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Abstract. The problem of integrating services is becoming increasingly pressing.  In large, open 
environments such as the Semantic Web, huge numbers of services are developed by vast 
numbers of different users.  Imposing strict semantics standards in such an environment is 
useless; fully predicting in advance which services one will interact with is not always possible as 
services may be temporarily or permanently unreachable, may be updated or may be superseded 
by better services.  In some situations, characterised by unpredictability, such as the emergency 
response scenario described in this case, the best solution is to enable decisions about which 
services to interact with to be made on-the-fly.  We propose a method of doing this using 
matching techniques to map the anticipated call to the input that the service is actually expecting.  
To be practical, this must be done during run-time.  In this case, we present our structure-
preserving semantic matching algorithm (SPSM), which performs this matching task both for 
perfect and approximate matches between calls.  In addition, we introduce the OpenKnowledge 
system for service interaction which, using the SPSM algorithm, along with many other features, 
facilitates on-the-fly interaction between services in an arbitrarily large network without any 
global agreements or pre-run-time knowledge of who to interact with or how interactions will 
proceed.  We provide a preliminary evaluation of the SPSM algorithm within the 
OpenKnowledge framework. 
 
 
BACKGROUND 
 
The problem of automated integration of services is key to the successful realisation of 
the Semantic Web, or any other system where services interact with one another.  So far, 
this has proved difficult.  Global ontologies allow different services to be expressed using 
the same terms, which are thus understandable to all.  But there are significant difficulties 
with the notion of a global ontology: both the relevance of terms and appropriate 
categorisation of those terms is very context dependent.  An ontology that included all 
terms that could be relevant to any situation is impossible to build, impossible to reason 
with and would allow no flexibility for different interpretations of situations.   
 
However, integration of services using different ontologies is difficult. The difficulties 
arise at two levels: in the structure of the invocation to the service and in the values 



passed with the invocation. A service will expect some input parameters and will return 
an output. Consider for example, the web service measurement, whose WSDL 
description is shown in Figure 1.  Its purpose it to provide the level of water registered by 
a particular sensor on a grid of sensors on a particular river-side area, which can be used 
during an emergency to assess the conditions. It expects as the input message the 
location, defined as the node identifier in the grid, and the id of the sensor, and returns in 
the output message the measured water level and the timestamp of the measurement.  
 
The structure, or signature, provided by input parameters and output values must be 
respected by a process invoking the service. However, the invoking process may have a 
different signature for the caller function (parameters may have different names or  
 
<wsdl> 
 
 <xsd:element name="locationtype"> 
  <xsd:complexType> 
   <xsd:sequence> 
    <xsd:element name="reporterID" type="string"/> 
    <xsd:element name="node" type="string"/> 
   </xsd:sequence> 
  </xsd:complexType> 
 </xsd:element> 

 <xsd:element name="datetype"> 
  <xsd:complexType> 
   <xsd:sequence> 
    <xsd:element name="month" type="int"/> 
    <xsd:element name="day" type="int"/>  
    <xsd:element name="hour" type="int"/> 
    <xsd:element name="minute" type="int"/> 
   </xsd:sequence> 
  </xsd:complexType> 
 </xsd:element> 

 <message name="measurementRequest"> 
  <part name="term" type="locationtype"/> 
 </message> 
 
 <message name="measurementResponse"> 
  <part name="level" type="int"/> 
  <part name="date" type="datetype"/> 
 </message> 

 <portType name="sensor"> 
  <operation name="measurement"> 
    <input message="measurementRequest"/> 
    <output message="measurementResponse"/> 
  </operation> 
 </portType> 

</wsdl> 

Figure 1. WSDL code for a web service returning the water level measured by a sensor 
in a grid of sensor for preventing flooding. 

 
they may have a different structure). For example, a caller process could be a BPEL 
workflow, originally developed to invoke a service called reading, that does not have 
the concept of location, but only of the reporter and node identities, and expects the level 
to be named differently. The invocation needs to be adapted to the new called service. 



 
Even after the structural adaptation has been performed, the terminology used in the 
parameters may be defined in different ontologies in the caller process and in the service.  
This may cause misunderstandings or failure: for example, the water level can be 
returned in meters, and the caller expected feet. Translation is required. 
 
This case focuses on the problem of matching the signature of service invocation with 
that of the service when they are expressed in different ontologies.  It is perfectly possible 
to solve this problem by manually matching the expected inputs and outputs of two 
services – the one that the caller expected and the one that is actually called – prior to 
interaction.  For example, Altova MapForce1 is a system which facilitates this manual 
mapping. However, performing this is time consuming and not scalable. Additionally, 
this presupposes that one knows in advance what calls will be necessary. This is perhaps 
feasible in a small, static system, but in a large, dynamic system where services may be 
temporary, may be updated, may suffer from occasional communication breakdown, and 
so on, we do not wish to limit the number of services with which it is possible to interact. 
A better solution in this sort of environment is to automatically integrate services on-the-
fly as the need becomes apparent. 
 
Using our matching approach  we are able to map between the invocation of the  service, 
written in the ontology of the caller, and the call the service is expecting,  written in the 
ontology of the service.  The goal of the matching is two-fold: 
• to establish whether these services (the expected and the called) are similar enough: if 

the service is being asked to perform an action that is too different to the function it is 
equipped to perform, then the correct response is to refuse to interact; 

• if the call is judged to be similar enough, then an adaptor is generated to bridge beween 
the caller and the invoked service .   

 
Our technique is designed to work at run-time, without user interaction and without any 
pre-alignment of ontologies, as  we believe that in a Semantic Web kind of environment, 
such an approach is vital.  This is therefore a lightweight and flexible approach that can 
be employed on-the-fly if – and only if – the need arises. 
 
 
SETTING THE STAGE 
 
Structure-preserving Semantic Matching 
 
We have developed the Structure-preserving Semantic Matching (SPSM) technique, 
which allows us to find a map between two service descriptions and returns a score in [0 
1] indicating their similarity.  
 
The SPSM maps trees structures; we therefore first need to transform web services into 
trees. The name of the service becomes the root of the tree, while the parts in input and 

                                                        
1 http://www.altova.com/products/mapforce/data_mapping.html 



output messages become the children. As the WSDL description in Figure 1 shows, parts 
can contain complex structures (such as Location in the input message and Date in the 
output): the part itself becomes a subtree. For compactness, we will represent trees as 
formulae. The WSDL in Figure 1 can therefore be represented as: 
 

measurement(location(ReporterID, Node), Level, 
date(Month, Day, Hour, Minute)) 

  
Note that in such formulae and in diagrams such as Figure 2,  the names of the variables 
indicate the types expected. For example, the second level argument Level indicates that 
the argument is a variable that should be instantiated with a value of type level. 
 
SPSM is a two-step process.  Firstly, we make use of adapted conventional ontology 
matching techniques to investigate relationships between the individual words in the 
nodes of the trees. The second  – novel – step matches the structure of the trees to 
discover an overall relationship.  This is crucial because the structure of the tree itself 
contains a lot of semantic information that must be considered if we are determining 
whether two service calls are equivalent or similar.  SPSM, therefore, needs to preserve a 
set of structural properties (e.g., vertical ordering of nodes) to establish whether two trees 
are globally similar and, if so, how similar they are and in what way. These 
characteristics of matching are required in web service integration applications, see, e.g., 
(Kluch et al, 2006; Li and Horrocks, 2006; Gooneratne  and Tavi, 2008). 
 
Moreover, SPSM allows us to detect not only perfect matches – which are unlikely to 
occur in an unconstrained domain – but also good enough matches.  SPSM returns both a 
mapping between two trees and a numerical score in [0 1] indicating the degree of global 
similarity between them.  A match between two trees is considered to be good enough if 
this degree of global similarity exceeds some threshold value.  Since the concept of good 
enough is very context dependent – in safety critical situation perhaps only a near-perfect 
match will do but in other situations a much weaker match may suffice – this threshold is 
set by the user according to the particular interaction (Giunchiglia et al, 2008b).  This 
approach greatly increases the range of services it is possible to interact with.  This 
solution is lightweight enough to be done quickly on-the-fly, during run-time, so that we 
need have no expectations of which services we will want to interact with in advance of 
run-time. 



 
 

Figure 2.Two approximately matched web services as trees – T1: 
reading(ReporterID,Node,date(Time,Day,Month,Year),Water_level) and T2: 

measurement(Level,location(ReporterID,Node), 
date(Month,Day,Hour,Minute).   

Functions are in rectangles with rounded corners; they are connected to their arguments by 
dashed lines.  Node correspondences are indicated by arrows.  

 
 
Service descriptions that are not written in WSDL will need to have the conversion step 
to turn them into trees built for them, but we believe that it is possible to view most 
service descriptions as tree structures and that this conversion process will generally be 
straightforward.  An example of two service descriptions, which have been converted into 
trees, being approximately mapped, can be seen in Figure 2. 

 
Once the conversion to tree has taken place, the SPSM algorithm consists of two stages: 
 
 Node Matching – this matches the nodes in one tree to the nodes of another tree. This 

will often be matching single words to one another, although nodes may be more 
complex (for example, they can be composed of more than one word) and our 
techniques are able to deal with this.  These terms may be annotated with 
references to ontologies so that it is easier to determine their semantic meaning 
and, if so, our matching techniques take advantage of this. If there is no additional 
information then our matching techniques rely on syntactic properties of the terms 
(for example, suffixes and prefixes) and standard ontologies such as WordNet 



(Fellbaum, 1998).  This step is performed using the S-Match system (Giunchiglia 
et al, 2007). For example, in matching a tree 
reading(date(Day,Month,Year),water(Level)) to a tree 
measurement(Liquid,Level,date(Month,Day)), this step would discover that 
the words Date, Day, Month, Level and Reading in the first term all have 
equivalent words in the second term (in the case of the first three, these are 
identical, whereas Reading is matched to the semantically equivalent 
Measurement). 

  
 Tree Matching – once we have the correspondences between the nodes of the trees, 

the next step is to match the whole trees and determine the global similarity 
between them. This is achieved by considering the relationships, within the trees, 
of nodes identified as similar in the previous step. For example, if we were 
matching reading(Water,Level) and reading(Liquid,Level), we would 
expect the similarity score to be high, but the relationship between 
reading(water(Level)) and reading(Liquid,Level) to be much lower: the  
different  structure of these trees indicates a difference in meaning.  For this step, 
we make use of a tree-edit distance algorithm.  Tree-edit distance algorithms are 
designed to determine the cost of translating one tree into another through the 
application of three operations: (i) vertex deletion, (ii) vertex insertion, and (iii) 
vertex replacement (Tai, 1979).  However, tree-edit distance algorithms do not 
consider the semantics behind these operations: for example, according to the 
standard algorithm, replacing a vertex Water with a vertex Liquid would cost the 
same as replacing Water with Sandwich, although it is clear that a far greater 
change is occurring in the second case.   

 
We have therefore augmented a standard tree-edit distance algorithm so that the 
cost of performing each operation is dependent on the expense of performing the 
change: that is, a smaller semantic change costs less than a large change.  To do 
this, we make use of Giunchiglia and Walsh’s theory of abstraction (Giunchiglia 
and Walsh, 1989; Giunchiglia and Walsh, 1992), which provides a formal theory 
of how two first-order terms may be related and yet non-identical.  For example, 
the number of arguments of predicates may be different; the types of these 
arguments may be more or less general; the name of the predicate may be more or 
less general.  Since it is trivial to convert first-order terms into trees, this theory is 
applicable to our tree matching step. 

 
Thus the node matching step tells us in what way the node terms are related and the 
combination of the tree-edit distance algorithm and the abstraction operations tell us how 
similar two trees are by combining the steps that are necessary to convert one tree to 
another (which is functionally identical to providing a map between the two) with the 
costs that should be assigned to each of these steps.  Taking one example from Figure 2, 
the node matching tells us that Water_level from Tree 1 is a more specific type of 
Level from Tree 2 (or Water_level is a subclass of Level), and the augmented tree-edit 
distance algorithm will map these two together (as part of the process of mapping the 
whole tree) and, using the abstraction operations, determine that the cost of this map 



should be low due to the relationship identified in the node matching step. Therefore, by 
combining semantic matching with structural matching, we obtain the SPSM (structure-
preserving semantic matching) algorithm. 
 
Of all the potential maps between two trees, the tree-edit distance algorithm will return 
the map with the least overall cost (calculated through the application of abstraction 
operations). The cost of the overall map is calculated by  

Cost = min k
i∈S
∑ i  * Costi                                                                               (1)          

where S stands for the set of the allowed tree edit operations; ki stands for the number of  
i-th operations necessary to convert one tree into the other and Costi defines the cost of 
the i-th operation. Our goal here is to define the Costi in a way that models the semantic 
distance.  We can then define the similarity between two trees T1 and T2 to be: 

TreeSim = 1 −
Cost

max(T1,T 2)
                                                        (2) 

 
  
This case is intended to outline the ideas and motivation behind our ideas; for full 
technical details of this process, together with implementation information, see 
(Giunchiglia et al, 2008a).   
 
The OpenKnowledge Framework 
 
Matching service descriptions is only one aspect of service integration: another important 
aspect is service selection: how a potentially suitable service is located, how a particular 
one is chosen from potentially many, and so on.  In this section, we introduce the 
OpenKnowledge framework within which the SPSM algorithm was originally designed, 
in order to describe how this framework allows the full process of service integration to 
take place, and to show SPSM in action within a specific context.  Note that although 
SPSM was designed within this context, it is nevertheless very widely applicable: in fact, 
it does not need to be restricted to matching service descriptions but can be used for 
matching any two artifacts that can be expressed as a tree.  
 
The OpenKnowledge framework facilitates interactions between disparate peers or 
services, which generally do not share an ontology or have prior knowledge of one 
another. The key technology that makes this possible is the use of shared choreographies 
called Interaction Models (IMs). These IMs can be designed by any user on the network, 
and can then be shared across the network, so that determining an IM for a particular 
interaction is usually a case of finding the appropriate one for reuse rather than writing 
one from scratch.  Note that in the OpenKnowledge context, services are proactive, 
signing up to IMs in which they wish to play a role.  Calls to services therefore do not 
come out of the blue, from an unknown caller, but occur when that IM is enacted and are 
of the form described within the IM. 
 
The OpenKnowledge framework enables this through providing an API that can be used 
by an application to become a peer in a network. The API exploits: 



• a distributed discovery service, which searches for suitable IMs for a particular 
interaction; 

• a matching service, which uses the SPSM algorithm to map between requirements 
in IMs and abilities in the peers to determine how similar they are; 

• a trust component to allow users to assess with which peers they wish to interact 
with; 

 
We will not address these components, other than the matching service, in any detail in 
this case.  Further information about OpenKnowledge can be found on the project 
webpage2. 
 
 
Describing Interactions  
 
An Interaction Model (IM) specifies the interaction between different peer in  tasks that 
require their coordinated activities. Interaction Models are written in LCC (Robertson, 
2004), a compact, executable language based on process calculus. An IM is composed by 
a set of role definitions: a peer enters an interaction by taking a role, and follows the 
unfolding of the interaction as specified by the role definition. The definition prescribes 
to a peer in a specific role what messages to send, which messages to expect and what 
other roles to adopt later if necessary. The coordination of the peers is obtained through 
message exchange between the roles they have adopted, while the behaviour of peers is 
defined by constraints on messages. Through constraints it is possible to set preconditions 
for sending a message and for changing role as well as describing the effects of receiving 
a message. A peer must solve the constraints in order to proceed. The IM makes no 
assumptions at to how constraints are solved and the operation is delegated to the peer. In 
LCC constraints are expressed as first order predicates, which can be easily transformed 
into trees for matching.  
 
a(querier,Q):: 
  request(RepId,Nd) => a(sensor,S) ← needLocation(RepID,Nd) 
  then 
  level(Lvl,Date) <= a(sensor,S) 
 
a(sensor,S):: 
  request(RepID,Nd) <= a(querier,Q) 
  then 
  level(Lvl,Date) => a(querier,Q) ← reading(RepID,Nd,Lvl,Date) 
 

Figure 3. A simple Interaction Model for querying  a sensor about the water level. 
 
 
Figure 3 shows a simple IM for querying a sensor. The IM is performed by two peers, 
one taking the querier role and the other taking the sensor role.  The querier needs 
first to satisfy the constraint needLocation(RepID,Nd) to select the interested reporter 
ID and the node, then send the request message to the sensor and wait for the reply. The 

                                                        
2 www.openk.org 



sensor receives the request, satisfies the constraint reading(RepID,Nd,Lvl,Date) and 
sends back the reply.   The IM execution is then concluded.  Note that in an IM, there are 
no semantics in the message: the name of the message is merely a placeholder and the 
meaning of the arguments is determined within the constraints.  Thus the ability to play a 
role depends on the ability to satisfy the constraints on the messages in that role.  Any 
peer using the OK infrastructure can trivially pass any message if the constraints on that 
message are satisfied. 
 
A constraint in an IM can be compared to the call to a web service in a BPEL workflow. 
In order to solve a constraint a peer needs to map it to its own local knowledge base, 
provided by an extensible set of plug-in components (Besana et al, 2007). The plug-in 
components expose methods, which can be simple wrappers for web services, or can be 
self-contained java methods.  We have developed a tool that generates a wrapper 
component from a WSDL file: each operation in it becomes a method in the component. 
 
In the constraint reading(RepID,Nd,Lvl,Date), the variables RepID and Nd are already 
instantiated (they are received with the request message), and are the input parameters; 
the variables Lvl and Date are instantiated by the peer when solves the constraint and are 
the output parameters. 
 
@annotation(@role(sensor), @variable(RepID, reportedID) 
@annotation(@role(sensor), @variable(Nd, node) 
@annotation(@role(sensor), @variable(Lvl, water_level) 
@annotation(@role(sensor), @variable(Date, 
date(day,month,year,time)) 
 

Figure 4. The annotations of the parameters used by the role sensor in the IM of 
Figure 3 

 
 
While first order predicates are usually untyped, in OpenKnowledge, arguments can be 
annotated with their ontological type and, if desired, these types can be annotated with a 
reference to an ontology in which the semantics of that type are given. The annotations 
are used to create the trees that are then matched by SPSM. Figures 4 and 5 shows 
annotations for the parameters in the IM and for the method in the peer's component. 
 
@MethodSemantic(language=”tag”,  
args={“location(reporterID,node)”,  
      “level”,  
      “date(month,day, hour, minute)”} 
public boolean measurement(Argument Lc,Argument Lv,Argument D){...} 
 

Figure 5. The annotations for the method measurement in the plug-in component of a 
sensor peer 

 
 
 
 
Lifecycle of Interaction in OpenKnowledge 



 
The IMs are published by the authors on the distributed discovery service (DDS) 
(Kotoulas and Siebes, 2007) with a keyword-based description.  Peers search and 
subscribe to roles in IMs in the DDS. The OpenKnowledge kernel provides the 
functionality needed to subscribe to a role and the framework for handling the plug-in 
components used to satisfy constraints.   The peer can be a GUI-based application whose 
components interact directly with a user or a server application that solves the constraints 
automatically, possibly calling the web services wrapped by the components or accessing 
a database.  
 
The lifecycle of an interaction is: 
 
Interaction selection: a peer searches, by sending a keyword-based query to the DDS, for  
published IMs for the task it intends to perform. The DDS replies with a list of IMs 
satisfying the query. The peer needs to compare the received IMs with its plug-in 
components, in order to select the one that best matches its capabilities.  This is one 
instance – the most important one – where the SPSM algorithm comes into play.  In order 
for a peer to decide whether it wishes to play a role, it needs to map every constraint on 
that role to one of the methods in its plug-in components.  For each of these constraints, 
the SPSM algorithm will return a numerical score in [0 1] describing how close this 
constraint is to one of the peer’s constraint, as well as a map detailing how this 
conversion must be done.  To estimate how good the peer will be at performing that role, 
it must somehow aggregate these scores.  The simplest way to do this – and the way that 
is current implemented – is to average all scores over the number of constraints to be 
mapped.  However, more sophisticated mechanisms could be devised which could 
incorporate user preferences and context-dependent information.  Once this overall score 
has been calculated, the peer must decide whether or not to subscribe to the role.  This is 
entirely up to the peer and it may subscribe even if it gets a very low score.  In such a 
case, it would not usually be in the peer’s interests to subscribe, as it is very likely to fail 
in the execution of the role.  If it finds a role in an IM with an acceptably high matching 
score, it subscribes on the DDS, indicating its intention to perform the appropriate role in 
it.  As part of the subscription process, it must declare a matching score.  
 
Peers may subscribe to as many IMs as they wish, to play as many different roles as they 
wish.  For example, in a vending scenario, a seller peer may subscribe to many 
different IMs in the seller role, as it may be content to act as a seller simultaneously in 
many different types of purchase interactions.  A buyer would more typically only wish 
to buy once (though of course this depends on the exact situation), so would only wish to 
subscribe once in the role buyer, but may also be subscribed in other roles in different 
IMs for quite different goals. A peer may also be subscribed as seller in one purchase IM, 
and as buyer in another, as it may be interested in buying supplies for its production as 
well as in selling it. 
 
Bootstrap: when all the roles in an IM are subscribed to, the discovery service randomly 
selects a peer in the network, asking it to play the coordinator of the interaction.  If it 
accepts, it becomes the IM coordinator and asks all the subscribed peers to select which 



other peers they are prepared to interact with. This matching score provided by peers as 
they subscribe is also useful to other peers deciding whether or not they wish to interact 
with that peer in that role.  However, neither the system nor other peers have any way of 
checking this matching score: the peer’s own capabilities and ontology are private.  So 
peers must use this score with caution, for there are several reasons why it may not be 
accurate: the peer may be dishonest and may be trying to exaggerate its abilities; it may 
have a poor ontology, so the matching score returned may be a poor reflection of its 
actual ability to perform the role.  This score is therefore most useful to others when it is 
moderated by some kind of trust score examining the peer’s past behaviour: if the peer is 
dishonest or inept, it will repeatedly underperform and therefore trust scores are lowered.  
We therefore have developed a good enough algorithm, whose role is to moderate the 
matching score with respect to a trust score.   OpenKnowledge provides a built-in 
mechanism for calculating trust, based on prior experience of interaction in the same, 
similar or non-similar contexts, and a way to combine this trust score and the matching 
score to obtain a single score reflecting how well that peer is likely to behave.  This 
process is explained in (Giunchiglia et al, 2008b).  Peers are free to use this built-in 
method or to use their own mechanisms as they please. 
 
After receiving the peers' preferences, the IM coordinator creates a group of peers who 
are all willing to interact with one another in their proposed roles. If the group covers all 
the roles, it starts the interaction.   If there is more than one way of filling roles such that 
all involved peers are satisfied, the choice of allocation is made arbitrarily.  It is thus 
possible that peers subscribed for roles will not be chosen in a particular run of that 
interaction.  In such a case, they must wait for a subsequent run of the interaction, 
perhaps weakening their choice criteria next time, as they may be ruling themselves out 
of potential allocations by refusing to interact with many of the other subscribed peers. 
 
Run of the interaction: the IM coordinator runs the IM locally: messages are exchanged 
between proxies of the peers, which are contacted in order to solve the constraints.   
 
Follow-up: after the run of the interaction, the IM coordinator sends the log of the 
interaction to all involved peer so that they can analyse it if they wish to. The analysis can 
be aimed at computing a trust value for the other peers (Giunchiglia et al, 2008b) to be 
used in selecting peers in future interactions or to create a statistical model for the content 
of the messages, in order to improve mapping (Besana and Robertson, 2007). If, 
interaction after interaction, a peer is consistently unreliable  it will be selected less and 
less frequently by the other peers.  
 
In a more orchestration-oriented model, the invocations to services are normally 
grounded at design time by the designer of the workflow. In this model, the peers decide 
to take part in interactions: they can look up an interaction for a specific task, they can be 
alerted when new interactions are published, or they can be asked to evaluate an 
interaction upon the request of another peer, but in all cases they evaluate the IMs they 
receive and then select those they want to subscribe to. The task of handling 
heterogeneity is therefore distributed among the peers. 
 



 
CASE DESCRIPTION – Flooding in the Trentino Region 
 
The OpenKnowledge system has been fully evaluated in two testbeds: Proteomics and 
emergency response.  Here, we explain the emergency response testbed and explain the 
role that the SPSM algorithm took in providing the necessary functionality. 
 
Emergency response was chosen as being a particularly knowledge-intensive and 
dynamic application domain, with many players and a high potential for unexpected 
developments.  We briefly outline the general scenario and then describe a specific 
interaction in more detail, highlighting where the techniques discussed in this paper will 
be utilised. 
 
The general scenario we are exploring is the case of the flooding of the river Adige in the 
Trentino region of Italy, which presents a significant threat to the city of Trento and the 
surrounding area and which has occurred seriously many times before, most notably on 
November 4th, 1966. We have large amounts of data from the 1966 flood, as well as data 
concerning the emergency flooding response plans of the Trentino authorities. Around 
this data, we have developed scenarios of interacting peers: for example, coordination 
centres, emergency monitoring services, the fire brigade, sensor nodes, GIS systems, 
route finding services and weather services. 
 
Emergency response is not inherently peer-to-peer: we would of course expect that the 
key players would have strategies worked out well in advance and would have 
established the infrastructure and vocabulary for communicating with other key players. 
However, the chaotic nature of an emergency means that many players who will not have 
been able to coordinate in advance, or who were not expected to participate, may become 
involved. Additionally, services which were part of an emergency response may be 
unexpectedly unavailable or may be swamped by requests, and in such a situation, it is 
crucial that the emergency response can carry on regardless. Additionally, services may 
develop and change and it is unrealistic to expect these changes would always be known 
and accounted for in advance. 
 
The e-Response system we have developed for this testbed is used: 
 

i) to model and execute interactions between peers involved in an emergency 
response activity, whether individuals, sensors, web services or others; 

ii) to provide feedback about the environment at appropriate moments, in a way that 
mirrors the real world (for example, a peer attempting to take a road will be 
informed that the road is blocked only when it is actually at that road, and it 
can then share this information with other peers through the network). 

iii) to visualize and analyze a simulated coordination task through a Graphical User 
Interface (GUI). 

  
The developed e-Response system is composed of two major components: the e-
Response simulator and the peer network (and related interaction models).  The e-



Response simulator provides the disaster scene and its evolution, thus representing the 
“real world” within which all the actors (network peers) acts.  The idea is that once the 
simulator has been used to aid the development and thorough testing of the approach, it 
could be removed and the peer network could instead operate in a real world situation 
(using real peers rather than simulated ones). 
 
Every peer (either simulator or network peer) has an OpenKnowledge plug-in component 
(the OpenKnowledge kernel) which enables it to publish and search for IMs and be 
involved in a coordination task with other participants. Some of the peers in the peer 
network interact with both the simulator and network peers: these are the peers that 
‘exist’ in the physical location.  These peers will usually receive sensory information and 
be able to directly influence the simulated world, though some can only do one or the 
other (for example, water-level sensors have some sensory ability (they will receive 
information about the water-level) but they cannot directly influence the world, they can 
only indirectly influence the world by sharing this information across the peer network). 
Other network peers communicate among themselves and never connect to the simulator: 
these are peers that are not physically involved in the simulation and cannot directly 
affect the world, such as geographical-map-provider peers.  
 
The peer network reconstructs (in a limited form) the infrastructure of the emergency 
response: for example, the command centre that will control the whole response (except 
in unforeseen circumstances such as it becoming uncountable), the fire teams they will be 
commanding, the buses that are to evacuate the citizens, and so on.  One important job of 
the command centre is to keep a picture of the changing environment that is as accurate 
as possible and this is done through gathering information from other peers. 
 
Figure 6 illustrates a scenario in which some of the peers in the simulation are interacting 
in order to facilitate the evacuation of citizens by bus from the flooding area.  The 
emergency coordinator (EC) communicates with the buses (Bs), informing them which 
area they should pick up from and which area they should evacuate the citizens to.  It is 
up to the buses to determine an appropriate route for this.  To do this, they can 
communicate with the route service (RS), which will tell them what possible routes there 
are, but since they are in a flooding situation, they must also try to establish which routes 
are closed.  To do this, they communicate with the civil protection peer (CP), whose role 
is to continually poll the water-level sensors (r1, r2, …) as to the water level in their 
vicinity, and from this they can calculate whether a route suggested by a bus is 
accessible.  As long as this process is functioning, it is perhaps reasonable to assume that 
there will be no difficulty with integration: this is part of the planned emergency 
response, and such service integration should have been calculated in advance (though 
even this much cannot be certain as the peers may be constantly evolving – perhaps the 
owners of the water-level sensors have upgraded their ontologies since the most recent 
coordination effort).  However, in such an emergency situation, such structure is not 
necessarily reliable.  Perhaps the civil protection peer will be swamped with requests 
from buses, citizens and others and be unable to respond to some of them; perhaps it will 
crash; perhaps it is housed in a building that is itself being flooded.  If a bus peer cannot 
reach the civil protection peer, they must still do their best to reach their given 



destination.  The OpenKnowledge system allows the seamless change from a centralised 
system to a decentralised one: instead of interacting with the civil protection peer, a bus 
can communicate with the water-level sensors directly and calculate for themselves 
which routes are possible.  However, it is highly unlikely that such a scenario has been 
planned for in advance, and we are therefore forced to perform service integration on-the-
fly. 

 
 

Figure 6. Interactions of peers in evacuation scenario. 
 
We repeat the lifecycle of interaction described above for this particular interaction. 
 
Interaction selection: both the bus peer and the water-level sensor peers must be 
subscribed to an appropriate IM to play their relevant roles.  Since the bus peer is taking 
the initiative here, this is most likely to happen through the bus peer searching for and 
subscribing to an IM in which many water-level sensor peers are already subscribed.  A 
well-organised water-level sensor should subscribe to many such IMs so that it is ready to 
perform its role whenever requested.  There may be many sensors at a single node, so in 
order to determine the water level at that node, it is necessary to choose one of potentially 
many with which to interact.  The IM used in such a situation could be the one described 
in Figure 3, and let’s imagine the process by which these water-level sensors have 
subscribed to their role.  Since they wish to play the role sensor, they have only one 
constraint to satisfy: reading(RepID,Node,Level,Date). Imagine six sensors wish to 
sign up, and they describe their abilities in the following ways: 
 

i) measurement(RepID,Node,Level,Date) 



ii) reading(ReporterID,Level,Node,Date) 
iii) reading(RepID,Level,UnitMeasure,Node,Date) 
iv) reading(RepID,Water_level,Node,Date) 
v) output(Level,Node) 
vi) measurement(location(ReporterID,Node),Level,Date) 

 
They would each use the SPSM algorithm to map their abilities to the constraint.  Sensor 
i) would discover that had a perfect match; all that is necessary is to consider 
measurement to be equivalent to reading and the node matching step reveals this is 
permissible. Sensor ii) would have less than perfect matching because it has to infer a 
match between RepID and ReporterID.  Analysis of these terms would indicate a high 
similarity but it is not certain, in the absence of further information, that they are intended 
to refer to the same thing.  The adapter returned would also switch the two central 
arguments, matching Level to Level and Node to Node.  This mapping would not 
influence the similarity score, as the order of nodes is assumed not to be semantically 
significant.  Sensor iii) would have a high but less than perfect matching score as it has an 
extra argument that would not be used: UnitMeasure, which is intended to make explicit 
the units in which the measurement is given.  Sensor iv) would also have a lower 
matching score, losing points through the match between Water_level and Level.  In 
this particular situation, we can see that these are functionally equivalent because what is 
meant by Level is the level of the water.  However, the water-level sensor does not have 
this high-level view and therefore cannot be sure of this.  Sensor v) would receive a very 
low score: the naming of its predicate is unintuitive and does not describe what it actually 
does, and it misses out key information such as its ID and the Date.  Sensor vi) is a 
slightly simplified version of the one discussed earlier in the case and illustrated in Figure 
2.  There is a significant structural difference here, also illustrated in Figure 2, in that an 
extra predicate location is included, and the arguments ReporterId and Node become 
children of that predicate, and grandchildren of the top-level predicate measurement.  
The similarity score would be lower due to this: in fact, this is an ‘organisational’ detail 
and does not really affect the meaning of the arguments, but it is an indication that this 
meaning may be different.  Nevertheless, every argument in the constraint can find a 
similar or exact argument to match to in ability, albeit in a different structure.  Therefore 
the similarity score would be reasonable but not as high as for sensors i) - iv). 
 
These sensors will all subscribe to play the role sensor and the bus peer will subscribe to 
play the role querier.   
 
Bootstrap: If these sensors are all for at the same node, then, when the coordinator asks 
the bus peer which peer it wishes to interact with, it need only chose one.  Unless it has 
any information to the contrary, and assuming the sensor peers are all honest, it will 
probably choose sensor i), as it has the highest matching score.  However, if it has 
previously interacted with sensor i) and found it to be unreliable, it will have a low trust 
score, and so the GEA score, formed by combining its matching and trust scores, may be 
lower than the GEA scores of other sensors.  The bus peer would normally choose the 
peer with the highest GEA score to interact with.  Assuming the chosen sensor is happy 
to interact with the bus peer, the interaction will proceed. 
 
Run of the interaction: The appropriate messages are passed. 



 
Follow-up: The bus peer will update its trust model according to the outcome of the 
interaction.  If the interaction was successful, the bus peer’s trust in the sensor peer will 
increase.  If it fails, it will be lowered.  For example, sensor v) may claim to have a very 
high matching score and may come out top in the GEA calculation.  However, it will fail 
to satisfy the constraint on its role and so will not be able to pass the message, leading to 
failure.  The next time this interaction occurs, it is much less likely to be chosen even if it 
reports a high matching score, as the trust score will be low.  Alternatively, the 
interaction may run smoothly – if, for example, sensor i) was chosen – but if sensor i) is 
faulty it will report a false level, leading to a successful interaction but an unsatisfactory 
outcome.  This will not be as obvious as a breakdown of the interaction, but once it has 
been noticed by the bus peer (perhaps when it finds its route unexpectedly flooded), the 
bus peer will update its trust model accordingly.  The bus peer is also free to share its 
trust model with other peers if desired. 
 
Evaluation 
 
There are many reasons why heterogeneity can become a problem, even amongst services 
that were originally designed to interact.  For example, drifting can cause heterogeneity 
between components and IMs: components that were designed for a particular interaction 
could be used in other interactions and can change over time to adapt to these, when they 
are reused in the original interaction, matching is required. Similarly, interactions 
designed for a specific context may be used for different aims and therefore adapted to 
better suit these aims. Moreover, new interactions or components can be developed by 
copying others. 
 
Starting from these assumptions, we tried to evaluate how the matching mechanism, 
described previously, could cope with these sort of heterogeneity. The evaluation aimed 
at exploring the robustness of the SPSM approach towards both typical syntactic 
alterations (i.e. replacements of node names, modification of node names and 
misspellings) and typical meaning alterations (i.e. usage of related synonyms, hyponyms, 
hypernyms) of node names. 
 
Since the tree alterations made are known, these provided the reference results. This 
allows for the computation of the matching quality measures, such as Precision (which is 
a correctness measure) and Recall (which is a completeness measure). The alterations are 
applied probabilistically on each node of the original tree: increasing the probabilities of 
the modifications it is possible to obtain trees that are statistically more and more distant 
from the original one. The tree alteration procedure has been inspired by the work in 
(Euzenat and Shvaiko, 2007) on systematic benchmarks.  



 
 

Figure 7. Recall results for syntactic and meaning alterations 
 
Figure 7 shows how recall behaves when the probabilities of syntactic and semantic 
alterations are increased. Recall decreases slowly: only when both semantic and syntactic 
changes are extremely likely, recall drops to 0.1. In our experiments, precision was 
always very high. This is not uncommon in matching scenarios, where recall is often the 
problem. 
 
The evaluation is done by comparing the output of the SPSM algorithm with the output 
of a standard tree-edit distance algorithm, which does not consider the semantics.  The 
fact that SPSM performs better, whilst a reassuring validation of  the approach, is 
therefore not particularly surprising.  A more powerful approach would be to compare 
our work against a ‘state-of-the-art’ system.  However, as far as we believe there is no 
other approach currently existing that can be used to perform the same task as SPSM: 
matching trees whilst considering the semantics.  Systems that perform semantic-free tree 
matching can be compared to SPSM in such experiments, as they are at least capable of 
performing the necessary tree matching.  Other semantic-based approaches cannot do 
this, and therefore will fail completely in the task.   
 
We are currently undertaking a much more thorough evaluation of the whole process of 
service integration within OpenKnowledge.  These results may lend themselves more 
naturally to comparison with other service integration approaches because the scope will 
not be so limited as in the current experiments.  We intend to publish these results 
shortly. 
 
 
 



RELATED WORK 
 
Our work builds on standard work  in  tree‐edit distance measures,  for example, as 
espoused  by  (Shasha  and  Zhang,  1997).  The  key  difference with  our  work  is  the 
integration of the semantics that we gain through the application of the abstraction 
and refinement rules. This allows us to consider questions such as what is the effect 
to  the overall meaning of  the  term  (tree)  if   node a  is relabelled  to node b?,  or how 
significant  is  the  removal  of  a  node  to  the  overall  semantics  of  the  term?  These 
questions  are  crucial  in  determining  an  intuitive  and meaningful  similarity  score 
between two terms, and are very context dependent. Altering the costs assigned to 
the  tree‐edit distance operations enables us  to provide different answers  to  these 
questions depending on the context, and we are working on giving providing even 
more subtle variations of answers reflecting different contexts.  
 
Work  based  on  these  ideas,  such  as  Mikhaiel  and  Stroudi’s  work  on  HTML 
differencing (Gligorov et al, 2005), tends to focus only on the structure and not on 
the semantics. This work never considers what the individual nodes in their HTML 
trees mean  and  only  considers  context  in  the  sense  that,  for  example,  the  cost  of 
deleting a node with a large subtree is higher than the cost of deleting a leaf node; 
the semantic meanings of these nodes is not considered. 
 
Many diverse  solutions  to  the ontology matching problem have been proposed  so 
far. See (Shvaiko and Euzenat, 2005) for a comprehensive survey and (Euzenat and 
Valtchev, 2004; Euzenat and Shvaiko, 2007; Noy and Musen, 2003; Ehrig et al, 2005; 
Gligorov  et  al,  2007;  Bergamaschi  et  al,  1999;  Kalfoglou  and  Schorlemmer,  2003; 
Straccia and Troncy, 2005) for individual solutions. However most efforts has been 
devoted  to  computation  of  the  correspondences  holding  among  the  classes  of 
description  logic  ontologies.  Recently,  several  approaches  allowed  computation  of 
correspondences holding among the object properties (or binary predicates) (Tang 
et  al,  2006).  The  approach  taken  in  (Hu  and  Qu,  2006)  facilitates  the  finding  of 
correspondences holding among parts of description logic ontologies or subgraphs 
extracted  from the ontology graphs.  In contrast  to  these approaches, we allow the 
computation of correspondences holding among trees. 
 
The  problem of  location  of web  services  on  the  basis  of  the  capabilities  that  they 
provide  (often  referred  as  the  matchmaking  problem)  has  recently  received 
considerable attention. Most of the approaches to the matchmaking problem so far 
employed  a  single  ontology  approach  (i.e.,  the  web  services  are  assumed  to  be 
described by the concepts taken from the shared ontology): see (Klusch et al, 2006) 
for example. Probably the most similar to ours is the approach taken in METEOR‐S 
(Aggarwal, 2004) and in (Oundhakar, 2005), where the services are assumed to be 
annotated with the concepts taken from various ontologies. Then the matchmaking 
problem  is  solved  by  the  application  of  the  matching  algorithm.  The  algorithm 
combines  the  results  of  atomic matchers  that  roughly  correspond  to  the  element 
level  matchers  exploited  as  part  of  our  algorithm.  In  contrast  to  this  work,  we 



exploit  a  more  sophisticated  matching  technique  that  allows  us  to  utilise  the 
structure provided by the first order term. 
 
Web  services  composition  follows  two  alternative  approaches:  orchestration  or 
choreography. Their primary difference is their scope. An orchestration model provides 
a  scope  specifically  focussing on  the view of one participant.  Instead, a choreography 
model  covers  all  parties  and  their  associated  interactions  giving  a  global  view  of  the 
system. The OpenKnowledge  system  is closer  to  the choreography approach,  since all 
services  involved know – and can choose – with whom  they are  interacting and what 
these  interactions will  involve (once they have signed up to  IMs; prior to run‐time this 
may  not  be  known).   Other  important  service  composition  languages  are  BPEL3  and 
YAWL (van der Aalst and ter Hofstede, 2005) (orchestration  languages) and WS‐CDL4 (a 
choreography  language).  BPEL  and  YAWL  benefit  from  the  simplicity  of  the 
orchestration  approach,  but  the  OpenKnowledge  system  has  advantages:  services 
choose  to  take  part  in  interactions  and  they  know  in  advance  both  what  these 
interactions will involve and which other services they may be interacting with, allowing 
them to make informed decisions as to whether this is in their interests and which other 
services  they would prefer  to participate with.   Additionally,  the  interactions  are not 
owned by any particular service and are therefore not biased towards any one service 
but rather allow free interaction for all.  Crucially, this approach is also scalable, allowing 
a network of arbitrarily large size to interact on the OpenKnowledge system.  WS‐CDL is 
closer  to  the  OpenKnowledge  approach  but,  unlike  OpenKnowledge,  it  is  merely  a 
specification and is not executable.  
 
In summary, much work has been done on structure‐preserving matching and much 
has been done on semantic matching, and our work depends heavily on the work of 
others  in  these  fields. The novelty of our work  is  in  the  combination of  these  two 
approaches  to  produce  a  structure‐preserving  semantic matching  algorithm,  thus 
allowing us to determine fully how structured terms, such as web service calls, are 
related to one another. 
 
 
CURRENT CHALLENGES 
 
The current implementation of the SPSM algorithm, though it has proved effective in 
practice, does not have the full scope we believe to be necessary.  For example, it 
assumes that matching between the abilities of a peer and the requirements of a role can 
be performed by considering a one-to-one relationship between arguments.  If, for 
example, we were to match: 
reading(RepID,Node,Date,Level) 

                                                        
3 Web Services Business Process Execution Language Version 2.0, http://docs.oasis‐
open.org/wsbpel/2.0/wsbpel‐v2.0.pdf 
4 Web Services Choreography Description Language Version 1.0, 
http://www.w3.org/TR/2005/CR‐ws‐cdl‐10‐20051109/ 



to 
reading(RepID,Node,Day,Month,Year,Level) 
then, once RepID, Node and Level had been matched, a choice would need to be made 
as to whether to map Date to Day, Month or Year.  In reality, a mapping of date to all 
three of these arguments would be the best solution.  We would therefore like to include 
one → many, many → one and many → many mappings in the algorithm. 
 
Another way in which the algorithm could be improved is to make the scoring system 
more sophisticated.  Currently, there is a single score assigned for mapping one node to 
another where one node is an abstraction of the other node.  For example, the 
relationships between tiger and feline and tiger and animal are both abstraction 
relations, as tiger is a sub-class of both feline and animal, and they would therefore 
score the same.  However, there is clearly a closer degree of kinship in the first relation 
than in the second, and a scoring system that could reflect this would provide a more 
accurate notion of similarity.  In addition, allowing user-set weightings to affect the 
scoring would provide a much more accurate estimation of whether a service would 
perform a job satisfactorily.  For example, if the constraint to be satisfied is: 
reading(RepID,Node,Date,Level), 
the services 
reading(RepID,Node,Date) and 
reading(RepID,Node,Level) 
would both receive the same (low) score because they both omit an argument.  However, 
perhaps the querier is very concerned to receive a value for Level but is not very 
bothered to receive a value for date (maybe the call is done in real time and the querier 
assumes that the date on which the reading is returned is the date on which it is made, so 
that this value becomes obsolete).  In this case, we would like to allow the user to give a 
high weight to the Level argument and a low weight to the Date argument, meaning that 
the first mismatched service would score very low, whereas the second mismatched 
service would have quite a high score, reflecting that the fact that is could, despite 
mismatches, satisfy the querier. 
 
These are the challenges we have currently identified with the SPSM algorithm; perhaps 
more will become apparent as the evaluation continues. 
 
For the OpenKnowledge system as a whole, the largest challenge is to provide a complete 
and thorough evaluation done on a large scale.  This is difficult due to the bootstrapping 
problem: proper evaluation depends on large numbers of services acting as OK peers in a 
natural and organic way – i.e., not set up by us solely for the purpose of evaluation.  
However, we cannot expect large numbers of services to become OK peers before we 
provide a full evaluation of the system.  This problem is currently being made much more 
tractable as there are already many users of the OK system, and we intend to perform 
evaluation on their experience.  Details of these early adopters can be found on the 
project webpage. 
 
RUNNING THE OK SYSTEM 
 
The full OpenKnowledge system, complete with full instructions and demonstrations, is 



available to download free from the project webpage5.  Details of the emergency response 
testbed and simulator can also be found, together with complete documentation for the 
project.  Once the full evaluation is completed, the results will be posted here as well as 
in the relevant publications. 
 
 
CONCLUSIONS 
 
The key contributions of this case are two-fold: 
  

i) the introduction of the SPSM algorithm, which is broadly applicable and can be 
used in any situation where semantic tree-matching is necessary, making it 
applicable for service integration in most circumstances but also for many 
other forms of matching such as database integration; 

ii) the introduction of the OpenKnoweldge system, which itself provides a major 
contribution to the problem of service integration by providing a complete 
framework in which this integration can occur, and also provides a 
demonstration of SPSM in action. 

 
We have described a scenario in which both the full OpenKnowledge system and the 
SPSM algorithm have been demonstrated in action and evaluated.  We briefly described 
an evaluation of the SPSM algorithm; further evaluation is currently taking place. 
 
We believe that our approach offers a solution to a problematic and important issue: that 
of automatically integrating services in the many situations where hard-coding service 
calls is impractical or impossible.  Whilst any solution to this problem that does not 
depend on a shared ontology must be an imperfect solution, it is nevertheless a solution 
that can be used in real-world, large-scale situations where the use of fully shared 
semantics is impossible. 
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