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Abstract

Transport of substances and communication between compartments are fun-
damental biological processes, often mediated by the presence of complementary
proteins attached to the surfaces of membranes. Within compartments, substances
are acted upon by local biochemical rules. Inspired by this behaviour we present
a model based on Membrane Systems, with objects attached to the sides of the
membranes and floating objects that can be moved between the regions of the sys-
tem. Moreover, in each region there are evolution rules that rewrite the transported
objects, mimicking chemical reactions.

We investigate qualitative properties, like configuration reachability, in relation
to the use of cooperative or non-cooperative evolution and transport rules and in
the contexts of free- and maximal-parallel evolution.

1 Introduction and Motivations

Membrane Systems (also known as P systems) are models of computation inspired by
the structure and function of biological cells. The model was introduced in 1998 by Gh.
Păun and since then many results have been obtained, mostly concerning computational
power (for an updated bibliography the reader can consult the web-page [23]). More
recently, membrane systems have been applied to systems biology and several models
have been proposed for simulating biological processes (e.g., see the monograph dedicated
to membrane systems applications, [9]).

In the original definition, membrane systems are composed of an hierarchical nesting
of membranes that enclose regions in which floating objects exist. Each region can have
associated rules for evolving these objects (called evolution rules, modelling the biochem-
ical reactions present in cell regions), and/or rules for moving objects across membranes
(called symport/antiport rules, modelling some kinds of transport mechanisms present
in cells). Recently, inspired by brane calculus [4], a model of a membrane system, hav-
ing objects attached to the membranes, was introduced in [5]. Other models bridging
brane calculus and membrane systems have been proposed in [14, 17]. A more general
approach, considering both free floating objects and objects attached to the membranes
has been proposed and investigated in [3]. The idea of these models is that membrane
operations are moderated by the objects (proteins) attached to the membranes. However,
in all these models objects are associated to an atomic membrane which has no concept
of inner or outer surface. In reality, many biological processes are driven and controlled
by the presence of specific proteins on the appropriate sides of a membrane. For in-
stance, endocytosis, exocytosis and budding in cells are processes where the existence
and locality of membrane proteins is crucial (see, e.g., [1]).

In general, the compartments of a cell are in constant communication, with molecules
being passed from a donor compartment to a target compartment, mediated by membrane
proteins. Once transported to the correct compartment the substances are often then
processed by means of local biochemical reactions.

Motivated by this, we investigate a model combining some basic features found in
biological cells: (i) evolution of objects (molecules) by means of multiset rewriting rules
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associated with specific regions of the systems (the rules model biochemical reactions);
(ii) transport of objects across the regions of the system by means of rules associated with
the membranes of the system and involving proteins attached to the membranes (on one
or possibly both sides) and (iii) rules that take care of the attachment/de-attachment of
objects to/from the sides of the membranes. Moreover, since we want to distinguish the
functioning of different regions, we also associate to each membrane a unique identifier
(a label).

In this paper we present a qualitative investigation of the model using two alternative
evolution strategies. The first is based on free parallelism: at each step of the evolution
of the system an arbitrary number of rules may be applied. We prove that, in this case,
useful properties like configuration reachability can be decided, even in the presence of
cooperative evolution and transport rules.

We also consider maximal parallel evolution: if a rule can be applied it must be
applied, with alternative possible rules being chosen non-deterministically. This strategy
models, for example, the behaviour in biology where a process takes place as soon as
resources become available. In this case we show that configuration reachability becomes
an undecidable property when the systems use non-cooperative evolution rules coupled
with cooperative transport rules. However, several other cases where the problem remains
decidable are also presented.

We wish to comment that the model presented follows the philosophy of the evolution-
communication model introduced in [6], where the system evolves by evolution of the
objects and transport of objects by means of symport/antiport rules that are essentially
synchronized exchanges of objects. However, in the model presented here the transport
of objects may depend on the presence of particular proteins attached to the internal
and external surfaces of the membranes. Therefore this paper can be seen as a bridge
between membrane systems and projective brane calculus [10], where, in the framework
of process algebra, directed actions associated to membranes have been considered.

The paper is an extension of the work present in [7].

2 Formal Language Preliminaries

We will briefly recall the main notions and results of the formal language theory used in
this paper. For more details the reader can consult standard books, such as [13], [22],
[11], and the respective chapters of the handbook [21].

Given a set A, we denote by |A| its cardinality. The empty set is denoted by ∅.
As usual, an alphabet V is a finite set of symbols. By V ∗ we denote the set of all

strings over V . The empty string is denoted by λ.
The length of a string w ∈ V ∗ is denoted by |w|, while the number of occurrences of

a ∈ V in w is denoted by |w|a.
Given an alphabet V = {a1, a2, . . . , an}, for all strings x ∈ V ∗ we can associate the

Parikh vector ΨV (x) = (|x|a1
, |x|a2

, . . . , |x|an
). Given a language L ⊆ V ∗, we can also

define the Parikh image of L as ΨV (L) = {ΨV (x) | x ∈ L}.
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The notation Perm(x) indicates the set of all strings that can be obtained as a
permutation of the string x.

For x, y ∈ V ∗ we define their shuffle by xξy = {x1y1 · · ·xnyn | x = x1 · · ·xn,
y = y1 · · · yn, xi, yi ∈ V ∗, 1 ≤ i ≤ n, n ≥ 1}. The operation can be extended in an
intuitive way to languages. Then, given L1 and L2, we have L1ξL2 =

⋃
x1∈L1,x2∈L2

x1ξx2.
Denoting by REG the family of regular languages, the following result holds (see,

e.g., [21]) (proved in a constructive way).

Theorem 2.1 L1, L2 ∈ REG, then L1ξL2 ∈ REG.

A multiset over a set V is a map M : V → N, where M(a) denotes the multiplicity of the
symbol a ∈ V in the multiset M . This fact can also be indicated by the forms (a,M(a))
or aM(a), for all a ∈ V . If the set V is finite, e.g. V = {a1, . . . , an}, then the multiset M
can be explicitly described as {(a1,M(a1)), (a2,M(a2)), . . . , (an,M(an))}. The support
of a multiset M is the set supp(M) = {a ∈ V | M(a) > 0}. A multiset is empty (so
finite) when its support is empty (also finite).

A compact notation can be used for finite multisets: if M = {(a1,M(a1)), (a2,M(a2)),

. . . , (an,M(an))} is a multiset of finite support, then the string w = a
M(a1)
1 a

M(a2)
2 . . . a

M(an)
n

(and all its possible permutations) precisely identify the symbols in M and their multi-
plicities. Hence, given a string w ∈ V ∗, we can assume that it identifies a finite multiset
over V defined by M(w) = {(a, |w|a) | a ∈ V }.

In this paper we make use of the notion of a matrix grammar.
A matrix grammar with appearance checking (ac) is a construct

G = (N, T, S,M, F ), where N and T are disjoint alphabets of non-terminal and terminal
symbols, S ∈ N is the axiom, M is a finite set of matrices which are sequences of context-
free rules of the form (A1 → x1, . . . , An → xn), n ≥ 1 (with Ai ∈ N, xi ∈ (N ∪ T )∗ in all
cases), and F is a set of occurrences of rules in M .

For w, z ∈ (N ∪ T )∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . , An → xn)
in M and strings wi ∈ (N ∪ T )∗, 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1, and, for all
1 ≤ i ≤ n, either
(i) wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i , for some w′

i, w
′′
i ∈ (N ∪ T )∗

or
(ii) wi = wi+1, Ai does not appear in wi, and the rule Ai → xi appears in F .

The rules of a matrix are applied in order, possibly skipping the rules in F if they
cannot be applied (one says that these rules are applied in appearance checking mode).

The family of languages generated by matrix grammars with appearance checking is
denoted by MATac.

G is called a matrix grammar without appearance checking if and only if F = ∅. In
this case the generated family of languages is denoted by MAT .

If we denote by CF and RE the family of context-free and recursively enumerable
languages, respectively, then the following results hold:

Theorem 2.2

• CF ⊂ MAT ⊂ RE.
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• MAT ⊂ MATac = RE.

A matrix grammar is called pure if there is no distinction between terminals and non-
terminals. The language generated by a pure matrix grammar is composed of all the
sentential forms. The family of languages generated by pure matrix grammars without
appearance checking is denoted by pMAT . A proof of this can be found, for example, in
[11].

Theorem 2.3 pMAT ⊂ MAT

A context-free programmed grammar with appearance checking is a construct G =
(N, T, S, P ), where N, T, S are the set of non-terminals, the set of terminals and the start
symbol, respectively, and P is a finite set of rules of the form (b : A → x,Eb, Fb), where
b is a label, A → x is a context-free rule over N ∪ T , and Eb, Fb are two sets of labels of
rules of G (Eb is called the success field and Fb the failure field of the rule). If the failure
field is empty for any rule of P , then the grammar is without appearance checking. We
denote Lab(P ) = {b | (b : A → x,Eb, Fb) ∈ P}.

The language L(G) generated by G is defined as the set of all the words w ∈ T ∗ such
that there is a derivation

S = w0 ⇒b1 w1 ⇒b2 w2 ⇒b3 · · · ⇒bk
wk = w,

k ≥ 1, and, for (bi : Ai → xi, Ebi
, Fbi

), 1 ≤ i ≤ k, one of the following conditions hold:
wi−1 = w′

i−1Aiw
′′
i−1, wi = w′

i−1xiw
′′
i−1 for some w′

i−1, w
′′
i−1 ∈ (N ∪ T )∗ and bi+1 ∈ Ebi

or Ai

does not occur in wi−1, wi−1 = wi and bi+1 ∈ Fbi
.

In other words, a rule (bi : Ai → xi, Ebi
, Fbi

) is applied as follows: if Ai is present in
the sentential form, the rule is used and the next rule to be applied is chosen from those
with the label in Ebi

, otherwise the sentential form remains unchanged and we choose
the next rule from the rules labelled by some element of Fbi

and try to apply it. Without
loss of generality we suppose that there is a unique initial production having the axiom
S called the initial production of G.

By PR we denote the family of languages generated by programmed grammars with-
out appearance checking and by PRac we denote the family of languages generated by
programmed grammars with appearance checking.

The following theorem is true (see, e.g., [11]).

Theorem 2.4 MAT = PR ⊂ MATac = PRac = RE.

The literature is rich with parallel rewriting devices, where the rewriting of the current
sentential form is performed in a parallel way and not sequentially (as in the previously
described grammars). Lindenmayer systems (or L systems for short) are possibly the
most well known parallel rewriting systems.

An ET0L system is a construct G = (Σ, T,H,w), where Σ is the alphabet, T ⊆ Σ is
the terminal alphabet; H = {h1, h2, · · · , hk} is a finite set of finite substitutions (tables)
over Σ and w ∈ Σ∗ is the axiom; each hi ∈ H, 1 ≤ i ≤ k, can be represented by a list of
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context-free productions A → x, such that A ∈ Σ and x ∈ Σ∗ (moreover, for each symbol
A of Σ and each table hi, 1 ≤ i ≤ k, there is a production in hi with A as left hand side);
G defines a derivation relation ⇒hi

by x ⇒hi
y iff y ∈ hi(x), for some 1 ≤ i ≤ k (hi is

used as substitution). We write only x ⇒ y if we are not interested in the table used.
The language generated by G is L(G) = {z ∈ T ∗ | w =⇒∗ z}. We denote by ET0L

the family of languages generated by ET0L systems.
In what follows we assume the reader to be familiar with the basic notions of membrane
systems, for instance, as presented in the introductory guide [20].

3 Membrane Operations with Peripheral Proteins

As is usual in the membrane systems field, a membrane is represented by a pair of square
brackets, [ ]. To each topological side of a membrane we associate multisets u and v
(over a particular alphabet V ) and this is denoted by [ u]v. We say that the membrane
is marked by u and v; v is called the external marking and u the internal marking; in
general, we refer to them as markings of the membrane. The objects of the alphabet V
are called proteins or, simply, objects. An object is called free if it is not attached to the
sides of a membrane, so is not part of a marking.

Each membrane encloses a region and the contents of a region can consist of free
objects and/or other membranes (we also say that the region contains free objects and/or
other membranes).

Moreover, each membrane has an associated label that is written as a superscript of
the square brackets. If a membrane is associated to the label i we call it membrane i.
Each membrane encloses a unique region, so we also say region i to identify the region
enclosed by membrane i. The set of all labels is denoted by Lab.

For instance, in the system [ abb [ aaaa ab]
2
b bba]

1
ab, the external membrane, labelled by

1, is marked by bba (internal marking) and by ab (external marking). The contents of
the region enclosed by the external membrane is composed of the free objects a, b, b and
the membrane [ aaaa ab]

2
b .

We consider rules that model the attachment of objects to the sides of the membranes.
These rules extend the definition given in [3].

attach : [ a u]
i
v → [ ua]

i
v, a[ u]

i
v → [ u]

i
va

de − attach : [ ua]
i
v → [a u]

i
v, [ u]

i
va → [ u]

i
va

with a ∈ V , u, v ∈ V ∗ and i ∈ Lab.

The semantics of the attachment rules (attach) is as follows.
For the first case, the rule is applicable to the membrane i if the membrane is marked

by multisets containing the multisets u and v on the appropriate sides, and region i
contains an object a. In the second case, the rule is applicable to membrane i if it is
marked by multisets containing the multisets u and v, as before, and is contained in a
region that contains an object a. If the rule is applicable we say that the objects defined
by u, v and a can be assigned to the rule (so that it may be executed).

5



In both cases, if a rule is applicable and the objects given in u, v and a are assigned
to the rule, then the rule can be executed and the object a is added to the appropriate
marking in the way specified. The objects not involved in the application of a rule are
left unchanged in their original positions.

The semantics of the de-attachment rule (de-attach) is similar, with the difference that
the attached object a is detached from the specified marking and added to the contents
of either the internal or external region.

We now consider rules associated to the membranes that control the passage of objects
across the membranes:

movein : a[ u]
i
v → [ a u]

i
v

moveout : [ a u]
i
v → a[ u]

i
v

with a ∈ V , u, v ∈ V ∗ and i ∈ Lab.

The semantics of the rules is as follows.
In the first case, the rule is applicable to membrane i if it is marked by multisets

containing the multisets u and v, on the appropriate sides, and the membrane is contained
in a region containing an object a. The objects defined by u, v and a can thus be assigned
to the rule.

If the rule is applicable and the objects a, u and v are assigned to the rule then the
rule can be executed and, in this case, the object a is removed from the contents of the
region surrounding membrane i and added to the contents of region i.

In the second case the semantics is similar, but here the object a is moved from region
i to its surrounding region.

The rules of attach, de-attach, movein, moveout are generally called membrane rules
(denoted collectively as memrul) over the alphabet V and the set of labels Lab.

Membrane rules for which |uv| ≥ 2 we call cooperative membrane rules (in short,
coom). Membrane rules for which |uv| = 1 are called non-cooperative membrane rules (in
short, ncoom). Membrane rules for which |uv| = 0 are called simple membrane rules (in
short, simm).

We also introduce evolution rules that involve objects but not membranes. These can be
considered to model the biochemical reactions that take place inside the compartments
of the cell. They are evolution rules over the alphabet V and set of labels Lab and they
follow the definition that can be found in evolution-communication P systems [6]. We
define

evol : [u → v]i

with u ∈ V +, v ∈ V ∗ and i ∈ Lab. An evolution rule is called cooperative (in short, cooe)
if |u| > 1, otherwise the rule is called non-cooperative (ncooe).

The rule is applicable to region i if the region contains a multiset of free objects that
includes the multiset u. The objects defined by u can thus be assigned to the rule.
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If the rule is applicable and the objects defined by u are assigned to the rule, then
the rule can be executed. In this case the objects specified by u are subtracted from
the contents of region i while the objects specified by v are added to the contents of the
region i.

4 Membrane Systems with Peripheral Proteins

In this section we define membrane systems having membranes marked with multisets of
proteins on both sides of the membrane, free objects and using the operations introduced
in Section 3.

Formally, a membrane system with peripheral proteins (in short, a Ppp system) and n
membranes, is a construct

Π = (V, µ, (u1, v1), . . . , (un, vn), w1, . . . , wn, R,Rm)

• V is a finite, non-empty alphabet of objects (proteins).

• µ is a membrane structure with n ≥ 1 membranes, injectively labelled by 1, 2, . . . , n.

• (u1, v1), · · · , (un, vn) ∈ V ∗ × V ∗ are the markings associated, at the beginning of
any evolution, to the membranes 1, 2, · · · , n, respectively. They are called initial
markings of Π; the first element of each pair specifies the internal marking, while
the second one specifies the external marking.

• w1, · · · , wn specify the multisets of free objects contained in regions 1, 2, · · ·
· · · , n, respectively, at the beginning of any evolution and they are called initial
contents of the regions.

• R is a finite set of evolution rules over V and the set of labels Lab = {1, . . . , n}.

• Rm is finite set of membrane rules over the alphabet V and set of labels Lab =
{1, . . . , n}.

5 Evolution of the System

A configuration of Π consists of a membrane structure, the markings of the membranes
(internal and external) and the multisets of free objects present inside the regions. In what
follows, configurations are denoted by writing the markings as subscripts (internal and
external) of the parentheses which identify the membranes. The labels of the membranes
are written as superscripts and the contents of the regions as string, e.g.,

[ [ aa]
4
ab [aaa aa]

2
b [ b ]3bb a ]1a

We suppose a standard labelling: 0 is the label of the environment that surrounds
the entire system Π; 1 is the label of the skin membrane that separates Π from the
environment.
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The initial configuration consists of the membrane structure µ, the initial markings
of the membranes and the initial contents of the regions; the environment is empty at
the beginning of the evolution.

We denote by C(Π) the set of all possible configurations of Π.
We assume the existence of a clock which marks the timing of steps (single transitions)

for the whole system.
A transition from a configuration C to a new one is obtained by assigning the objects

present in the configuration to the rules of the system and then executing the rules as
described in Section 3.

We define two possible ways of assigning the objects to the rules: free-parallel and
maximal-parallel.

• Free-Parallel Evolution.

In each region and for each marking, an arbitrary number of applicable rules is
executed (membrane and evolution rules have equal precedence). A single object
(free or not) may only be assigned to a single rule.

This implies that in one step, no rule, one rule or as many applicable rules as desired
may be applied. This strategy is similar to one introduced in ([19], Chapter 3.4).

We call a single transition performed in a free-parallel way a free-parallel transition.

• Maximal-Parallel Evolution.

In each region and for each marking, applicable rules chosen in a non-deterministic
way are assigned objects, also chosen in a non-deterministic way, such that after
the assignment no further rule is applicable for the unassigned objects. As with
free-parallel evolution, membrane and evolution rules have equal precedence and a
single object (free or not) may only be assigned to a single rule.

We call a single transition performed in a maximal-parallel way a maximal-parallel
transition.

A sequence of free-parallel [maximal-parallel] transitions, starting from the initial
configuration, is called a free-parallel [maximal-parallel, resp.] evolution. An evolution
(free or maximal parallel) is said to be halting if it halts, that is, if it reaches a halting
configuration, i.e., a configuration where no rule can be applied anywhere in the system.

A configuration of a Ppp system Π that can be reached by a free-parallel [maximal-
parallel] evolution, starting from the initial configuration, is called free-parallel [maximal-
parallel, resp.] reachable. A pair of multisets (u, v) is a free-parallel [maximal-parallel]
reachable marking for Π if there exists a free-parallel [maximal-parallel, resp.] reachable
configuration of Π which contains at least one membrane marked internally by u and
externally by v.

We denote by CR(Π, fp) [CR(Π,mp)] the set of all free-parallel [maximal parallel,
resp.] reachable configurations of Π and by MR(Π, fp) [MR(Π,mp)] the set of all free-
parallel [maximal-parallel, resp.] reachable markings of Π.
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Moreover, we denote by Ppp,m(α, β), α ∈ {cooe, ncooe}, β ∈ {coom, ncoom,
simm} the class of membrane systems with peripheral proteins, evolution rules of type
α, membrane rules of type β, and m membranes (m is changed to ∗ if it is unbounded).
We omit α or β from the notation if the corresponding types of rules are not allowed.
We also denote by VΠ the alphabet V of the system Π.

6 Reachability with Free-Parallel Evolution

We would like to know whether or not a biological system can evolve to a particular spec-
ified configuration. Hence it would be useful to construct models having such qualitative
properties to be decidable.

Using our model we can prove that when the evolution is free-parallel it is possible
to decide, for an arbitrary membrane system with peripheral proteins and an arbitrary
configuration, whether or not such a configuration is reachable by the system. A proof
can be demonstrated by showing that all the reachable configurations of a system Π can
be produced by a pure matrix grammar without appearance checking. Moreover, we also
prove that the reachability of an arbitrary marking can be decided.

Lemma 6.1 It is decidable whether or not, for any Ppp system Π from Ppp,1(cooe) and
any configuration C of Π, C ∈ CR(Π, fp).

Proof Let Π = (V, µ = [ ]1, (u1, v1), w1, R). We first notice that since membrane rules
are excluded, any configuration C of Π is effectively the contents of the unique region
and therefore, being a multiset, can be represented by a string wC , as described in
Section 2 (every permutation of the string wC represents the same contents, so the same
configuration C). We construct a pure matrix grammar G without appearance checking
such that L(G) contains all and only the strings representing the configurations in CR(Π).

The grammar G = (N,S,M) is defined in the following way. N = V ∪ V #, with
V # = {v# | v ∈ V }. We add to M the matrix (S → w1) and, for each rule [x → y]1 ∈ R,
the matrix

(x1 → x#
1 , x2 → x#

2 , · · · , xk → x#
k , x#

1 → λ, x#
2 → λ, · · · , x#

k → y1y2 · · · yq)

where x = x1x2 · · ·xk and y = y1y2 · · · yq. Each application of a matrix simulates the
application of an evolution rule inside the unique region of the system. The markings are
not involved in the evolution of the system since membrane rules are not allowed. We can
see immediately that, for each string w in L(G) (i.e., all the sentential forms generated
by G) there is an evolution of Π, starting from the initial configuration, that reaches the
configuration represented by w. Moreover, it is easy to see that the reverse is also true
since the evolution of Π is based on free parallelism: for each reachable configuration C ′

of Π there exists a derivation of G that generates a string representing C ′. In fact it can
be seen that L(G) contains all the strings representing configurations of Π reached by
applying at each step a single evolution rule. In the case a configuration C ′ is reached by
applying more than a unique evolution rule in a single step, a single step can be simulated
in G by applying an appropriate sequence of matrices.
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Therefore, to check whether or not an arbitrary configuration C of Π can be reached,
we only need to check if any of the strings representing C is in L(G). This can be done
since there is only a finite number of strings representing C and the membership problem
for pure matrix grammars without appearance checking is decidable (for the proof see
[12]); therefore the Lemma follows. 2

Theorem 6.1 It is decidable whether or not, for any Ppp system Π from
Ppp,∗(cooe, coom) and any configuration C of Π, C ∈ CR(Π, fp).

Proof The main idea of the proof is that the problem can be reduced to check
whether or not a configuration of a system from Ppp,1(cooe) is reachable, and this is
decidable (Lemma 6.1).

Suppose Π = (V, µ, (u1, v1), . . . , (un, vn), w1, . . . , wn, R,Rm). By cont(i) we denote the la-
bel of the region surrounding membrane i (we recall that 0 is the label of the environment
and 1 is the label of the skin membrane).

We construct Π = (V , [ ]1, (λ, λ), w1, R) from Ppp,1(cooe) in the following way.
We define V =

⋃
i∈{1,··· ,n}(V

′
i ∪ V ′′

i )∪
⋃

i∈{0,1,··· ,n} Vi with Vi = {ai | a ∈ V }, V ′
i = {a′

i |

a ∈ V }, V ′′
i = {a′′

i | a ∈ V }.
We use the morphisms hi, h

′
i, h

′′
i , defined as follows.

• hi : V → Vi defined by hi(a) = ai, a ∈ V , for i ∈ {0, 1, · · · , n}

• h′
i : V → V ′

i defined by h′
i(a) = a′

i, a ∈ V , for i ∈ {1, · · · , n}

• h′′
i : V → V ′′

i defined by h′′
i (a) = a′′

i , a ∈ V , for i ∈ {1, · · · , n}

We define w1 as the string h1(w1) · · ·hn(wn)h′
1(u1) · · ·h

′
n(un)h′′

1(v1) · · ·h
′′
n(vn).

For each rule movein, a[ u]
i
v → [ a u]

i
v ∈ Rm, i ∈ {1, · · · , n} we add to R the following

rules: [ akh
′
i(u)h′′

i (v) → aih
′
i(u)h′′

i (v)]1, with k = cont(i).
In the same way all the other rules present in R∪Rm can be translated in the evolution

rules for R.
Hence, given a configuration C of Π, one can construct the configuration C of Π having
a unique region in the following way.

For each free object a contained in region i (the environment if i = 0) in C, i ∈
{0, 1, · · · , n} we add the object hi(a) in region 1 of C. For each object a present in the
internal marking of membrane i in C, i ∈ {1, · · · , n} we add the object h′

i(a) to region
1 of C and finally for each object a present in the external marking of membrane i,
i ∈ {1, · · · , n} we add the object h′′

i (a) to region 1 of C .
Now we can decide (Lemma 6.1) whether or not C ∈ CR(Π).

From the way Π has been constructed it follows that:

• if C ∈ CR(Π) then C ∈ CR(Π).

• if C /∈ CR(Π) then C /∈ CR(Π).

10



and from this the Theorem follows.
2

Remark: Notice that in the proof of Theorem 6.1, the reduction of the problem of
deciding whether or not, for any Ppp system Π from Ppp,∗(cooe, coom) and any configura-
tion C of Π, C ∈ CR(Π, fp) to the corresponding problem for matrix grammars without
a.c., has been obtained by a polynomial-time reduction [16] (with respect to the size of
the system Π and configuration C).

Without going into details, we also sketch the proof of the “reverse” Theorem.

Theorem 6.2 For any pure matrix grammar G = (N,S,M) without a.c. there exists
a Ppp system Π from Ppp,∗(cooe) (constructed by using a polynomial-time reduction with
respect to G) such that, given an arbitrary string w ∈ N∗, w ∈ L(G) if and only if
Cw ∈ CR(Π, fp) with Cw a configuration of Π obtained from w by a polynomial-time
reduction (with respect to w).

Proof Given a pure matrix grammar G = (N,S,M). Suppose, without loss of
generality, that M has n matrices (indicated by mi, 1 ≤ i ≤ n) and each matrix has p
productions. So mi,k, 1 ≤ i ≤ n, 1 ≤ k ≤ p indicates the production p of matrix i.

We then construct Π in the following way.

Π = (V, [ ]1, (λ, λ), w1, R = ∅, Rev)

with V = N ∪ {(i, k) | 1 ≤ i ≤ n, 1 ≤ k ≤ p}. For each matrix ml : (1 : A1 →
α1, 2 : A2 → α2, · · · , p : Ap → αp), 1 ≤ l ≤ n we add to Rev the evolution rules
[(l, 1)A1 → α1(l, 2)]1, [(l, 2)A2 → α2(l, 3)]1, · · · , [(l, 2)Ap → αp(i, 1)]1, 1 ≤ i ≤ n.

From the construction we have that an arbitrary w ∈ N∗ is in L(G) if and only if Cw

is in CR(Π, fp), where Cw is the configuration of Π represented by (any of) the strings
(finite in number) w · (i, k), 1 ≤ i ≤ n, 1 ≤ k ≤ p (the string w · (i, k) represents the
multiset of objects contained in region 1 in configuration Cw).

2

Corollary 6.2.a It is decidable whether or not, for any Ppp system Π from
Ppp,∗(cooe, coom) and any pair of multisets (u, v) over VΠ, (u, v) ∈ MR(Π, fp).

Proof Given Π from Ppp,n(memrul, cooe) and with alphabet of objects V , one can con-
struct Π = (V , µ = [ ]1, (λ, λ), w1, R) from Ppp,1(cooe) in the way described by Theorem
6.1.

Therefore, using Π one can construct the grammar G as described by Lemma 6.1 such
that L(G) contains all and only the strings representing the configurations in CR(Π, fp).

Now, to check whether or not an arbitrary (u, v) ∈ MR(Π, fp) one needs to check
whether or not there exists an i ∈ {1, · · · , n} such that
(Perm(h′

i(u))ξ(V )∗) ∩ L(G) 6= ∅ and (Perm(h′′
i (v))ξ(V )∗) ∩ L(G) 6= ∅, where h′

i and h′′
i

are morphisms from V to V ′
i and to V ′′

i , respectively, defined as in Theorem 6.1, and ξ
denotes the shuffle operation.
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The permutation and shuffle operation are used to construct all possible strings repre-
senting a configuration of Π containing the membrane i marked by multiset u internally
and by multiset v externally.

The languages (Perm(h′
i(u))ξ(V )∗) ∩ L(G) and (Perm(h′′

i (v))ξ(V )∗) ∩ L(G) can be
generated by matrix grammars without appearance checking (see Theorem 2.1 and e.g.,
[11]) and the emptiness problem for this class of grammars is decidable (see, e.g., [11]).
Therefore the Corollary follows. 2

7 Reachability with Maximal-Parallel Evolution

If the system evolves in a maximal-parallel way then we prove decidability when the
evolution rules used are non-cooperative and the membrane rules are simple or when the
system uses only membrane rules (including cooperative membrane rules).

We further show that it is undecidable whether or not an arbitrary configuration can
be reached by an arbitrary system working in the maximal-parallel way and using non-
cooperative evolution rules coupled with cooperative membrane rules. The proof is based
on the fact that, in this case, a Ppp system can simulate the derivations of a programmed
grammar with appearance checking.

We first analyse systems with only membrane rules.

Theorem 7.1 It is decidable whether or not:

• For an arbitrary Ppp system Π from Ppp,∗(coom) and an arbitrary configuration C
of Π, C ∈ CR(Π,mp).

• For an arbitrary Ppp system Π from Ppp,∗(coom) and an arbitrary pair of multisets
u, v over VΠ, (u, v) ∈ MR(Π,mp).

Proof Given a Ppp system from Ppp,∗(coom) the number of possible reachable config-
urations for Π is finite because the system can only use membrane rules (which neither
add nor remove objects). So the problem is decidable (by an exhaustive search). 2

We now investigate systems having non-cooperative evolution and simple membrane
rules.

Lemma 7.1 It is decidable whether or not, for an arbitrary Ppp system Π from
Ppp,1(ncooe) and an arbitrary configuration C of Π, C ∈ CR(Π,mp).

Proof
Let Π = (V, µ = [ ]1, (u1, v1), w1, R). As already mentioned in Lemma 6.1, any

configuration C of Π is effectively the contents of the unique region and therefore, being a
multiset, can be represented by a string wC (every permutation of the string wC represents

12



the same contents, so the same configuration C). We construct an ET0L system G =
(Σ, Σ, h1, w1) (i.e., only one table and Σ = T ) such that L(G) contains all and only the
strings representing the configurations in CR(Π,mp).

The grammar G = (Σ, Σ, h1, w1) is defined in the following way. Σ = V . We add to
h1 the production (S → w1) and, for each rule [a → α]1 ∈ R, the production a → α.

The markings are not involved in the evolution of the system since membrane rules are
not allowed. It is immediately clear that for each string w in L(G) (i.e., all the sentential
forms generated by G) there is an evolution of Π, starting from the initial configuration,
that reaches the configuration represented by w. Moreover, it is easy to see that, for each
reachable configuration C of Π, there exists a derivation of G that generates a string
representing C (because Π works in maximal parallel way).

Therefore to check whether or not an arbitrary configuration C of Π can be reached,
we only need to check if any of the strings representing C is in L(G). This can be done
since there is only a finite number of strings representing C and the membership problem
for ET0L systems is decidable (see, e.g., [11]); therefore the Lemma follows.

2

Theorem 7.2 It is decidable whether or not, for an arbitrary Ppp system Π from
Ppp,∗(ncooe, simm) and an arbitrary configuration C of Π, C ∈ CR(Π,mp).

Proof
The idea of the proof closely follows the one given in 6.1, so we only give a sketch

here.
Suppose Π = (V, µ, (u1, v1), . . . , (un, vn), w1, . . . , wn, R,Rm).
We construct Π = (V , [ ]1, (λ, λ), w1, R) from Ppp,1(ncooe) using the morphisms hi, h

′
i, h

′′
i ,

as in Theorem 6.1. In this way it is easy to see that (using the same idea of Theorem
6.1), given an arbitrary configuration of Π, C ∈ CR(Π,mp) if and only if C ∈ CR(Π,mp).

The Theorem follows using Lemma 7.1.
2

Corollary 7.2.a It is decidable whether or not, for any Ppp system Π from
Ppp,∗(ncooe, simm) and any pair of multisets (u, v) over VΠ, (u, v) ∈ MR(Π,mp).

Proof The idea of the proof follows closely the one given in Corollary 6.2.a so once
again we only give a sketch.

Suppose Π = (V, µ, (u1, v1), . . . , (un, vn), w1, . . . , wn, R,Rm). We construct Π = (V , [ ]1,
(λ, λ), w1, R) from Ppp,1(ncooe) using the morphisms hi, h

′
i, h

′′
i , as in Theorem 6.1. Using

Π one can construct an ET0L system G as described by Lemma 7.1 such that L(G)
contains all and only the strings representing the configurations in CR(Π,mp).

Now, to check whether or not an arbitrary pair of multisets over VΠ (u, v) is in
MR(Π,mp) one needs to check whether or not there exists an i ∈ {1, · · · , n} such that
(Perm(h′

i(u))ξ(V )∗) ∩ L(G) 6= ∅ and (Perm(h′′
i (v))ξ(V )∗) ∩ L(G) 6= ∅ (ξ denotes the

shuffle operation).
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The permutation and shuffle operation are used to construct all possible strings repre-
senting a configuration of Π containing the membrane i marked by multiset u internally
and by multiset v externally.

The languages (Perm(h′
i(u))ξ(V )∗) ∩ L(G) and (Perm(h′′

i (v))ξ(V )∗) ∩ L(G) can be
generated by an ET0L system (see Theorem 2.1 and e.g., [11]) and the emptiness problem
for ET0L systems is decidable (see, e.g., [11]). Therefore the Corollary follows.

2

We investigate now systems having non-cooperative evolution rules and cooperative
membrane rules, showing that in this case the reachability of an arbitrary configuration
becomes an undecidable problem.

Theorem 7.3 It is undecidable whether or not, for an arbitrary Ppp system Π from
Ppp,∗(ncooe, coom) and an arbitrary configuration C of Π, C ∈ CR(Π,mp).

Proof Given a programmed grammar G = (N, T, S, P ) with appearance checking,
as defined in Section 2, suppose that Lab(P ) = {0, 1, 2, · · · , n} and 0 is the label of the
initial production of G. We denote by N = {x | x ∈ N} and by T = {a | a ∈ T}. We
use the morphism h : N ∪ T → N ∪ T defined by h(x) = x for x ∈ N ∪ T . We indicate
by Ai the non-terminal on the left-hand side of the production with label i.

We construct the following Ppp system Π defined as:

Π = (V, µ, (u1, v1), (u2, v2), (u3, v3), w1, w2, w3, R,Rev)

with

V = N ∪ T ∪ N ∪ T ∪ V ′ ∪ V ′′ with

V ′ = {li, l
′
i, l

′′
i , li, li | i ∈ Lab(P )} ∪ {#} ∪ {Y ′, Y ′′, · · · , Y vιι, d, l−1}

V ′′ = {hs
i , h

s
i , l

s
i , l

s
i , l

s
i , (l

s
i )

′ | i ∈ Lab(P )}

∪ {Xs, (Xs)′, (Xs)′′, (Xs)′′′, (Xs)iv, Y s, (Y s)′, (Y s)′′, · · · , (Y s)vιιι}

µ = [ [ ]2 [ ]3 ]1

u1 = v1 = u2 = v2 = u3 = v3 = λ

w2 = λ, w3 = λ, w1 = l−1Shs
1 · · ·h

s
n

R = R′ ∪ R′′ with

R′ = {l′i[ ]2 → [ ]2l′
i

| i ∈ Lab(P )} (1)

∪ {A[ ]2l′
i

→ [A ]2l′
i

| i ∈ Lab(P ), A ∈ N} (2)

∪ {[x]2 → [ ]2x | x ∈ N ∪ T} (3)

∪ {[li]
2 → [ ]2li, [ ]2l′

i

→ [ ]2l′i, l′′i [ ]3 → [ ]3l′′
i

| i ∈ Lab(P )} (4)

∪ {li[ ]3l′′
i

→ [li ]3l′′
i

, [ li]
3
l′′
i

→ [
li
]3l′′

i

, | i ∈ Lab(P )} (5)

∪ {Y vιι[
li
]3l′′

i

→ [Y vιι

li
]3l′′

i

, [
li
]3l′′

i

→ [
li
]3l′′i , [

li
]3 → [ li]

3 | i ∈ Lab(P )} (6)
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R′′ = {(lsi )
′[ ]2 → [ ]2(ls

i
)′ , hs

i [ ]2(ls
i
)′ → [ hs

i ]
2
(ls

i
)′ , [ ]2(ls

i
)′ → [ ]2(lsi )

′ | i ∈ Lab(P )} (7)

∪ {[ lsi ]
2 → [ ]2lsi , [ hs

i ]
2 → [ ]2hs

i | i ∈ Lab(P )} (8)

∪ {(lsi )
′[ ]3 → [ ]3(ls

i
)′ , (Xs)iv[ ]3(ls

i
)′ → [ (Xs)iv]3(ls

i
)′ | i ∈ Lab(P )} (9)

∪ {A[ ]3(ls
i
)′ → [ A]3(ls

i
)′ | i ∈ Lab(P ), A ∈ N} (10)

∪ {lsi [ ]3(ls
i
)′ → [ lsi ]

3
(ls

i
)′ , [ lsi ]

3
(ls

i
)′ → [

ls
i

]3(ls
i
)′ | i ∈ Lab(P )} (11)

∪ {(Y s)vιιι[
ls
i

]3(ls
i
)′ → [(Y s)vιιι

ls
i

]3(ls
i
)′ | i ∈ Lab(P )} ∪ {l−1 → l′0Y } (12)

∪ {[
ls
i

]3(ls
i
)′ → [

ls
i

]3(lsi )
′, [

ls
i

]3 → [lsi ]
3 | i ∈ Lab(P )} (13)

Rev = (Rev)′ ∪ (Rev)′′ with

(Rev)′ = {[lj → l′iY ]1 | i ∈ E(j), j ∈ Lab(P )} ∪ {[l−1 → l′0Y ]1} (14)

∪ {[Y → Y ′]1, [Y ′ → Y ′′]1, · · · , [Y vι → Y vιι]1, [Y vιι → #]1} (15)

∪ {[x → x]1 | x ∈ N ∪ T} (16)

∪ {[li → li]
1 | i ∈ Lab(P )} (17)

∪ {[l′i → l′′i ]1, [l′′i → li]
1 | i ∈ Lab(P )} (18)

∪ {[A → h(α)li]
2 | (i : A → α, E(i), F (i)) ∈ P} (19)

∪ {[Y vιι → λ]3} (20)

∪ {[li → d]3 | i ∈ Lab(P )} (21)

∪ {[d → λ]3} (22)

(Rev)′′ = {[lj → (lsi )
′Y sXs]1 | i ∈ E(j), j ∈ Lab(P )} (23)

∪ {[lsj → l′iY ]1 | i ∈ F (j), j ∈ Lab(P )} (24)

∪ {[lsj → (lsi )
′Y sXs]1 | i ∈ F (j), j ∈ Lab(P )} (25)

∪ {[Xs → (Xs)′]1, [(Xs)′ → (Xs)′′]1, [(Xs)′′ → (Xs)′′′]1, (26)

[(Xs)′′′ → (Xs)iv]1, [(Xs)iv → #]1} (27)

∪ {[hs
i → hs

i ]
1, [lsi → lsi ]

1, [lsi → lsi ]
1, [lsi → #]1, [(lsi )

′ → lsi ]
1 | i ∈ Lab(P )} (28)

∪ {[(Y s) → (Y s)′]1, [(Y s)′ → (Y s)′′]1, [(Y s)′′ → (Y s)′′′]1, (29)

[(Y s)′′′ → (Y s)iv]1, [(Y s)iv → (Y s)v]1, [(Y s)v → (Y s)vι]1, (30)

[(Y s)vι → (Y s)vιι]1, [(Y s)vιι → (Y s)vιιι]1, [(Y s)vιιι → #]1} (31)

∪ {[hs
i → hs

i lsi ]
2, [lsi → d]3, | i ∈ Lab(P ) (32)

∪ {[A → #]3 | A ∈ N} ∪ {[(Y s)vιιι → λ]3}. (33)

Note that where each numbered line contains a list of rules, the first in the list will
be referred to in the text as number.a, the second as number.b etc.

The basic idea of the proof is that the system Π simulates the derivations of the
grammar G, storing in region 2 a multiset of objects corresponding to the current sen-
tential form of the grammar. In this way a reachability problem in G can be reduced
to a reachability problem in Π and so, since programmed grammars with a.c. have been
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proved universal (in a constructive way, see Section 2) then the theorem holds.
We have divided the alphabet, the evolution rules and the transport rules into subsets.

V ′, R′ and (Rev)′ are used during the simulation of the application of production of G
while V ′′, R′′ and (Rev)′′ are used for the simulation of the skipping of a production of G
(the appearance checking case). We use the objects (present in region 1) li, i ∈ Lab(P ) to
indicate the label (i) of the last simulated production, in case it was applied, and objects
lsi , i ∈ Lab(P ) to indicate the label of the last simulated production (i) in case it was
skipped.

We show in detail the functioning of Π.
Suppose that the last simulated production has label j and it has been applied (the

case where the last simulated production has been skipped is similar).
Then, at some step t−1, the object lj is present in region 1, together with the objects

corresponding to the current sentential form of G and the objects hs
i , i ∈ Lab(P ).

Region 2 and 3 as well as the markings are empty. As particular case we have the
initial configuration, where lj = l−1, the only applicable next rule is 14.b. However, in
general, the next rule of Π to apply is chosen (in a non-deterministic way) from rules in
groups 14.a and 23.

We distinguish two cases.

• Case 1

A rule [lj → l′iY ]1 for some i ∈ E(j) is applied at step t.
The application of such a rule means that Π has “guessed” that the next production

of G that has to be simulated and that can actually be applied is the one with label i.
The application of this rule produces two objects l′i and Y .

(i) Suppose that, at step t + 1, the object l′i attaches to membrane 2 using the rule
l′i[ ]2 → [ ]2

l′
i

. In the same step the object Y is rewritten to Y ′ (rule 15.a).

(ii) Suppose that at step t + 2 an object A present in region 1 (corresponding to the
non-terminal A in N) is introduced to region 2 using one of the rules of group 2. In the
same step Y ′ is rewritten to Y ′′.

At step t + 3 the object A is rewritten inside region 2 using one of the rules in group
19.

(iii) Suppose the rule used is A → h(α)lk with k = i (so lk = li).
(iv) In the same step t + 3, object l′i is de-attached from membrane 2 using a rule

from 4.b and Y ′′ is rewritten to Y ′′′.
At step t + 4 the objects of h(α) and li move from region 2 to region 1 (rules from

group 3 and 4.a, resp.), while l′i is rewritten to l′′i (rule 18.a).
In the same step Y ′′′ is rewritten to Y iv.
In step t+ 5 the objects from h(α) are rewritten to α (the bar is removed) (rules 16);

the multiset of objects in region 1 corresponding to the current sentential form of G is

updated as the production i of G has been applied. Moreover, li is rewritten to li (rules
17), l′′i attaches to membrane 3 using the rule in 4.3 (it is the only rule that can use this
object). In the same step, the object Y iv is rewritten to Y v.
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In step t + 6 the object li moves from region 1 to region 3 using the object l′′i on
membrane 3 and rule 5.a.

In the same step the object Y v is rewritten to Y vι.

In step t + 7, Y vι becomes Y vιι while li is attached (internally) to membrane 3 using
rule 5.a.

In step t+8, the object Y vιι moves from region 1 to region 3 using the rule Y vιι[
li
]3
l′′
i

→

[Y vιι

li
]3
l′′
i

from group 6.a.

In step t + 9, Y vιι is deleted in region 3, while l′′i de-attaches from membrane 3 using
the rule 6.a.

It is possible for l′′i to attach/de-attach to/from membrane 3 using, an arbitrary
number of times, the rules from group 4.c and 6.b, resp. At a certain step t + 9 + p, l′′i
is rewritten to li in region 1 (rule 18.b). This is necessary to start a new simulation of a
production of G.

Moreover, at step q ≤ t + 9 + p + 1, li de-attaches from membrane 3 and goes into
region 3 (rule 6.c) and is then rewritten to d at step q + 2 and then deleted at step q + 2

(li cannot attach back to membrane since it would need l′′i that is missing).
In this way, the production i of G with i ∈ E(j) has been correctly simulated (in

particular, applied) and at the step t + 9 + p + 1 a new rule among the rules in 14.a and
23. is applied and so the entire process can be iterated.

We now discuss the assumptions made during the described evolution of Π and we
show that if the assumptions are not true then # is eventually produced in region 1
(notice that there are no rules to remove #).

For assumptions (i), (ii) & (iv):

When l′i is produced (step t), Y is also produced and is ultimately rewritten to Y vιι

at step t + 7.
If l′i is not attached to membrane 2 at step t + 1 (and hence rewritten to l′′i ) or it is

de-attached from membrane 3 before an object A is transported from region 1 to region
2 (meaning it is de-attached from membrane 2 at step t + 2 or A is not present in region
1) then the rule A → h(α)li is not used in region 2 at step t+2, and so li is not produced
at step t + 3 and then it cannot be attached to membrane 3 at step t + 7. So, at step
t + 8, the rule Y vιι[

li
]3
l′′
i

→ [Y vιι

li
]3
l′′
i

cannot be used. Therefore, rule Y vιι → # is used

and # is produced in region 1.
On the other hand, if l′′i is not obtained (from l′i) in region 1 at step t + 4 then l′′i

cannot be attached to membrane 3 at step t + 5 (so li cannot be attached to membrane
3 at step t + 7) and then Y cannot be moved inside region 3 at step t + 8. Therefore
Y vιι → # is used and # is produced in region 1.

Hence, to avoid creation of # in region 1, l′i must attach to membrane 2 at step t+1,
must de-attach from it at step t + 3 and be rewritten to l′′i at step t + 4.

Assumption (iii):

If the rule used is A → h(α)lk with k 6= i then at step t + 8 the rule Y vιι[
li
]3
l′′
i

→

[Y vιι

li
]3
l′′
i

cannot be used (li is not attached to membrane 3) and so Y vιι → # is used in
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region 1.

Consider now the second case.

• Case 2: appearance checking

A rule [lj → (lsi )
′Y sXs]1 for some i ∈ E(j) is applied at step t. The application

of this rule means that Π has “guessed” that the next production of G that has to be
simulated and that should be skipped because it cannot be applied is the one with label i.
The application of this rule produces the objects (lsi )

′, Y s and Xs.
(i) At step t + 1 the object (lsi )

′ attaches to membrane 2 using a rule of group 7.a.
In the same step Xs is rewritten to (Xs)′ and Y s is rewritten to (Y s)′.
(ii) In step t+2, the object hs

i moves from region 1 to region 2 using a rule of group 7.b.
In the same step objects (Xs)′ and (Y s)′ are rewritten to (Xs)′′ and (Y s)′′ respectively.

In step t + 3, object hs
i , in region 2, is rewritten to hs

i lsi using rule 32.a. In the
same step (lsi )

′ de-attaches from membrane 2 using rule 7.c (it is the only rule that can
involve the object). Also, the objects (Xs)′′ and (Y s)′′ are rewritten to (Xs)′′′ and (Y s)′′′

respectively.
In step t+4, objects hs

i and lsi move from region 2 to region 1 using rules 8.a and 8.b.
(iii) In the same step object (lsi )

′ attaches to membrane 3 using rule 9.a.
Moreover, objects (Xs)′′′ and (Y s)′′′ are rewritten to (Xs)iv and (Y s)iv, respectively.
In step t+5, object (Xs)iv move from region 1 to region 3 using rule 9.b. In the same

step (Y s)iv is rewritten to (Y s)v. Moreover, in region 1, hs
i is rewritten to hs

i using rule

28.a and lsi is rewritten to lsi using rule 28.b.
(iv) Suppose that, at step t + 6, there is no object Ai in region 1. Then, in this step,

(Y s)v is rewritten to (Y s)vι and lsi is rewritten to lsi using rule 28.c.

In step t+7, lsi moves from region 1 to region 3 using rule 11.a while (Y s)vι is rewritten
to (Y s)vιι.

In step t+8, lsi attaches (internally) to membrane 3 using rule 11.b. Moreover, (Y s)vιι

is rewritten to (Y s)vιιι.
In step t + 9, the object (Y s)vιιι moves from region 1 to region 3 using rule 12.a.
In step t + 10, the object (Y s)vιιι is deleted inside region 3.

For an arbitrary number of steps the objects (lsi )
′ and lsi can iterate their attachment/de-

attachment to/from membrane 3 using rules 13.a, 9.a or 13.b and 11.b. However, to start
a new simulation of a production of G the object (lsi )

′ needs to be de-attached from mem-
brane 3 (step t + 10 + p) and then rewritten (step t + 10 + p + 1) to lsi using rule 28.e.
So, at step t + 10 + p + 2 the object lsi is obtained in region 1. The object indicates that
the last simulated (and skipped) production of G is the one with label i.

Moreover, at step q ≤ t + 10 + p + 1 object lsi must de-attach from membrane 3 using
13.b (there are no other rules) and then rewritten to d (step q + 1) inside region 3 using
rule 32.b (there are no other rules available; lsi is not available anymore on membrane 3).
Finally d is deleted (step q + 2 using rule 22.a).
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In this way, the production i of G with i ∈ E(j) has been correctly simulated (in
particular, skipped) and at the step t + 10 + p + 2 the process can then be iterated by
choosing, in a non-deterministic way, one of the rules in 24.a or 25.a (then case 1 or case
2 can be applied again).

We now discuss the assumptions made during the description of the process and we
show that if the assumptions are not true then # is produced in region 1.

Assumption (i): Suppose that at step t + 1 the object (lsi )
′ does not attach to mem-

brane 2 (but chooses another possible rule). Then, in this case, object hs
i cannot move

from region 1 to region 2 at step t+2. Then it is not possible to fulfill both the conditions:
(lsi )

′ attached to membrane 3 at step t+4 (to let (Xs)iv move from region 1 to region
3 at step t + 5)

(lsi )
′ and lsi attached both to membrane 3 at step t+9 to let (Y s)vιιι move from region

1 to region 3.
So, we get the following result: at step t+ 5 the object (Xs)iv is rewritten to # using

rule 27.b or at step t + 9 the object (Y s)vιιι is rewritten to # using rule 31.c.

Assumption (ii): In step t + 2 the object hs
i does not move from region 1 to region 2

using a rule of group 7.b. This can only happen if (lsi )
′ de-attaches, at step t + 2, from

membrane 3 (using rule 7.c). But, in this case, the following condition cannot be fulfilled:

(lsi )
′ and lsi both attached to membrane 3 at step t+9 (to let (Y s)vιιι move from region

1 to region 3).
Therefore, at step t + 9, the object (Y s)vιιι is rewritten to # using rule 31.c.

Assumption (iii): At step t + 4 the object (lsi )
′ does not attach to membrane 3 using

rule 9.a. In this case, at step t + 5, the object (Xs)iv cannot be moved from region 1 to
region 3 and, hence, it is rewritten to # using rule 27.b.

Assumption (iv): Suppose at step t + 6 there is an object Ai in region 1. Then, in
this step, using rule 10.a, Ai is moved inside region 3, where it is rewritten to # in the
following step.

From the above description it follows that all and only the evolutions of Π that do not
produce # in region 1 are the ones corresponding to correct simulations of derivations in
G.

Moreover, as we have seen, when (one of) the rules that start a production simulation
is applied (i.e., 14.a, 23, 24.a, 25.a), the objects l′iY h1 · · ·hn or (lsi )

′Y sXsh1 · · ·hn, for
some i ∈ Lab(P ), and the objects corresponding to the current sentential form are the
only ones present in region 1, while the object d is present in region 3 and region 2 and
all the markings are empty.

Precisely:
There is a derivation in G producing the sentential form w if and only if there is

an i ∈ Lab(p) such that the two configurations of Π [ [ ]2w′l′iY h1 · · ·hn [ d]3 ]1 and
[ [ ]2w′(lsi )

′Y sXs h1 · · ·hn [d ]3 ]1 with ΨV (w) = ΨV (w′) are in CR(Π,mp).
Also, from the constructive universality (see [11]), it is easy to show that it is not

decidable whether or not an arbitrary programmed grammar with a.c. has a derivation
of a sentential form with an arbitrary Parikh vector.
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From this the Theorem follows. 2

8 Conclusions and Open Problems

We have investigated a model of membrane systems with objects attached to both sides of
the membranes and having operations that can rewrite floating objects and move objects
between regions depending on the attached objects. We have proved that when the
system works with free parallel evolution (i.e., allowing an arbitrary number of rules to
be applied at each step) the reachability of a configuration or of a certain protein marking
can be decided. We have also shown that when the system works with maximal parallel
evolution (all rules that can be applied must be applied) the reachability of configurations
becomes an undecidable property for the case of non-cooperative evolution rules and
cooperative membrane rules. The property remains decidable, however, for systems using
non-cooperative evolution rules and simple membrane rules and for systems using only
membrane rules. An interesting problem remains open: the decidability of reachability
in the case of systems using non-cooperative evolution rules, non-cooperative membrane
rules and maximal-parallel evolution.

Several different directions may now be pursued.
Other bio-inspired operations may be introduced, such as fission and fusion of regions,

all still dependent on the objects attached to the membranes, along the lines of the work
found in [17]. In addition, the system could be analysed in the presence of timed rules,
following the idea of time-independent P systems.

Another direction of research is the application of the model to simulate biological
systems. To this end an implementation of a (more general) stochastic model has been
created and can be found at [24]. The simulator has been used to model and simulate,
among other things, a robust circadian clock and the receptor mediated G-protein cycle
in yeast. For more details see [8].
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Notes in Computer Science, 3082, Springer-Verlag, Berlin, 2005.

20
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