Biol. 7(3) (2005)

[11] P, P.F., Hakim, V.: Design of genetic networks with specified functions by evolution
in silico. Proc. Natl. Acad. Sci. 2(101) (2004) 580–5

[12] Fraser, A.S.: Simulation of genetic systems by automatic digital computers. Aus-
tralian Journal of Biological Science 10 (1957) 484–499

[13] Priami, C., Quaglia, P.: Beta binders for biological interactions. In: CMSB. (2004)
20–33

[14] Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25) (1977) 2340–2361

[15] Stock, A.M., Robinson, V.L., Goudreau, P.N.: Two-component signal transduction.
Annu. Rev. Biochem (69) (2000) 183–215

[16] Huang, C.Y., Ferrell, J.E.: Ultrasensitivity in the mitogen-activated protein kinase
cascade. Proc Natl Acad Sci U S A 93(19) (September 1996) 10078–10083

[17] Phillips, A., Cardelli, L., Castagna, G. Number 4230 in LNCS. In: A Graphical
Representation for Biological Processes in the Stochastic pi-Calculus. Springer (2006)

16

AppendixA

The formal definition of the β-system of the MAPK cascade is ZM =
〈B,E, ξ〉 where,

B =

20︷ ︸︸ ︷
KKK || · · · ||KKK ||

200︷ ︸︸ ︷
KK || · · · ||KK ||

200︷ ︸︸ ︷
K || · · · ||K ||

E1 || E1 || E2 || E2 || Kpase || Kpase || KKpase || KKpase
E = (step = 1500)delete(2, E1) :: •
ξ = (T, α, ρ, ∅)

The list E contains the enabled events3 and the boxes composing the bio-
process B are defined in the following way where we recall that we are using
names of pi-processes only to simplify the writing via macro-expansion:

ps1 , act〈ε〉.(unhide(o),∞).deact〈ε〉.(hide(o),∞).x〈ε〉.nil

pr1 , !x().pS1 | pS1

pss2 , deact〈ε〉.(hide(o),∞).xp〈ε〉.nil

ps2 , !xp().(act〈ε〉.(unhide(o),∞).pss2 + deact〈ε〉.x〈ε〉.nil)
pr2 , !x().act〈ε〉.xp〈ε〉.nil | act〈ε〉.xp〈ε〉.nil

pout , =!out〈ε〉.nil

KKK , βh(o, r,∆KKKkase)β(act, r, ∆incKKK)β(deact, r, ∆decKKK)
[pr1 | !o〈ε〉]

KK , βh(o, r,∆KKkase)β(act, r, ∆incKK)β(deact, r, ∆decKK)
[ps2 | pr2 | !o〈ε〉]

K , βh(o, r,∆Kkase)β(act, r, ∆incK)β(deact, r, ∆decK)
[ps2 | pr2 | !o〈ε〉]

Kpp , β(o, r,∆Kkase)β(act, r, ∆incK)β(deact, r, ∆decK)
[!x().act〈ε〉.xp〈ε〉.nil | pss2 | ps2 | !o〈ε〉]

E1 , βh(out, r, ∆signalE1)
[pout]

E2 , βh(out, r, ∆signalE2)
[pout]

Kpase , βh(out, r, ∆Kpase)
[pout]

KKpase , βh(out, r, ∆KKpase)
[pout]

The set of types is

T = {∆signalE1,∆signalE2,∆KKKkase,∆irecKKK ,

3Timed events, like (step = 1500)delete(2, E1), have been implemented although not
yet present in the actual definition of the language.

17

∆drecKKK ,∆KKkase,∆incKK ,∆decKK ,
∆KKpase,∆Kkase,∆incK ,∆decK ,
∆Kpase}

and the α function is defined in the following way:

αi(∆irecKKK ,∆signalE1) = 1.0 αi(∆KKpase,∆decKK) = 1.0
αi(∆drecKKK ,∆signalE2) = 1.0 αi(∆KKkase,∆incK) = 1.0
αi(∆KKKkase,∆incKK) = 1.0 αi(∆Kpase,∆decK) = 1.0

and the function ρ is such that ρ(x) = ρ(xp) = ∞.
The corrisponding source code for the BetaWB simulator is contained in

two files. The program file, that contains the structure of the system:

[steps = 7000]

<<BASERATE: inf>>

/* Definition of the signal E1 */

let E1: bproc = #(e1:1, signalE1)

[!e1{}.nil];

/* Definition of the signal E2 */

let E2: bproc = #(e2:1, signalE2)

[!e2{}.nil];

/* Phospatase for K */

let KPase: bproc = #(de:1, Kpase)

[!de{}.nil];

/* Phospatase for KK */

let KKPase: bproc = #(de:1, KKpase)

[!de{}.nil];

/* Definition of the pi-processes for the KKK entity */

let pKKK : pproc = (act<e>.unhide(p).deact<e>.hide(p).kkk<e>.nil);

let pKKKr : pproc = (!kkk{}.pKKK | pKKK);

/* Definition of the pi-processes for the KK and K entities */

let pX_PP : pproc = (deact<e>.hide(p).xp<e>.nil);

let pX_P : pproc = !xp{}.(act<e>.unhide(p).pX_PP + deact<e>.x<e>.nil);

let pX : pproc = act<e>.xp<e>.nil;

let pXr : pproc = (!x{}.pX | pX);

/* definition of the deactive form of KKK */

let KKK: bproc = #h(p:1, KKKkase), #(act:1, irecKKK), #(deact:1, drecKKK)

[pKKKr | !p{}.nil];

/* definition of the deactive form of KK */

let KK : bproc = #h(p:1, KKkase), #(act:1, incKK), #(deact:1, decKK)

[pXr | pX_P | !p{}.nil];

/* definition of the deactive form of K */

let K : bproc = #h(p:1, Kkase), #(act:1, incK), #(deact:1, decK)

[pXr | pX_P | !p{}.nil];

/* definition of the active form of K */

let KAct : bproc = #(p:1, Kkase), #(act:1, incK), #(deact:1, decK)

18

Kpp

KKKp

KKpp

Figure 8: Result of a simulation of the MAPK cascade with the BetaWB
simulator.

[!x{}.pX | pX_PP | pX_P | !p{}.nil];

run 2 E1 || 2 E2 || 20 KKK || 200 KK || 2 KKPase || 200 K || 2 KPase

and the type file, that contains the definition of the environment:

{

signalE1, signalE2,

KKKkase, irecKKK, drecKKK,

KKkase, incKK, decKK,

KKpase,

Kkase, incK, decK,

Kpase

}

%%

{

(irecKKK, signalE1, 1.0),

(drecKKK, signalE2, 1.0),

(KKKkase, incKK, 1.0),

(KKpase, decKK, 1.0),

(KKkase, incK, 1.0),

(Kpase, decK, 1.0)

}

An example of simulation output, that shows how the system still be-
haves as an ultrasensitive switch, is in Fig.8.

19

