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Abstract

This work deal with the subject of asymptotic expansions for both finite and infinite dimen-

sional integrals. We first discuss a long standing problem related to the formation of crystals

at zero temperature. The majority of the techniques used in this part come from the classical

theory of Laplace Integrals in many dimensions and from the theory of Cluster Expansions in

Probability Theory. We then move to the Quantum scenario in order to study the Caldeira-

Legget model by the rigorous definition of the Influence Functional introduced by Feynman

and Vernon. We make use of the theory of Feynman Path Integrals, providing the possibility

to exploit the infinite dimensional generalization of the Stationary Phase method to study the

asymptotics of the integrals characterizing the Caldeira-Legget model. An analogous study

is made for a problem related to the semiclassical limit for the stochastic Schrödinger equa-

tion introduced by Belavkin (white noise given by a Brownian motion). Moreover we give

an overview of the results related to the asymptotic expansions of integrals spanning from

the unidimensional, real case, to the infinite dimensional environment and including Stokes

phenomena, detailed multidimensional expansions, uniform asymptotics and asymptotics for

coalescing saddle points.



Zusammenfassung

Diese Arbeit befasst sich mit asymptotischen Erweiterungen für endlich und unendlich dimen-

sionale Integrale. Als Erstes betrachten wir ein seit lange ungelöstes Problem, daß eng mit

der Bildung von Kristallen bei Nulltemperatur verbunden ist. Die meisten Methoden, die

in diesem Teil angewandt werden, kommen aus der klassischen Theorie der mehrdimensio-

nalen Laplace-Integrale und aus der Wahscheinlichkeitstheorie (Cluster-Entwicklungen). Wir

gehen danach zur Quantenmechanik über, um das Caldeira-Leggett Modell mit Hilfe des von

Feynman und Vernon eingeführtes Einflussfunktionals zu untersuchen. Wir benutzen die The-

orie der Feynmanschen Pfadintegrale, um die unendlich-dimensionale Verallgemeinerung der

Methode der stationären Phase für das Studium der Asymptoten, die das Caldeira-Leggett

Modell beschreiben, einzusetzen. Eine analoge Betrachtung ist an einem Problem, das mit dem

semiklassischen Grenzwert der bei Belavkin eingeführten stochastischen Schrödinger-Gleichung,

mit einem so genannten weissen Rauschen einer Brownsche Bewegung, verbunden ist, ange-

wandt. Ausserdem geben wir einen Überblick über Resultate betreffend der asymptotischen

Erweiterung von Integralen, vom eindimensionalen reellen Fall bis zu unendlich-dimensionalen

Problemstellungen, einschließlich von Stokes Phänomenen, detaillierten mehrdimensionalen

Erweiterungen, gleichmäßigen und verbundenen Sattelpunkt-Asymptoten.
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Introduction

We would like to start the presentation of this work with some of the major criticisms to the

subject of Asymptotic Expansions. The first was written by the mathematician Niels Hendrik

Abel in 1828:

Divergent series are the invention of the Devil, and it is shameful to base on them

any dimostration whatsoever

More than 150 years do not change completely this kind of toughts since, in 1992, Richard

E. Meyer, see [Mey92], wrote

I was led to contemplate a heretical question: are higher approximation than the

first justifiable ? My experience indicates yes, but rarely.[...] Solutions as an end

in themselves are pure mathematics; do we really need to know them to eight

significant decimals ?

It is also possible to find doubtful attitudes couched by scientists who actively work on this

subject, e.g. by N.G. de Bruijn in [dB81]:

What is asymptotics ? This question is about as difficult to answer as the question:

what is mathematics?

or by J.P. Boyd in [Boy99]:

I no more understood the reason why some series diverge than why my son is

lefthanded

The radical scepticism of Meyer is justified since a wide range of applied mathematicians,

engineers or experimental physicists might say that they have no need of anything else than

the first term of an asymptotic expansion and/or that the exponentially small terms would be

destroyed by the action of natural perturbations. Hence a fundamental question, see [Boy99],

arises: Is this trip necessary ?
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The answer is definitively yes since the above points of view easily lead to inconsistencies. The

key point is that some features of physical systems are related to the behaviour of exponentially

small terms, say , in expressions of the type exp(−λ
ε
), λ > 0, ε > 0 small, which cannot be

approximated as a power series in ε > 0, actually all their derivatives are zero at ε = 0. Such

exponentially small effects are invisible in terms of power series expansions, nevertheless there

are a multitude of cases where one has to take into account such apparently insignificant terms.

For example, as showed by J.R. Oppenheimer in [Opp28] in the study of the quantum Stark

model, in the presence of an external field of strength ε , hydrogen atoms disassociate. This

phenomenon happens on a timescale which is inversely proportional to the imaginary part of

an eigenvalue of the Schödinger equation, which is exponentially small in ε, then this tiny

imaginary value completely controls the lifetime of the molecule. Closely related to this work

is the independent discovery of Quantum Tunneling by Gamow, Condon and Gurney (1928),

see e.g. [Raz03].

Other examples come from the theory Hele-Shaw cells where a viscous fluid is injected

between two closely-spaced plates and a fingershaped flow may develop. In a model of this

type nomerous exponentially small terms arise from the singular perturbation expansions of

the Kruskal-Segur equation, see e.g. [KS85, SJK98], and they are stable under the action

of physical contaminations as expressed by an inhomogeneous nonlinear term, since this only

affects them by prefactors: here the exponentially small terms are a fundamental property of

the asymptotic solution.

Another example in quantum mechanics is the double-well model where the eigenvalues of

the Schrödinger equation come in pairs and the difference between each pair is exponentially

small in the ε-size of the internuclear separation.

Another type of problems show how exponential smallness is the corner stone for the very

existence (or non existence) of solutions. This happens, for example, when a melt interface

between a solid and a liquid is unstable, breaking up into dendritic fingers. Experiments show

that the fingers not only have a parabolic shape, as expected from the theory, but also have

a definite width which cannot be described by a power series in the surface tension, see e.g.

[Hut97, Pri00].

In their work Kruskal and Segur showed that the complex-plane matched asymptotics

method of Pokrovskii and Khalatnikov, see [PK61], could be used in order to study a sim-

ple model of crystal growth furnishing one of the triggers for the resurgence in exponential

asymptotics.

Other examples can be found in [SJK98] where solutions of certain problems under quanti-

sation conditions lead to a determination of the position of singularities in the complex plane.

In these cases the existence of exponentially small terms selects the principal solution.
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As Boyd write in [Boy99]:

Such beyond-all-orders features are like mathematical stealth aircraft, flying unseen

by the radar of the conventional asymptotics

Subtler phenomena appear whenever the singularity of a model under study may vary in

its position. In fact exponentially small terms which initially might be discarded can grow to

dominate the solution as described, for example, in the work of Boasman and Keating in [PJ95]

on perturbed Anosov maps of Quantum Chaos. In this scenario the perturbations imposed to

the dynamical system gave rise to singularities in the complex plane, which contribute expo-

nentially small terms to the semiclassical expansion of the trace of the spectral operator.The

size of their contribution is determined by the physical perturbation parameter. As the pa-

rameter increases the singularities are able to approach, coalesce on and bifurcate along the

real axis where they dominate the eigenvalue statistics. The use of asymptotic methods is not

confined to finite dimensional problems, as proved by Albeverio et al. in several works related

to the theory of Feynman path integrals, in relation to quantum theory and optics, see e.g.

[AHK77, Alb86, AB93, Alb97, AHK76].

Last but not least a full comprehension of the Stokes phenomenon, (the presence of one

exponential times a power series in ε regions of the ε-complex plane but two exponentials in

other regions), can only be achieved by looking at the exponential small terms.

With previous ideas in mind it might not be surprising that in the past Asymptotic Analysis

was considered more as an art than a discipline. This was undoubtedly due to the heterogeneity

of the reaserchers and to their fields of work. Simply speaking, starting from the seminal works

of Stirling, MacLaurin, Euler, Stieltjes and Poincaré, who gave the rigourous definition of

asymptotic expansions, asymptotic methods have been applied in all branches of mathematics

physics and natural sciences since they allow us to obtain a quantitative description of a

phenomenon as well as its qualitative behaviour. Asymptotics is now perceived as a common

thread in many different areas and next to classical books of Dingle, Copson, de Brujin, Erdélyi

etc., see e.g. [Din73, Cop65, dB81, Erd56], one can also find contemporary books like the ones

of Estrada and Kanwal [EK94], Fedoryuk [Fed89], Jones [Jon97], Ramis [RAM93], Stein [Ste93].

It is not just by chance that the past decade has seen a blossoming of interest on the

subject. In particular we would like to mention the development of comprehensive theories

of Borel Transforms, the concept of Resurgence Theory bv Ecalle (which describes certain

classes of asymptotic expansion in which the exponentially small terms associated with Stokes

phenomena are related to the further terms of the expansion, i.e. to the analytic properties of a

progenitor function); smoothing of Stokes Phenomenon; systematic expansions of better than

exponential accuracy (Hyperasymptotics) [BH91, Boy90, Daa98]; study of the first realistic

error bounds for saddlepoint methods; deeper knowledge of the universality in the form of the

higher terms of both local and uniformly valid asymptotic expansions, understanding how local

expansions
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can be used to determine global properties of solutions; development of practical algebraic

methods for resolving the Riemann sheet structure of multidimensional integrals and the cal-

culation of the intersection numbers for curves of differing homologies.

Asymptotic analysis methods have also been successfully applied to situations as varied as

the dendritic growth of crystals; the selection of flows in viscous fingering, phase formation

in fluids, the coupling of multiple length scales in fluids flow; tip propagation in fracture me-

chanics and buckling; nonlinear mappings, Hamiltonian systems and chaotic motion; reaction

diffusion equations; the calculation of non-trivial zeros of the Riemann zeta function and spec-

tral determinants; quantum maps; semiclassical expansions of quantum spectral functions. See

e.g. [Vor83, HS99, DDP97, BH94] and references therein.

Is it possible to investigate the above-mentioned huge amount of heterogeneous questions

in a systematic way ? This is exactly the core of our work. In fact our aim is to attack

several kind of problems, which naturally arise in Asymptotic Analysis, by the use of their

integral representation by combining classical methods of the asymptotic of finite dimensional

integrals, see e.g. [dB81, BH86] and newer developments of the finite dimensional theory in

connection with specific methods of asymptotics of infinite dimensional integrals and the theory

of singularities, see e.g [Fed89, Arn91, Mas77, MF76, Dui74].

The embedding of finite dimensional problems into infinite dimensional ones has been al-

ready shown to be useful in connection with quantum theory, where Feynman path integral

methods and their associated asymptotics lead to powerful results, see e.g. [AM04c]. We think

that this approach will provide a more unified treatment of the subject.

The necessity to have accurate Integral Expansions naturally emerges from Statistical Me-

chanics problems, see e.g. [DS84, Ell85] or works like [APK06, AP06, Per], where the bond

between the subject and Probability Theory becomes direct and clear. Lastly, as mentioned

above, a generalization of the same techniques of Asymptotic Integral Expansions can be ap-

plied to the intriguing field of infinite dimensional oscillatory integrals providing a rigorous

treatment of many problems of Quantum Theory, see e.g. [APM06b, ACPM06], in particular

problems including those related to the rapidly expanding field of Quantum Computing.

Open Problems

The list of open problems which could be attacked from the point of view of the asymptotic

expansion of integrals methods is a large as the set of bonds linking ideas developed in this

work with the ongoing research, hence what follows cannot be an exhaustive inventory.

Since a unified treatment of asymptotic control of small exponential terms is still missing,

our project is higly innovative being based on a systematic use of infinite dimensional asymp-

totic methods. Our research will provide a variety of interesting spin-off both theoretical and
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practical which will be used from a pure mathematical point of view as in engineering tasks.

An important part of the present study about dynamical systems, such as they appear

e.g. in the KAM theory, have to deal with perturbations under the action of which integrable

models become chaotic, but the chaos is confined to exponentially small regions. Through

Arnold diffusion, dynamical system can move great distances on exponentially long time scales

even in the case of weak contaminations.

Another area of interest is constituited by nonlinear coherent structures that would be

immortal were it not for weak radiation from the core structure. The latter situation is linked

to the theory of weakly nonlocal solitary waves that arises, for example, in fiber optics and

hydrodynamics applications.

A third area of study is crystal formation and solidification, in which the work of Kruskal

and Segur, see e.g. [KS85, SJK98], resolved a long-standing problem in the theory of dendritic

fingers and touched off a great plume of activity.

Fluid mechanics is a fourth area in which ongoing research on the subject is very active,

especially in order to study Kelvin wave instability in oceanography and atmospheric dynamics,

or radiative decay of free oscillations bound to islands. In the quantum scattering field the

work made by Meyer, see [Mey76, Mey80, Mey90] and references therein, supplies an up to

date challenge since it led to further studies of exponential small terms in connection with the

WKB theory and quantum tunneling phenomena. The above mentioned theory of Resurgence

by Ecalle may be viewed as one of the more abstract fields of research directly linked to our

ideas on Asymptotic Expansions of Integrals and, at the same time, it offers a connection with

recent developments made by Pham, Ramis, Delabaere et al., see e.g. [SS96] and references

therein for a detailed introduction.

A seventh line of active research falls in the long-standing questions related to Stokes

phenomenon and it is of great interest both for physicists and applied mathematicians. A

new boost to this task rises from a work by Berry in which the discontinuity in the numerical

value of an asymptotic expansion at Stokes line could be smoothed, the effect of this impulse

is far from its end. The use of infinte dimensional methods in Statistical Mechanics( e.g.

low temperature expansions via multidimensional Laplace method, study of Large Deviations

and Cluster Expansions in Probability theory, etc.), Quantum Mechanics (e.g. semiclassical

expansions) and certain problems of low dimensional Topology (e.g. Chern-Simons integrals,

Vassiliev knot invariants) has proven to be extremely useful and to have important connections

with main problems of present Mathematics and Theoretical Physics.



Plan of the work

In this work we present two different type of generalizations of asymptotic expansions for

integrals in the finite dimensional case as well as in the infinite dimensional one. In particular

in Ch.(1) we discuss a long standing problem related to the formation of crystals at zero

temperature. The majority of the techniques used in this part come from the classical theory of

Laplace Integrals in many dimensions and from the theory of Cluster Expansions in Probability

Theory.

In Ch.(2) we move to the Quantum scenario in order to study the important model of

Caldeira and Legget by the rigorous definition of the Influence Functional introduced by Feyn-

man and Vernon. We make use of the theory of Feynman Path Integrals providing the possibil-

ity to exploit the infinite dimensional generalization of the Stationary Phase method to study

the asymptotics of the integrals characterizing the Caldeira-Legget model. An analogous study

is done in Ch.(3) for a different problem related to the semiclassical limit for the stochastic

Schrödinger equation introduced by Belavkin (white noise given by a Brownian motion). The

original results described in Ch.(2) and Ch.(3) are obtained using the new developments for the

asymptotic expansions for infinite dimensional oscillating integrals given in Sec.(7.2) of Ch.(7)

In Ch.(4,5,6,7) we give an overview of the results related to the asymptotic expansions of

integrals spanning from the unidimensional, real case, to the infinite dimensional environment

and including Stokes phenomena, detailed multidimensional expansions, uniform asymptotics,

asymptotics for coalescing saddle points, mentioning also the theories of Hyperasymptotics,

Resurgence and Distributional Approach.
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CHAPTER 1

The Crystal Problem

1.1. Statement of the Problem

Do crystals really exist ? What are we talking about when we talk about crystals ? Simply

speaking when we talk about crystals we have in mind a three-dimensional structure in which

a single scheme is periodicaly repeated. Mathematically we can formulate the same rough

definition without limiting the dimension of the structure, i.e. we can consider crystalline

structures living in the d− dimensional euclidean space. Several physical experiences suggest

that the nature of solids at low temperature is of the previous type, i.e. they present a periodic

structure which is the result of many copies of the same ordered unit cell. These natural facts

suggest the following intriguing question: Why crystals ? To be more precise and following

Radin’s thought, see e.g. [Rad87], we would like to rigorously formulate the Crystal Problem in

a suitable mathematical form such that is could be possible to prove that, at low temperatures,

Nature prefers ordered structures instead of developing amorphous ones.

The stated problem has a natural and well known translation in the language of mathe-

matical physics. In particular let us consider a physical system composed by a finite number

of interacting particles confined in a bounded region of the space, say a cube with edges of

length N in Rd. Assume that the interaction is given by a pair potential V which is a function

of the distance between the selected couple of particles only. Then we can write down the

partition function for the system at inverse temperature T ≡ 1
β
, β > 0, and we would like

to know whether in the low temperature regime, the Gibbs states of the system, i.e. those

corresponding to minimizing energy configurations, are periodic. The next step is to control

whether the possibly crystalline structure, realized at low temperature in a bounded region,

remains stable when we consider an infinite extension of the previous system, i.e. taking the

limit N → ∞. The picture we have in mind is well depicted in section 2 of [Rad87] and

can be viewed as the Gibb’s state interpretation of the Crystal Problem. It is not difficult to
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reformulate the whole question in a pure mathematical language. In [Rad87] an extensive list

of this reformulations is given. We think that, among this mathematical approaches, the most

interesting one consists in an accurate use of the theory of asymptotic expansions of integrals.

Before going on we refer the reader to Sec. 6 of [Rad87] in order to have a detailed survey

of recent results on the subject. Moreover very interesting ideas related to the problem of

the stability of symmetries for equilibrium configurations can be found in [KD82b, KD82a],

while the approach that we will use in what follows is based on [AeKH+89, AGH+93]. More

recently, in [The06], a proof of crystallization, at low temperature and in two dimensions, is

given for a system of classical particles interacting by a pair potential, studing the asymptotic

behaviour of the corresponding ground energy. Moreover in [Süt05] it is proved that, for a

class of translational invariant pair interactions, there exist periodic ground states for classical

particle systems in three dimensions and it is showed that there exist crystal structures which

are stable against a certain class of perturbations. For a quantum mechanical analogue of the

crystal problem one can see [LK86, Lie87].

We analyze the case of uniformly bounded fluctuations of a system of classical particles

around a hypothetical crystalline ground state. Our analysis is based on [AeKH+89, AGH+93]

and it starts with the study of the finite volume scenario, i.e. the case in which interacting

particles are confined in a bounded box of size N in d-dimensional space. Then we generalize

some of the obtained results to the infinite volume case. The studied fluctuations are described

with respect to a certain class of well defined potentials which have to satisfy some general

conditions. Our analysis will be developed in the low temperature regime making use of

some asymptotic methods of expansions for the integral defining the quantities of interest. In

particular we use the Laplace method in many dimensions in connection with some cluster

expansions techniques.

1.2. The Finite Volume Case

We consider a system of n classical particles which has, for semplicity, mass equal to 1 and are

enclosed in some bounded region of Rd. Let thus N > 0 be a given integer, and consider the

bounded volume:

ΛN ≡
{
x = (x1, . . . , xd) ∈ Rd :| xi |≤ N, i = 1, . . . , d

}
A configuration of particles for our system is simply an n dimensional vector of positions in

ΛN , i.e. x(n) = (x1, . . . , xn) such that xi ∈ ΛN , ∀i = 1, . . . , n, the collection of such vectors will

be indicated by X(n). The interactions between the particles are expressed in terms of a two

body, central, translational invariant potential

V : ΛN × ΛN → R
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i.e. V (x, y) ≡ Φ(| x − y |) whith Φ a lower bounded real valued function of compact support

on R+ and sufficiently smooth.

Moreover each particle i of position xi ∈ ΛN , possesses its momentum pi ∈ Rd, i = 1, . . . , n,

hence the phase space of the system is described by:

(p, x) ≡ ((p1, x1), . . . , (pn, xn)) (1.1)

The Hamiltonian of our system of particles reads:

H(n) ((p, x)) ≡
n∑
i=1

p2
i

2
+

1

2

n∑
i6=j=1

Φ(| xi − xj |) (1.2)

where:

| xji |≤ N and pi ∈ Rd ∀i = 1, . . . , n, j = 1, . . . , d

Then the Maxwell-Boltzmann ensemble partition function, for the inverse temperature param-

eter β = 1
T
> 0, is as follows:

Z
(n)
N (β) ≡

∫
(Rd×ΛN)

n

e−βH
(n)(p,x)dp1 · · · dpndx1 · · · dxn (1.3)

Performing the integral in (1.3) with respect to the momentum variables we get:

Z
(n)
N (β) =

(
2π

β

) dn
2
∫

Λn
N

e−βH
(n)(x)dx1 · · · dxn (1.4)

where:

H(n)(x) ≡ 1

2

n∑
i6=j=1

Φ (| xi − xj |)

and we made use of the well known n− dimensional Gaussian integral:(
β

2π

) dn
2
∫

Rdn

e−
βp2

2 dp1 · · · dpn = 1 ; p2 ≡
n∑
i=1

p2
i

In order to study the asymptotic behaviour of (1.4) as the temperature converges to zero,

namely β ↑ +∞, we will use the Laplace method1 for the asymptotics of integrals. For this

we need to control the Hessian of the Hamiltonian H(n) evaluated at the minima of H(n).

If the minima X1, . . . , Xm of H(n) are well separated then, applying the Laplace method of

asymptotics to (1.4), we have the following asymptotic formula for β →∞:

Z
(n)
N (β) �

m∑
j=1

e−βH(Xj)

∫
Λn

N

e−
β
2
〈(x−Xj),H |Xj

(x−Xj)〉dx1 · · · dxn (1.5)

1See e.g. Ch.4 of [dB81] or Ch.4 of this thesis.
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where if a(β) and b(β) are two real function of the parameter β then a(β) � b(β) stands

for limβ→∞
a(β)
b(β)

= const. Moreover H |Xj
denotes the dn−square Hessian matrix of the

Hamiltonian H(n) evaluated at the minimum point Xj and the error made is controlled by :∫
∆n

N

e−βR(Xj ;x)dx1 · · · dxn

where R(Xj;x) equals the tail of the expansion of H around the jth minimum point as shown2

in Ch.(4) Sec.(4.2).

Remark 1.2.1. We refer the reader to Sec.(1.2.1) for a more detailed and precise statement

of the asymptotics given in (1.5).

Remark 1.2.2. The problem of finding whether the Hamiltonian H(n) has a minimum at an

almost regular configuration actually constitutes the Crystal Problem. Taking into account the

surface effects we do not expect that the ground states of our systems in a bounded volume give

rise to absolutely regular configurations. Only in the Thermodynamic Limit, namely taking

N ↑ ∞ and n ↑ ∞ keeping the particle density ρ ≡ n
(2N)d fixed, we can expect this effect, for ρ

larger than a certain value ρcr.

In order to deal with the crystalline structures let us introduce the following definition:

Definition 1.2.1. Let {v1, . . . , vd : ∀ vi ∈ Rd,∀i = 1, . . . , d} be a set of d independent vectors

in Rd. An infinite Bravais lattice, with generators v1, . . . , vd, is defined as:

Ω∞ ≡ {
d∑

k=1

αkvk : αk ∈ Z, k = 1, . . . , d}

We denote the restriction of a Bravais lattice Ω∞ to a bounded set B ( Rd by ΩB, i.e.

ΩB ≡ Ω∞ ∩ B. According ΩΛN
≡ ΩN will denote the restriction of Ω∞ to the d−dimensional

hypercube of 2N−length edge. As seen before to the jth particle in the box ΛN there is

associated a d−dimensional vector xj which specifies its spatial position, therefore to the whole

set of particles in ΛN there is associated a vector x = (x1, . . . , xn), i.e. an element of the

previously defined space of configurations X(n). Using the vectors v1, . . . , vd which span the

space Ω∞ we can introduce the following equivalence relation in Rd:

∀(w1, w2) ∈ Rd × Rd ⇒ w1
Ω∼ w2↔∃z ∈ Zd : w1 + z = w2

Let us define
ΩN∼ to be the restriction of the equivalence relation

Ω∼ to ΩN . If a particle λ

in ΛN is spatially identified by the vector xλ, then using the equivalence relation
ΩN∼ , we can

think of it as being embedded in the convex envelope of:

S ≡

{
d∑

k=1

αivi : αi ∈ {0, 1}, i = 1, . . . , d

}
2See also e.g. Ch.(8) of [BH86] or Ch.(1) Sec.(2) of [Fed89]
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Thus we identify the d−dimensional position xλ of the particle λ ∈ ΛN by its representative in

S under the action of
ΩN∼ .

Remark 1.2.3. 3 In what follows we will assume that the number | ΩN | of crystalline points

equals the number n of particles {γi : i = 1, . . . , n} in the bounded box ΛN .

Using the previous equivalence relation
ΩN∼ we can define the displacement of a particle

λ ∈ ΛN , of position xλ, with respect to the grid designed by ΩN , by a vector yµ(λ) ≡ xλ−µ(λ),

where µ(λ) is a selected point of the lattice ΩN .

It follows that for each set of n particles (λ1 . . . , λn) ∈ ΛN , i.e. for each configuration

x = (x1, . . . , xn) ∈ X(n), there is associated a displacement configuration y(x) ≡ (y1, . . . , yn)

where, in order to semplify our notation, we denote by yj the displacement of the particle λj

from ΩN , i.e. according to previous definition:

yj ≡ yµ(λj) (1.6)

with | yi |≤ N for all i = 1, . . . , n. By Remark (1.2.3) we have that the previous correspondence,

via displacement coordinates, between particles λ ∈ ΛN and lattice points µ ∈ ΩN can be

realized in a one-to-one manner.

Hence we can write the energy function of the original systems of n-particles (λ1, . . . , λn)

of coordinates (x1, . . . , xn) as follows:

E(x) =
1

2

∑
µi,µj∈ΩN
µi 6=µj

V ((µi + yi)− (µj + yj)) (1.7)

where we have set xi = µi + yi, for all i = 1, . . . , n.

Let us define the Crystalline Energy Function as:

Ecr(ΩN) ≡ 1

2

∑
µi,µj∈ΩN
µi 6=µj

V (µi − µj) (1.8)

Then, for a fixed n-particle configuration x = (x1, . . . , xn) ∈ X(n) and making use of the above

definition for the displacement configuration y(x) = (y1, . . . , yn) such that xi = yi + µi for all

i = 1, . . . , n, we can express the Deviation Energy Function as:

Edev(ΩN | {yλ}λ∈ΩN
) ≡ E(x)− Ecr(ΩN) =

=
1

2

∑
µi,µj∈ΩN
µi 6=µj

V ((µi + yi)− (µj − yj))−
1

2

∑
µi,µj∈ΩN
µi 6=µj

V (µi − µj) (1.9)

We point out that Edev(ΩN | {yλ}λ∈ΩN
) expresses the energy deviation of the real configuration

x from the crystalline energy Ecr(ΩN) associated to the configuration ΩN .

3This is a standard and natural assumption in condensed matter theory, see e.g. [Zim72].
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We note that due to the periodicity of the Bravais lattice, the crystalline energy function

Ecr(ΩN), which is a function of d | ΩN | variables, actually depends only on the choice of the

set v ≡ (v1, . . . , vd) of d linear independent vectors which span Ω∞, i.e. on the following set of

cordinates:

ξ1 ≡ v1
1, ξ2 ≡ v2

1, . . . ξd = vd1 , . . . , ξd2−(d−1) ≡ v1
d, ξd2−(d−2) ≡ v2

d, . . . , ξd2 ≡ vdd

We shall then also write Ecr(ΩN)(v) for Ecr(ΩN). A crystalline configuration is a (local)

stationary minimum point for Ecr(ΩN) if and only if the following conditions are fulfilled:
∂ξ1E

(cr)
(
v1

1, . . . , v
d
d

)
= 0

∂ξ2E
(cr)
(
v1

1, . . . , v
d
d

)
= 0

...

∂ξd2E
(cr)
(
v1

1, . . . , v
d
d

)
= 0

(1.10)

and the Hessian matrix:

(H Ecr) (v) =

(
∂2E(cr)(v)

∂ξi∂ξj

)
i,j=1,...,d2

(1.11)

evaluated at the point
{
v1
i , . . . , v

d
i : i = 1, . . . , d

}
is positive definite.

Let us state the following Hypothesis:

(H1a) There exists a positive density value ρcr such that for ρ ≥ ρcr there exists a set of

d linear independent vectors v = (v1, . . . , vd) such that conditions (1.10) and (1.11) are

fulfilled, i.e. there exists a Bravais lattice solution of the minimizing problem for Ecr(ΩN).

Moreover there exists N0 s.t. this holds uniformly for all N > N0.

(H1b) The deviation energy Edev
(
ΩN , {yi}µi∈ΩN

)
has a local minimum in:

{yi = 0, i = 1, . . . , n, λ ∈ ΩN}

Remark 1.2.4. From (1.9) we have that {yi = 0, i = 1, . . . , n, λ ∈ ΩN} is a local minimum for

E. Condition (H1b) can be derived from the following condition for the displacement configua-

tion {yi}µi∈ΩN
:

1

2

∑
µi,µj∈ΩN
µi 6=µj

((yi − yj), (H Φ) (µi − µj) · (yi − yj)) > 0 (1.12)

where (H Φ) (λ) is the Hessian of Φ evaluated at the lattice point λ.

Remark 1.2.5. The discussion of the fullfillment of the Hypothesis is quite involved. For d = 1

we refer to [Rad87]. For d = 2, 3, . . . we refer to [Süt05, The06], see also [AeKH+89]. Here we

shall proceed by deducing conseguences of this hypothesis.
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Condition (1.12) can be used to deduce the existence of a functional integral representation

of the quantities of interest. For this reason let us define the following matrix:

AN(µi, µj) ≡

2
∑

µk∈ΩN ,µk 6=µi
(H Φ) (µi − µk) if µi = µj

−H Φ(µi − µj) if µi 6= µj
(1.13)

Since the potential V only depends on the distance then for all µi, µj ∈ ΩN we have that

Φ(µi − µj) = Φ(µj − µi) and the following equality holds:

1

2

∑
µi,µj∈ΩN

〈yµi
− yµj

, [H Φ(µi − µj)] · (yµi
− yµj

)〉 =
∑

λ,µ∈ΩN

〈yµi
, AN(λ, µ) · yµj

〉 (1.14)

Condition (1.12) implies that the matrix AN is strictly positive definite on the space Rdn,

where n ≡| ΩN |. Therefore it is possible to define the following zero-mean Gaussian measure on

the Borel σ−algebra of the subsets of Rdn, absolutely continuous with respect to the Lebesgue

measure dx on Rdn:

µ0
N(dx) ≡ z

(n)
N e−

1
2
〈x,C−1

N x〉dx (1.15)

where the elements the covariance matrix CN are defined as follows:

(CN(µi, µj))ij ≡ (AN(µi, µj))
−1
ij (1.16)

| CN | is the determinant of CN and for x = (x1, . . . , xn) we have defined:

z
(n)
N ≡

√
| CN |−1

(2π)dn
(1.17)

and:

〈x,C−1
N x〉 ≡

n∑
i=1

〈xi,
n∑
j=1

C−1
N (µi, µj)xj〉

In what follows we shall also denote the element (CN(µi, µj)i,j of the covariance matrix CN by

CN(µi − µj), for i, j = 1, . . . n

For all α = (α1, . . . , αn) ∈ Rdn, we have the following characteristic function associated to

µN0 :

µ̂0
N(α) =

∫
Rdn

ei
Pn

k=1〈αk,yk〉dµ0
N(y1, . . . , yn) = e−

1
2
〈CNα,α〉 (1.18)

Now let ΓN be the restriction to the ΛN of the dual lattice associated to the definition (1.2.1),

namely ΓN ≡ Γ ∩ ΛN . Then:

Γ ≡

{
d∑
i=1

βiwi : βi ∈ Z, i = 1, . . . , d

}
(1.19)

in such a way that:

〈vi, wj〉 = δij ; i, j = 1, . . . , d



1.2 The Finite Volume Case 8

Remark 1.2.6. For d = 3 the set Γ is generated by:

w1 ≡
v2 × v3

〈v1, v2 × v3〉
w2 ≡

v3 × v1

〈v1, v2 × v3〉
w3 ≡

v1 × v2

〈v1, v2 × v3〉

From the form of Γ given in (1.19), it follows that the dual group, i.e. the Brillouin zone,

associated to the Bravais lattice defined in Def.(1.2.1) reads:

Ω̂ ≡ Rd/Γ =

{
d∑
i=1

γiwi : γi ∈ [−1

2
,
1

2
)

}
(1.20)

Hence (1.14) can be rewritten as:∑
p∈Ω̂N
p6=0

ŷN(p)
(
ÂN(0)− ÂN(p)

)
ŷN(p) =

∑
µi,µj∈ΩN
µi 6=µj

〈yµi
, AN(µi, µj)yµj

〉 (1.21)

where we have defined the quantities:

ÂN(p) ≡
n∑
k=1

(H Φ) (µk)e
ip·µk ; ŷN(p) ≡

n∑
k=1

yke
ip·yk (1.22)

Using (1.22) we can state the following:

Proposition 1.2.1. Let {yi = 0 : i = 1, . . . , n} be the null displacement configuration with re-

spect to the points {µi : i = 1, . . . , n} of the lattice ΩN and suppose that it is a stationary point

for the deviation energy Ecr
ΩN

. Then it is a local minimum iff ÂN(0)−ÂN(p) is a strictly positive

definite matrix for all p ∈ ΩN .

Proof 1.2.1. The proposition follows from the Fourier representation of the left hand side

quantity in (1.14) made above in (1.21) and recalling that the condition (H1b) stated before can

be derived using (1.12).

�

As we have done in (1.16) it is possible to write the following representation for the inverse

matrices (AN(µi, µj))
−1 in terms of those defined in (1.22). For all µi, µj ∈ ΩN we have from

(1.16), (1.21) and (1.22) that:

CN(µi − µj) ≡ (AN)−1 (µi, µj) =
∑
p∈Ω̂N
p6=0

eip·(µi−µj)
(
ÂN(0)− ÂN(p)

)−1

(1.23)

Now it is possible to rewrite the Gaussian measure µ0
N defined in (1.15) as follows:

µ0
N(dy) = z

(n)
N e−

1
2
〈y,ANy〉dy (1.24)

where, as before, y = (y1, . . . , yn), 〈y, ANy〉 =
∑n

i,j=1〈yi, AN(µi, µj)yj〉 and | AN | denotes

the determinant of AN .
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Theorem 1.2.1. Let V be a pair-particle potential depending only on the distance between the

two particles and fulfilling the Hypotheses (H1). Then the canonical partition function Zn
N(β)

of a configuration-particles x = (x1, . . . , xn) ∈ ΛN at inverse temperature β with respect to the

minimum given by ΩN for E(x), reads as follows:

Zn
N(β) =

(
2π

β

) dn
2

Zcr
N · z(n)

N · Zdev
N (β) (1.25)

where we made use of the following definitions for the crystalline partition function:

Zcr
N ≡ e−βEcr

N (ΩN ) (1.26)

and for the deviation partition function:

Zdev
N (β) ≡

∫
Rdn

χN(y)e
−βR

�
ΩN |

n
yi√

β

o
i=1,...,n

�
dµ0

N(y) (1.27)

Here χN is the indicator function of the measurable set ΛN ≡
{
y ∈ Rdn | yi |≤ N

}
and:

R
(
ΩN | {yi}µi∈ΩN

)
≡ EN(x)− 1

2

n∑
i,j=1

(yi − yj,H Φ(µi − µj) · (yi − yj))− Ecr
N (ΩN)

the remainder of the Taylor expansions of the total energy of the configuration of particles x

around the local minimum ΩN .

Proof 1.2.2. By the Taylor expansion of Z
(n)
N (β) given by (1.4) around the minimizing con-

figuration given by the Bravais lattice defined in Def.(1.2.1) up to the second order, we have:

Zn
N(β) =

(
2π

β

) dn
2
∫

Λn
N

e−βE(cr)(ΩN )e−
β
2

Pn
i,j=1(yi−yj ,H Φ(µi−µj)·(yi−yj))e−βR(ΩN |{yi}µi∈ΩN

)dy1 · · · dyn

We use (1.14) in order to write Zn
N(β) in terms of (1.24) and then we perform the integration

with respect to the Gaussian measure, making also the following change of variables: yi 7→ yi√
β

for all i = 1, . . . , n in order to gain a β factor in front of the remainder.

�

Let us define the free energy density of our confined system, see e.g. [Rue99]:

PN(β) ≡ 1

β | ΛN |
lnZn

N(β) (1.28)

Using the result of theorem (1.2.1) we have:

βPN(β) =
dn

2
ln 2π − dn ln β + βP cr

N (ΩN | β) + βz̃N + βpN(β) (1.29)
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where we have defined the crystalline free energy density:

P cr
N (ΩN | β) =

1

β | ΛN |
ln
[
e−βEcr(ΩN )

]
= −Ecr(ΩN)

| ΛN |
(1.30)

and we have introduced the free energy density of non Gaussian fluctuations around ΩN as

follows:

pN(β) ≡ 1

β | ΛN |
ln

∫
Rdn

χN(y)e
−βR

�
ΩN |

n
yi√

β

o
µi∈ΩN

�
dµ0

N(y) (1.31)

We have also set:

z̃N ≡
1

2β

1

| ΛN |
ln z

(n)
N (1.32)

1.2.1. Detailed Laplace Method in the Finite Volume Case

Here we shall apply the results obtained below in Ch.(4) Sec.(4.2.1) to analyze the problem

introduced in Sec.(1.2) and give a more detailed version of the Laplace Method used to study

the behaviour, in the limit β →∞, of the partition function (1.4). This allows us, in particular,

to find the asymptotic formula (1.5). We shall thus consider the asymptotics of the following

integral:

I
(n)
N (β) ≡

∫
Λn

N

e−βH
(n)(x)dx1 · · · dxn (1.33)

where, as in Sec.(1.2),

H(n)(x) =
1

2

n∑
i6=j

Φ (| xi − xj |) (1.34)

when β →∞. The Crystal hypothesis implies that the absolute minimum of (1.34) is reached

at the point:

X0 ≡ (x1, . . . xn) = (µ1, . . . , µn)

i.e. when the particles (λ1, . . . , λn) sit on the vertices of ΩN . Since the point (µ1, . . . , µn) is in

the interior of the domain Λn
N we can apply the method of Ch.(4) Sec. (4.2.1), below. Then

the leading term of (1.33) when β →∞ is given by:

e−βH
(n)(X0)√

|H |x=X0|

(
2π

β

) dn
2

(1.35)

where H |x=X0 denotes the dn × dn-dimensional square Hessian matrix of the Hamiltonian

H(n) evaluated at the point X0, and | H |X0| its determinant.

Let us now assume that Φ ∈ C∞
0 , then it is possible to write the complete asymptotic expan-

sion of I
(n)
N (β) in inverse powers of β. Since H is strictly positive definite in a neighbourhood

of X0 there exists a dn× dn orthogonal matrix Q such that:

QTH Q = (α1, . . . , αdn) · Idn
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where α1, . . . , αdn are the strictly positive eigenvalues of H and Idn is the unit matrix in Rdn.

Now define the following change of coordinates:

(x−X0) = 〈Q · ((
√
α1, . . . ,

√
αdn) · Idn)t , z〉 (1.36)

where (α1, . . . , αdn) is dn − dimensional vector given by the eigenvalues αi, i = 1, . . . , dn.

Equation (1.36) implies that, near z = 0, we have:

f(z) ≡ H(n) (X0)−H(n)(x(z)) ∼ z2

2
(1.37)

If we take ξi = hi(z) ∀i = 1, . . . , dn such that:

hi = zi + o(| z |) for | z |→ 0 and i = 1, . . . , dn

with:
dn∑
i=1

h2
i (z) = 2f(z)

then (1.37) holds throughout ΛN and since ∇H(n) = 0 only at X0 then the Jacobian:

J(ξ) =
∂(x1, . . . , xdn)

∂(ξ1, . . . , ξdn)
(1.38)

is negative and finite throughout ΛN .

Let us defineG0(ξ) ≡ J(ξ), on the basis of Sec.(4.2.1) of Ch.(4), with the notations explained

there we have the following:

Theorem 1.2.2. The partition function integral (1.33) has the following asymptotic expansion

for β → +∞:

I
(n)
N (β) � e−βH

(n)(X0)

(
2π

β

) dn
2 ∑
j≥0

4j
ξG0 |ξ=0

((j!)2β)j
(1.39)

Here we have 40
ξG0 | ξ = 0 ≡ (|H |x=X0|)

− 1
2 . In particular:

I
(n)
N (β) =

(
2π

β

) dn
2 e−βH

(n)(X0)√
|H |x=X0|

+

−
(

2π

β

) dn
2
(

1

2

)
(|H |x=X0|)

− 1
2

[
−

dn∑
p,q,r,s=1

∂3d H(n)

∂xs∂xr∂xq
Bsq

]
x=X0

+O
(
| x−X0 |3

)
(1.40)

where the matrix B = (Bij)l,m=1,...dn is defined in such a way that:

Bij (Hij |x=X0) = δim

Remark 1.2.7. The result stated by (1.39) can be written in a more explicit manner expressing

the quantities 4j
ξG0 |ξ=0 in terms of the Hamiltonian function H(n) and G0. Nevertheless, in

the general case, it is not simple to explicitly determine the function G0(ξ).
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1.3. Finite Volume Cluster Expansion

In what follows we shall develop the rigorous Cluster Expansion for the partition function

defined in Sec. (1.2), analyze its behaviour in the low temperature regime and state some

remarks on the thermodynamic limit of the studied system.

In Sec. (1.2) we reduced the study of Z
(n)
N (β) to the analysis of the partition function

Zdev
N (β) which can be viewed as the partition function of a gas of dipoles sitting on the lattice

ΩN and interacting with each other via a potential determined by:

R

(
ΩN |

{
yi√
β

}
µi∈ΩN

)
=

∑
µi,µj∈ΩN

RΩN

(
µi − µj |

yi − yj√
β

)
(1.41)

where:

RΩN

(
µi − µj |

yi − yj√
β

)
≡ V

(
µi +

1√
β
yi − µj −

1√
β
yj

)
+

− V (µi − µj)−
1

2

(
yi − yj√

β
[(H Φ)(µi − µj)]

yi − yj√
β

) (1.42)

In order to study Zdev
N (β) we shall make the following hypothesis for the Taylor remainders

appearing in (1.42):

Hypotesis 1.3.1. There exists a family of complex measures
(
dλ

(N)
µi

)
µ∈ΩN

in Rd such that for

all µi − µj, whit(µi, µj) ∈ ΩN × ΩN , one has:

RΩN
(µi − µj x) =

∫
Rd

eiαxdλ
(N)
µi−µj

, x ∈ K (1.43)

where:

· K is a compact subser of Rd containing the ball of center 0 and radius R0 ∈ R+, where

Φ, as a function of the distance, has support in [0, R0]

· λ̄(N)
µ (α) = dλ

(N)
µ (−α), in order for RΩN

(µi − µj | x) to be a real quantity.

Remark 1.3.1. The measures λ
(N)
µi appearing in hypothesis (1.3.1) depend on the size of the

box ΛN . In using (1.41) and (1.43), we have to observe that the variables
{

yi√
β

}
µi∈ΩN

belong

to a compact set. This can be achieved for all β > β
(N)
0 , for some suitable β

(N)
0 > 0.

Remark 1.3.2. Assumption (1.3.1) is working one as first step. For a future study of the

thermodynamic limit it should be relaxed, e.g. by allowing λ to become general functions in

order to preserve the regularity and stability necessary for the existence of the thermodynamic

limit, see [Rue99].
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For all vectors (λi, λj, µi, µj, αi, αj) ∈ (ΩN)4 × R2, let us define the following quantities:

VN(αiλiµi | αjλjµj) ≡ αi (CN(λi − λj) + CN(µi − µj)− CN(λi − µj)− CN(µj − λi))αj

(1.44)

The following holds:

Proposition 1.3.1. For the partition function Zdev
N (β) defined in (1.27) the following absolutely

convergent expansion in powers of β holds:

Zd
N(β) =

∑
n≥0

(−β)n

n!

∑
µi,µj∈ΩN

∫
e−

1
β

P
1≤i<j≤n VN (αiλiµi|αjλjµj) ⊗n

l=1 dλ
(N)
µi−µj

(αl) (1.45)

Proof 1.3.1. By (1.22) , (1.23) and the definition of VN , we have the following formula:∫
ΛN

n∏
j=1

(
e

i√
β
αjyλj · e−

i√
β
αjyµj

)
µN0 (dy) = e−

1
β

P
1≤i<j≤n VN (αiλiµi|αjλjµj) (1.46)

On the other hand, by the assumption made in (1.3.1), we have an integral representation for

the remainders R
(
λ− µ | yi−yj√

β

)
as characteristic functions associated to the measures dλ

(N)
µi−µj

for all the crystalline points µi, µj ∈ ΩN and we obtain the desired expansion. Moreover from

the simple inequality: ∣∣∣µ0
N

(
ei
P

µ∈ΩN
αµyµ

)∣∣∣ ≤ 1 (1.47)

we obtain the following estimate:

Zdev
N (β) ≤ eβµ

∗
NDN (1.48)

where we have defined: µ∗N ≡ maxµ∈ΩN

{∫
R3 d | λ(N)

µ |
}
, and DN is the cardinality of the set

{µi, µj ∈ ΩN :| µi − µj |< R0}.

�

Using Prop.(1.3.1) we also obtain an upper bound for the dipole free energy density for all

β > β
(N)
0 :

pdN(β) ≡ D−1
N lnZdev

N ≤ βµ∗N (1.49)

1.3.1. Bounded Dipole Length Gas

From the estimate (1.49) it follows that if we want to control the free energy density in (1.31)

for large but finite N , we must control the following ratio:

lnZdev
N

| ΛN |
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Remark 1.3.3. Since our potential Φ has, by assumption, a compact support we can choose

a positive constant β
(N)
1 , i.e. a sufficiently small temperature T depending on N , such that if

β > β
(N)
1 and | µi − µj | is greater than a fixed positive constant R then:

RΩN

(
µi − µj |

yi − yj√
β

)
= 0

for all i, j = 1, . . . , n.

In what follows we always take β = β(N) ≥ max
{
β

(N)
0 , β

(N)
0

}
in order to satisfy the

conditions stated in Rem.(1.3.1) and Rem.(1.3.3).

By previous remark we restrict the admissible length of the dipoles by R and define the

following bounded partition function:

Zbd
N (β) ≡

∫
Rdn

e
Rµ

N

�
ΩN |

n
yµ√

β

o
µ∈ΩN

�
µ0
N(dy) (1.50)

where the restricted Taylor remainder Rµ
N is defined as follows:

Rµ
N

(
ΩN |

{
yµ√
β

}
µ∈ΩN

)
≡

∑
µi,µj∈ΩN

|µi−µj |≤R

RN

(
µi − µj |

{
µi − µj√

β

})
(1.51)

Now we would like to obtain the analogue of the result in proposition (1.3.1) for large but

finite N for the quantity Zbd
N (which can be viewed as a grand canonical partition function of a

system of dipoles of length bounded by R, defined on the lattice ΩN and in termal equilibrium

at the temperature T = β−1).

Let us define the following quantities:

DR
N(K) ≡ DR

N(1)× · · · ×DR
N(K) =

=
{
(α1, λ1, µ1), . . . (αK , λK , µK) | λi, µi ∈ ΩN , | µi − λi |< R,αi ∈ R3

} (1.52)

For ω ∈ DR
N(K) we define:

ω = ((α1, λ1, µ1), . . . (αn, λn, µn)) ≡ (α, λ, µ)n and (αi, λi, µi) ≡ d(i)∀(αi, λi, µi) ∈ DR
N(i)

(1.53)

We will also use the following notations:∫
dRN(i) ≡

∑
λi,µi∈ΩN
|λi−µi|<R

∫
dλ

(N)
λi−µi

(αi) and

∫
dRN(1, . . . , n) ≡

∫
dRN(n) · · ·

∫
dRN(1) (1.54)

Moreover we define:

EN ((α, λ, µ)n) ≡
∑

1≤i<j≤n

VN(αi, λi, µi | αjλjµj) (1.55)
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and:

EN ((α, λ, µ)n | (α′, λ′, µ′)m) ≡ EN ((α, λ, µ)n ∪ (α′, λ′, µ′)m)−EN ((α, λ, µ)n)−EN ((α′, λ′, µ′)m)

(1.56)

Using previous notations we can rewrite (1.50) as follows:

Zbd
N =

∑
n≥0

(−β)n

n!

∫
dRN(1, . . . , n)e−

1
β

EN (d(1),...,d(n)) (1.57)

1.3.2. Cluster Expansion

In this section we will follow [AeK73] in order to apply the method of the linked cluster

expansion for the free energy density for large but finite volume. Let us to define the set G N
n

of all n− linear graphs that can be built on the set DR
N(n) defined before. Let Γ ∈ G N

n , Γ be

characterized by a set of vertices V = V (Γ) and by a set of arcs A = A (Γ). For every point

(αi, λi, µi) of Γ define the following vertex function:

VN(i) ≡ e−
1
β
α2

i (CN (0)−CN (λi−µi)) (1.58)

From the positive defineteness of the covariance matrix CN it follows that CN(0)−CN(µ) ≥ 0

for all µ ∈ ΩN . From this and (1.58) we have the following estimate for the vertex contribution:∥∥∥∥∥∥
∏

i∈V (Γ)

VN(i)

∥∥∥∥∥∥ ≤ 1 (1.59)

Let Γ be an element of G N
n and let l ∈ A (Γ), l linking a starting point ls = (αls , λls , µls) to

an ending point le = (αle , λle , µle). Let us define the following arc function:

VN(l) ≡ VN(ls | le) (1.60)

Using definitions (1.58) and (1.60) we can compute the weight of a graph Γ ∈ G N
n as follows:

wnN(Γ) =
1

DR
N

∫
dRN(1) ·

∫
dRN(n)

∏
l∈A (Γ)

(
e−

1
β
VN (l)−1

) ∏
i∈V (Γ)

VN(i) (1.61)

while the weight of the entire set G N
n is:

w(G N
n ) =

∑
Γ∈G N

n

wnN(Γ) (1.62)

Using previous definitions one can state the following result:
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Proposition 1.3.2. For the bounded partition function Zbd
N defined by (1.50), the following

cluster expansion holds:

Zbd
N = e

P∞
n=1(−β)n·wn

N

where the series is absolute convergent.

Proof 1.3.2. Given an element Γ ∈ G N
n we define:

M (V (Γ)) ≡
∏

i,j∈V (Γ)

[
e−

1
β
VN (d(i)|d(j)) − 1

]
(1.63)

then, see [Rue99, AeK73], we have:

e−
1
β

EN (d(1),...,d(n)) =
n∏
i=1

VN(i)
∏

1≤i6=j≤n

e−
1
β
VN (d(i)|d(j)) =

=
n∏
i=1

VN(i)
∏

1≤i6=j≤n

([
e−

1
β
VN (d(i)|d(j)) − 1

]
+ 1
)

=

=
n∏
i=1

VN(i)
∑

Γ⊂{1,...,n}

M (d (i ∈ Γ))

Since by:

Zbd
N =

∑
n≥0

(−β)n

n!

∫
dRN(1, . . . , n)e−

1
β

EN (d(1),...,d(n))

we have then:

Zbd
N =

∑
n≥0

(−β)n

n!

∫
dRN(1, . . . , n)

n∏
i=1

VN(i)
∑

Γ⊂{1,...,n}

M (d (i ∈ Γ))

and computing the sum we obtain the result.

�

Now we are in a position to state the following result concerning the finiteness of the dipole

free energy density for large but finite N :

Theorem 1.3.1. Let n ∈ N, Γ ∈ G N
n and β ∈ R − {0}, then:

| wnN(Γ) |<∞ (1.64)

Proof 1.3.3. Let us firt recall some facts from Graph Theory. We are studying particular

graphs Γ ∈ G N
n which are undirected and simple trees, this means that given Γ ∈ G N

n for any

two vertices of Γ, they are connected by exactly one undirected simple, i.e. with no loop allowed,

path, moreover Γ is connected. We adopt the following definition of a spanning tree S (Γ) of

the graph Γ as the tree composed of all the vertices i ∈ V (Γ) and of a, not necessarly proper,
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subset of arcs of A (Γ). Hence we can construct S (Γ) selecting some edges of Γ in such a a

way that they form a sub-tree spanning every vertex of the original tree Γ. This means that,

for connected graphs Γ ∈ G n
N , a spanning tree can be defined as a minimal set of edges that

connect all vertices. If a tree is a connected graph then it admits a spanning tree, moreover the

Cayley’s formula tells us the number of these trees. Let Γ ∈ G n
N and S be one of its spanning

tree, then we define:

| A ′ |=| A ′(Γ) |≡ k + s

where k ≡| A (S ) | is the number of elements in A (S ) and s =| A ′ | −k (which equals the

number of edges in the subgraph Γ −S ). Then we can estimate the contribution to the total

weight wnN(Γ) coming from the arcs l /∈ S as follows:

sup
l

∥∥∥e 1
β
VN (l) − 1

∥∥∥ ≤ c · C1

β
| αls − αle | e

c·C2αls
αle

β (1.65)

where the c = c(d) is a positive constant and the quantities C1 and C2 are defined as follows:

C1 ≡ sup
N

(
sup
µ∈ΩN

‖CN(µ)‖
)

C2 ≡ sup
µ∈BR(0)

sup
{
| α |: α ∈ supp(dλ(N)

µ )
}

From this it follows:

| wNn (Γ) |≤ C3b
n
N (S (Γ)) (1.66)

where

C3 = C3(β) ≡ c

β
C1 · C2

2e
c·C1C2

2
β

Let us set Ĉ3 ≡ e
c·C1C2

2
β , then, recalling (1.61), we have:

wnN(S (Γ)) ≤ Ĉn−1
3

| DR
N(1) |

∫
| dRN(1, . . . , n) |

n−1∏
i=1

‖VN(d(i) | d(i+ 1)‖ (1.67)

Let ρ ∈ ΩN then the following holds

VN((αi, λi + ρ, µi + ρ) | (αj, λj + ρ, µj + ρ) =

= αi(CN((λi + ρ)− (λj + ρ)) + CN((µi + ρ)− (µj + ρ))+

− CN((λi + ρ)− (µj + ρ))− CN((µj + ρ)− (λi + ρ)))αj =

= VN(αiλiµi | αjλjµj)
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Hence for a fixed size N the quantity on the right hand side of (1.67) is bounded by:

c(β−1)
∑

λ1∈BR(0)

∑
λ2,µ2∈ΩN
|λ2−µ2|≤R

· · ·
∑

λn,µn∈ΩN
|λn−µn|≤R

∫
d | λλj−µj

| (αj) · · ·
∫
d | λλn−µn | (αn)×

×
n−1∏
j=1

‖VN(αj, λj, µj | αj+1λj+1µj+1)‖ ≤

≤ ĉ(β−1)
∑

λ1∈BR(0)

∑
λ2,µ2∈ΩN
|λ2−µ2|≤R

(IN(α1, λ1, 0, α2, λ2, µ2))
n−1

where c(β−1), ĉ(β−1) are constants depending on β−1 and possibly on R,

IN(α1, λ1, µ1, α2, λ2, µ2) ≡
∫
VN(α1, λ1, µ1 | α2, λ2, µ2)d | λ(N)

λ1
| (α1)d | λλ2−µ2 | (α2)

and the statement of the theorem follows.

�

1.3.3. Towards Zero Temperature in the Finite Volume

In what follows we will use the result obtained in theorem (1.3.1) in order to study the behaviour

of the weights wnN(Γ), i.e. the virial coefficients, when the temperature approaches zero, i.e. in

the limit β →∞.

Theorem 1.3.2. Under the hypothesis of theorem (1.3.1) we have:

lim
β→∞

wnN(β) = 0 and lim
β→∞

dkwnN(β)

dk
(
− 1
β

) = 0

Proof 1.3.4. From theorem (1.3.1) and exploiting the translational invariance property of the

potential we can assume that the graphs Γ always have at least one of their vertices located at

some point (0, λ) ≡ (0, 0, λ) providing λ ∈ BR(0), hence:

wnN(Γ) =
∑

µ1∈BR(0),(0,µ1)∈V (Γ)

∫
dλ(N)

µ1
(α1) · · ·

∏
l∈L (Γ)

[
e−

1
β
VN (l) − 1

]
·
∏

i∈V (Γ)

V (i) (1.68)

From this it follows that, for a given graph Γ, wnN(Γ) is an analytic function of the temperature

T = 1
β

for β 6= 0 and that limβ→∞wnN(Γ) = 0. Hence, for every graph Γ, we can perform the
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following Taylor expansion:

dkwnN(Γ)

d
(
− 1
β

)k =
∑

k1,...,k|L (Γ)|

∑
rj ,...,r|V (Γ)|︸ ︷︷ ︸P|L (Γ)|

i=1 ki+
P|V (Γ)|

j=1 rj=k


(
− 1
β

)P|L (Γ)|
i=1 ki+

P|V (Γ)|
j=1 rj−1

∏|L (Γ)
i=1 | ki!

∏|V (Γ)|
j=1 rj!

 =

=
∑

µ1∈BR(0)

(0,µ1)∈L (Γ)

∫
dλ(N)

µ1
· · ·

|L (Γ)|∏
l=1

VN(l)ki

|V (Γ)|∏
j=1

VN(j)rj×

×
∏

l∈L (Γ)

e−
1
β
VN (l)−(1−θ(kl))

∏
i∈V (Γ)

V (i)

(1.69)

Since the number of restricted graphs that we are considering is finite we have then:

lim
β→∞

dkwnN(Γ)

d
(
− 1
β

)k = 0 (1.70)

�

Now we would like to study the cluster expansion for the free energy density of non Gaussian

fluctuations around the crystalline structure for large but finite N . We have to control the

behaviour of the cluster expansion of the quantity pN(β) defined by (1.31):

For any given couple of points (αi, λi, µi), (αj, λj, µj) we have that for a given n − linear

graph Γ = (α, λ, µ)n the energy EN((α, λ, µ)n) defined by Eq. (1.55) can be written as follows:

EN((α, λ, µ)n) =
∑

1≤i6=j≤n

αi(CN(λi − λj) + CN(µi − µj)+

− CN(λi − µj)− CN(µj − λi))αj

for every sets (α, λ, µ)n, (α
′, λ′, µ′)m

Now consider a vector γ ∈ [0, 1]n−1 and let us recursively define the following sequence of

energies:

E 0
N((α, λ, µ)n) ≡ EN((α, λ, µ)n)

E i
N((α, λ, µ)n) ≡ (1− si)EN((α, λ, µ)n | (αi, λi, µi)) + siE

i−1
N ((α, λ, µ)n)

E n−1
N ((α, λ, µ)n) ≡ E n

N((s)n−1)

(1.71)

Then the following theorem holds:

Theorem 1.3.3. By (1.3.1) the free energy density pN(β) has a convergent expansion in terms

of the weights wnN(β).
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Proof 1.3.5. Let us consider the following set of functions:

Fn ≡ {η : {1, . . . , n} → {1, . . . , n} : η(i) ≤ i, ∀i = 1, . . . , n} (1.72)

For any couple: (η, (s)n−1) ∈ Fn × [0, 1]n−1 and any n ≥ 1 let us define the function:

f(η, (s)n−1) =
n−1∏
i=2

si−1si−2 · · · sη(i) (1.73)

with f(η, s1) ≡ 1. Then the virial coefficient wnN = wnN(β) can be rewritten as follows:

wnN(β) =
1

(−β)n−1

∑
η∈Fn

∫
d(s)n−1

∫
dRN(α, λ, µ)nf(η, (s)n−1×

×
n−1∏
i=1

(d(i+ 1) | d(η(i)))e−
1
β

E n
N ((s)n−1)

where we have defined:∫
dRN(α, λ, µ)n =

∑
µ1∈BR(0)

∫
dλ(N)

µ1
(α1)

∑
λ2,µ2∈ΩN
|λ2−µ2|<R

∫
dλ

(N)
λ2−µ1

The definition (1.71) leads to a convex sums of energies, hence, at every step of the induction,

we have an energy function which is positive definite and then also the final one maintains this

property. From, e.g. [BF78] one can deduce:∑
η∈Fn

∫
d(s)n−1f(η, (s)n−1) ≤ en−1

Using this and Th. (1.3.3) we obtain the following bound on the coefficient wnN(β):

| wnN(β) | ≤ ·en−1

nβn−1
×

×

∥∥∥∥∥∥∥∥ sup
µ∈BR(0)

(∫
d | λµ(α) || α |

) ∑
λ′,µ′∈ΩN
|λ′−µ′|<R

∫
d | λλ′−µ′(α′) | α′ |

∥∥∥V̂N(0, λ | λ′, µ′)
∥∥∥
∥∥∥∥∥∥∥∥
n−1

where we used the notation in (1.44). Recalling the definition in (1.71), we have obtained the

desired expansion of the free energy density pN(β) which can be rewritten as follows:

pN(β) = (−β)
∑
n≥1

1

n

∑
η∈F

∫
d(s)n−1

∫
dRN(α, λ, µ)nf(η, (s)n−1)×

×
n−1∏
i=1

EN (d(i+ 1) | d(η(i)) e−
1
β

E n
N [(s)n−1]

(1.74)

as an absolutely convergent series for any β > 0 �.
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Remark 1.3.4. We would like to underline that it is possible to control the limit for N → +∞
of z̃N .

Let us start recalling the definition of the infinitely extended lattice. Let {v1, v2, v3 : vi ∈ Rd}
be a set of d independent vectors in Rd, then an infinite Bravais lattice is defined as:

Ω∞ ≡ {
d∑

k=1

αkvk : αk ∈ Z, k = 1, . . . , d}

then we define the infinite dual lattice Γ∞ and the associated Brillouin zones Ω̂∞ ≡ Rd/Γ∞.

Let us set for all p ∈ Ω̂∞:

Â∞(p) ≡
∑

µ∈Ω∞,µ 6=0

[H Φ](µ)eip·µ (1.75)

Since H Φ(·) has compact support, then Â∞(p) is a well defined quantity, in fact it is the limit

of ÂN(p) when N → +∞. We can then go to the limit for N → +∞ in the formula (1.21)

and get

1

2

∑
µi,µj∈Ω∞
µi 6=µj

(yi − yj, [H Φ(µi − µj)](yi − yj)) =

∫
Ω̂∞

ŷ(p)
(
Â∞(0)− Â∞(p)

)
ŷ(p)dp (1.76)

where ŷN(p) ≡
∑

µ∈Ω∞
yµe

ip·µ which is well defined for all L2(Ω∞) functions y of compact

support.

Since:

z̃N =
1

2β | ΛN |
ln

∣∣∣∣ 1

2π
AN(µi, µj)µi,µj∈ΩN

∣∣∣∣ =
1

2β | ΛN |
∑
p∈Ω̂N

tr ln
(
ÂN(0)− ÂN(p)

)
then if:

lim
N→+∞

∑
p∈Ω̂N

tr ln
(
ÂN(0)− ÂN(p)

)
(1.77)

exists then it would be given by: ∫
Rd

trln
[
Â∞ − Â∞(p)

]
dp (1.78)

and we would have the formula:

z̃N
N→∞→ 1

2β | ΛN |

∫
Λ̂

trln
[
Â∞ − Â∞(p)

]
dp (1.79)

.

Remark 1.3.5. The limit (1.77) exists and is given by (1.78), and hence (1.79) holds, e.g. if

ÂN(0)− ÂN(p) ≥ cp2 for all | p | sufficiently small, and some constant c independent of N . At

least for any fixed N , this bound is easily seen to hold, on the basis of our assumption on Φ.



CHAPTER 2

The Feynman-Vernon influence functional

2.1. Introduction

In what follows we will give a rigorous representation of the Feynman-Vernon influence func-

tional used to describe open quantum systems. It is based on the theory of infinite dimensional

oscillatory integrals, see Ch. (7). This allows us to rigorously describe the density matrices

characterizing the well known Caldeira-Leggett model of two quantum systems with a quadratic

interaction. Once this rigorous description is achieved we can use, in principle, the techniques

developed in Ch.(7) in order to obtain asymptotic expansion of the infinite dimensional integrals

occurring in the Caldeira-Legget model.

2.1.1. Open Quantum Systems

One of the crucial problems of modern physics consists in understanding the behaviour of an

open quantum system, i.e. of a quantum system coupled with a second system often called

reservoir or enviroment. One is interested in the dynamics of the first system, taking into

account the influence of the enviroment on it. A typical example is the study of a quantum

particle submitted to the measurement of an observable. In fact, from a quantum mechanical

point of view, the interaction with the measuring apparatus cannot be neglected and modifies

the dynamics of the particle. On the other hand the evolution of the measuring instrument is

not of primary interest.

A particularly intriguing approach to this problem was proposed in 1963 by Feynman and

Vernon ( see [FH65, FV63]) within the path integral formulation of quantum mechanics. In

1942 R.P. Feynman [Fey42], see also [Bro05], following a suggestion by Dirac (see [Dir33, Dir47],

proposed an alternative (Lagrangian) formulation of quantum mechanics (published in [Fey48]),

that is an heuristic, but very suggestive representation for the solution of the Schrödinger
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equation {
i~ ∂

∂t
ψ = − ~2

2M
∆ψ + V ψ

ψ(0, x) = ψ0(x)
(2.1)

describing the time evolution of the state ψ of a d−dimensional quantum particle. The pa-

rameter ~ is the reduced Planck constant, m > 0 is the mass of the particle and F = −∇V is

an external force. According to Feynman’s proposal the wave function of the system at time

t evaluated at the point x ∈ Rd is heuristically given as an “integral over histories”, or as an

integral over all possible paths γ in the configuration space of the system with finite energy

passing in the point x at time t:

ψ(t, x) = “

 ∫
{γ|γ(t)=x}

e
i
~S

◦
t (γ)Dγ


−1 ∫
{γ|γ(t)=x}

e
i
~St(γ)ψ0(γ(0))Dγ ” (2.2)

where St(γ) is the classical action of the system evaluated along the path γ, i.e. :

St(γ) ≡ S◦t (γ)−
t∫

0

V (γ(s))ds, (2.3)

S◦t (γ) ≡
M

2

t∫
0

|γ̇(s)|2ds, (2.4)

Dγ is an heuristic Lebesgue “flat” measure on the space of paths and:

(

∫
{γ|γ(t)=x}

e
i
~S

◦
t (γ)Dγ)−1

is a normalization constant.

Feynman and Vernon (see [FH65, FV63]) generalized this idea to the study of the time

evolution of the reduced density operator of a system in interaction with an enviroment. Let

denote ρA, ρB, respectively, the initial density matrices of the system and of the enviroment,

SA, SB, respectively, the action functionals of the system and of the enviroment and SI the

contribution to the total action due to the interaction. Then the kernel of the reduced den-

sity operator of the system ρR (obtained by tracing over the environmental coordinates) is

heuristically given by:

ρR(t, x, y) = “

∫
γ(t)=x
γ′(t)=y

e
i
~ (SA(γ)−SA(γ′))F (γ, γ′)ρA(γ(0), γ′(0))DγDγ′ ” (2.5)
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where F is the formal influence functional (IF):

F (γ, γ′) = “

∫
Γ(t)=Q
Γ′(t)=Q

e
i
~ (SB(Γ)−SB(Γ′))e

i
~ (SI(Γ,γ)−SI(Γ′,γ′))×

× ρB(Γ(0),Γ′(0))DΓDΓ′dQ”

(2.6)

The number of spin-offs originated by the seminal work [FV63] is so large that it is nearly

impossible to give here a complete list, and we limit ourselves to shortly mention some of

them.

Probably the most influential contributions can be found in [CL83a, CL83b], where Caldeira

and Leggett applied the heuristic IF method in order to study the quantum Brownian motion

(QBM), i.e. the analogous of the classical Brownian motion but for a quantum particle, and

the tunneling phenomenon in dissipative systems. Latter papers triggered a chain-reaction

which is actually far from its end. In [Leg84] (see also [CL81, Cal83]) Leggett determined the

imaginary-time functional which supplies the tunnelling rate form of a metastable state at zero

temperature, in a formal WKB limit, in presence of an arbitrary linear dissipation mechanism.

In [CL85] an explicit calculation of the time-dependent density matrix is given describing the

damping on quantum interference between two Gaussian wave packets in a harmonic potential

and the obtained results are in agreement with the quantum theory of measurement, see e.g.

[Zur82].

In [HA85] the decoupled particle-bath initial condition previously used, was compared with

the initial off-diagonal coherence of the reduced density matrix, constituting the thermal initial

condition.

A wide-range use of the IF approach was given in [LCD+87] where the authors on the

basis of their previous experiences managed to give a deep view to the dynamics of a two-state

system coupled to a dissipative environment.

In [CH87] an application of the IF formalism was given in order to study the reduced

density operator of a particle coupled with a fermionic environment. Similar applications may

be found in [Sch82, Gui84, Che87, Zwe87, BSZ92], where the fluctuations in the motion of

a heavy particle interacting with a free fermion gas are studied, providing various type of

classical and semiclassical expansion either with and without weak-potential or linear response

assumptions.

Chen’ s approach was extended in the case of a boson bath in [CLL89].

The heuristic IF approach was generalized in [SC87, SC90] to a nonfactorizable initial

system-plus-reservoir density operator without specific symmetry assumptions.

Since heterogeneous problems related to macroscopic effects in quantum system require

extensions to the QBM theory, following [CL83a] various attempts to derive a master-equation

(ME) were made in order to include general initial conditions and nonlinear couplings. The
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ME for linear coupling and ohmic environment at high temperature found in [CL83a] was

first extended to arbitrary temperature in [UZ89] and afterwards obtained for more general

environments and nonlocal couplings, which produce colored noise and nonlocal dissipation,

see [GSI88, HPZ92, Bru93, HPZ93, BG03] and references therein.

A complementary use of the IF approach to the description of Markovian open quantum

systems can be found in [Str97], where the IF method is used in order to develop the ME of

general Lindblad positive-semigroup (see [Lin76]) and the propagator in a formal stationary

phase approximation is calculated.

The derivation of the ME for the reduced dynamics of quantum system have gained a lot of

contributions by the use of mathematical respectively physical path integrals (PI) techniques

(see e.g. [Exn85, JL02] respectively [Wei99, BP02, Kle04, GZ04] and references therein).

The IF formalism was also used in a parametric random matrices approach to the problem of

dissipation in many-body systems, see e.g. [BDK95, BDK96, BDK97, BDK98] and references

therein, where the derived form of the IF differs from the one in [CL83a] and recovers the latter

as the first term of its formal Taylor expansion.

The emerging theory of Quantum Computation is another field of application of the IF

method since the implementation of real quantum processors is often hampered by the quantum

decoherence phenomenon, see e.g. [Deu89, Unr95, BDE95, DS98, PZ99, GJZ+03, SH04] and

references therein.

Despite the broad range of its applications, a rigorous mathematical construction of the IF is

still missing.

Our aim is to fill this gap following the ideas introduced in [AHK76, AHK77] in connection

with the rigorous mathematical definition of Feynman path integrals (2.2) and in order to

realize formulae (2.5) and (2.6) as well defined infinite dimensional oscillatory integrals on a

suitable Hilbert space.

Before we go over to a short description of our present work we would like to outline that there

are rigorous works on models of particles in interaction with heat bath not based on the IF

approach, e.g. see [Dav73, CEFM00] and references therein.

In Sec. (2.2) we recall some known results, extend the definition of infinite dimensional oscil-

latory integrals and prove some important properties, for more details see Ch (7), [AGM03,

AGM04, AM05b, AM05a, AM04b, AM04c, AM04a] and references therein.

In Sec. (2.3) the new functional integral is used in the study of the time evolution of two

linearly interacting quantum systems. A mathematical formalization of the Feynman-Vernon’s

theory of the IF is given in Sec. (2.4). The main results in this section are Theorems (2.3.3)

and (2.3.4) where a conseguence of the Rem.(2.4.1) is used in order to prove the integrability

of certain function. The last part is devoted to the study of the Caldeira-Leggett model, see
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[CL83a], in the case of a finite dimensional heat bath.

2.2. Fresnel Integrals

In the following we shall denote by H a (finite or infinite dimensional) real separable Hilbert

space, whose elements will be denoted by x, y ∈ H and the scalar product with 〈x, y〉. The

function f : H → C will be a function on H and L : D(L) ⊆ H → H an invertible, densely

defined and self-adjoint operator.

Let us denote by M(H) the Banach space of the complex bounded variation measures on H,

endowed with the total variation norm, that is:

µ ∈M(H), ‖µ‖ = sup
∑
i

|µ(Ei)|,

where the supremum is taken over all sequences {Ei} of pairwise disjoint Borel subsets of H,

such that ∪iEi = H. M(H) is a Banach algebra, where the product of two measures µ ∗ ν is

by definition their convolution:

µ ∗ ν(E) =

∫
H

µ(E − x)ν(dx), µ, ν ∈M(H)

and the unit element is the vector δ0.

Let F(H) be the space of complex functions on H which are Fourier transforms of measures

belonging to M(H), that is:

f : H → C f(x) =

∫
H

ei〈x,β〉µf (dβ) ≡ µ̂f (x).

F(H) is a Banach algebra of functions, where the product is the pointwise one; the unit element

is the function 1, i.e. 1(x) = 1 ∀x ∈ H and the norm is given by ‖f‖ = ‖µf‖.
The study of oscillatory integrals on Rn with quadratic phase functions, i.e. the ”Fresnel

integrals”, ∫
e

i
2~ 〈x,x〉f(x)dx, ~ > 0, (2.7)

is a largely developed topic, and has strong connections with several problems in mathemat-

ics, e.g. in the theory of Fourier integral operators, and physics, e.g. in optics. Following

Hörmander, the integral in (2.7) can be defined even if f(H) is not summable by exploiting the

cancellations due to the oscillatory behavior of the integrand, by means of a limiting procedure.

More precisely the Fresnel integrals can be defined as the limit of a sequence of regularized,

hence absolutely convergent, Lebesgue integrals.
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Definition 1. A function f : Rn → C is Fresnel integrable if and only if for each φ ∈ S(Rn)

such that φ(0) = 1 the limit

lim
ε→0

(2πi~)−n/2
∫
e

i
2~ 〈x,x〉f(x)φ(εx)dx (2.8)

exists and is independent of φ. In this case the limit is called the Fresnel integral of f and

denoted by ∫̃
e

i
2~ 〈x,x〉f(x)dx (2.9)

In [ET84] this definition was generalized to the case Rn is replaced by an infinite dimensional

real separable Hilbert space H. In fact an infinite dimensional Fresnel integral can be defined

as the limit of a sequence of finite dimensional approximations:

Definition 2. Let (H, 〈 , 〉) be a real separable (infinite dimensional) Hilbert space. A function

f : H → C is Fresnel integrable if and only if for any sequence {Pn}n∈N of projectors onto n-

dimensional subspaces of H, such that Pn ≤ Pn+1 and Pn → 1 strongly as n→∞ (1 being the

identity operator in H), the finite dimensional approximations

(2πi~)−n/2
∫
PnH

e
i

2~ 〈Pnx,Pnx〉f(Pnx)d(Pnx),

are well defined (in the sense of definition 1) and the limit

lim
n→∞

(2πi~)−n/2
∫
PnH

e
i

2~ 〈Pnx,Pnx〉f(Pnx)d(Pnx) (2.10)

exists and is independent of the sequence {Pn}.
In this case the limit is called the Fresnel integral of f and is denoted by:∫̃

e
i

2~ 〈x,x〉f(x)dx.

Let us recall the following theorem:

Theorem 2.2.1. (Parseval Identity) Let L : H → H be a self adjoint trace-class operator,

such that (I − L) is invertible. Let y ∈ H and let f : H → C be the Fourier transform of a

complex bounded variation measure µf on H. Then the function e−
i

2~ 〈x,Lx〉ei〈x,y〉f(x) is Fresnel

integrable and the corresponding Fresnel integral can be explicitly computed in terms of a well

defined absolutely convergent integral with respect to a σ−additive measure µf , by means of the

following Parseval-type equality:∫̃
e

i
2~ 〈x,x〉e−

i
2~ 〈x,Lx〉ei〈x,y〉f(x)dx =

= (det(I − L))−1/2

∫
H

e−
i~
2
〈α+y,(I−L)−1(α+y)〉µf (dα)

(2.11)
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where det(I−L) = | det(I−L)|e−πi Ind (I−L) is the Fredholm determinant of the operator (I−L),

| det(I − L)| its absolute value and Ind((I − L)) is the number of negative eigenvalues of the

operator (I − L), counted with their multiplicity.

Proof 2.2.1. The result follows directly by theorem 2.1 in [AB93], see also [ET84], which

states that for g ∈ F(H)∫̃
e

i
2~ 〈x,x〉e−

i
2~ 〈x,Lx〉g(x)dx =

1√
det(I − L)

∫
H

e−
i~
2
〈α,(I−L)−1(α)〉µg(dα)

By taking µg ≡ δy ∗ µf the conclusion follows.

�

By expression (7.3) the following result follows easily:

Corollary 1. Under the assumptions of theorem 2.2.1, the functional

f ∈ F(H) 7→
∫̃
e

i
2~ 〈x,(I−L)x〉ei〈x,y〉f(x)dx

is continuous in the F(H)-norm.

Let us introduce now a new type of infinite dimensional oscillatory integrals on the product

space H ×H that will be applied in the next section to the time evolution of open quantum

systems.

Definition 3. Let f : H ×H → C. If for any sequence Pn of projectors onto n-dimensional

subspaces of H, such that Pn ≤ Pn+1 and Pn → 1 strongly as n → ∞ (1 being the identity

operator in H), the finite dimensional oscillatory integrals

1

(2π~)n

∫
PnH

∫
PnH

e
i

2~ 〈Pnx,Pnx〉e−
i

2~ 〈Pny,Pny〉f(Pnx, Pny)d(Pnx)d(Pny),

are well defined and the limit

1

(2π~)n

∫
PnH

∫
PnH

e
i

2~ 〈Pnx,Pnx〉e−
i

2~ 〈Pny,Pny〉f(Pnx, Pny)d(Pnx)d(Pny) (2.12)

exists and is independent of the sequence {Pn}, then it is denoted by:∫̃ ∫̃
e

i
2~ 〈x,x〉e−

i
2~ 〈y,y〉f(x, y)dxdy.

It is possible to prove a result analogous to theorem 2.2.1
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Theorem 2.2.2. Let L : H → H be a trace class operator, such that I − L is invertible. Let

f : H×H → C be the Fourier transform of a complex bounded variation measure µf on H×H.

Then the integral ∫̃ ∫̃
e

i
2~ 〈x,x〉e−

i
2~ 〈y,y〉e−

i
2~ 〈x−y,L(x+y)〉f(x, y)dxdy

is well defined and is equal to:

1

det(I − L)

∫
H

∫
H

e−
i~
2
〈α+β,(I−L)−1(α−β)〉dµf (α, β) (2.13)

where det(I − L) is the Fredholm determinant of the operator (I − L)

Proof 2.2.2. By definition, taking a sequence Pn of projectors onto n-dimensional subspaces

of H, such that Pn ≤ Pn+1 and Pn → 1 strongly as n→∞∫̃ ∫̃
e

i
2~ 〈x,x〉e−

i
2~ 〈y,y〉e−

i
2~ 〈x−y,L(x+y)〉f(x, y)dxdy =

= lim
n→∞

1

(2π~)n

∫
PnH

∫
PnH

e
i

2~ 〈xn−yn,(In−Ln)(xn+yn)〉f(xn, yn)dxndyn

where xn ≡ Pnx, x ∈ H, In − Ln ≡ I|PnH − PnLPn. On the other hand, the finite dimensional

approximations are defined by the following sequence of regularized integrals:

1

(2π~)n

∫
PnH

∫
PnH

e
i

2~ 〈xn−yn,(In−Ln)(xn+yn)〉f(xn, yn)dxndyn =

= lim
ε→0

1

(2π~)n

∫
PnH

∫
PnH

e
i

2~ 〈xn−yn,(In−Ln)(xn+yn)〉φ(εx, εy)f(xn, yn)dxndyn

with φ ∈ S(Rn × Rn), φ(0) = 1.

By introducing the new variables zn ≡ xn − yn, wn ≡ xn + yn, by taking n ≥ n̄ and by Fubini

theorem, the latter is equal to:

lim
ε→0

1

(4π~)n

∫
PnH

∫
PnH

( ∫
PnH

∫
PnH

ei〈α,
z+w

2
〉+i〈β,w−z

2
〉×

× e
i

2~ 〈zn,(In−Ln)wn〉φ
(
ε
z + w

2
, ε
w − z

2

)
dzndwn

)
dµn(α, β) = lim

ε→0

det(In − Ln)
−1

(2π)2n
×

×
∫
PnH

∫
PnH

 ∫
PnH

∫
PnH

e
−i~
2
〈α+β−2εγ,(In−Ln)−1(α−β−2εδ)〉φ̃T (γn, δn)dγndδn

 dµn(α, β)

where µn ∈ F(PnH× PnH) is defined by:∫
PnH

φ(xn, yn)dµn(xn, yn) ≡
∫
H

χPnH(x, y)φ(Pnx, Pny)dµ(x, y)
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and φT ∈ S(PnH× PnH) is defined by:

φT (zn, wn) ≡ φ

(
zn + wn

2
,
wn − zn

2

)
In the above calculation we have used the fact that if (I−L) is invertible which implies that, for

any sequence {Pn}n∈N of projection operators on H, there exist an n̄ such that for any n ≥ n̄

the operator Pn(I − L)Pn is invertible. Therefore by taking n sufficiently large we have that

det(In − Ln) 6= 0. By applying Lebesgue’s dominated convergence theorem, and by the equality∫
PnH

∫
PnH

φ̃T (γn, δn)dγndδn = (2π)2nφT (0, 0),

the latter is equal to:

det(In − Ln)
−1

∫
PnH

∫
PnH

e−
i~
2
〈α+β,(In−Ln)−1(α−β)〉dµn(α, β)

By taking the limit n → ∞ and by the convergence of det(In − Ln) to det(I − L), we get the

final result

�

By expression (2.13) the next result follows easily:

Corollary 2. Under the assumptions of theorem 2.2.2, the functional

f ∈ F(H×H) 7→
∫̃ ∫̃

e
i

2~ 〈x,x〉e−
i

2~ 〈y,y〉e−i〈x−y,L(x+y)〉f(x, y)dxdy

is continuous in the F(H×H)-norm.

It is possible to prove the following Fubini type theorem on the change of order of integration

between oscillatory integrals and Lebesgue integrals.

Let {µα : α ∈ Rd} be a family in M(H). We shall let
∫

Rd µαdα denote the measure defined

by

φ 7→
∫
Rd

∫
H

φ(x)dµα(x)dα

whenever it exists.

Theorem 2.2.3. Let (H, 〈 〉) and L : H → H as in the assumptions of theorem 2.2.2. Let

µ : Rd →M(H×H), α 7→ µα, be a continuous map such that∫
Rd

|µα|dα <∞.
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Let fα(x, y) = µ̂α(x, y), (x, y) ∈ H ×H. Then
∫

Rd fαdα ∈ F(H×H) and

∫
Rd

∫̃
H

∫̃
H

e
i

2~ 〈x,x〉e−
i

2~ 〈y,y〉e−
i

2~ 〈x−y,L(x+y)〉fα(x, y)dxdydα

=

∫̃
H

∫̃
H

e
i

2~ 〈x,x〉e−
i

2~ 〈y,y〉e−
i

2~ 〈x−y,L(x+y)〉
∫
Rd

fα(x)dαdxdy (2.14)

Proof 2.2.3. By definition of fα∫
Rd

fαdα =

∫
Rd

∫
H×H

ei〈k,x〉+i〈h,y〉dµα(k, h)dα =

∫
H×H

ei〈k,x〉+i〈h,y〉
∫
Rd

dµα(k, h)dα,

so that
∫

Rd fαdα ∈ F(H).

By applying theorem 2.2.2 to the l.h.s. of (2.14), we have:

∫
Rd

∫̃
H

∫̃
H

e
i

2~ 〈x,x〉e−
i

2~ 〈y,y〉e−
i

2~ 〈x−y,L(x+y)〉fα(x, y)dxdydα

= det(I − L)−1

∫
Rd

∫
H

∫
H

e−
i~
2
〈k+h,(I−L)−1(k−h)〉dµα(k, h)dα

By the usual Fubini theorem the latter is equal to:

det(I − L)−1

∫
H

∫
H

e−
i~
2
〈k+h,(I−L)−1(k−h)〉

∫
Rd

dµα(k, h)dα

that, by theorem 2.2.2 is equal to the r.h.s of of (2.14).

�

2.3. The Feynman-Vernon influence functional

The infinite dimensional oscillatory integrals of definition 2 provide a rigorous mathemati-

cal realization of the heuristic Feynman path integral representation for the solution of the

Schrödinger equation. The aim of the present subsection is the extension of these results to

the Feynman path integral representation of the time evolution of an open quantum system.

Let Ut be the unitary evolution operator on L2(Rd) whose generator is the self-adjoint exten-

sion of the operator defined on S(Rd) by − ∆
2m

+ 1
2
xΩ2x + v(x), where m > 0, Ω is a positive

symmetric constant d×d matrix with eigenvalues Ωj, j = 1 . . . d, and v ∈ F(Rd), v(x) = µ̂v(x).
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The heuristic path integral representation given by Feynman for the solution of the Schrödinger

equation (2.1) is given by:

(U(t)ψ0)(x) = “

∫̃
γ(t)=x

e
i

2~ (m
R t
0 γ̇(s)

2ds−
R t
0 γ(s)Ω

2γ(s)ds)e−
i
~
R t
0 v(γ(s))dsφ0(γ(0))dγ”

Let us assume for notation simplicity that m = 1 (this condition will soon be relaxed) and

let us introduce the Cameron-Martin space Ht, i.e. the Hilbert space of absolutely continuous

paths γ : [0, t] → R, such that γ(t) = 0, and square integrable weak derivative
∫ t

0
|γ̇(s)|2ds <∞

endowed with the inner product 〈γ1, γ2〉 =
∫ t

0
γ̇1(s) · γ̇2(s)ds. Let L : Ht → Ht be the trace

class symmetric operator on Ht given by:

(Lγ)(s) =

t∫
s

ds′
s′∫

0

γ(s′′)ds′′, γ ∈ Ht. (2.15)

Let Hd
t ≡ ⊕d

i=1Ht and let LΩ : Hd
t → Hd

t be the trace class symmetric operator on Hd
t given

by:

(LΩγ)(s) =

t∫
s

ds′
s′∫

0

(Ω2γ)(s′′)ds′′, γ ∈ Hd
t .

One can easily verify that 〈γ1, LΩγ2〉 =
∫ t

0
γ1(s)Ω

2γ2(s)ds. Moreover if t 6= (n + 1/2)π/Ωj,

n ∈ Z and Ωj any eigenvalue of Ω, (I − LΩ) is invertible with:

(I − LΩ)−1γ(s) = γ(s)− Ω

t∫
s

sin[Ω(s′ − s)]γ(s′)ds′+

+ sin[Ω(t− s)]

t∫
0

[cos Ωt]−1Ω cos(Ωs′)γ(s′)ds′, (2.16)

and

det(I − LΩ) = det(cos(Ωt))

see [ET84]. Thanks to these results and under suitable assumptions it is possible to realize the

heuristic Feynman path integral representation for the solution of the Schrödinger equation as

a well defined infinite dimensional oscillatory integral on the Hilbert space Hd
t .

Theorem 2.3.1. Let φ0 ∈ F(Rd). t 6= (n+ 1/2)π/Ωj, n ∈ Z. Then the vector φ(t) ≡ Utφ0 is

given by x 7→ φ(t)(x), with:

e−
i

2~xΩ
2xt

∫̃
Hd

t

e
i

2~ 〈γ,(I−L)γ〉e−
i
~
R t
0 xΩ

2γ(s)dse−
i
~
R t
0 v(γ(s)+x)dsφ0(γ(0) + x)dγ (2.17)
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For a detailed proof see [ET84].

This result can be generalized to the Feynman path integral representation of the time evolution

of a mixed state:

Theorem 2.3.2. Let ρ be a density matrix operator on L2(Rd), such that ρ admits a regular

kernel ρ(x, y), x, y ∈ Rd. Let us consider a basis {ei}i∈N of L2(Rd) and assume that ρ admits

a decomposition into pure states of the form ρ(x, y) =
∑

i λiei(x)e
∗
i (y), with λi > 0,

∑
i λi = 1,

〈ei, ej〉L2(Rd) = δij, and ei(x) = µ̂i(x), satisfying:∑
i

λi|µi|2 <∞. (2.18)

Let t 6= (n + 1/2)π/Ωj, n ∈ Z. Then the density matrix operator at time t admits a smooth

kernel ρt(x, y) which is given by the infinite dimensional oscillatory integral:

e−
i

2~ (xΩ2x−yΩ2y)t̃

∫
Hm,d

t

∫̃
Hm,d

t

e
i

2~ 〈γ,(I−L)γ〉e−
i

2~ 〈γ
′,(I−L)γ′〉

e−
i
~
R t
0 (xΩ2γ(s)−yΩ2γ′(s))dse−

i
~
R t
0 v(γ(s)+x)ds

e
i
~
R t
0 v(γ

′(s)+y)dsρ(γ(0) + x, γ′(0) + y)dγdγ′ (2.19)

Proof 2.3.1. By decomposing ρ into pure states, by corollary 2 and condition (2.18) the integral

(2.19) is equal to:

∑
i

λi

(
e−

i
2~xΩ

2xt̃

∫
Hm,d

t

e
i

2~ 〈γ,(I−L)γe−
i
~
R t
0 xΩ

2γ(s)dse−
i
~
R t
0 v(γ(s)+x)dsei(γ(0) + x)dγ

)
(
e

i
2~yΩ

2yt̃

∫
Hm,d

t

e−
i

2~ 〈γ
′,(I−L)γ′e

i
~
R t
0 yΩ

2γ′(s)dse
i
~
R t
0 v(γ

′(s)+y)dse∗i (γ(0) + y)dγ
)

=
∑
i

λi

(
e−

i
2~xΩ

2xt̃

∫
Hm,d

t

e
i

2~ 〈γ,(I−L)γe−
i
~
R t
0 xΩ

2γ(s)dse−
i
~
R t
0 v(γ(s)+x)dsei(γ(0) + x)dγ

)
(
e−

i
2~yΩ

2yt̃

∫
Hm,d

t

e
i

2~ 〈γ
′,(I−L)γ′e−

i
~
R t
0 yΩ

2γ′(s)dse−
i
~
R t
0 v(γ

′(s)+y)dsei(γ(0) + y)dγ
)∗

(2.20)

By theorem 2.3.2 the latter line is equal to
∑

i λiUtei(x)(Utei)
∗(y) = ρt(x, y).

�

Remark 2.3.1. Heuristically expression (2.19) can be written as∫̃ ∫̃
e

i
~ (St(γ+x)−St(γ′+y)ρ(γ(0) + x, γ′(0) + y)dγdγ′

where St(γ) is the classical action of the system evaluated along the path defined in (2.3).
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Let us consider now the time evolution of a quantum system made of two linearly interacting

subsystems A and B. Let us assume that the state space of the system A is L2(Rd) while the

state space of the system B is L2(RN). Let the total Hamiltonian of the compound systems

be of the form HAB = HA +HB +HINT , with

HA = −∆Rd

2M
+

1

2
xΩ2

Ax+ vA(x) , x ∈ Rd

HB = −∆RN

2m
+

1

2
RΩ2

BR + vB(R) , R ∈ RN

and HINT = xCR, with C : RN → Rd is a linear operator and ΩA, resp. ΩB, is a symmetric

positive d × d (resp. N × N) matrix. Let us assume that the quadratic part of the total

potential, i.e. the function x,R 7→ 1
2
xΩ2

Ax + 1
2
RΩ2

BR + xCR is positive definite (so that the

total Hamiltonian is bounded from below). Let us assume moreover that the density matrix of

the compound system factorizes ρAB = ρAρB and has a smooth kernel:

ρAB(x, y, R,Q) = ρA(x, y)ρB(R,Q)

We want to prove an infinite dimensional oscillatory integral representation for the reduced

density operator at time t, namely
∫

(UtρABU
+
t )(x, y, R,R)dR where the unitary operator Ut ≡

exp
(
− 1

~Ht
)
, heuristically:

∫ ∫̃
γ(t)=x
Γ(t)=R

∫̃
γ′(t)=y
Γ′(t)=R

e
i
~ (SA(γ)+SB(Γ)+SINT (γ,Γ)−SA(γ′)−SB(Γ′)−SINT (γ′,Γ′)×

× ρA(γ(0), γ′(0))ρB(Γ(0),Γ′(0))dγdγ′dΓdΓ′dR

(2.21)

γ and Γ represent the generic path in the configuration space of the system, respectively of

the reservoir, and:

SA(γ) + SB(Γ) + SINT (γ,Γ) ≡
t∫

0

(
M

2
γ̇2(s)− 1

2
γ(s)Ω2

Aγ(s)− vA(γ(s))ds

+

t∫
0

(
m

2
Γ̇2(s)− 1

2
Γ(s)Ω2

BΓ(s)− vB(Γ(s))ds+

t∫
0

γ(s)CΓ(s)ds

(2.22)

By the transformations in the path space, given by:

γ → γ/
√
M and Γ → Γ/

√
m (2.23)
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formula (2.21) becomes:∫ ∫̃
γ(t)=x
Γ(t)=R

∫̃
γ′(t)=y
Γ′(t)=R

e
i

2~
R t
0 (γ̇2(s)−γ(s)Ω2

A
M
γ(s)−vA(

γ(s)
M

)ds×

× e
i

2~
R t
0 (Γ̇2(s)−Γ(s)

Ω2
B

m
Γ(s)−vB(

Γ(s)
m

)dse
− i

~
R t
0 γ(s)

C√
mM

Γ(s)ds×

×e−
i

2~
R t
0 ((̇γ′)2(s)−γ′(s)Ω2

A
M
γ′(s)−vA(

γ′(s)
M

)dse−
i

2~
R t
0 ((̇Γ′)2(s)−Γ′(s)

Ω2
B

m
Γ′(s)−vB(

Γ′(s)
m

)ds×

× e
i
~
R t
0 γ

′(s) C√
mM

Γ′(s)ds
ρA

(γ(0)√
M
,
γ′(0)√
M

)
ρB

(Γ(0)√
m
,
Γ′(0)√
m

)
dγdγ′dΓdΓ′dR,

(2.24)

By transformations in (2.23) it is possible to take unit masses m and M to conform to the

setting of theorems 2.3.1 and 2.3.2.

Let us consider the two Hilbert spaces:

Hd
t ≡ Ht ⊕ · · · ⊕ Ht︸ ︷︷ ︸

d−times

and HN
t ≡ Ht ⊕ · · · ⊕ Ht︸ ︷︷ ︸

N−times

We shall denote an element of Hd
t , respectively of HN

t , by γ, respectively Γ. Let L : Ht → Ht

be the symmetric bounded operator on Ht, defined by: Lγ(s) ≡
∫ t
s
ds′
∫ s′

0
γ(s′′)ds′′.

Let LA : Hd
t → Hd

t , LB : HN
t → HN

t and LAB : Hd
t ⊕HN

t → Hd
t ⊕HN

t be the self adjoint

operators defined by:

LAγ ≡ LdΩ2
AM

−1γ (2.25)

LBΓ ≡ LNΩ2
Bm

−1Γ (2.26)

LAB(γ,Γ) ≡ (LAγ +
1√
mM

LdCΓ, LBΓ +
1√
mM

LNCTγ) (2.27)

where, for all k ∈ N, Lk denotes the operator on Hk
t defined by:

Lk ≡ L(1) ⊗ L(2) ⊗ · · · ⊗ L(k)

and:

L(k) ≡ 1⊗ 1⊗ · · · ⊗ 1⊗ L︸︷︷︸
kthelement

⊗1 · · · ⊗ 1

Lemma 1. Let Ψ0 ∈ L2(Rn+d) ∩ F(Rn+d), vA ∈ F(Rd), vB ∈ F(RN) and t 6= (n + 1/2)π/λj,

where n ∈ Z and λ2
j , j = 1, . . . d+N , are the eigenvalues of the matrix:(

Ω′2
A C ′

C ′T Ω′2
B

)
Ω′
A ≡ ΩA/

√
M,Ω′

B ≡ ΩB/
√
m,C ′ ≡ C/

√
Mm (2.28)

Then the solution of the Schrödinger equation evaluated at time t:{
i~ ∂

∂t
Ψ = HABψ

Ψ(0, x, R) = Ψ0(x,R), (x,R) ∈ Rd × RN
(2.29)
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is a smooth function and is represented by the infinite dimensional oscillatory integral:∫̃
Hd

t⊕HN
t

e
i

2~ 〈(γ,Γ),(Id+N−LAB)(γ,Γ)〉G(γ,Γ, x, R)Ψ′
0(γ(0) + x,Γ(0) +R)dγdΓ (2.30)

where we have defined the functions:

Ψ′
0(x,R) ≡ Ψ0(x/

√
M,R/

√
m)

and:

G(γ,Γ, x, R) ≡ e−
it
2~xΩ

′2
Ax−

it
2~RΩ′2BR−

i
~xC

′Rt×

× e−
i
~
R t
0 xΩ

′2
Aγ(s)ds−

i
~
R t
0 RΩ′2BΓ(s)ds− i

~
R t
0 xC

′Γ(s)ds− i
~
R t
0 γ(s)C

′Rds×

× e−
i
~
R t
0 v

′
A(γ(s)+x)ds− i

~
R t
0 v

′
B(Γ(s)+x)ds

(2.31)

while v′A and v′B are defined as follows:

v′A(x) ≡ vA(x/
√
M) ; v′B(R) ≡ vB(R/

√
m)

Proof 2.3.2. Let ξ1, . . . ξd+N be a system of normal coordinates in Rd+N , with:

(x,R) = U(ξ1, . . . ξd+N) and UT = U−1

then the quadratic part of the action is diagonalized and it is possible to apply theorem 2.3.1.

The result follows by the invariance of the infinite dimensional oscillatory integrals under uni-

tary transformation on paths space [AHK76], and by the infinite dimensional oscillatory integral

representation for the solution of the Schrödinger equation with a potential of the type “ har-

monic oscillator plus Fourier transform of measure” (see [ABHK82, ET84, AB93] for more

details).

�

Lemma 2. Let f ∈ F(Hd
t ⊕HN

t ), f = µ̂. Let t satisfy the following inequalities

t 6= (n+ 1/2)π/ΩA
j , n ∈ Z, j = 1 . . . d, (2.32)

t 6= (n+ 1/2)π/ΩB
j , n ∈ Z, j = 1 . . . N, (2.33)

t 6= (n+ 1/2)π/λj, n ∈ Z, j = 1 . . . d+N, (2.34)

where ΩA
j , j = 1 . . . d, ΩB

j , j = 1 . . . N , and λj, j = 1 . . . d+N are respectively the eigenvalues of

the matrices Ω′
A, Ω′

B and of the matrix given by (2.28). Let LA, LB, LAB be defined respectively

by (2.25), (2.26) and (2.27). Then the function:

γ ∈ Hd
t 7→

∫̃
HN

t

e
i

2~ 〈Γ,(IN−LB)Γ〉e−
i
~ 〈Γ,L

NC′T γ〉f(γ,Γ)dΓ
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is Fresnel integrable and:∫̃
Hd

t⊕HN
t

e
i

2~ 〈(γ,Γ),(Id+N−LAB)(γ,Γ)〉f(γ,Γ)dγdΓ =

=

∫̃
Hd

t

e
i

2~ 〈γ,(Id−LA)γ〉
(∫̃

HN
t

e
i

2~ 〈Γ,(IN−LB)Γ〉e−
i
~ 〈Γ,L

NC′T γ〉f(γ,Γ)dΓ
)
dγ

(2.35)

Proof 2.3.3. By condition (2.33) the operator IN − LB is invertible and by theorem 2.2.1 we

have:∫̃
HN

t

e
i

2~ 〈Γ,(IN−LB)Γ〉e−
i
~ 〈Γ,L

NC′T γ〉f(γ,Γ)dΓ

= det(IN − LB)−1/2

∫
HN

t

e−
i~
2
〈Γ−LN C′T γ

~ ,(IN−LB)−1Γ−LN C′T γ
~ 〉dµγ(Γ)

= det(IN − LB)−1/2e−
i

2~ 〈γ,C
′LN (IN−LB)−1LNC′T γ〉∫

HN
t

e−
i~
2
〈Γ,(IN−LB)−1Γ〉ei〈γ,C

′LN (IN−LB)−1Γ〉dµγ(Γ) (2.36)

where µγ is the measure on HN
t defined by:∫

HN
t

g(Γ)dµγ(Γ) ≡
∫

Hd
t×HN

t

g(Γ)ei〈γ,γ
′〉dµ(γ′,Γ).

One can also easily verify that the operator on Hd
t defined by:

γ 7→ (LA + C ′LN(IN − LB)−1LNC ′T )γ

is trace class and, if conditions (2.32),(2.32) and (2.34) are satisfied, the operator defined by:

γ 7→ (Id − LA + C ′LN(IN − LB)−1LNC ′T )γ

is invertible. Moreover the function defined by

γ 7→
∫
HN

t

e−
i~
2
〈Γ,(IN−LB)−1Γ〉ei〈γ,C

′LN (IN−LB)−1Γ〉dµγ(Γ)

is the Fourier transform of the bounded variation measure ν on Ht defined by∫
Hd

t

g(γ)dν(γ) ≡
∫

Hd
t×HN

t

g(γ + C ′LN(IN − LB)−1Γ)e−
i~
2
〈Γ,(IN−LB)−1Γ〉dµ(γ,Γ)
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By applying theorem 2.2.1 we have:∫̃
Hd

t

e
i

2~ 〈γ,(Id−LA)γ〉
(∫̃

HN
t

e
i

2~ 〈Γ,(IN−LB)Γ〉e−
i
~ 〈Γ,L

NC′T γ〉f(γ,Γ)dΓ
)
dγ

= det(Id − LA − C ′LN(IN − LB)−1LNC ′T )−1/2 det(IN − LB)−1/2∫
Hd

t⊕HN
t

e−
i~
2
〈γ+C′LN (IN−LB)−1Γ,(Id−LA−C′LN (IN−LB)−1LNC′T )−1(γ+C′LN (IN−LB)−1Γ)〉

e−
i~
2
〈Γ,(IN−LB)−1Γ〉dµ(γ,Γ) (2.37)

On the other hand the oscillatory integral:∫̃
Hd

t⊕HN
t

e
i

2~ 〈(γ,Γ),(Id+N−LAB)(γ,Γ)〉f(γ,Γ)dγdΓ

is equal, again by theorem 2.2.1, to:

det(I − LAB)−1/2

∫
Hd

t⊕HN
t

e−
i~
2
〈(γ,Γ),(Id+N−LAB)−1(γ,Γ)〉dµ(γ,Γ) (2.38)

Where LAB is defined by (2.27), so that an element (γ′,Γ′) ∈ Hd
t ⊕HN

t is equal to:

(Id+N − LAB)−1(γ,Γ) , (γ,Γ) ∈ Hd
t ⊕HN

t

if and only if {
(Id − LA)γ′ − LdC ′Γ′ = γ

(IN − LB)Γ′ − LNC ′Tγ′ = Γ
(2.39)

and one can easily verify that the solution is:

γ′ = (Id − LA − C ′LN(IN − LB)−1LNC ′T )−1γ+

+ (Id − LA)−1LdC ′(IN − LB − LNC ′(Id − LA)−1LdC ′)−1Γ

Γ′ = (IN − LB)−1LNC
′T (Id − LA − LdC ′(IN − LB)−1LNC

′T )−1γ+

+ (IN − LB − LNC ′T (Id − LA)−1LdC ′)−1Γ (2.40)

As a consequence the exponent in the integral (2.38) is equal to:

〈(γ,Γ), (Id+N − LAB)−1(γ,Γ)〉Hd
t⊕HN

t
=

= 〈γ, (Id − LA − C ′LN(IN − LB)−1LNC ′T )−1γ〉Hd
t

+ 〈γ, (Id − LA)−1LdC ′(IN − LB − LNC ′(Id − LA)−1LdC ′)−1Γ〉Hd
t
+

+ 〈Γ, (IN − LB − LNC ′T (Id − LA)−1LdC ′)−1Γ〉HN
t

+ 〈Γ, (IN − LB)−1LNC
′T (Id − LA − LdC ′(IN − LB)−1LNC

′T )−1γ〉HN
t

(2.41)
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One can easily verify that:

(IN − LB − LNC ′T (Id − LA)−1LdC ′)−1 = (IN − LB)−1

+ (IN − LB)−1LNC ′T (I − LA − C ′LN(IN − LB)−1LNC ′T )−1C ′LN(I − LB)−1,

and analogously:

(Id − LA − C ′LN(IN − LB)−1LNC ′T )−1C ′LN(IN − LB)−1

= (Id − LA)−1LdC ′(IN − LB − LNC ′T (Id − LA)−1LdC ′)−1,

from which we conclude that the integral (2.38) is equal to the integral (2.37).

Equality (3.5) follows by the following relation:

det(I − LAB) = det(Id − LA − C ′LN(IN − LB)−1LNC ′T ) det(IN − LB), (2.42)

that can be verified by writing the operator Id+N − LAB in the following block form:

Id+N − LAB =

(
IN − LB LNC ′T

LdC ′ Id − LA

)

by taking the finite dimensional approximation of both sides of equation (2.42) and by the

analogous equality valid for finite dimensional matrices.

Lemma 3. Let ψA0 ∈ L2(Rd) ∩ F(Rd), ψB0 ∈ L2(RN) ∩ F(RN). Let t satisfy assumptions

(2.32),(2.33) and (2.34). Then the solution of the Schrödinger equation (2.1) is equal to:∫̃
Hd

t

e
i

2~ 〈γ,(Id−LA)γ〉

(∫̃
HN

t

e
i

2~ 〈Γ,(IN−LB)Γ〉e−
i
~ 〈Γ,L

NC′T γ〉×

×G(γ,Γ, x, R)ψ′0,A(γ(0) + x)ψ′0,B(Γ(0) +R)dΓ

)
dγ

(2.43)

where G(γ,Γ, x, R) is given by (2.31) and

ψ′0,A(x) ≡ ψA0 (x/
√
M) ; ψ′0,B(R) ≡ ψB0 (R/

√
m)

Proof 2.3.4. The result follows by lemma 1 and lemma 2 with ψ0 = ψA0 ⊗ ψB0 .

Theorem 2.3.3. Let ρA0 and ρB0 be two density matrix operators on L2(Rd) and L2(RN) re-

spectively. Let us assume that they have smooth kernels, denoted by ρA0 (x, x′) and ρB0 (R,R′).

Let us assume moreover that they decompose into sums of pure states

ρA0 =
∑
i

wAi PψA
i
, ρB0 =

∑
j

wBj PψB
j
, ψAi = µ̂Ai , ψ

B
j = µ̂Bj , (2.44)
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with µAi ∈ F(Rd), µBj ∈ F(RN), and:∑
i,j

wAi w
B
j |µAi |2|µBj |2 < +∞. (2.45)

Let t satisfy assumptions (2.32), (2.33), (2.34).

Then the kernel ρt(x, x
′, R,R′) of the density operator of the system evaluated at time t is given

by the following infinite dimensional oscillatory integral (in the sense of definition 7.1.3):∫̃
Hd

t⊕HN
t

∫̃
Hd

t⊕HN
t

e
i

2~ 〈(γ,Γ),(Id+N−LAB)(γ,Γ)〉e−
i

2~ 〈(γ
′,Γ′),(Id+N−LAB)(γ′,Γ′)〉

G(γ,Γ, x, R)Ḡ(γ′,Γ′, x′, R′)ρ′0,A(γ(0) + x, γ′(0) + x′)

ρ′0,B(Γ(0) +R,Γ′(0) +R′)dγdΓdγ′dΓ′ (2.46)

where G(γ,Γ, x, R) is given by (2.31). It is also equal to:∫̃
Hd

t

∫̃
Hd

t

e
i

2~ 〈γ,(Id−LA)γ〉e−
i

2~ 〈γ
′,(Id−LA)γ′〉

(∫̃
HN

t

∫̃
HN

t

e
i

2~ 〈Γ,(IN−LB)Γ〉

e−
i
~ 〈Γ,L

NCT γ〉e−
i

2~ 〈Γ
′,(IN−LB)Γ′〉e

i
~ 〈Γ

′,LNCT γ′〉G(γ,Γ, x, R)Ḡ(γ′,Γ′, x′, R′)

ρ′0,B(Γ(0) +R,Γ′(0) +R′)dΓdΓ′
)
ρ′0,A(γ(0) + x, γ′(0) + x′)dγdγ′ (2.47)

where ρ′0,A(x, y) ≡ ρA0 (x/
√
M, y/

√
M) and ρ′0,B(R,Q) ≡ ρB0 (R/

√
m,Q/

√
m).

Proof 2.3.5. If ρA0 and ρB0 are pure states, the result is a direct consequence of lemma 1 and

lemma 3.

For general ρA0 and ρB0 satisfying assumptions (2.44) and (2.45) the result follows by the con-

tinuity of the infinite dimensional oscillatory integral as a functional of F(RN+d) (corollary

2).

�

Theorem 2.3.4. Let ρA0 and ρB0 be two density matrix operators on L2(Rd) and L2(RN) re-

spectively. Let us assume that they have regular kernels as assumed in theorem 2.3.2, denoted

by ρA0 (x, x′) and ρB0 (R,R′). Let ρB0 ∈ S(RN × RN). Let us assume that t satisfies assumptions

(2.32), (2.33), (2.34) and that t is such that the determinant of the d× d left upper block of the

n× n matrix cos(Ωt), Ω2 being the matrix (2.28), is non vanishing.

Then the kernel ρR(t, x, y) of the reduced density operator of the system A evaluated at time t

is given by:

ρR(t, x, y) = e−
it
2~xΩ

′2
Axe

it
2~yΩ

′2
Ay

∫̃
Hd

t

∫̃
Hd

t

e
i

2~ 〈γ,(Id−LA)γ〉e−
i

2~ 〈γ
′,(Id−LA)γ′〉

e−
i
~
R t
0 xΩ

′2
Aγ(s)dse

i
~
R t
0 yΩ

′2
Aγ

′(s)dse−
i
~
R t
0 v

′
A(γ(s)+x)ds+ i

~
R t
0 v

′
A(γ′(s)+y)ds

F (γ, γ′, x, y)ρ′0,A(γ(0) + x, γ′(0) + y)dγdγ′ (2.48)
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where F (γ, γ′, x, y) is the influence functional is given by:

F (γ, γ′, x, y) ≡
∫

RN

e−
it
~ xC

′Re+
it
~ yC

′Re−
i
~
R t
0 (γ(s)−γ′(s))C′Rds

∫̃
HN

t

∫̃
HN

t

e
i

2~ 〈Γ,(IN−LB)Γ〉e−
i

2~ 〈Γ
′,(IN−LB)Γ′〉e−

i
~ 〈Γ,L

NC′T γ〉e
i
~ 〈Γ

′,LNC′T γ′〉

e−
i
~
R t
0 RΩ2

B(Γ(s)−Γ′(s))dse−
i
~
R t
0 (xC′Γ(s)+yC′Γ′(s))ds

e−
i
~
R t
0 v

′
B(Γ(s)+R)ds+ i

~
R t
0 v

′
B(Γ′(s)+R)dsρ′0,B(Γ(0) +R,Γ′(0) +R)dΓdΓ′dR (2.49)

Proof 2.3.6. Let us assume for notation simplicity that m = M = 1. The result in the general

case can be obtained by replacing

ΩA,ΩB, C, vA, vB, ρ
A
0 , ρ

B
0

by

Ω′
A,Ω

′
B, C

′, v′A, v
′
B, ρ

′
0,A, ρ

′
0,B

First step: Let us prove first of all that the functional (γγ′) 7→ F (γ, γ′, x, y) is well defined for

any γ, γ′ ∈ Hd
t , x, y ∈ Rd and it is Fresnel integrable in the sense of definition 7.1.3.

By decomposing the mixed state ρB0 into pure states according to the formula (2.44), the influ-

ence functional can be written as:∫
RN

∑
j

wBj ψ
B
j (x, γ;R)ψBj (y, γ′;R)dR

where ψBj (x, γ) is the solution of the Schrödinger equation with initial datum ψBj and Hamil-

tonian H = −1
2
∆R + 1

2
RΩ2BR + (x+ γ(t))CR + vB(R). In particular, by the unitarity of the

evolution operator, ‖ψBj (x, γ)‖L2(RN ) = 1 for any x ∈ Rd γ ∈ Hd
t . As, by Schwarz inequality:∑

j

wBj

∫
RN

ψBj (x, γ;R)ψBj (y, γ′;R)dR

≤
∑
j

wBj ‖ψBj (x, γ)‖L2(RN )‖ψBj (y, γ′)‖L2(RN ) = 1

we can conclude that F (γ, γ′, x, y) is well defined for any x, y ∈ Rd γ, γ′ ∈ Hd
t . Moreover, by

Lebesgue’s dominated convergence theorem, we have:

F (γ, γ′, x, y) = lim
ε→0+

∫
RN

e−εR
2

e−
it
~ xCRe+

it
~ yCRe−

i
~
R t
0 (γ(s)−γ′(s))CRds

∫̃
HN

t

∫̃
HN

t

e
i

2~ 〈Γ,(IN−LB)Γ〉e−
i

2~ 〈Γ
′,(IN−LB)Γ′〉e−

i
~ 〈Γ,L

NCT γ〉e
i
~ 〈Γ

′,LNCT γ′〉

e−
i
~
R t
0 RΩ2

B(Γ(s)−Γ′(s))dse−
i
~
R t
0 (xCΓ(s)+yCΓ′(s))ds

e−
i
~
R t
0 vB(Γ(s)+R)ds+ i

~
R t
0 vB(Γ′(s)+R)dsρB0 (Γ(0) +R,Γ′(0) +R)dΓdΓ′dR
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By theorem 2.2.2 we have:

F (γ, γ′, x, y) = | det(IN − LB)|−1 lim
ε→0+

∫
RN

dRe−εR
2

e−
it
~ xCR

e+
it
~ yCRe−

i
~
R t
0 (γ(s)−γ′(s))CRds

∞∑
n=0

∞∑
m=0

1

n!

1

m!

(−i
~
)n

(
i

~
)m

t∫
0

. . .

t∫
0

t∫
0

. . .

t∫
0

n∏
i=1

dsi

m∏
j=1

drj

∫
RN

. . .

∫
RN

∫
RN

. . .

∫
RN

n∏
i=1

dµv(ki)
m∏
j=1

dµv(hj)∫
RN

∫
RN

dk0dh0ρ̃b(k0, h0)e
iR(k0−h0+

Pn
i=1 ki+

Pm
j=1 hj)

e−
i~
2
〈(−LN CT γ

~ −
vΩB,R

~ − vCx
~ +k0G0+

Pn
i=1 kiGsi ),(IN−LB)−1(−LN CT γ

~ −
vΩB,R

~ − vCx
~ +k0G0+

Pn
i=1 kiGsi )〉

e+
i~
2
〈(−LN CT γ′

~ −
vΩB,R

~ −
vCy

~ +h0G0−
Pm

j=1 hjGrj ),(IN−LB)−1(−LN CT γ′
~ −

vΩB,R

~ −
vCy

~ +h0G0−
Pm

j=1 hjGrj )〉

where vB(R) =
∫

RN e
ikRdµv(R), ρB(R,Q) =

∫
RN

∫
RN e

ik0R−ih0Qρ̃B(k0, h0)dk0dh0 and:

vΩB ,R, vCx, Gs ∈ HN
t , s ∈ [0, t]

are defined by

〈vΩB ,R,Γ〉 =

t∫
0

RΩ2
BΓ(s)ds,

〈vCX ,Γ〉 =

t∫
0

xCΓ(s)ds,

〈Gs,Γ〉 = Γ(s).

By Fubini theorem we have:

F (γ, γ′, x, y) = | det(IN − LB)|−1 lim
ε→0+

∞∑
n=0

∞∑
m=0

1

n!

1

m!

(−i
~
)n

(
i

~
)m

t∫
0

. . .

t∫
0

t∫
0

. . .

t∫
0

n∏
i=1

dsi

m∏
j=1

drj

∫
RN

. . .

∫
RN

∫
RN

. . .

∫
RN

n∏
i=1

dµv(ki)
m∏
j=1

dµv(hj)∫
RN

∫
RN

dk0dh0̃ ρb(k0, h0) g1(γ
′)ḡ1(γ)g2(γ

′, h0,−h, r, y)ḡ2(γ, k0,k, s, x)∫
RN

dRe−εR
2

e−
i
~
R t
0 (γ(s)+x−γ′(s)−y)CRdseiR(k0−h0+

Pn
i=1 ki+

Pm
j=1 hj)

e−
i
~R

R t
0 Ω2

B(I−LB)−1LNCT (γ(s)−γ′(s))ds)×

× eiR
R t
0 Ω2

B(I−LB)−1(−
vC,x

~ +
vC,y

~ +(k0−h0)G0+
Pn

i=1 kiGsi+
Pm

j=1 hjGrj )

(2.50)
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where, for every paths γ, γ′, x ∈ Rn, v0 ∈ R and vectors v = (v1, . . . , vn), w = (w1, . . . , wn) we

have defined the functions:

g1(γ) ≡ e+
i

2~ 〈L
NCT γ,(IN−LB)−1LNCT γ〉 (2.51)

and

g2(γ, v0,v,w, x) ≡ e+
i~
2
〈v0G0+

Pn
i=1 viGwi−

vC,x
~ ,(IN−LB)−1(v0G0+

Pn
i=1 viGwi−

vC,x
~ )〉×

× e−i〈L
NCtγ,(IN−LB)−1(v0G0+

Pn
i=1 viGwi−

vC,x
~ )〉

(2.52)

By integrating with respect to R in (2.50) we have that the latter is equal to:

| det(IN − LB) |−1 lim
ε→0+

∞∑
n=0

∞∑
m=0

1

n!

1

m!

(
−i
~

)n(
i

~

)m
t∫

0

. . .

t∫
0

t∫
0

. . .

t∫
0

n∏
i=1

dsi

m∏
j=1

drj

∫
RN

. . .

∫
RN

∫
RN

. . .

∫
RN

n∏
i=1

dµv(ki)
m∏
j=1

dµv(hj)

∫
RN

∫
RN

(π
ε

)N/2 (
e−

ω2

4ε

)
ρ̃b(k0, h0)g1(γ

′)ḡ1(γ)g2(γ
′, h0,−h, r, y)ḡ2(γ, k0,k, s, x)dk0dh0

(2.53)

where:

ω ≡
∣∣∣− 1

~

t∫
0

(I − LB)−1CT (γ(s)− γ′(s))ds− 1

~
(ΩB cos ΩBt)

−1 sin(ΩBt)C
T (x− y)+

+ (cos ΩBt)
−1(k0 − h0 +

n∑
i=1

cos(ΩBsi)ki +
m∑
j=1

cos(ΩBrj)hj)
∣∣∣2

(2.54)

By introducing the new integration variables:

k′0 ≡
1√
ε
(k0 − h0 + a), h′0 ≡ h0 −

1

2
a

with:

a ≡
n∑
i=1

cos(ΩBsi)ki +
m∑
j=1

cos(ΩBrj)hj − cos(ΩBt)
1

~

t∫
0

(I − LB)−1CT (γ(s)+

− γ′(s))ds)− 1

~
(ΩB)−1 sin(ΩBt)C

T (x− y))

where:

t∫
0

(I − LB)−1CT (γ(s)− γ′(s))ds = cos−1(ΩBt)

t∫
0

cos(ΩBs)C
T (γ(s)− γ′(s))ds
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the integral in (2.53), with k0 =
√
εk′0 + h′0 − a

2
and h0 = h′0 + a

2
, can be written as:

πN/2| det(IN − LB)|−1 lim
ε→0+

∞∑
n=0

∞∑
m=0

1

n!

1

m!

(−i
~
)n

(
i

~
)m

t∫
0

. . .

t∫
0

t∫
0

. . .

t∫
0

n∏
i=1

dsi

m∏
j=1

drj

∫
RN

. . .

∫
RN

∫
RN

. . .

∫
RN

n∏
i=1

dµv(ki)
m∏
j=1

dµv(hj)∫
RN

∫
RN

dk′0dh
′
0ρ̃b(

√
εk′0 + h′0 −

1

2
a, h′0 +

1

2
a)g1(γ

′)ḡ1(γ)

g2(γ
′, h′0 +

a

2
,−h, r, y)ḡ2(γ,

√
εk′0 + h′0 −

a

2
,k, s, x)e−

1
4
|(cosΩBt)

−1k′0|2

By letting ε→ 0 and using dominated convergence, the integral reduces to the following form:

F (γ, γ′, x, y) = K(x, y, t)e−
i

2~ 〈(γ−γ
′),A(γ+γ′)〉e−

i
~ 〈γ,CL

N (IN−LB)−1vC,x〉

e
i
~ 〈γ

′,CLN (IN−LB)−1vC,y〉e
i

2~C
T (x−y)

R t
0

sin(ΩBt) sin(ΩB(t−s))

Ω2
B

cos(ΩBt)
CT (γ(s)+γ′(s))ds

∞∑
n=0

∞∑
m=0

1

n!

1

m!

(−i
~
)n

(
i

~
)m t∫

0

. . .

t∫
0

t∫
0

. . .

t∫
0

n∏
i=1

dsi

m∏
j=1

drj

∫
RN

. . .

∫
RN∫

RN

. . .

∫
RN

n∏
i=1

dµv(ki)
m∏
j=1

dµv(hj)

∫
RN

dh′0ρ̃b(h
′
0 −

1

2
a, h′0 +

1

2
a)

e
− i~

2

Pn
i,j=1 ki

sin(ΩB(t−si∨sj)) cos(ΩB(si∧sj))

ΩB cos(ΩBt)
kje

i~
2

Pm
i,j=1 hi

sin(ΩB(t−ri∨rj)) cos(ΩB(ri∧rj))

ΩB cos(ΩBt)
hj

e
i
Pn

i=1 ki
cos(ΩBsi)−cos(ΩBt)

Ω2
B

cos(ΩBt)
CT x

e
i
Pm

j=1 hj
cos(ΩBrj)−cos(ΩBt)

Ω2
B

cos(ΩBt)
CT y

e
i(h0−a

2
)

1−cos(ΩBt)

Ω2
B

cos(ΩBt)
CT x

e
−i(h0+a

2
)

1−cos(ΩBt)

Ω2
B

cos(ΩBt)
CT y

e
− i

2

R t
0

sin(ΩB(t−s))

ΩB cos(ΩBt)
CT (γ(s)+γ′(s))ds(

Pn
i=1 cos(ΩBsi)ki+

Pm
j=1 cos(ΩBrj)hj)

e
i~h′0

sin ΩBt

ΩB cos ΩBt
a
e
−i~(h′0−a/2)

Pn
i=1

sin(ΩB(t−si))

ΩB cos(ΩBt)
kie

−i~(h′0+a/2)
Pm

j=1

sin(ΩB(t−rj))

ΩB cos(ΩBt)
hj

ei〈γ,
Pn

i=1 CL
N (IN−LB)−1kiGsi 〉ei〈γ

′,
Pm

j=1 CL
N (IN−LB)−1hjGrj 〉ei〈γ−γ

′,CLN (IN−LB)−1h′0G0〉 (2.55)

where we have defined:

K(x, y, t) ≡ πN2Ne
− i

2~C
T (x−y)

�
t

Ω2
B

− sin(ΩBt)

Ω3
B

cos(ΩBt)

�
CT (x−y)

and

e−
i

2~ 〈(γ−γ
′),A(γ+γ′)〉e−

i
2~ 〈C

T (γ−γ′),LN (IN−LB)−1LNCT (γ+γ′)〉×

× e+
i

2~ cos(ΩBt)〈CT (γ(s)−γ′(s)),(IN−LB)−1v〉〈LN (IN−LB)−1G0,CT (γ(s)+γ′(s))〉 =

= e
i

2~
R t
0 C

T (γ−γ′)(s)Ω−1
R s
0 sin(ΩB(s−r))CT (γ+γ′)(r)drds

(2.56)
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with v(s)i ≡ t2−s2
2

, i = 1 . . . N , s ∈ [0, t].

As we have assumed that the determinant of the d × d left upper block of the n × n matrix

cos(Ωt) (Ω2 being the matrix (2.28)) is non vanishing, it is possible to prove, see Rem.(2.4.1),

that the operator I − LA − A is invertible.

As F (γ, γ′, x, y) is of the form F (γ, γ′) = e−
i

2~ 〈(γ−γ
′),A(γ+γ′)〉f(γ, γ′), with f ∈ F(Hd

t ⊕Hd
t ),

we can conclude that the influence functional is a Fresnel integrable function.

Second step: Let us prove that the reduced density operator ρR(t, x, y) is given by the infinite

dimensional oscillatory integral (2.48).

Let ρ(t, x, y, R,Q) be the (smooth) kernel of the density operator of the compound system eval-

uated at time t. Then the integral giving the kernel of reduced density operator

ρR(t, x, y) ≡
∫
ρ(t, x, y, R,R)dR

is absolutely convergent and by Lebesgue’s dominated convergence theorem we have:

ρR(t, x, y) = lim
ε→0

∫
ρ(t, x, y, R,R)e−εR

2

dR

On the other hand the influence functional can be written as:

F (γ, γ′) = e−
i

2~ 〈(γ−γ
′),A(γ+γ′)〉f(γ, γ′)

with:

f : Hd
t ⊕Hd

t → C defined as follows f = lim
ε→0

fε, (2.57)

and where:

fε(γ, γ
′) ≡ πN/2| det(IN − LB)|−1 lim

ε→0+

∞∑
n=0

∞∑
m=0

1

n!

1

m!

(−i
~
)n

(
i

~
)m

t∫
0

. . .

t∫
0

t∫
0

. . .

t∫
0

n∏
i=1

dsi

m∏
j=1

drj

∫
RN

. . .

∫
RN

∫
RN

. . .

∫
RN

n∏
i=1

dµv(ki)
m∏
j=1

dµv(hj)∫
RN

∫
RN

dk′0dh
′
0ρ̃b(

√
εk′0 + h′0 −

1

2
a, h′0 +

1

2
a)

g2(γ
′, h′0 +

a

2
,−h, r, y)ḡ2(γ,

√
εk′0 + h′0 −

a

2
,k, s, x)e−

1
4
|(cosΩBt)

−1k′0|2

with a′ ≡ a+ cos(ΩBt)
1
~

∫ t
0
(I − LB)−1CT (γ(s)− γ′(s))ds) and the limit (2.57) is meant in the

F(Hd
t ⊕Hd

t ) sense.

By the continuity of the infinite dimensional oscillatory integral as a functional on F(Hd
t ⊕Hd

t )



2.4 Application to the Caldeira-Leggett model 46

(see corollary 2) we have that the r.h.s of equation (2.48) is equal to:

e−
it
2~xΩ

2
Axe

it
2~yΩ

2
Ay lim

ε→0

∫̃
Hd

t

∫̃
Hd

t

e
i

2~ 〈γ,(Id−LA)γ〉e−
i

2~ 〈γ
′,(Id−LA)γ′〉

e−
i
~
R t
0 xΩ

2
Aγ(s)dse

i
~
R t
0 yΩ

2
Aγ

′(s)dse−
i
~
R t
0 vA(γ(s)+x)ds+ i

~
R t
0 vA(γ′(s)+y)ds

e−
i

2~ 〈(γ−γ
′),A(γ+γ′)〉fε(γ, γ

′)ρA0 (γ(0) + x, γ′(0) + y)dγdγ′ (2.58)

On the other hand the latter is equal to:

e−
it
2~xΩ

2
Axe

it
2~yΩ

2
Ay lim

ε→0

∫̃
Hd

t

∫̃
Hd

t

e
i

2~ 〈γ,(Id−LA)γ〉e−
i

2~ 〈γ
′,(Id−LA)γ′〉

e−
i
~
R t
0 xΩ

2
Aγ(s)dse

i
~
R t
0 yΩ

2
Aγ

′(s)dse−
i
~
R t
0 vA(γ(s)+x)ds+ i

~
R t
0 vA(γ′(s)+y)ds

(

∫
RN

dRe−εR
2

e−
it
~ xCRe+

it
~ yCRe−

i
~
R t
0 (γ(s)−γ′(s))CRds

∫̃
HN

t

∫̃
HN

t

e
i

2~ 〈Γ,(IN−LB)Γ〉e−
i

2~ 〈Γ
′,(IN−LB)Γ′〉e−

i
~ 〈Γ,L

NCT γ〉e
i
~ 〈Γ

′,LNCT γ′〉

e−
i
~
R t
0 RΩ2

B(Γ(s)−Γ′(s))dse−
i
~
R t
0 (xCΓ(s)+yCΓ′(s))ds

e−
i
~
R t
0 vB(Γ(s)+R)ds+ i

~
R t
0 vB(Γ′(s)+R)dsρB0 (Γ(0)+R,Γ′(0)+R)dΓdΓ′dR)ρA0 (γ(0)+x, γ′(0)+y)dγdγ′

By Fubini theorem (see theorem 2.2.3) and by the infinite dimensional oscillatory integral rep-

resentation or the kernel of the density operator it is equal to
∫
dRe−εR

2
ρ(t, x, y, R,R). By

letting ε→ 0 the conclusion follows.

�

Remark 2.3.2. It is typical of the difficulties in handling rigorously Feynman path integrals

(as infinite dimensional oscillatory integrals) that the passages to the limit cause mathematical

problems, because of the lack of the dominated convergence and limited availability of Fubini-

type theorems. Our ε-cut-off trick was instrumental to perform such a type of computation.

2.4. Application to the Caldeira-Leggett model

Let us compute the influence functional F (γ, γ′, x, y) in the case:

vB ≡ 0 , ρB0 (R,Q) ≡
N∏
j=1

ρ
(j)
B (Rj, Qj, 0)

, where:

ρ
(j)
B (Rj, Qj, 0) ≡

√
mωj

π~ coth(~ωj/2kT
)e
−
(

mωj
2~ sinh(~ωj/kT )

(
(R2

j+Q2
j ) cosh

~ωj
kT

−2RjQj

))
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ωj, j = 1 . . . n being the eigenvalues of the matrix ΩB. By notation simplicity we put m = 1,

the general case can be handled by replacing

ΩA,ΩB, C, vA, vB, ρ
A
0 , ρ

B
0

by

Ω′
A,Ω

′
B, C

′, v′A, v
′
B, ρ

′
0,A, ρ

′
0,B

.

By inserting this into the general formula (2.55) the influence functional becomes:

F (γ, γ′, x, y) = K(x, y, t)e−
i

2~ 〈(γ−γ
′),A(γ+γ′)〉e−

i
~ 〈γ,CL

N (IN−LB)−1vC,x〉×

× e
i
~ 〈γ

′,CLN (IN−LB)−1vC,y〉e
i

2~C
T (x−y)

R t
0

sin(ΩBt) sin(ΩB(t−s))

Ω2
B

cos(ΩBt)
CT (γ(s)+γ′(s))ds

×

×
∫

RN

dh′0ρ̃b(h
′
0 −

1

2
a, h′0 +

1

2
a)e

i(h0−a
2
)

1−cos(ΩBt)

Ω2
B

cos(ΩBt)
CT x

e
−i(h0+a

2
)

1−cos(ΩBt)

Ω2
B

cos(ΩBt)
CT y

×

× e
i~h′0

sin ΩBt

ΩB cos ΩBt
a
ei〈γ−γ

′,CLN (IN−LB)−1h′0G0〉

(2.59)

where

K(x, y, t) ≡ πN2Ne
i

2~C
T (x−y)

(
t

Ω2
B

− sin(ΩBt)

Ω3
B

)
CT (x+y)

(2.60)

and we have defined:

e−
i

2~ 〈(γ−γ
′),A(γ+γ′)〉 ≡ e−

i
2~ 〈C

T (γ−γ′),LN (IN−LB)−1LNCT (γ+γ′)〉×

× e+
i

2~ cos(ΩBt)〈CT (γ(s)−γ′(s)),(IN−LB)−1v〉〈LN (IN−LB)−1G0,CT (γ(s)+γ′(s))〉 =

= e
i

2~
R t
0 C

T (γ−γ′)(s)Ω−1
R s
0 sin(ΩB(s−r))CT (γ+γ′)(r)drds

(2.61)

while a is set as follows:

a = − cos(ΩBt)
1

~

t∫
0

(I − LB)−1CT (γ(s)− γ′(s))ds)− 1

~
(ΩB)−1 sin(ΩBt)C

T (x− y))

By direct computation, we obtain:

F (γ, γ′, x, y) = e
i

2~
R t
0 C

T (γ(s)+x−γ′(s)−y)Ω−1
B

R s
0 sin(ΩB(s−r))CT (γ(r)+x+γ′(r)+y)drds×

× e−
1
2~
R t
0 C

T (γ(s)+x−γ′(s)−y)Ω−1
B coth(

~ΩB
2kT

)
R s
0 cos(ΩB(s−r))CT (γ(r)+x−γ′(r)−y)drds

(2.62)

which yelds the result heuristically derived in [FV63].

Remark 2.4.1. (Kernel of the operator I − LA − A)

A vector γ ∈ Hd
t belongs to the kernel of the operator I − LA − A, if it satisfies the following
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equation:

γ(s) +

t∫
s

ds′
s′∫

0

ds′′
s′′∫

0

CΩ−1
B sin(ΩB(s′′ − r))CTγ(r)dr+

−
t∫

s

ds′
s′∫

0

Ω2
Aγ(s

′′)ds′′ = 0 s ∈ [0, t]

(2.63)

with γ(t) = 0. Equation (2.63) is equivalent to:

γ̈(s) + Ω2
Aγ(s)−

s∫
0

CΩ−1
B sin(ΩB(s− r))CTγ(r)dr = 0 (2.64)

with the conditions: γ(t) = 0, γ̇(0) = 0.

By differentiating equation (2.63), it is easy to see that its solution, if it exists, is a C∞

function and its odd derivatives, evaluated for s = 0, vanish, while the even derivatives satisfy

the following relation

γ2(N+2)(0) + Ω2
Aγ

2(N+1)(0)−
N∑
k=0

(−1)kCΩ2k
B C

Tγ2(N−k)(0) = 0 (2.65)

By induction it is possible to prove that γ2N(0) = (−1)N [Ω2N ]d×dγ(0), where [Ω2N ]d×d denotes

the d × d left upper block of the N-th power of the n × n matrix Ω2 (where Ω2 is given by

equation (2.28)). One concludes that the solution of equation (2.63) is of the form γ(s) =

[cos(Ωs)]d×dγ(0).

By imposing the condition γ(t) = 0, one concludes that if det([cos(Ωs)]d×d) 6= 0 then

equation (2.63) cannot admit nontrivial solutions and the operator I − LA − A is invertible.

Remark 2.4.2. Using previous description of the Feynman-Vernon influence functional and

results1 stated in Ch.(7) Sec.(7.1.1) and Sec.(7.2), we can rigorously study the asymptotics for

~ ↓ 0 of the influence functional (2.6) in the rigorous path integral realization (2.49) given in

Th.(2.3.4), i.e. its semiclassical limit, see [APM06b].

1See also [AHK77, AB93].



CHAPTER 3

A Remark on the Semiclassical Limit for

the Expectation of the Stochastic

Schrödinger Equation

In this section we will use the semiclassical expansion developed in Ch.(7) in order to study

the asymptotic behaviour of the solution to the stochastic Schrödinger equation associated to

the Belavkin proposal, see [Bel89], in the framework given by the theory of infinite dimensional

oscillating integrals as it is showed in Ch.(7).

Let us consider the Belavkin equation1:{
dψ = i

~Hψdt−
λ|x|2

2
ψdt+

√
λxψdW (t)

ψ(0, x) = ψ0(x) t ≥ 0, x ∈ Rd
(3.1)

which is a stochastic partial differential equation describing the behaviour of a non rela-

tivistc, quantum particle disturbed by a standard Brownian motion W , of intensity λ > 0

and where we have used the notation dW to indicate its Ito stochastic differential, see e.g.

[oJ96, KS98].

Belavkin derives equation (3.1) by means of a one-dimensional bosonic field approach to

the problem of modeling the measuring apparatus and by assuming a particular form for

the interaction Hamiltonian between the field and the system on which the measurement is

performed.

Using the Stratonovich theory of stochastic integration we can rewrite (3.1) as follows:{
dψ = i

~Hψdt− λ | x |2 ψdt+
√
λxψ ◦ dW (t)

ψ(0, x) = ψ0(x) t ≥ 0, x ∈ Rd
(3.2)

In [AGM03] the study of (3.2) is given using the theory of infinite dimensional oscillatory

1See [Bel89] and references therein.
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integral2 to rigorously realize the corrisponding Feynman path integral solution. In particular

the following result holds3:

Theorem 3.0.1. Let V and ψ0 be Fourier transforms of complex bounded variation measures

on Rd. Then there exists a strong solution of (3.2) given by:

ψ(t, x) = e−
−iΩ2|x|2t

2~ +
√
λx·ω(t)

∫̃
H

e
i

2~ 〈l,(I+L)γ〉e〈γ,γ〉e−i
R t
0 Ω2x·γ(s)ds×

× e−
i
~
R t
0 V (x+γ(s))dsψ0 (γ(0) + x) dγ

(3.3)

where H is the Cameron-Martin space defined as the set of absolutely continuous paths γ :

[0, t] 7→ Rd which ends in 0, i.e. γ(t) = 0, and has finite kinetic energy, i.e.
∫ t

0
| γ′(s) |2 ds <∞,

while the element l ∈ H is defined by:

〈l, γ〉 ≡
√
λ

t∫
0

ω(s) · γ′(s)ds

The constant Ω is given by ≡ Ω2 = −2iλ~ and L is the following operator defined on the

complexification of the Cameron-Martin space H:

〈γ1, Lγ2〉 ≡ Ω2

t∫
0

γ1(s) · γ2(s)ds ∀γ1, γ2 ∈ H

Above theorem can be extended to general initial vectors ψ0 ∈ L2(Rd) since the set F(Rd) is

a dense subset of L2(Rd). Moreover formula (3.3) can be written as follows:

ψ(t, x) =

∫̃
e

i
2~
R t
0 |γ̇(s)|

2dse−λ
R t
0 |γ(s)−x|

2ds×

× e−
i
~
R t
0 V (γ(s)+x)dse

R t
0

√
λ(γ(s)+x)·dW (s)ψ0(γ(0) + x)dγ

(3.4)

which, according to the theory presented in [AHK77] see also Ch.(7), is the Feynman path

integral solution of the problem (3.1), see [AGM03].

Proposition 3.0.1. Let us take a solutions ψ of (3.1) in the form (3.4) and EW [·] the expec-

tation with respect to the standard Wiener measure W . Then the following holds:

EW [ψ(t, x)] =

∫̃
e

i
2~
R t
0 |γ̇(s)|

2dse−λ
R t
0 |γ(s)−x|

2ds×

× e−
i
~
R t
0 V (γ(s)+x)dsψ0(γ(0) + x)

(
EW

[
e
R t
0

√
λ(γ(s)+x)·dW (s)

])
dγ

(3.5)

2See Ch7 and references therein.
3See Th.3 of [AGM03].
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Proof 3.0.1. This formula is first proven for the finite dimensional approximations of the

oscillatory integral and the Wiener integral. We refer to [AHK76] for details.

�

Proposition 3.0.2. For any γ ∈ H, λ > 0, x ∈ Rn:

EW

[
e
R t
0

√
λ(γ(s)+x)·dW (s)

]
= e

λ
2

R t
0 (γ(s)+x)2ds (3.6)

Proof 3.0.2. This is an easy conseguence of η(s) ≡ dW (s) being white noise, i.e. gaussian,

mean zero and with covariance:

E [〈g1, η〉 · 〈g2, η〉] =

t∫
0

g1 · g2ds

where gi ∈ L2 [0, t]) for i = 1, 2. See e.g. [Kuo75].

�

Corollary 3.0.1. The expectation of the solution (3.4) of the Belavkin Stochastic Schrödinger

equation is given by:

EW [ψ(t, x)] = e
λ
2

R t
0 (γ(s)+x)2ds×

×
∫̃
e

i
2~
R t
0 |γ̇(s)|

2dse−λ
R t
0 |γ(s)−x|

2dse−
i
~
R t
0 V (γ(s)+x)dsψ0(γ(0) + x)

Proof 3.0.3. This follows immediatly from Prop. (3.0.1), (3.0.2).

�

Then we have obtained an expression which is of the form studied in Ch.7 Sec.7.2. Hence,

assuming that the potential V and the initial condition ψ(0, x) = ψ0(x) chosen in (3.1) are

such that we have only one non degenerate critical point for the corresponding phase (which

can be shown to be the case for tg sufficiently small), we can perform the asymptotic expansion

of the above infinite dimensional oscillating integral in the semiclassical limit ~ → 0 setting

λ ≡ ~−1 follows [AB93]. For details we refer to [APM06c].



CHAPTER 4

Laplace Method

4.1. One dimensional Laplace Method

As a first example of expansion methods to evaluate integrals which depend on large positive

parameters, let us consider the following:

I(λ) ≡
b∫

a

g(x)eλφ(x)dx , (4.1)

where the amplitude g(x) is a complex valued function, while the phase 1 φ(x) is a real

valued one and we would like to study the asymptotics of (4.1) with respect to the limit

| λ |→ ∞, λ being a parameter. Is is assumed that geλφ is Lebesgue integrable on the closed

interval [a, b] of the real line. Let us start recalling the following fundamental lemma:

Lemma 4.1.1. (Watson Lemma) Set for ε > 0:

Sε ≡
{
λ ∈ C :| arg λ |≤ π

2
− ε
}

(4.2)

Define for 0 < a <∞, α > 0, β > 0 and g ∈ C∞([0, a]):

Ĩ(λ) ≡
a∫

0

g(x)xβ−1e−λx
α

dx (4.3)

The following asymptotic expansion of (4.3) for λ ∈ Sε, | λ |→ ∞ holds :

Ĩ(λ) =
1

α

∞∑
k=0

λ−(β+k)/αΓ

(
β + k

α

)
g(k)(0)

k!

1This terminology is strictly related to the subject of asymptotic expansions for one parameter-depending
integral which naturally arise in several areas of mathematical physics. Traditionally the integrand term is
viewed as a wave, so it is natural to name g and φ as we made.
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where Γ denotes the Gamma function ( which, if the real part of a number z ∈ C is positive,

is defined by:

Γ(z) =

∞∫
0

tz−1 e−t dt

and then meromorphically continued to all z ∈ C) and g(k)(0) denotes the k − th derivative of

the function g evaluated at the point x = 0. The right hand side is understood in the sense of

asymptotic series, i.e. :

1

α

N∑
k=0

λ−(β+k)/αΓ

(
β + k

α

)
g(k)(0)

k!
+ RN (λ) ,

whit | RN(λ) |≤ CNλ
N+1, as λ→ +∞ for any N .

For a proof of Watson’s lemma see e.g. Ch.4, Sec. 4.1 of [BH86].

Let φ be a sufficiently regular function, say φ ∈ C∞ on the real positive axis, having a

non degenerate maximum at an interior point x0 ∈ (a, b), i.e. φ
′
(x0) = 0 with φ

′′
(x0) 6= 0 and

φ
′′
(x0) < 0. We can then perform the Taylor expansion of the function φ in a neighbourhood

U(x0) of x0 obtaining:

φ(x) = φ(x0) + φ
′′
(x0)

(x− x0)
2

2
+ o

(
(x− x0)

2
)

It follows, see e.g. Ch.4 of [dB81] and [Foc54], that the main contribution to (4.1) comes from

its evaluation U(x0), (due to its regularity, the function g(x) is almost constant near x0 in such

a way that we can replace it by its value at x0). Extending the remaining integral to the whole

real line and using the well known Standard Gaussian Integral, we obtain the main term of the

asymptotics2 for (4.1) when λ→ +∞:

I(λ) �

√
2π

−λφ′′(x0)
g(x0)e

λφ(x0) (4.4)

The idea on which the above is based goes back Laplace, namely if we have to evaluate an

integral like
∫ b
a
f(x, t)dx where the graph of f , considered as a function of x, has, somewhere

in the interior of (a, b), a peak and that the contribution of some neighbourhood of the peak is

almost equal to the whole integral when t is large, then we can try to approximate f by a suitable

polynomial expression in that neighbourhood. Of course if we are able to perform better

asymptotic expansions of the integrand, i.e. obtain more information from the asymptotic

behaviour of φ for x→ x0, then we could hope to recover more information about (4.1) when

λ goes to infinity. To reach this goal let us consider the following general case:

I(λ) =

+∞∫
−∞

g(x)eλφ(x)dx (4.5)

2In what follows we use the symbol � to relate two quantities that have the same limit.
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with geλφ Lebesgue integrable on the real line, λ ∈ R, and let us assume, for semplicity, that

φ(x) is the sum of a convergent power series:

φ(x) =
∑
n≥2

anx
n

in a neighbourhood of x0 = 0, with a2 < 0 and g is only an integrable function which is, as

far as the interval −δ ≤ x < δ with δ > 0 is concerned, is equal to the sum of the following

convergent power series:

g(x) =
∑
n≥0

bnx
n bn ∈ R

We assume in addition that both power series are still absolutely convergent if | x |= δ. In

order to have negligible contributions from integrating over the intervals (−∞,−δ),(δ,+∞) we

assume3 that, for each positive integer M and for λ→ +∞, we have:

−δ∫
−∞

g(x)eλφ(x)dx = O(λ−M) ,

+∞∫
δ

g(x)eλφ(x)dx = O(λ−M) (4.6)

Moreover we assume, without loss of generality, the existence of a positive number η such that4:

φ(x) ≤ ηx2 (−δ ≤ x ≤ δ) (4.7)

Considering eλa2x2
as the main factor of (4.5) we have that the remainder:

S (λx, x) ≡ g(x)eλx
3(
P

i≥3 aix
i−3) (4.8)

can be expanded in double power series in the two arguments λx3 and x, which is convergent

for | x |≤ δ and for all values of λx3. Thus:

S(λx3, x) =
∑
m≥0

∑
n≥0

cmn(λx
3)mxn ; | x |≤ δ , λ ∈ R

It is possible to uniformly approximate S by its partial sums restricting λx3 to some bounded

interval, e.g. we perform the power expansion if | x |≤ T ≡ λ−
1
3 and we may assume that

λ > δ−3, whence T ≤ δ. It can be shown, see e.g. [dB81], that the contributions that come

from integrating over (−δ,−T ) and (T, δ) are negligible, moreover if η > 0 we have:

∞∫
T

e−ηλx
2

dx = O
(
e−ηλ

1
3

)
, (4.9)

3We use this assumption for carrying on our calculations, without discussing when it can be implemented.
4This is not a restriction since the validity of this estimate can be proved on the basis that φ′(0) = 0 using

if necessary a smaller δ .
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for some λ > 0.

The estimate (4.9) can be generalized in order to have, for λ > 1 and N ≥ 0, that the

following holds5:
∞∫
T

e−ηλx
2

xNdx = O
(
e−

1
2
ηλ

1
3

)
(4.10)

Using (4.7), (4.10) and the fact that g is bounded in −δ ≤ x ≤ δ, it follows that for λ > δ−3:

∞∫
T

g(x)eλφ(x)dx+

−T∫
−δ

g(x)eλφ(x)dx = O
(
e−ηλ

1
3

)
(4.11)

Hence we are left with the contribution that comes from integrating over the interval (−T, T )

where we will approximate S by its partial sums SN . We choose a positive integer N and write:

SN(λx3, x) =
∑

m,n≥0

m+n≤N

cmn(λx
3)mxn (4.12)

Then if | x |< δ we have, uniformly with respect to x and λ:

S − SN = O((λx3)N+1) +O(xN+1) (4.13)

Equation (4.13) follows from the fact that if we have a double power series of the form:∑
m,n≥0

cmnz
mwn ,

which converges for | z |< 2R and | w |< 2S, then the terms cmn are bounded, i.e. :

cmn = O
(
R−mS−n

)
Therefore if | z |< R

3
and | w |< S

3
, we have6:∑

m,n≥0

m+n>N

cmnz
mwn = O

(∑∣∣∣ z
R

∣∣∣m ∣∣∣w
S

∣∣∣n) =

= O

(
∞∑

k=N+1

(∣∣∣ z
R

∣∣∣+ ∣∣∣w
S

∣∣∣)k) = O

((∣∣∣ z
R

∣∣∣+ ∣∣∣w
S

∣∣∣)N+1
)

=

= O
(
(|z|+ |w|)N+1

)
= O

(
| z |N+1

)
+O

(
| w |N+1

)
(4.14)

By (4.10), for fixed N and λ→ +∞, we have:

+∞∫
−∞

SNe
λa2x2

dx−
+T∫
−T

SNe
λa2x2

dx = O
(
λNe

a
2
a2λ

1
3

)
, (4.15)

5See Ch.4 Sec.4 of[dB81].
6The estimate is not uniform in N , for more details see Ch.4 Sec.4 [dB81].
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a2 being a negative constant7. Combining previous results we have that for all positive integers

M the following estimate holds for λ→ +∞:

+∞∫
−∞

g(x)eλφ(x)dx−
+∞∫
−∞

SAe
λa2x2

dx = O(λ−M) +O(

+∞∫
−∞

eλa2x2

(| λx3 |N+1 + | x |N+1)dx) ,

where the last O− term is O(λ−
1
2
N−1), see Ch.4 Sec.1 of [dB81]. Hence, for λ→ +∞ we have:

∞∫
−∞

g(x)eλφ(x)dx =
∑

m≥0,n≥0

m+n≤N

cmnεmnλ
− 1

2
(m+n+1)(−a2)

− 1
2
(3m+n+1)Γ

(
1

2
(3m+ n+ 1)

)
+

+O(λ−
1
2
N−1) +O(λ−M) ,

where:

εmn ≡

1 if m+ n is even

0 if m+ n is odd

Since N,M are arbitrary we obtain the following asymptotic series for λ→ +∞:

+∞∫
−∞

g(x)eλφ(x)dx =
∑
k≥0

αkλ
− 1

2
−k (4.16)

where we have defined:

αk ≡ (−a2)
−k− 1

2

2k∑
m=0

cm,2k−m(−a2)
−mΓ

(
m+ k +

1

2

)
It is easy to see that the main term, namely α0λ

− 1
2 , equals g(0)(− 2π

λφ′′ (0)
)

1
2 . We can achieve the

same result as before relaxing the assumption that the functions g, φ are analytic. Actually in

order to have (4.16) it is sufficient that the following relations hold8:

g(x) �
∑
n≥0

bnx
n ; φ(x) �

∑
n≥2

anx
n , (x→ 0)

4.2. Multidimensional Laplace Method

What we have discussed in section (4.1) can be generalized to the multi-dimensional case in a

rather direct manner. Let us start considering the following multiple integral:

I(λ) =

∫
J1

· · ·
∫
Jn

eλφ(x1,...,xn)dx1 · · · dxn (4.17)

7See Ch.4 Sec.1 of [dB81].
8See Ch.4 Sec.4 of [dB81].
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where {Ji : i = 1, . . . , n} is a collection of bounded open intervals of R and φ is a continuous

function in the set J ≡ J1 × J2 × · · · × Jn. Without loss of generality we can assume that:

(i) Ji = (−1, 1) for each index i = 1, . . . , n

(ii) φ(0, . . . , 0) = 0

(iii) φ(x1, . . . , xn) < 0 for all points in J − (0, . . . , 0)

(iv) all second order derivatives of φ exist and are continuous in a neighbourhood of the origin

(v) the maximum of φ at the origin is of elliptic type

namely we can write:

φ(x1, . . . , xn) = −1

2

n∑
i,j=1

aijxixj + o

(
n∑
i=1

x2
i

)

where the quadratic form defined by (aij) is strictly positive definite.

Remark 4.2.1. Assumption (i) can be obtained by scaling. Assumption (ii) is achieved shifting

the critical point to the origin. Assumptions (iii) to (v) state that the origin is a local maximum

for the function φ.

Under the above assumptions we can apply the same strategy as we have seen in the previous

section in order to have:

I(λ) � Iλ−
1
2
n (λ→ +∞)

where:

I ≡
∞∫

−∞

· · ·
∞∫

−∞

e−
1
2

Pn
i,j=1 aijxixjdx1 · · · dxn (4.18)

This is a standard type of non degenerate Gaussian integral and a well known calculation, see

e.g. [Pra03], shows that:

I =
(2π)

n
2√

| (aij) |

where | (aij) | is the determinant of the matrix (aij) (which is strictly positive by above

assumption). Moreover if φ admits an expansion into powers of x1, . . . , xn we have asymptotic

results which correspond to those obtained in the 1-dimensional case, see Sec.(4.1) Eq.(4.16).
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4.2.1. Detailed Multidimensional Laplace Method

We want to study the n− dimensional integral defined on a bounded simply connected subset

D ⊂ Rn:

I(λ) ≡
∫
D

eλφ(x)g0(x)dx (4.19)

when λ→ +∞. We assume that the region D possesses a smooth boundary Γ ≡ ∂D, i.e. Γ is

an (n − 1) − dimensional hypersurface. We also assume that the amplitude function g0 and

the phase function φ are as smooth as we need below.

Let us define the Hessian matrix of φ by:

H =

(
∂2φ

∂xi∂xj

)
i,j

where i, j = 1, . . . , n

and assume that the quadratic form defined by H is negative definite in a neighbourhood of

x0. Hence there exists an orthogonal matrix Q which diagonalizes H, i.e. such that:

QTHQ = (λ1, . . . , λn) · In

where λ1, . . . , λn are the eigenvalues of H and In is the n×n unitary matrix. Let us define the

following change of coordinates:

(x− x0)
ψ→ 〈Q · ((

√
α1, . . . ,

√
αn) · In)t , z〉 , (4.20)

where αi ≡| λi |−
1
2 for i = 1, . . . , n, and:

ξi = hi(z) ∀i ∈ {1, . . . , n} (4.21)

where hi are such that hi = zi + o(| z |) for z → 0, i = 1, . . . , n and:

1

2

∑
i

h2
i = φ(x0)− φ(x(z)) ≡ f

hence, near z = 0 we have that f(z) ∼ 1
2
z2. Since we have that x0 is the only point in D such

that ∇φ vanishes, then

J(ξ) =
∂x

∂ξ
x = (x1, . . . , xn) ξ = (ξ1, . . . , ξn)

is positive definite in all the image D̂ of the domain D under the action of the previous

transformations ψ and h, moreover we have:

J(0) =
1√

‖ | H(x0) | ‖
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where ‖ | H(x0) | ‖ is the absolute value of the determinant of the Hessian matrix H of φ,

evaluated at x = x0. The quantity in (4.19) can be rewritten as follows:

I(λ) = eλφ(x0)

∫
D̂

G0(ξ)e
−λ

2
ξ2dξ (4.22)

where G0(ξ) ≡ g0(x(ξ))J(ξ) Let us define the following set of functions:

H1 ≡ ξ−1
1 (G0(ξ1, . . . , ξn)−G0(0, ξ2, . . . , ξn))

H2 ≡ ξ−1
1 (G0(0, ξ2, . . . , ξn)−G0(0, 0, ξ3, . . . , ξn))

...

Hn ≡ ξ−1
n (G0(0, . . . , 0, ξn)−G0(0, . . . , 0))

and H0 ≡ (H1, . . . , Hn) in such a way that:

G0(ξ) = G0(0) + ξ ·H0

Using the theorem of divergence up to M times and observing that the boundary terms, i.e.

the ones which comes from integrating on ∂D̂, are exponentially small in λ, we have:

I(λ) � eλφ(x0)

M−1∑
j=0

Gj(0)

λ

∫
D̂

e−
λ
2
ξ2dξ +

1

λM

∫
D̂

GM(ξ)e−
λ
2
ξ2dξ


where we have recursively defined the functions:

Gj(ξ) ≡ Gj(0) + ξ ·Hj(ξ) , Gj+1(ξ) = ∇Hj(ξ)

Hence we have an asymptotic expansion of I(λ) in M terms when λ → +∞ with respect to

the asymptotic sequence of contributions:(
1

λ

)j
eλφ(x0)

∫
D̂

e−
λ
2
ξ2dξ ∀j ∈ N (4.23)

Previous result is improved by the following proposition:

Proposition 4.2.1. Let ξ = 0 be an interior point of D, then, as λ→ +∞:∫
D

e−
λ
2
ξ2dξ =

(
2π

λ

)n
2

+ o

((
1

λ

)m)

for any m.
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Proof 4.2.1. Let r1, r2 be positive constants such that Br1(0) ⊂ D̂ ⊂ Br2(0). Then for λ > 0:∫
Br1

e−
λ
2
ξ2dξ ≤

∫
D̂

e−
λ
2
ξ2dξ ≤

∫
Br2

e−
λ
2
ξ2dξ (4.24)

Since: ∫
Br2

e−
λ
2
ξ2dξ =

(
2

λ

)n
2

(
2(π)

n
2

Γ
(
n
2

)) r2
√

λ
2∫

0

e−r
2

rn−1dr (4.25)

then we have the following upper bound:

∫
Br2

e−
λ
2
ξ2dξ ≤

2
(

2π
λ

)n
2

Γ
(
n
2

) ∞∫
0

e−r
2

rn−1dr =

(
2π

λ

)n
2

(4.26)

while: ∫
Br1

e−
λ
2
ξ2dξ =

(
2

λ

)n
2 2

Γ
(
n
2

)


∞∫
0

e−r
2

rn−1dr −
∞∫

r1
√

λ
2

e−r
2

rn−1dr

 (4.27)

Hence if r1

√
λ
2
> 1 and n ≥ 2, we have:

∫
Br1

e−
λ
2
ξ2dξ ≥

(
2π

λ

)n
2

[
1− er

2
1−

λ
2

Γ
(
n
2

)] (4.28)

Using equations (4.24), (4.26) and (4.28), we have, for λ sufficiently large, that:(
2π

λ

)n
2

[
1− er

2
1−

λ
2

Γ
(
n
2

)] ≤ ∫
D̂

e−
λ
2
ξ2dξ ≤

(
2π

λ

)n
2

(4.29)

which concludes the proof of Prop.(4.2.1).

�

Prop. (4.2.1) implies that:

I(λ) � eλφ(x0)

M−1∑
j=0

(2π)
n
2
Gj(0)

λ
n
2
+j

(4.30)

In order to obtain an expression for (4.30) which can be as explicit as possible we observe that:

Gj(0) =
1

2j
4j
ξG0 |ξ=0 (4.31)
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where we set 4ξ ≡
∑n

i=1
∂2

∂ξ2i
, in fact, recalling the definition of the functions Gj(ξ) we have

that:

4j
ξG0 |ξ=0= 2j4j−1

ξ G1 |ξ=0= 22j(j−1)4j−1
ξ G2 |ξ=0= · · · = 2jj!40

ξGj |ξ=0= 2jj!Gj |ξ=0 (4.32)

Hence we can rewrite the expansion in (4.30) as follows:

I(λ) � eλφ(x0)

(
2π

λ

)n
2
M−1∑
j=0

4j
ξG0 |ξ=0

((j!)2λ)j
(4.33)

where:

40
ξG0 |ξ=0= G0(0) =

g0(x0)√
‖ | H(x0) | ‖

, (4.34)

From (4.33) and (4.34) we have that the leading term of our expansion reads:

I(λ) � eλφ(x0)√
‖ | H(x0) | ‖

(
2π

λ

)n
2

g0(x0)

Remark 4.2.2. In Ch.(1) Sec.(1.2.1) the above described method for detailed expansions of

Laplace type integrals is applied in order to study the Crystal problem.

Previous results are very useful not only for the study of systems of classical particles at

low temperature, but also in many questions of probability theory such as, for example, when

we have to deal with large deviations, see e.g. [Ell85, DS84]. In these cases more general

assumptions are made but instead of asymptotic formulae like the one in (4.33) are one limit

oneselve in controlling only the first terms of the expansions of interest.

In particular let us consider the following integral:

I(λ) ≡
∫
D

g(x)eλφ(x)dx

where g has compact support and φ is a continuous function, and define the domain:

Dc ≡
{
x ∈ Rn : x ∈ supp (g), φ(x) ≥ max

x∈supp (g)
{φ(x)− c}

}
,

where c is a positive constant. We have that:

lim
λ→∞

ln I(λ)

λ
= max

x∈supp (g)
{φ(x)− c}

Moreover if the following condition holds, with V (c) ≡ V ol (Dc):

lim
c→0+

lnV (c)

ln c
= α > 0
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then:

lim
λ→∞

ln I(λ) = max
x∈supp (g)

{φ(x)− c}λ− α lnλ+ o(lnλ) (4.35)

and the converse is also true provided V (0) = 0. Hence we have a rough, but simply, method

to express the leading term for the asymptotics of the partition function of, let say, a classical

system of n− particles interacting via a polynomial potential in a bounded box. In fact, see

Ch.(1) Sec.(2) of [Fed89], if φ(x) is a polynomial then (4.35) holds.

4.3. Boundary Maximum Point

Let us return to discuss the asymptotics of the integral:

I(λ) =

∫
D

g(x)eλφ(x)dx (4.36)

for λ → +∞, where D is a bounded simply connected domain in Rn such that Γ ≡ ∂D is a

(n−1)−dimensional hypersurface. Suppose that φ has a unique maximum point in D∪Γ and

that this point belongs to Γ. In order to obtain the detailed asymptotics of (4.36) for λ→ +∞
let us start with n = 2. In this case Γ is a smooth curve in R2 parametrized by:

(x1(t), x2(t)) for t ∈ [0, T ] (4.37)

and we assume that, as t increases, Γ is run in the counterclock sense. Let us first suppose that

∇φ 6= 0 in D ∪ Γ, and let (x1(0), x2(0)) = x0 ∈ Γ be the only maximum of φ in D ∪ Γ. Then:

∇φ · Γ |t=0= 0 (4.38)

hence ∇φ is normal to Γ at x = x0. Taking N(t) ≡ (ẋ1(t), ẋ2(t)) we have9:

∇φ(x0) =| ∇φ(x0) | N(0) (4.39)

In the one dimensional case we have that if φ′(x) 6= 0 ∀x ∈ D then the asymptotics is

obtained integrating by parts, see e.g. Ch. 3 of [BH86]. A similar method can be used in the

multidimensional scenario. Let us start with the 2− dimensional case defining:

H0 = g0
∇φ

| ∇φ |2
(4.40)

with g0 ≡ g. The divergence theorem gives:

I(λ) =
1

λ

∮
Γ

eλφH0 ·Nds−
1

λ

∫
D

eλφg1dx (4.41)

9N(t) is the unit outward vector to Γ.
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where g1 ≡ ∇ ·H0. If we define:

J(λ) =
1

λ

∮
Γ

eλφH0 ·Nds (4.42)

then we define ψ(t) ≡ φ(x(t)) and using Laplace’s formula given in Eq. (5.2.1) of [BH86], with

φ set equal to −ψ, we have10:

J(λ) � eλφ(x0)

√
2π

λ3 | φ′′(0) |
(H0 ·N) |t=0 (4.43)

Here we have assumed that t = 0 is a simple maximum point for ψ so that ψ
′′
(0) < 0. By the

divergence theorem we have:

I1(λ) ≡ 1

λ

∫
D

eλφg1dx =
1

λ2

∮
Γ

eλφH1 ·Nds−
1

λ2

∫
D

eλφg2dx (4.44)

where we have defined:

H1 ≡ g1
∇φ

| ∇φ |2
and g2 ≡ ∇ ·H1 (4.45)

Then, using Laplace’s method, we can estimate the boundary integral in (4.44), hence:

1

λ2

∫
D

eλφH1 ·Nds = O
(
eλφ(x0)λ−2

)
(4.46)

which implies that I1 = O
(
eλφ(x0)λ−2

)
and I(λ) � J(λ). Using (4.43) we have for the leading

term:

I(λ) � eλφ(x0)

√
2π

λ3 | φ′′(0) |
(H0 ·N) |t=0 (4.47)

Turning back to the original functions φ and g we have11 for the leading term:

I(λ) � eλφ(x0)g(x0)

√
2φ
λ3

[
∂2φ

∂2x1

(
∂φ

∂x2

)2

− 2
∂2φ

∂x1∂x2

∂φ

∂x1

∂φ

∂x2
+

∂2φ

∂2x2

(
∂2φ

∂2x1

)2

∓ k(x0) | ∇φ |3
]− 1

2

x=x0

(4.48)

where k(x0) is the curvature of Γ at x = x0. The sign taken in (4.48) for k(x0) is a minus (resp.

a plus) if Γ is convex (resp. concave).

Remark 4.3.1. If the function g and φ belongs to CN (Rn) it is possible to write an analogous

of the formulae (4.30), (4.33) given in Sec.(4.2.1).

10See Ch.5 of [BH86].
11See Sec.8.2 of [BH86].
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Let us consider the asymptotics of (4.36) where now D ( Rn. We can repeat the steps

done in the 2− dimensional case. In particular the divergence theorem gives us:

I(λ) =
1

λ

∫
Γ

(H0 ·N) eλφdΣ− 1

λ

∫
D

g1e
λφdx (4.49)

where g0 ≡ g, H0 ≡ g0
∇φ
|∇φ|2 , N is the unit outward normal vector to the hypersurface Γ ≡ ∂D,

dΣ is the differential of the volume function of Γ and g1 ≡ ∇ ·H0. If the functions g and φ are

sufficiently differentiable then we have the following expansion12:

I(λ) = −
M−1∑
j=0

(−λ)−(j+1)

∫
Γ

(H ·N) eλφdΣ +
(−1)M

λM

∫
D

gMe
λφdx (4.50)

where for all j = 1, . . . ,M − 1 we have defined Hj = gj
∇φ
|∇φ|2 and gj+1 ≡ ∇ ·Hj.

Suppose that x = x0 is the only absolute maximum of φ and it belongs to Γ, then Γ can

be parametrized by a smooth function σ : Rn−1 ⊇ U → Rn, with U open and 0 belongs to the

interior of U , in such a way that: σ(0) = x0 and we have:

∇φ · ∂x
∂σi

|0= 0 ∀i = 1, . . . , n− 1 (4.51)

Let us define the function ψ(σ) ≡ φ(x(σ)) then by (4.51) we have:

∇ψ |0= 0 (4.52)

where now the operator ∇ is defined with respect to the parametrization function σ, i.e.

∇ = ∇σ. The condition that 0 is a maximum point for ψ is given by assuming that its Hessian

matrix is negative definite:

〈(σ1, . . . , σn−1),H |0 (σ1, . . . , σn−1)〉 < 0 , ∀(σ1, . . . , σn−1) ∈ U (4.53)

where:

H ≡
(

∂2ψ

∂σi∂σj

)
i,j=1,...n−1

Then in terms of the previous parametrization each term
∫

Γ
(H ·N) eλφdΣ in the sum appearing

in the expansion (4.50) contains an integral of the type studied in Sec. (4.2.1). Then the desired

asymptotics for (4.36) when λ→ +∞ is obtained expanding those addends and proving that,

compared to them, the term
∫
D
gMe

λφdx is asymptotically small.

Remark 4.3.2. The case where the only absolute maximum point x0 for the function φ is

reached on Γ but with 4φ(x0) = 0 is complicated by the fact that now the boundary contributions

are not asymptotically negligible. In particular we have:

12See Sec.8.3 of [BH86].
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I(λ) � eλφ(x0)

M−1∑
j=0

Gj(0)

λj

∫
D

e−
λξ2

2 dξ −
∫
Γ

(
Hj ·N
λ(j+1)

)
e−

λξ2

2 dΣ

+
1

λM

∫
D

GM(ξ)e−
λξ2

2 dξ


(4.54)

where the functions Hj and Gj are defined as in Sec.(4.2.1). The proof of (4.54) was given by

Jones, see [Jon82, Jon97]. For the above discussion see also [Hsu48, Hsu51].

4.4. Morse Lemma and Laplace Method

In this section we would like to study the asymptotics13 of:∫
Ω

g(x)eλφ(x)dx (4.55)

for λ → +∞, where Ω is a d − dimensional bounded and connected domain. Let us define

∀1 ≤ i, j ≤ n:

φ′(x) ≡ ∇φ(x) and H (x) ≡
(
∂2φ(x)

∂xi∂xj

)
We call x0 a non degenerate stationary point for the function φ iff | H (x0) |6= 0. Let us

suppose that the maximum of φ on the domain Ω is reached at only one point x0 ∈ Ω such that

x0 is non degenerate, then it is possible to give an asymptotic expansion of (4.55) for λ→ +∞
which is based on the following14 lemma:

Lemma 4.4.1. (Morse Lemma) Let x0 be a non degenerate stationary point of φ. Then

there exists a change of variables x→ ξ(x), ξ ∈ C∞, such that:

ξ(0) = x0 det [ξ′(0)] = 1

and the function φ reduces locally to the form:

φ(x) = φ(x0) +
1

2

n∑
j=1

µjy
2
j

where µ1, . . . , µn are the eigenvalues of H (x0).

The Inverse Function Theorem15 allows us to conclude that the inverse function y = ψ(x)

is of C∞ class, at least in a small neighbourhood of the point x0. Moreover if φ(x) is an

13Here we shall adopt a more geometric point of view compared with the one exploited in Sec. (4.2.1).
14See e.g. [Car76, Car92] for a detailed discussion about this geometrical result.
15See e.g. [Car92].
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analytic function at x0, then also ξ and ψ are analytic functions at the point y = 0 and x = x0,

respectively.

As we have seen during Sec.(4.2) the asymptotics for λ→ +∞ of (4.55) equals the sum of

the contributions of the points x1, . . . , xm at which φ reaches its maximum. In particular there

exists a positive constant c such that the following holds:

I(λ) =
m∑
j=1

Vxj
+O

(
eλ(M−c)) (4.56)

where M ≡ maxx∈Ω φ(x), and for j = 1, . . . ,m:

Vxj
≡
∫

U(xj)

g(x)eλφ(x)dx (4.57)

is the contribution coming from integrating over a small neighbourhood U(xj) of xj. Eq. (4.56)

is the Localization Principle16 and can be viewed as an analogous of the Residue Theorem.

Hence we can assume that the domain of integration Ω itself is a small neighbourhood of x0

and by Morse lemma (4.4.1) we reduce (4.55) to the following form:

e−λφ(x0)I(λ) =

∫
V

g̃(y)e
λ
2

Pn
j=1 µjy

2
j dy (4.58)

where g̃(0) = g(x0). If we choose the original neighbourhood of x0 so that V is a cube with

supp(g̃) ⊂ V , then the integral in (4.58) can be treated applying the one-dimensional Laplace

method sequentially with respect to the variables y1, . . . , yn.

Proceeding as above we can prove the following17:

I(λ) =

(
2π

λ

)n
2

(‖ | H (x0) | ‖)−
1
2
[
g(x0) +O(λ−1)

]
eλφ(x0) (4.59)

in the sector Sε defined in (4.2), moreover the following expansion holds:

I(λ) = eλφ(x0λ−
n
2

∞∑
k=0

Ckλ
−k

where the coefficients Ck are functions of the functions g and φ, assumed to be smooth, at the

point x = x0.

In the case where φ attains its maximum at a boundary point18, namely at a certain

x0 ∈ ∂Ω, and with the same regularity assumptions on both g and φ we proceed as follows.

From the smoothness of ∂Ω we can parametrize it at least in a neighbourhood Ux0 of the point

16See e.g.[Fed89] Sec.2.1.
17See e.g. Ch.1 of [Com82].
18In what follows we will assume that Ω has a sufficiently smooth boundary. For more detail see e.g. [LP79].
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x0 by a smooth map ξ : U0 ( Rn−1 → Ux0 which expresses the local coordinates of Ux0 ∩ ∂Ω

as functions of the (n − 1)-dimensional parameters vector ξ ≡ (ξ1, . . . , ξn−1) ∈ U0, namely

xj = xj(ξ) ∀j = 1, . . . , n. Then, for each parameter ξj, the vector vj =
(
vkj
)

=
(
∂xj

∂ξk

)
, where

k = 1, . . . n − 1, is an element of the tangent space to ∂Ω at the point x0. Using again the

smoothness of ∂Ω it is possible to define a normal derivative to ∂Ω at each of its points, hence

the distance d = d(x) of a point x from ∂Ω is well defined and by the latter ∂Ω is characterized

to be the locus of the point x with d(x) = 0 = d(x(ξ)) for all ξ ∈ U0, while for any other point

y ∈ Ω− ∂Ω we have d(y) > 0. As a consequence we obtain that the vector field:

n ≡

(
∂d
∂xi

)
|
(
∂d
∂xi

)
|

is orthonormal19 to each element of the tangent bundle of ∂Ω. Given a certain point x ∈ ∂Ω we

choose n(x) as the inward, normalized, normal vector with respect to the tangent space Tx∂Ω.

By Taylor’s theorem φ can be expanded as follows in a neighbourhood of a non degenerate

boundary maximum point:

φ(x) =φ(x0) + (∂nφ(x0))n+
1

2

(
∂2
nφ(x0)

)
n2 + (∂n∂ξφ(x0)) · (ξ − ξ0)n+

+
1

2
(ξ − ξ0) ·

(
∂2
ξφ(x0)

)
(ξ − ξ0) + o

(
| ξ − ξ0 |3

)
where x0 is such that x(ξ0) = x0. Using this expansion for φ we replace the integral I(λ) by

a corresponding one performed on a smaller neigbourhood of x0. Then we use as integration

variables the set of couples {(ξk, n) : k = 1, . . . , n− 1} instead of the xi’s and neglet the third

order terms in the latter Taylor series. As before we also replace g by g0 ≡ g(x0) and extend the

integration to the whole R+×Rn−1 obtaining a multidimensional, standard Gaussian integral.

Taking λ→ +∞, we have that:

I(λ) � −λ−(n+1)/2(2π)(n−1)/2eλφ(x0)
(− | ∂2

ξφ(x0) |)−1/2

(∂nφ(x0))−1
J(x0)g0 (4.60)

where J(x0) is the change of variables Jacobian evaluated in x0. Hence we have:

Theorem 4.4.1. Let g, φ ∈ C∞(Ω) and let x0 ∈ ∂Ω be a nondegenerate maximum boundary

point for φ, then, as λ → +∞, with λ ∈ Sε ≡ {λ ∈ C :| arg λ |≤ π
2
− ε}, the following

asymptotic expansion holds:

I(λ) = λ−(n+1)/2(2π)(n−1)/2eλφ(x0)
∑
k≥0

akλ
−k

with coefficients ak which depend on the derivatives of the functions g, φ at x = x0.

See e.g. Sec. (2.3) of [Fed77], Sec.2 of Ch.IX in [Won89] or [Jon82] for a proof of (4.60)

and Th. (4.4.1).

19It easy to see that n is always a non-zero vector field in the sense that it produces non-zero orthonormal
vector n(x) to each tangent vector of w(x) ∈ Tx∂Ω, for all x ∈ ∂Ω.



CHAPTER 5

Stationary Phase and Saddle Point

Method

5.1. Oscillatory Integrals

5.1.1. A first glance

In this section we shall consider integrals similar to those involved in the Laplace method

analysis but with an oscillating term containing the phase. In particular we would like to

evaluate the accurate asymptotics for quantities of the following type:

I (λ) ≡
∫
J

g(x)eiλφ(x)dx (5.1)

when the parameter λ goes to infinity along the real line and where J ⊂ R is a connected interval

of the real line. We will refer to the functions g and φ as amplitude and phase respectively

as we made for the integrals of the type in eq.(4.1). It is straightforward to note that the

growth of λ determines the fast varying of the term eiλφ in such a way that the contributions

to (5.1) oscillate more and more, hence we expect that the greater contribution comes from

neighbourhoods of the points in which φ has vanishing derivative. Let us recall the following

Lemma 5.1.1. (Riemann-Lebesgue) if g ∈ L1 ((a, b)), then1:

b∫
a

g(x)eiλxdx
λ→∞−→ 0

In order to obtain the asymptotics of (5.1) for λ→ ∞, let us state2:

1See e.g. [Fed89, Sir71].
2See e.g. [Erd56, LP79, tS73].
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Lemma 5.1.2. (Erdélyi Lemma) Let α ≥ 1 and β > 0. Let g ∈ C∞ ([0, a]) such that g(n)(a) = 0

for all n ∈ N. Then the following asymptotic expansions for λ→∞ holds:

a∫
0

xβ−1g(x)eiλx
α

dx =
∞∑
n=0

Cnλ
− (n+β)

α (5.2)

where the coefficients Cn are given by:

Cn ≡
g(n)(0)

n!
Γ

(
n+ β

α

)
e

iπ(n+β)
2α

Remark 5.1.1. Previous Lemma is obtained by integrating by parts and it is still valid as

| λ |→ ∞ if arg(λ) ∈ [0, π], uniformly with respect to arg(λ). Watson’s Lemma (4.1.1),

considered in Ch.(4) Sec.(4.1), can also be derived from Lemma (5.1.2).

Suppose now that g, φ ∈ C∞(J), where J is the interval of integration in (5.1), and let

x0 ∈ (a, b) ⊂ J the unique stationary point of order n of φ, i.e.

φ′(x0) = φ(2)(x0) = · · · = φ(n−1)(x0) = 0, φ(n)(x0) 6= 0 for n ≥ 2

Then:

I(λ) = Ia(λ) + Ib(λ) + Ix0(λ) +O
(
λ−∞

)
where Ia(λ) and Ib(λ) are the boundary contributions to the asymptotics of (5.1) and can be

evaluated integrating by parts, see e.g. Ch.3 of [BH86]or Sec.(1) of [Fed89]. By a suitable

change of variables x→ t in a neighbourhood of x0 contained in (a, b), we reduce φ to the form

φ(x0)± tn. Then it is possible to apply Lemma (5.1.2). In particular if x0 is a nondegenerate

stationary point for φ, i.e. φ
′′
(x0) 6= 0 the leading term in the asymptotics of (5.1) for λ→∞

is given by3:

Ix0(λ) =

√
2π

λ | φ′′(x0) |
eiλφ(x0)+ iπ

4
δ(x0)

[
g(x0) +O

(
λ−1
)]

(5.3)

where δ(x0) ≡ sgn
(
φ
′′
(x0)

)
. Let now define the coefficients:

Cn ≡ e
iπn
2
δ(x0) Γ

(
n+ 1

2

)
(2n)!

(√2
(φ(x)− φ(x0))δ(x0)

φ′(x)

)−1

d

dx

2n [√
2
(φ(x)− φ(x0))δ(x0)

φ′(x)

]
x=x0

then:

Ix0(λ) =
1√
λ
eiλφ(x0)+ iπ

4
δ(x0)

∞∑
n=0

Cnλ
−n (5.4)

3See e.g. Ch.6 Sec.(1) of [BH86] or Sec.(3.2) of [Fed89].
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5.1.2. Boundary Points

A simpler case to deal with is the one in which the set of critical values for (5.1) is empty, in

fact is sufficient, up to natural smoothness conditions of g and φ which may be refined if the

integration interval is infinite, to integrate by parts to get4:

Theorem 5.1.1. Let φ
′
(x) 6= 0 for all points x ∈ J , then in the sens of asymptotic series as

λ→ +∞:

I(λ) =
∑
k≥0

(iλ)−(k+1)

(
− 1

φ′(x)

)k (
∂

∂x

)k (
g(x)

φ′(x)

)
eiφ(x) |J

where |J indicates that we have to evaluate latter quantities with respect to the initial and

final points of the interval J if it is bounded or we have to take a limit, when J is not bounded.

5.1.3. Multidimensional Case

We would like to extend previous, unidimensional, result obtained for integrals of type (5.1) to

the case where J is replaced by a domain Ω ⊂ Rd, i.e. for the asymptotics of:

I(λ) =

∫
Ω

g(x)eiλφ(x)dx (5.5)

Let us start recalling the following Lemma5:

Lemma 5.1.3. Let Ω be a connected domain in Rd, g ∈ C∞
0 (Ω) and φ ∈ C∞(Ω) such that

∀x ∈ supp(g) it holds ∇(φ)(x) 6= 0, then as λ→ +∞:

I(λ) = O

(
1

λ∞

)
Lemma (5.1.3) implies that if g, φ ∈ C∞(D ∪ ∂D) then the main contributions to the

asymptotics of (5.5) come integrating on the neighbourhoods which contain the stationary

points of φ and on the boundary Γ ≡ ∂D. Other contributions appear if g(n) or φ(n) have

discontinuities for some n ∈ N. The whole set of above mentioned points form the set of critical

points for (5.5). Let us suppose that there exists only a finite set (x1, . . . , xk) of such critical

points. Then we can construct a C∞ partition of unity with k + 2 functions ηj, j = 1, . . . , k

and ηΓ, η̃ such that, for all j = 1, . . . , k, x ∈ D ∪ Γ, the following conditions are satisfied:

· ηj has compact support Dj ≡ supp(ηj)

· each critical point xj belongs to exactly one Dj

4See see e.g. Ch.3 of [BH86]or Sec.(1) of [Fed89].
5Its proof is done by integration by parts, see e.g. Sec.(3) of [Fed89].
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· Dj ∩ Γ = ∅

· ηj ≡ 1 at least in a neighbourhood of xj contained in Dj

·
∑k

j=1 ηj(x) + ηΓ(x) + η̃(x) = 1

The function ηΓ is identically zero in some strip close to the boundary Γ and it is equal to 1 in

a smaller strip containing Γ. The function η̃ has compact support on which ∇φ 6= 06 Let us

define the following integrals:

Ixj
(λ) ≡

∫
D

g(x)ηj(x)e
iλφ(x)dx and IΓ(λ) ≡

∫
D

g(x)ηΓ(x)eiλφ(x)dx (5.6)

where, for j = 1, . . . , k, Ixj
(λ) expresses the contribution to (5.5) coming from the critical

points xj, while IΓ(λ) gives the contribution from the boundary Γ.

Applying Lemma (5.1.3) we have that7:

I(λ) =
k∑
j=1

Ixj
(λ) + IΓ(λ) +O

(
λ−∞

)
(5.7)

Let us consider one, say x0, of the stationary points xj, j = 1, . . . , k and assume that x0

is a nondegenerate critical point for φ. Then, for λ→∞, the following asymptotic expansion

holds:

Ix0 = eiφ(x0)

√
1

λn

∞∑
m=0

Cm
λm

(5.8)

and the leading term is given by:

Ix0 = eiφ(x0)

(
2π

λ

)n
2 ∣∣∣φ′′(x0)

∣∣∣− 1
2 · e

iπ
4
sgn[φ

′′
(x0)]

[
g(x0) +O

(
λ−1
)]

(5.9)

where sgn[φ
′′
(x0)] represents the difference between the number of positive and negative eigen-

values of the n× n square matrix φ
′′
(x0)

8. Let us now treat the asymptotic behaviour in λ as

λ→∞ of the quantity IΓ(λ). If Γ contains a nondegenerate critical point of φ then the result

(5.9) has to be multiplied by a 1
2

factor, see e.g. Sec.(3.3) of [Fed89]. If Γ does not contain

stationary points of φ then the following result holds9:

IΓ(λ) =
M∑
m=1

∫
Γ

eiλφ(x)ωm +O
(
λ−(M+1)

)
(5.10)

6For the general construction of a partition of unity see e.g. [BM97]. For our purpose is not essential to give
explicitely such functions η’s.

7This is the analogous of the principle of localization stated by Eq. (4.56) in Sec. (4.4) of Ch.(4).
8For a proof of the results stated by (5.8) and (5.9) see e.g. Sec.(3.3) of [Fed89].
9See Sec.(3.3) of [Fed89].
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where M ≥ 1 is an integer and ωj are differential forms given, for all j = 1, . . . ,M , by

ωj(x) =| ∇φ(x) |−2

n∑
m=1

∂φ

∂xm

(
(L∗)m−1g

)
dx1 ∧ · · · ∧ d̂xm ∧ · · · ∧ dxn

and L∗ is the transpose of the operator L defined by:

L
(
eiλφ
)

= iλeiλφ

We would like to underline the major difference between the asymptotic analysis of integrals

of the complex oscillatory type and of the Laplace type defined by eq.(4.1) or their multidi-

mensional generalizations, relies in the fact that in the oscillatory case we have to take into

account all their critical points, whereas in the Laplace case only the absolute maxima.

In fact if we consider the following:

I(λ) ≡
∫
D

g(x)eiλφ(x)dx (5.11)

where D is a bounded connected domain in Rn then, in order to study the behaviour of 5.11,

we have to take care of:

· {x ∈ D : ∇φ(x) = 0}

· all x ∈ Γ ≡ ∂D

· all x ∈ D where φ and/or g are not smooth

Remark 5.1.2. The determination of the critical points for the phase φ,i.e ∇φ(x) = 0 in-

volves, in general, solving a trascendental equation. In order to have explicit expansions often

parametric methods are used, see Sec.(8.5) of [BH86].

5.1.4. Degenerate Stationary Point

In the case where the Hessian matrix of the function φ evaluated at the critical point x0 is

singular, i.e. it has zero eigenvalues, we cannot use the Morse lemma. As a replacement we

can apply10 the following:

Lemma 5.1.4. (Splitting Lemma) Let φ : Rn → Rn be a C∞ function and let x0 a stationary

point of φ such that Rank(H (x0)) = r for some r ∈ N, then there exists neighbourhoods U, V

of the points u = 0 and x = x0 and a diffeomorphism h : U → V such that:

φ(h(u)) =
r∑
i=1

±u2
i + p (ur+1, . . . , un) (5.12)

where p : Rn−r → R is a C∞ function.

10See [PS78] and [Dui74, Arn91].
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Lemma (5.1.4) splits the problem of finding the asymptotic behaviour of (5.5) in two part.

The first can be treated geometrically as we made in Sec. (4.4), i.e. we use the principle of

localization and the Morse lemma on a set of r variables. The second one requires a different

approach. Let us consider the case in which Rank(H (x0)) = n − 1 and assume Ω = Rn (so

there are no boundary points to investigate). Let x0 be the only critic point. Without loss of

generality we can also assume that g has compact support in a neighbourhood of x0. Using

(5.12) in (5.5) we have:

I(λ) =

∫
Ω

g̃(u)eiλ
Pn−1

i=1 ±u2
i +iλp(un)du

where g̃ is the product of g and the Jacobian of the change of variables in lemma (5.1.4).

The asymptotic expansion of I(λ) in the first n − 1 variables follows the way shown above

using theory developed during Sec.(5.1.3) and we are left we the study of the asymptotics, for

λ→ +∞, of: ∫
R

ḡ(u)eiλp(u)du

where ḡ is a C∞ function having compact support in a neighbourhood11 of u = 0 and ḡ′(0) =

ḡ
′′
(0) = 0 and we can apply the discussion made in Sec.(4.1).

Remark 5.1.3. In [Won89], Ch.IX, Sec.4, one can find examples where the previous procedure

cannot be applied, namely:

φ(x1, x2) = x1x
2
2 and φ(x1, x2, x3) =

3∏
i=1

xi

In these cases we have namely Rank(H ) = 0.

Let us consider the case in which the phase function has the following form:

φ(x) =

(
n∏
i=1

xαi
i

)
ψ(x) (5.13)

where ψ is an invertible real analytic function. By the theorem of Hironaka on the resolution

of singularities, see e.g. [Ati70], every function real analytic φ which is not indentically zero

can be represented in the form (5.13).

Without loss of generality one can assume that ψ(x) ≡ 1 and supp(g) ∈ [−1, 1]n. For

0 < c < 1
2
, we have:

1

2πi

c+i∞∫
c−i∞

µ−zΓ(z)eiπ
z
2dz = eiµ (5.14)

11We suppose that the critic point is in 0 for the variable u.



5.1 Oscillatory Integrals 74

whether µ is positive or negative. In fact since the Mellin transform of eix = Γ(z)e
iz
2 , for

0 < R(z) < 1 then Eq.(5.14) can be obtained usng the fact that the Mellin transform of the

functions:

Si(x) =
π

2
−

∞∫
x

sin t

t
dt and Ci(x) = −

∞∫
x

cos t

t
dt

are given by:

−sin
(zπ

2

) Γ(z)

z
for − 1 < R(z) < 0

and

− cos
(zπ

2

) Γ(z)

z
for 0 < R(z) < 1

resepctively.

If µ is negative the principal value of µ−z must be taken in (5.14). Let us define Q1 = [0, 1]n,

m ≡ min{1
2
, 1
α1
, . . . , 1

αn
} and:

I1(λ) =

∫
Q1

g(x)eiλx
α

, (5.15)

where α = (α1, . . . , αn) and xα ≡
∏n

i=1 x
αi
i . Then, using (5.14) with 0 < c0 < m, we have:

I1(λ) =

∫
Q1

g(x)
1

2πi

 c0+i∞∫
c0−i∞

(λxα)−zΓ(z)ei
π
2 dz

 dx (5.16)

We note that the function: ∫
Q1

(xα)−zg(x)dx

is analytic and bounded in <(z) < δ < m and since g((1, . . . , 1)) = 0 by partial, repeated

integration, we obtain, for any multi-index k = (k1, . . . , kn), the following equation:

∫
Q1

(xα)−zg(x)dx =
n∏
j=1

 kj∏
i=1

1

αjz − i

∫
Q1

x−αz+kDkg(x)dx

where we have indicated by Dk the k−th derivative operator and used the fact that the poles of∫
Q1

(xα)−zg(x)dx are at the points i
αj

. The asymptotics of I1(λ) can be then obtained traslating

the contour of integration to the right as shown in Ch.III Sec.7 of [Won89].

Suppose that 1
α1
< 1

αj
for j > 1, then α−1

1 is a simple pole and we obtain, after calculating

the corresponding residue and applying Fubini theorem to (5.16), the following equality:

I1(λ) = −λα
−1
1 Γ

(
α−1

1

)
e
i π
2α1 r(α−1

1 ) +
1

2πi

c1+i∞∫
c1−i∞

λ−zΓ(z)eiπ
z
2

∫
Q1

(xα)−zg(x)dxdz (5.17)
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where:

r(α−1
1 ) = − 1

α1

1∫
0

· · ·
1∫

0

x
−α2

α1
2 x

−αn
α1

n g(0, x2, . . . , xn)dx2 · · · dxn

is the residue of
∫
Q1

(xα)−zg(x)dx at the pole z = α−1
1 . Since the last integral in (5.17) is

o(λα
−1
1 ), we have found the leading term in the asymptotic expansion of I1(λ) for λ → +∞.

Such calculations can be generalized in order to have higher order terms, moreover it applies

not only to the unit cube Q1, but also to any similar cube ×n
i=1Ii, where each interval Ii can

be equal to [0, 1] or [−1, 0]. The final asymptotics is obtained summing over all such cubes,

see e.g. [Won89] Ch. IX, Sec.4.

See also e.g. [Arn91, AGZV88] for a theory of asymptotics for phase functions which are

degenerate.

5.1.5. The Saddle Point Method

The Saddle Point Method is also known under other names. Some authors, depending on

their scientific education, prefer to call it Method of steepest descent, some other use the term

Stationary Phase Method also for this case, here after we will follow the terminology used in

[dB81]12.

Our aim is to evaluate the asymptotics of integrals of the following type:

I(λ) =

∫
γ

g(z)eλφ(z)dz (5.18)

as λ goes to infinity and where γ ⊂ C is a contour in a neighbourhood of which both functions

g and φ are holomorphic. A priori we assume that γ, g, φ all depend on the parameter λ ∈ R.

As we will see later on problems of the type (5.18) have less direct solutions than their real

homologous. In particular a topological discussion of the situation has to be done before any

explicit calculations. Namely it will be necessary to perform an accurate discussion of the

chosen path to evaluate (5.18) which is the flywheel to a second stage composed of more or less

standard calculations that rely on the Laplace Method.

At very rough first level we may think of the Saddle Point Method as a way to deform the

integration contour γ in such a way that the main contribution to the asymptotics of (5.18)

comes from neighbourhoods of a finite number of points. In order to perform mathematically

this type of argument one has to request that both functions g and φ are holomorphic. Once

the just described operation has been done, then we are in a situation very similar to the one

described in Ch.(4) Sec.(4.1).

12As in the case of [Din73], this is a standard reference to the asymptotic expansions subject and several
parts of these two books has been extensively used writing this section.
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But why deforming ? Let us define:

f(z) ≡ g(z)eiφ(z) (5.19)

then the answer is given by Cauchy’s Theorem together with the following estimate which

holds if the length | γ | of the path γ is finite, and g, φ satisfy the regularity conditions stated

before:

| I(λ) |≤
∫
γ

| f(z) || dz |≤| γ | max
γ

| f(z) | (5.20)

Could we get better estimates changing the path of integration ? In fact (5.20) is actually

not very accurate and it is quiet natural to use the Cauchy Theorem in order to find a more

suitable route for our integration trip. Deformed paths must have the same endpoints of the

original one. Besides, the continuous deformation process has to be done in such a way that

the subsequent paths lie, at each step, in the analyticity domain of f . Hence the challenge

consist in finding a new path γ
′
such that 13 the following quantity is minimized:

| γ′ | max
γ′

| f(z) |

It should be noticed that since the length of both γ and its deformations γ
′

are finite, our

attention as to (5.20) has to be concentrated to the, possibly, wild variations of f with respect

to even small modifications of the integration path. Therefore our strategy will be focused in

discovering those paths γ
′
which minimize maxγ′ | f(z) |. Since the solution to the previous

step may be not unique, we have to choose the one to which Laplace Method better applies.

The method to complete this final step is known as Method of Steepest Descent.

5.1.6. Analytic Part I

In order to really develop the mathematical details of previous discussion let us recall that:

(1) The quantities involved in(5.18) are all λ-dependent

(2) The deformation of the path γ must be done according to the analyticity domain of the

functions of interest, namely g and φ

(3) The contour length | γ | is not the important part

(4) Since the variations of the function φ dramatically depend on λ and φ controls the

behaviour of the exponential term, then we expect that φ dominates g

13We have to keep in mind that all the quantities involved in the evaluation of the asymptotics of (5.18)
depend on the parameter λ, hence γ as well as γ

′
should be read as γ(λ), γ

′
(λ) respectively.
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Finally it is realistic to work towards the achievement of an estimate of the following type:

| I(λ) |≤ c(γ, g) inf
γ′ allowable

{
max
z∈γ

eλRφ(z)

}
(5.21)

where γ
′
is an allowable deformation of the original integration path γ according to the dis-

cussion done in (5.1.5), while c(γ, g) is a constant which depends only on the original contour

γ and the function g. The procedure behind estimate (5.21) relies on the existence of a so

called minimax contour, i.e. a path γ
′
which passes through a point z0 in which Rφ attains

its maximum and such that this maximum be the lowest one among the maxima. If such a

contour actually exists then we have:

| I(λ) |≤ c (γ, g) eλRφ(z0) (5.22)

and Cauchy’s theorem guarantes us that:

I(λ) =

∫
γ′

g(z)eλφ(z)dz

The asymptotics of this integrals for large λ can be evaluated by Laplace Method as discussed

in Ch.(4).

Definition 5.1.1. A point z0 ∈ C is a saddle point of φ : C → C iff φ
′
(z0) = 0, moreover it is

called simple iff φ
′′
(z0) 6= 0.

If z0 is an interior saddle point then the asymptotics of (5.18) can be evaluated14 simply by

replacing the minimax contour γ
′
with a smaller arc γ

′′ ⊂ γ′ which still contains z0, then we

use the analyticity of φ in order to perform its Taylor expansion in a neighbourhood Uz0 ⊇ γ
′′

and by Laplace Method we get:

I(λ) =

√
− 2π

λφ′′(z0)
eλφ(z0)

(
g(z0) +O

(
1

λ

))
If z0 is the initial point of the contour γ and maxz∈γ R (φ(z)) = R (φ(z0)) and φ′(z0) 6= 0,

then, as λ→∞, we have 15:

I(λ) = − 1

λφ′(z0)
eλφ(z0)

(
g(z0) +O

(
1

λ

))
(5.23)

For the contribution given by Eq.(5.23) the following expansion holds:

I(λ) = eλφ(z0)

∞∑
k=0

(−1)k

λk+1

(
1

φ′(z)

d

dx

)k
g(z)

φ′(z)
|z=z0 (5.24)

14The main idea is clear: one would like to translate in the complex domain notions which are developed in
the real case where the Laplace Method has been established.

15See e.g. Sec.(4.3) of [Fed89], Sec.(5.5) of [dB81].



5.1 Oscillatory Integrals 78

5.1.7. Topological Part

As we have seen in (5.1.6) the concrete evaluation of the asymptotics for (5.18) depends on

finding the minimax contour. The latter could not exist at all so that we are forced to find a

minimax solution for the extended problem:

min
γ′ allowable

max
x∈γ′

g(z)eRφ(z)

which actually becomes a topological challenge. 16 .

Lemma 5.1.5. 17 Let φ : C → C be a holomorphic function in a neighbourhood Uz0 of a point

z0 in which φ
′
(z0) 6= 0, then there exists a neighbourhood Vz0 ⊆ Uz0 such that the level curves:

Rφ(z) |Vz0
= Rφ(z0) ; I φ(z) |Vz0

= I φ(z0)

are analytic and orthogonal to each other at z0.

Lemma 5.1.6. Let z0 be a such that φ(i)(z0) = 0, ∀i = 1, . . . , n and φn+1(z0) 6= 0, then there

exists a neibourhood Uz0 of z0 in which the level curve Rφ(z) = Rφ(z0) consists of n + 1

analytic curves that intersect at z0 dividing Uz0 in 2(n+ 1) sectors of angular amplitude equal

to π(n+ 1) in which the sign of Rφ(z) = Rφ(z0) alternates.

In order to better understand the previous lemma we turn back to (5.1.5). If we are in

the simple point case 18 we know that it is possible to apply the Inverse Function Theorem

in order to find a function which express the local coordinates z. In other words there exists

ψ which is smooth in a neighbourhodd of 0 such that z = ψ(w), ψ(0) = z0, ψ
′
(0) 6= 0 and

φ(ψ(w)) = ψ(z0) + w2. Hence the curve Rφ(z) = Rφ(z0) is described by Rw2 = 0 which

identifies the locus of complex points composed by two mutually orthogonal paths at z0, e.g.

γ± ≡ (1 ± it) where t run in a time interval whose length is determined by the Implicit

Function Theorem. The general statement follows as shown in Sec.(4.5) of [Fed89]. See also

Ch.7 of [BH86], Sec.(2.6) of [Sir71] and [dW51] where the saddle point method is treated by

different techniques.

16In order to have a naive description of the following described idea, namely the Steepest Descent Method,
a fruitful reading can be found in Ch.5 of [dB81].

17From the hypotheses it follows that r(z) ≡ φ(z) − φ(z0) is holomorphic in a neighbourhood of z0, then
the Inverse Function Theorem applies and ψ ≡ u+ iv = r−1 is holomorphic in a neighbourhood of the origin.
Therefore the arc of the level curve Rφ(z) = Rφ(z0) is defined by ψ(0, v) and is analytic. Analogously for
I φ with respect to ψ(u, 0). Orthogonality of the two level curves follows since these two curves are actually
conformal maps.

18Namely φ
′
(z0) = 0 and φ

′′
(z0) 6= 0.
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5.2. Steepest Descent Method

Using previous definitions and lemmas let us go deeper in the concrete topological part of the

Saddle Point Method19.

Definition 5.2.1. Let φ be a complex valued function. A curve γ : [0, T ] → C in C such that

γ(0) = z0 ∈ C, is called curve of steepest descent of the function Rφ iff for all points z 6= z0

in γ one has:

(i) I φ(z) is constant

(ii) Rφ(z) < Rφ(z0)

Proposition 5.2.1. Let z0 ∈ C, φ be analytic in a neighbourhood Uz0 such that

φ(i)(z0) = 0 , ∀i = 1, . . . n and φ(n+1)(z0) 6= 0

Then there exist exactly n + 1 curves of steepest descent each of which relies in one and only

one of the sectors determined by Rφ(z) < Rφ(z0)

Lemma 5.2.1. Let φ be a holomorphic function on a finite contour γ such that the points

which realize: maxz∈γ Rφ(z) are neither saddle points nor endpoints of the path γ. Then there

exists γ
′
such that: ∫

γ

g(z)eλφ(z)dz =

∫
γ′

g(z)eλφ(z)dz

and

max
z∈γ′

Rφ(z) < max
z∈γ

Rφ(z)

5.2.1. Analytic Part II

Lemma 5.2.2. Let φ be an holomorphic function on γ such that maxz∈γ Rφ(z) ≥ C, then for

λ ≥ 1 one has:

I(λ) = O(λeC)

Let us divide the considerations in two different situations, namely where we have to deal

with a boundary saddle point or with an interior one:

19The basic idea of the steepest descent method can be found in [Rie53], see also [Deb09] for first further
developments and [Olv70], where very interesting numerical estimates are obtained.
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Theorem 5.2.1. (Boundary Saddle Point) Let γ : [0, T ] → C be a smooth path such that

γ(0) = z0 ∈ C and let g, φ be analytic at z0, with Rφ(z0) > Rφ(z) and φ
′
(z0) 6= 0, then as

λ→ +∞:

I(λ) = eλφ(z0)
∑
k≥0

akλ
−(k+1)

where the coefficients ak are defined as follows:

ak ≡ −
(
− 1

φ′(z0)

∂

∂z

)k
g(z)

φ′(z)
|z=z0

Theorem 5.2.2. (Interior Saddle Point) Let γ be a smooth curve in C, z0 ∈ γ, g, φ analytic

at z0 with Rφ(z0) > Rφ(z) for all z ∈ γ. Let φ
′
(z0) = 0 6= φ

′′
(z0) and γ goes trough two

different sectors in a neighbourhood of z0 where Rφ(z) < Rφ(z0), then it follows,as λ→ +∞:

I(λ) = eλφ(z0)
∑
k≥0

akλ
−(k+ 1

2
)

In order to evaluate the coefficients ak we use the results discussed in sections (5.1.6) and

(5.1.7), in particular we know the existence of a smooth coordinates change: z = ψ(w) such

that φ(ψ(w)) = ψ(z0)− w2

2
holds at least in a sufficiently small neighbourhood of the point z0.

Changing integration variable in (5.18) and using the Cauchy Theorem in order to allowably

deforming the path integration γ until the steepest descent contour has been reached, we get

as λ→ +∞:

I(λ) = eλφ(z0)

∫
I

e−λw
2

g(ψ(w))ψ
′
(w)dw +O

(
1

λ

)
The analyticity of both g and φ allows us to write down the following Taylor expansion in

terms of ψ:

g(ψ(w))ψ
′
(w) =

∑
k≥0

ckw
k

so that the coefficients ak remain determined as:

ak ≡ 2k+
1
2 Γ

(
k +

1

2

)
c2k

One can easily merge results contained in asymptotics (5.2.1) and (5.2.2) in order to state the

following generalization to the case of multiple critical points :

Theorem 5.2.3. Let γ : [0, T ] → C be a smooth contour and g, φ be analytic functions in a

open set containing γ. Let maxz∈γ Rφ(z) be attained at {zj} which are either γ(0), γ(T ) or

saddle points each of which possess a contour where Rφ(z) < Rφ(zj), then as λ→ +∞:

I(λ) =
∑
zj

I(λ, zj)

where the single asymptotic contribution due to the point zj is called I(λ, zj) and is evaluated

as stated in asymptotics (5.2.1) and (5.2.2).
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5.2.2. Constant Altitude Paths

What happens when the minimax contour contains a path of constant Rφ-altitude ? Namely

consider the following integral:
b∫

a

eφ(z)dz (5.25)

where a, b ∈ C are connected by a smooth curve γ : [0, T ] → C such that γ(0) = a, γ(T ) = b

and ∀t ∈ [0, T ] , Rφ(γt) = const, then γ is the minimax solution. It is possible then to show

that γ can be deformed so as to give a path with only a finite number of highest point, so that

we have are back 20 into the scenario discussed in Th.(5.2.3).

Remark 5.2.1. If we have to calculate the asymptotics of (5.1) in the case of a closed path we

clearly have no contributions coming from endpoints. If the integrand function is analytic all

over the path of integration, then (5.1) is obviously zero. Otherwise we proceed as follows:

If there exists a smooth transformation γ
Φ→ γ′ of the integration path γ in a new path γ′

such that γ′ crosses just one saddle point which is higher than the other points of γ′ and

we can apply the results obtained in Sec.(5.2.1), since we have no contribution from the

ending point.

If we have a closed path of the type in Sec.(5.25) we do not solve the minimum problem

as it can be shown by considering e.g. 21 the phase function φ(z) ≡ z−2. In this case any

circle centered in z = 0 is a curve of constant altitude which does not solve the minimum

problem.

5.2.3. Precision in determing Saddle Points

If the exact determination of the saddle point of a certain phase function φ involved in (5.1)

is not possible and/or we can be satisfied by some type of approximation22 we can perform an

approximated saddle point technique. Let us start defining the range of a saddle point. If ξ is

a saddle point of the function φ then we define the δ − range of ξ as follows:

Rδ(ξ) ≡
{
z ∈ C :| φ(2)(ξ) · (z − ξ)2 |< δ

}
where δ > 0 and φ(2) indicates the second derivative of the function φ. If we consider the

expansion:

φ(z) = φ(ξ) +
1

2
φ(2)(ξ) · (z − ξ)2 +

1

6
φ(3)(ξ) · (z − ξ)3 + o

(
| z − ξ |3

)
20See Sec.(5.1) of [dB81] for an explicit example of this technique.
21See [dB81] Sec.(5.9).
22See e.g. [dB81] Sec.(5.10)
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and the sum
∑∞

n=3
1
n!
φ(n)(ξ)·(z−ξ)n is small, with respect to asymptotic parameter λ, compared

with the one of the second order, at least in a sufficiently small δ − range of ξ, then we can

apply methods seen in Sec.(5.1.5) and the integral can be successfully compared to23:∫
γξ

eφ(ξ)+
φ
′′

(ξ)
2 (z − ξ)2 dz =

√
2πα | φ′′(ξ) | eφ(ξ) (5.26)

where γξ is defined as the axis of the saddle point and the integration is made running through

γξ in accordance with the direction in which γ crosses the saddle point.

The parameter α, which indicates the direction of γξ is such that | α |= 1. For the special

case in which φ(z) = th(z) with h independent of the real parameter t, h′(ξ) = 0 and h
′′
(ξ) 6= 0

see Sec.(5.7) of [dB81].

In the other case, i.e. when
∑∞

n=3
1
n!
φ(n)(ξ) · (z − ξ)n is not small compared to the term

1
2
φ
′′
(ξ) (z − ξ)2, it is difficult to obtain approximated asymptotics following previous procedure.

This general difficulty could be caused by the presence of other saddle points in some small

δ − range of ξ or by singularities of the function φ near ξ. An example of such a situation is

discussed in Sec.(5.12) of [dB81].

5.2.4. A case in point

Let Ω ⊂ C be simply connected, g, φ holomorphic in Ω and consider the following integral:

I(λ) =

b∫
a

g(z)eλφ(z)dz (5.27)

for which we would like to find the asymptotic behaviour for large λ. Suppose that z0 is a

simple point for φ, then we can determine, according to the theory discussed in the previous

sections, two sectors:

S± ≡ 0 <| z − z0 |< ρ, | arg(z − z0)±
π

2
+

1

2
argφ

′′
(z0) |<

π

2
− δ

where δ is independent of λ and such that 0 < δ < π
4

and ρ = ρ(δ) > 0 such that there are

two opposite sectors in Bρ(z0) of amplitude equal to π
2
− 2δ, both symmetric with respect to

the axis of z0. In these sectors | eλφ |<| eλφ(z0) |, i.e. Rφ(z) < R(z0). For both S+ and S− we

have:

| arg(−(z − z0)
2φ

′′
(z0)) |<

π

2
− 2δ

hence:

R(−(z − z0)
2φ

′′
(z0)) >| z − z0 |2 · | φ

′′
(z0) sin(2δ)

23See e.g. Sec.(5.10) of [dB81].
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and we get:

Rφ(z)−Rφ(z0) < −1

2
| z − z0 |2 ·φ

′′
(z0) sin(2δ) +O(| z − z0 |3)

which is negative as soon as ρ is sufficiently small. Now let a1 ∈ S+ and b1 ∈ S− such that the

path γa1→b1 joining these two points is still in Ω. Then we can replace γa1→b1 by a new path

which is composed by the following three parts:

(γ1) a1 → a2 such that the final point a2 belongs to the axis inside S+

(γ2) a2 → b2 crossing the saddle point along the axis until we reach b2 ∈ S−

(γ3) b2 → b1 by a curve inside S−

Along γ1 and γ2 we have that R [φ(z)− φ(z0] < −c, hence as λ→ +∞:∫
γ1∪γ2

g(z)eλφ(z)dz = O
(
eλ(Rφ(z0)−c))

while the contribution due to integrating along γ3 can be evaluated by Laplace Method. In fact

γ3 can be reparametrized by:

z = z0 + αx, ā ≤ x ≤ b̄

(
−ρ < ā < 0 < b̄ < ρ, α = e

i
2

h
π−arg(φ′′ (z0))

i)
getting: ∫

γ3

g(z)eλφ(z)dz = α

b̄∫
ā

g(z0 + αx)eλφ(z0+αx)dx
λ→∞� eλφ(z0)

√
λ

∑
k≥0

ck
λk

where we used the Taylor expansion of φ around z0:

φ(z0 + αx) = φ(z0) +
1

2
φ
′′
(z0)α

2x2 +O
(
| x |3

)
and the coefficients ck are determined as in Sec.(4.4) of [dB81]. If g(z0) 6= 0 then the leading

asymptotics as λ→ +∞ is:∫
γ3

g(z)eλφ(z)dz = α

√
2π

λ | φ′′(z0) |
g(z0)e

λφ(z0)

(
1 +O

(
1

λ

))
(5.28)

where α is a complex number of unit modulus and its argument indicates the direction on the

axis from S+ to S−.
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Remark 5.2.2.

· eλφ(z0)
√
λ

∑
k≥0

ck
λk is the saddle point contribution [with respect to (5.27) ]. It depends on the

direction chosen to cross z0 by our integration path: reversing the direction causes a −1

factor in front.

· The question whether the asymptotics of (5.18) can be represented by saddle point contri-

butions cannot be answered by studying small neighbourhoods of their associated critical

points. Nevertheless it is affermative in all those cases in which we can link a to a1 and b

to b1 in such a a way that along these paths the condition maxz∈γ Rφ(z) < maxz∈γ Rφ(z0)

is fulfilled since , in this case, their contributions can be neglected.

In the case of a boundary point our discussion is simplified. In particular if:

g(a) 6= 0 and φ
′
(a) 6= 0

and the path which starts from a in a direction in which Rφ decreases, then the leading asymp-

totics, due to the contribution of a neighbourhood of a, can be evaluated using Laplace Method

and it equals:

g(a)eλφ(a)
(
−λφ(

′
(a)
)−1

as shown in Ch.(4), see also Sec.(4.3) of [dB81].

5.2.5. Airy Functions

As a classical application of the steepest descent method let us introduce the study of the Airy

function24:

A (x) ≡ 1

π

+∞∫
0

cos

(
z3

3
+ zx

)
dz (5.29)

for which we would like to find the asymptotics as x→ +∞. With a suitable change of variable

(5.29) can be written as:

A (x) =

√
x

2π

+∞∫
−∞

e
i
�

z3

3
+zx

�
dz

which allows us to consider an integral of the form (5.18), where φ(z) = i
(
z3

3
+ z
)
, λ ≡ x

3
2

and the path γ is replaced by the real axis. We note that the function φ has exactly two saddle

points, namely z+,− ≡ ±i where it attains, respectively, the values φ(z+,−) = ∓2
3
.

24For a deeper introduction to this class of special functions see e.g. [Leb72], Ch.5, Sec.(17)., [SV98] or
[Fri54].
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We note that Rφ(z−) > 0 = maxz∈γ Rφ(z) which implies that the z− contribution to the

asymptotics of (5.29) can be neglected. Since we have to integrate over an infinite contour

it is necessary to study the behaviour of Rφ(z) at infinity dividing the complex plane in the

following three sectors:

S1 ≡ {z ∈ C : arg(z) ∈ (o, π
3
}

S2 ≡ {z ∈ C : arg(z) ∈ (2π
3
, π}

S3 ≡ {z ∈ C : arg(z) ∈ (−4π
3
,−2π

3
}

where, along any ray which lies in D1, D2 or D3 and such that its origin is in z = 0, it has to

hold Rφ(z) → −∞ as | z |→ ∞. Vice versa, in the remaining sectors, we have Rφ(z) → +∞
along any ray. Coming back to the previous discussion, see (5.1.7), we can deform γ to any

line of the type I (z) = c > 025, e.g. to a path γ̃ such that I z = 1 which passes through the

saddle point z+. Since γ̃ is only a translation of the real axis we can parametrize it in a linear

way, i.e. ∀z ∈ γ̃ we have z = i+ t, t ∈ R, moreover:

∀z ∈ γ̃ ⇒ Rφ(z) = −2

3
− t2

which implies not only that maxz∈γ̃ Rφ(z) is attained solely at the saddle point z+ = i, but

also that the asymptotics of (5.29) is given by the z+ contribution. Using (5.28) 26 we find as

x→∞:

A (x) =
1

2x
1
4
√
π
e−

2
3
·x

3
2

(
1 +O(x−

3
2

)
(5.30)

In fact in a sufficently small neighbourhood U+ of z+ we have φ(z)− φ(z+) ∼ −(z− i)2 and in

U+ the line of steepest descent γ̄ has the form I (z − i) ' 0 which implies that both γ̃ and γ̄

have the same tangent at the point z+ where arg
√
−φ′′(z+) = 0. According to the expansion

given in Th.(5.2.2) we have:

A (x) =
1

2πx
1
4

e−
2
3
·x

3
2
∑
k≥0

(−1)k
Γ
(

3k+1
2

)
33k(2k)!

x−
3k
2 (5.31)

Let us turn back to the analysis of the phase function φ(z) = i
(
z3

3
+ z
)

for which we have

found the critical points z± = ±i. Writing our local coordinates z = ξ + iη we have that:

I φ(z) =
ξ3

3
− ξη2 + ξ , I φ(±i) = 0

so that the steepest paths are given as the closed set in the Zariski topology27 associated to the

equation: ξ(ξ2−3η2 +3) = 0 which represents a degenerate cubic formed by the imaginary axis

25Clearly this kind of paths are parallel to the real axis.
26Where λ = x

2
3 , g ≡ 1, φ(z) = i

(
z3

3 + z
)
.

27See e.g. [Zar44].



5.2 Steepest Descent Method 86

and the two branches of an hyperbola. Following the directions along which Rφ(z) decreases

we note that the global landscape can be divided into two antisymmetric parts with respect to

the real axis.The hyperbola’s asymptotes are given by ξ = ∓
√

3η and the original integration

path can be modified in the branch of the hyperbola which lies in the upper half of the complex

plane and running from ∞· e 5iπ
6 to ∞· e iπ

6 . Along the latter route we can easily see that (5.29)

converges whenever Rx > 0 and we can write:

2πA
(
x

2
3

)
x

1
3

=

∞·e
iπ
6∫

i

exφ(z)dz −
e

5iπ
6∫

i

exφ(z)dz = I(x)1 − I(x)2 (5.32)

which can be evealuated by Laplace method, see e.g. Ch.(4). Since both in I(x)1 and in I(x)2

we have that φ̃ ≡ φ(z)−φ(z+) is real, attains its maximum at z = z+ and d
dz

[φ(z)− φ(z+)] < 0,

then:

φ̃(z) = −2

3
− i

(
z3

3
+ z

)
= (z − i)2 − 1

3
i (z − i)3

and we can define:

±φ̃
1
2 = (z − i)

[
1− 1

3
i (z − i)

] 1
2

where:

· φ̃ 1
2 is the positive square root

·
[
1− 1

3
i (z − i)

] 1
2 is the value which reduces to a at z+ = i

· the positive specification for φ̃
1
2 holds for I(x)1 while the negative one holds for I(x)2.

By a standard Taylor expansion we have that, at least in a sufficently small neighbourood

of z+, z − i =
∑

k≥0 bk

(
±φ̃ 1

2

)k
where kbk is the coefficient of (z − i)k

−1

in the expansion of[
1− i(z−i)

3

]− k
2

in powers of z − i, so that:

z − i =
∑
k≥1

ik
−1

Γ
(

3k−2
2

)
3k−1k!Γ

(
k
2

) (±φ̃ 1
2

)k
(5.33)

are the expansions with respect to I(x)1, for the + sign, and for I(x)2, for the − sign. By

the results stated in Ch.(4), the fact that e−xφ(z+)I(x)1,2 =
∫∞

0
e−xφ̃ dz

dφ̃
dφ̃ and using (5.33) it is

possible to write down the asymptotics expansions of I(x)1,2, namely the following holds:

e
2
3
xI(x)1,2 =

+∞∫
0

e−xφ̃
∑
k≥1

(±1) in
−1

Γ
(

3k−2
2

)
3k−12(k − 1)!Γ

(
k
2

) φ̃ k
2
−1dφ̃ ∼

∑
k≥0

(±1) in
−1

Γ
(

3k−2
2

)
3k−12(k − 1)!x

k
2
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where we have integrated term-by-term. Since A
(
x

2
3

)
= 2πx

1
3 (I(x)1 − I(x)2) then we have:

A (z) ∼ 1

2πz
1
4

e−
2
3
z

3
2
∑
k≥0

Γ
(
3k + 1

2

)
(2k)!

(
−9z

3
2

)−k
which holds uniformly in arg z as z →∞ and | arg z |≤ π

3
− δ for all positive δ.

What happens to A (x) when x → −∞ ? it is possible to work as in the latter situation,

x→ +∞ with the only difference that, now, we have to deal with an infinite path of integration

γ where | eλφ(z) |≡ 1, hence the integral is only conditionally convergent.

More interesting is the full-complex asymptotic case, i.e. the scenario in which we want to

take care of the asymptotics of A (z) when z ∈ C and | z |→ +∞. Let us define:

C̄ ≡ C − {z ∈ C : I z = 0,Rz ∈ (−∞, 0]}

In order to make a useful change of variable consider the complex function
√
z for which

we choose a positive, real, definition in C̄, i.e. R [
√
z |z∈C̄ ] > 0.

The saddle points of the new phase function φ(t, z) ≡ it
(
t2+3z

3

)
are equal to t± ≡ ±i

√
z.

Since we choose the branch of
√
z in such a way that it is positive for any, positive, real

argument, then t± belong, respectively, to the upper and lower half-space. Let us deform our

integration contour according to what we have done for (5.29) in the case of x ∈ R, x→ +∞,

namely we consider the contour γ̃ which is a line parallel to the original one and passes through

t±(z). Over γ̃ we have:

t = i
√
z + τ −∞ < τ < +∞ φ(t, z) = −2

3
z

3
2 + i

τ 3

3
− τ 2

√
z

hence:

A (z) =
1

2π
e−

2
3
z

3
2

+∞∫
−∞

ei
t3

3
−t2

√
zdt =

1

π
e−

2
3
z

3
2

+∞∫
0

e−t
2√z cos

t3

3
dt

To the latter integral we can apply Lemma (4.1.1) in order to obtain the asymptotics (5.31)

for | z |→ +∞ where | arg z |≤ π − ε < π, uniformly in arg z.

What happens in C̃ε ≡| arg(−z) |≤ ε ? By the discussion done for the real case when we

took the limit x → −∞ for A (x), we have that the desired asymptotics is due to the sum of

the contributions of both saddle points t± = 1, 2, the same is also valid in the present case

where we replace x by z. Let us define α = arg(−z), hence, in the part of the complex plane

in which we are working, we have | α |≤ ε. As seen before, choose a branch of
√
z so that

√
z =|

√
z | ieiα

2 . Take α ≥ 0 and change the integration contour into:

γ̃ ≡ [i
√
z, i
√
z +∞) ∪ (−i

√
z(−∞),−i

√
z] ∪ [−i

√
z, i
√
z]
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on the first two components of γ̃ we have:

Rt = i
√
z + τ 0 ≤ τ <∞ Rφ(t, z) = −1

2
Rz

3
2 − τ 2R

√
z

hence Rφ(t, z) attains its maximum at τ = 0. Vice versa over the segment [−i
√
z, i
√
z] we

have:

t = i
√
zρ − 1 ≤ ρ ≤ 1 φ(t, z) =

(
ρ3

3
− ρ

)
z

3
2

Since Rz
3
2 =| z | 32 cos

(
3α
2

)
> 0 and ρ3−3ρ

3
is monotonically decreasing with a maximum in

ρ = −1, then φ(t, z) takes its maximum value at the saddle point t−(z).

Analogously if α ≤ 0 then Rφ(t, z) attains its maximum at t+(z) , hence ∀z ∈ C̄ we have

that γ̃ is a saddle contour, and the asymptotic of the Airy functions is given as the sum of the

contributions of these points.

It follows that A (z) has different asymptotic forms in different sectors of the complex

plane, i.e. our function reveals the so called Stokes phenomenon, see next section and Ch.(6)

Sec.(6.2.4).

Moreover something else can happen when we have the freedom of choice among several

path of integration. One situation is very delicate and it is related to the case where a line of

steepest descent which comes from a saddle point passes through another saddle point, then

both contributions compete for the asymptotics. This is the case for A (z) when we take, in

φ(t, z) = it t
2+3z

3
, arg t = 2π

3
so that our integration contour goes through the saddle point

located in the lower half-space, i.e. z−. In this situation, contrary to what happens if arg t = π
3

when the path passes only through one saddle point namely z+, we have to take into account

a second contribution. The addendum due to z− does not affect the whole asymptotics which

actually remains the same, but the Borel28 summability is lost. Finally when we increase the

angle and t reaches π, both z+ and z− takes place in the asymptotics. The theory developed

to take care of the loss of Borel summability in asymptotic expansions of integrals is the so

called Resurgence Theory, see e.g. [É81, CNP93] and references therein.

5.2.6. Stokes Phenomenon

Let us return on the concept of Stokes Phenomenon already seen in the study of asymptotics

of the Airy’s functions (5.29). If we consider the following differential equation of Airy:

d2y

dz2
= zy(z) (5.34)

its solution is is approximated, for large | z | by a linear combination of

u± = z−
1
4 e±x (5.35)

28See the original work of Borel [Bor28], and Hardy [Har49]. See also [SW94] for an extensive review on the
subject.
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for x = 2 z
2
3

3
, see [Olv74]. The functions u± are multivalued with a branchpoint at z = 0,

nevertheless the solutions y(z) of (5.34) are entire. Therefore if a specific solution y(z) is

approximated at z̄ 6= 0 by c1u+ + c2u− we cannot use the same approximation at z = z̄e2π.

The latter is the basic Stokes Phenomenon.

The solutions of (5.34) arise as Fourier components, actually, except when x is purely

imaginary, the functions:

U+ = e−iωt = z−
1
4 and u−e

−iωt = z−
1
4 e−x−iωt (5.36)

represent waves, of frequency ω with approximate wavelength 3 pi

z
1
2

which varies with spatial

position with a corrispondent variation of the approximate amplitudes c1z
− 1

4 and c2z
− 1

4 . If x is

purely imaginary, the functions defined in (5.36)represent purely progressive waves. The wave

character of the solutions of (5.34) is their most important property and is the fundamental

reason why we take multivalued approximation for an entire function.

Analogous considerations hold29 for the general linear differential equation of the second

order:

λ2d
2w

dz2
− p(z)w(z) = 0 (5.37)

with analytic coefficient p(z) and parameter λ. The corresponding30 wave approximations31

are:

v± = p−
1
4 e±x and x =

1

λ

∫ √
p(s)ds (5.38)

If p(z) has a root z0 and is analytic at this point then w(z) is also analytic at the same point.

Nevertheless the functions v± have branchpoints at z = z0, they approximate the solutions of

(5.37) only for z 6= z0 and sufficiently large | x − x(z0) |. Moreover they approximate locally

single-valued solutions by locally multivalued functions which turn to be domain-dependent

approximations, i.e. the Stokes phenomenon arises again.

Another examples of the Stokes phenomenon happens in the canonical representation of

the Hamiltonian oscillators in terms of action angle, see [Gol50]. Let us rewrite (5.37) in the

following standard form:

d2W

dx2
− (1 + λ2φ)W = 0 and φ(x) = −p−

3
4

d2
(
p−

1
4

)
dz2

(5.39)

where W (x) ≡ p(z)
1
4w(z) with x ≡ 1

λ

∫ √
p(s)ds. Let us assume that we have to deal with only

one singular point, in the above sense, at x = 0. Let r(λx) denote a definite branch, in the

complex x−plane cut from 0 to ∞, of the fourth root of the coefficient function p(z). Moreover

29See [Mey89].
30See [Olv74] for rigorous derivation of the result.
31This is the WKB method, see e.g. Ch.2 of [Fed89].
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let ψ(x) in (5.39) be understood as the corresponding branch. Then the wave approximations

to v± in (5.38) are:

V+(x) = ex and V−(x) = e−x

By the WKB theorem32, the following:

W± ≡ a±(x;λ)e±x

is a fundamental system of solutions of (5.39) with the property that | a± | are bounded for

large | x |. Hence we have that the approximating functions V± are entire, while ψ has a

branchpoint at x = 0 and the same happens for W . It follows that the coefficients in the

approximation c1V+ + c2V− to W must jump across the cut, this is called33 Stokes curve or

Stokes line.

The study of Stokes phenomena naturally arise in the analysis of the classical functions of

mathematical physics which possess concrete integral representations. Since their asymptotics

is studied by the application of the steepest descent method, as we seen in the case of the Airy

functions in Subsec.(5.2.5), one has to deal with asymptotic approximations of wave character

which exhibit Stokes behaviour. In the case of more than one singular point we have to perform

a more complicated description of the Stokes phenomenon, see e.g. [Olv78], which is even more

difficult when the integrals of interest depend on some extra parameters. Actually, in the latter

case, it could be possible that different singular points coalesce according to the variation of

the parameters which trigger the asymptotics of our integrals, see e.g. [BH93, QW00] and

references therein for a detailed study of the subject.

5.2.7. Steepest Descent Method in Multidimensional Scenario

In this section we would like to carry on the methods of Sections from (5.2.1) to (5.2.6) towards,

hallowing problems on multi dimensional complex domains. We shall discuss some problems

of the steepest descent method for the case of oscillating integrals see [AHK77, AB93]. We will

see that new topological problems arise in the sense of the multidimensional steepest descent

method.

Let us consider the following integral in many dimensions:

I(λ) ≡
∫
γn

g(z)eλφ(z)dz (5.40)

where z ∈ Cn and γn is a n-dimensional complex, smooth and compact manifold. We will

assume thath both g and the phase φ are sufficiently smooth at least in some domain D which

contains the integration manifold γn.

32See [Olv74] for details.
33For a detailed discussion on how choose these cuts of the complex plane, see e.g. [Sto50, Olv74, MP83,

Mey89, Mey92].
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Of course, viewed as a real manifold, γn doubled its dimension so it is quiet difficult to try

a graphical sketch of the present scenario even if z = (z1, z2) ∈ C2, nevertheless the main idea

of the saddle point method can be applied, namely the searching of a saddle minimax contour.

Let us assume that both g and φ are polynomial function and that ∂γn is connected. Applying

Poincaré’s theorem we know that the value of (5.40) does not change if we replace γn with a

new manifold γ̃n provided the latter has the same boundary ∂γn. Let us suppose that, among

all the possible deformations of γn, we can pick up γ̃n with the minimax property, i.e. the

value:

min
γ̃n

max
z∈γ̃n

Rφ(z) = Mγ̃n

is attained on γ̃n. Hence if:

γ̃nM ≡ {z ∈ γ̃n : Rφ(z) = Mγ̃n}

then γ̃nM must contain either a saddle point or a boundary point of the integration manifold. If

z0 ∈ γ̃n is a simple saddle point one can use the Morse’s lemma, see Ch.(4) Sec.(4.4), in order

to have34:

φ(z) =
n∑
i=1

z2
i ⇒ Rφ(z) =

n∑
i=1

x2
i − y2

i I φ(z) = 2
n∑
i=1

xiyi

at least in a neighbourhood Uz0 of z0. It follows that, if the dimension n is greater than one,

the steepest descent paths are replaced by planes Π characterized by having xi = 0 for all

i = 1, . . . , n.

To give a glance of the situation let us suppose that z0 = 0 lies in γn and it is the only point

at which Rφ(z) attains its maximum. Then we can deform γn in order to make it coincide

with φ in a sufficiently small neighbourhood of z0 and (5.40) takes the form, as λ→ +∞:∫
|y|≤δ

g(y)e−λ
Pn

j=1 y
2
j dy +O

(
e−λc

)
for some constant c > 0. The final asymptotic can be developed using the Laplace method.

Suppose that maxz∈γn Rφ(z) is attained only at the point z0 which is both an interior and

a simple saddle point for γn. then the asymptotic expansion for (5.40) is (see [Fed77]):

I(λ) =
1√

|φ′′(z0)|

(
2π

λ

)n
2

eλφ(z0)

[
g(z0) +

∑
k≥1

ckλ
−k

]

where the choice of the branch for the root depends on the orientation of the contour.

In [Fed77] some theorems for choosing saddle points are developed, but a set of general rules

is still missing, one which can help us in solving the problem of the existence of a necessary

saddle point as we have done in the unidimensional complex case.

34See Sec.(4.5) of [Fed89].
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For the multidimensional investigation of a certain class of integrals see [Fed89], Sec.(4.5).,

where there is also an interesting example which emphasizes the differences between the one

dimensional and the multidimensional case, see [Fed89], Sec 4.5.



CHAPTER 6

Uniform Asymptotic Expansions

6.1. Introduction

Let us consider the Hankel functions of type j = 1, 2, argument kr and order ka:

Hka
(j)(kr) ≡ 1

π

∫
γj

eik[r cos z+a(z−π
2 )]dz (6.1)

where the path of integration γ1, seen as a function from (π
2
, 3

2
π) to the real axis, is such that

limt→π
2

+ γ1(t) = −∞, there exists a point t0 ∈ (π, 3π
2

) such that limt→t−0
γ1(t) = +∞ and a

point t̄ ∈ (π
2
, π) in which γ1 equals 0, i.e. the path γ1 intersects the real axis. The path γ2

is symmetric to γ1 with respect to the axis t = π
2
. We are interested in the limit behaviour

for k → ∞, i.e. the high frequency limit behaviour. It is appropriate to take the order and

the argument parameter as a function of ka and kr respectively. If we make the following

substitutions:

λ = kr and β =
a

r

and define:

w(z, β) ≡ i
[
cos z + β

(
z − π

2

)]
for j = 1, 2, we have:

H
(j)
ka (kr) = Ij (λ, β) =

1

π

∫
γj

eλw(z,β)dz (6.2)

We shall consider the case in which λ ∈ R, λ → ∞ and 0 < β < 1. By the definition of the

paths of integration we have that the only critical points are saddle points of w, and since:

w′(z) = i [− sin z + β] and w
′′
(z) = −i cos z
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we have that in the strip −π
2
< R(z) < 3π

3
, w has two simple points z± such that1:

sin z± = β and 0 < z+ <
π

2
and

π

2
< z− = π − z+ < π

We then have:

w(z±) = ±i
[√

1− β2 + β
(
sin−1 β − π

2

)]
where sin− 1 is the sin−inverse function. Since w

′′
(z) = ∓i

√
1− β2 it follows that the steepest

descent direction at the two saddle points are:

θ(z+) = −π
4
,
3π

4
and θ(z−) =

π

4
,−3π

4

Along the corresponding paths of steepest descent u(x, y) + iv(x, y) we have:

u(x, y) = R(w) = sinx sinh y − βy

v(x, y) = I (w) = cosx cosh y + β
(
x− π

2

) (6.3)

Analyzing equations (6.3) we find qualitative informations about the way of deforming the

orignal paths of integration γ − 1, γ2in order to apply the method of steepest descent which

allows to state the following asymptotics :

H
(j)
ka (kr) �

√
2

πλ

e(−1)j+1i[k
√
r2−a2−ka cos−1(a

r )−
π
4 ]

(r2 − a2)
1
4

(6.4)

where a
r
< 1 and for j = 1, 2. This result is no longer valid if a

r
= 1, i.e. when the order and

the argument of th Hankel functions coincide. In particular in this case z− = z+ and instead of

having two different saddle points of order one, we have only one saddle point of higher order.

Nevertheless we can treat this case by deforming the original paths of integration in a different

manner with respect to what we have done above. Finally, for j = 1, 2, we find:

H
(j)
ka (ka) � −

Γ
(

1
3

)
π(ka)

1
3

(
4

3

) 1
6

e(−1)j+1 2πi
3 (6.5)

Hence the corrisponding expression Ij(λ, β) for the Hankel functions are of the order O(λ−
1
2 )

if 0 < β < 1 and of order O(λ−
1
3 ) if β > 1. Latter transition in the determination of the

asymptotics for the Hankel functions with respect to the variation of the parameter β = a
r
,

suggests to develop a more sofisticated method of investigation. Actually we would like to have

an asymptotic expansion which remains valid even if the parameter triggering our integrals

crosses some critical values. In the case of the Hankel function the problem arises because of

the coaelescence of the saddle points z± when the parameter β approaches 1. Nevertheless the

latter is not the only situation in which anomalies in the asymptotics of the integrals of interest

arise. Different problems can be caused by the coaelescence of saddle points to a boundary

point of the path of integration, or to some singularity points of the integrand functions.

1For the analysis of the other saddle points, which give negligible contributions to the required asymptotics,
see Ch.7 of [BH86].
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6.2. Two Nearby Saddle Points

We would like to consider the following integral 2:

IC (λ, α) ≡
∫
C

g(z)eλφ(z,α)dz (6.6)

where λ ∈ R+, g(z) and φ(z, α) are analytic functions of z in some simply connected complex

domain containing the integration path C and the points z = α+, z = α−, which are non

degenerate sadde points of the phase function φ(z, α).

We shall try to find an asymptotic expansion for (6.6) in the large values of the asymptotic

parameter λ which are uniform in the complex parameter α. In particular the saddle points α±

are free to move in a simply connected domain D1 in which we allow them to coalesce in order

to form a degenerate saddle point of order two. Moreover we suppose that, for each choice of

α± ∈ D1 there exists a domain D2 ⊃ D1, outside of which all other saddle points of the phase

function φ lie and that their contribution to the asymptotic expansion of (6.6) can be neglected

in comparison to that of z = α±.

Of course the major problem in reaching our purpose is to find an asymptotic expansion

which remains valid even if α+ = α−, i.e. even if the parameter d ≡| α+ − α− |= 0 = dc, i.e. d

takes the the critical value 0.

6.2.1. First Underlying Principle

It is possible to state some general principles which can help us to solve the asymptotic expan-

sion problem for integrals of the type (6.6). The first ingredient consists in finding a suitable,

sufficiently smooth, change of variable, e.g. z = z(t), which allows us to change the phase

function φ(z, α) with a new one that could be simpler. For example if we have n saddle points

for the function φ, each of which is counted with its algebraic multiplicity, in many cases it is

possible to substitute φ with a polynomial function φ̄ of degree equal to n+1. This new phase,

according to [BH86], will be called canonical exponent since a whole class of problems could be

reduced to consider a particular φ̄. We shall see that in the case of two nearby saddle points

the canonical exponent will be a polynomial of degree three.

In order to find the appropriate canonical exponent we have to ask for a change of variable

z = z(t) which possesses the following properties:

(i) z = z(t) should yield a conformal map of some disc Dα ⊂ D2, containing z = α±, onto a

domain D̄α in the new complex t plane.

2What follows is essentially based on [CFF57], Ch.9 of[BH86], [Urs70], [Urs65] and [Olv54]. Moreover a
good introduction to the subject can be found in Ch.4 of [Jon97] in the framework of non-standard analysis.
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(ii) The new phase function φ̄(t, α) = φ(z(t), α) should have in D̄α two simple saddle points

for α+ 6= α− which, eventually, can coalesce to a single saddle point, of higher order, for

d = dc = 0.

One hopes to find a convenient change of variable, i.e. one which gives a simpler phase function

φ̄ compared with the original one φ. Following this idea let us consider the following cubic

transformation defined in implicit form:

φ(z, α) = −
(
t3

3
− (γ(α))2t

)
+ ρ(α) = φ̄(t, α) (6.7)

where the coefficients γ, ρ have to be determined according to the values of α. From (6.7),

differentiating with respect to t, we have:

dz

dt
=

γ2 − t2

d
dz
φ(z, α)

(6.8)

If property (i) has to be satisfied then the derivative in (6.8) must be finite and nonzero

∀(t, z) ∈ D̄α×Dα. We can encounter problems in the following two cases: first if z = α±, when

the above ratio explodes, second if t = ±γ. In order to avoid this situation we request that:

t = ±γ ↔ z = α±

Putting the latter condition in our cubic transformation we can make explicit γ and ρ, namely:

γ =
3

4
3
√
φ(α+, α)− φ(α−, α) ; ρ =

1

2
(φ(α+, α) + φ(α−, α)) (6.9)

The result in (6.9) might look unsatisfactory due to the fact that the parameter γ is not uniquely

determined, since α+ 6= α−. Different choices for γ lead us to pick up different branches in

(6.7), fortunately, however, the following result holds3:

Theorem 6.2.1. For each α± in D1 the transformation:

φ(z, α) = −
(
t3

3
− (γ(α))2t

)
+ ρ(α) = φ̄(t, α)

has just one branch which defines a conformal map of some disc Dα containing α±. On this

branch the points z = α+ and z = α− correspond to t = +γ and t = −γ respectively.

Once we have chosen the right value for γ we can take into account the behaviour of z = z(t)

at the saddle points t = ±γ.
If α+ 6= α− then γ 6= 0 and we have:

0 6= d2z

dt2
|t=±γ,z=α±=

∓2γ
d2

dz2
φ(α±, α)

<∞

3See [CFF57] Th.1 for a proof.
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(while, if α+ = α− we have: 0 6= d3z
dt3

|t=0,z=α+= −2
d3

dz3 φ(α+,α)
<∞). Applying (6.7) to (6.6) we

obtain:

IC (λ, α) =

∫
C̄

g(z(t))

(
γ2 − t2

d
dz
φ(z, α)

)
eλφ̄(t,γ)dt+ R (6.10)

where C̄ ≡ C ∩ D̄α and R is asymptotically negligible being by assumption exponentially

smaller than I(λ, α) itself. Let us define the following function:

g0(t, α) ≡ g(z(t))

(
γ2 − t2

d
dz
φ(z, α)

)
= g(z(t))

dz

dt
= a0 + a1t+ h0(t, α)(t2 − γ2) (6.11)

The coefficients a0, a1 and the function h0 will be determined in the next section.

6.2.2. Second Underlying Principle

The change of variable z = z(t) brings on a new function, namely g0 defined by (6.11), which

will plays the role of a new amplitude function. The next step in our analysis consists in finding

a finite expansion in power of α, of this function fulfilling the following requests:

(1) The remainder should vanish at all the critical points which are involved in the uniform

expansion of (6.6) with respect to the parameter α.

(2) The smoothness of the remainder must be the same as the one of the transformed am-

plitude.

If (1),(2) are satisfied then the integral involving the remainder can be uniformly integrated by

parts producing a new remainder integral which has the same form as (6.6) and is multiplied

by the inverse power of the large parameter λ. Since the boundary terms are either zero or

asymptotically small compared with I(λ, α), it follows that the leading term of the uniform

expansion involves a finite sum of canonical integrals. Namely each of the latter integrals

is asymptotically equivalent to a well studied special function. Moreover if we work with

sufficiently smooth functions, i.e. the original phase φ(z, α) and amplitude g(z), we can repeat

the process applying it to the remainder integral obtained at the previous step in order to find

an infinite expansion.

Turning back to (6.11) let us suppose that the function h0 is a regular function in D̄α, then

we have:

lim
t→±γ

h0(t, α)(t2 − γ2) = 0

Setting t = ±γ we then obtain:

a0 =
g0(γ, α) + g0(−γ, α)

2
; a1 =

g0(γ, α)− g0(−γ, α)

2γ
(6.12)
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Since g0 is smooth we have:

lim
γ→0

a0 = g0(0, α) ; lim
γ→0

a1 =
d

dt
g0(0, α) (6.13)

hence we can determine h0:

h0 =
g0(t, α)− a0 − a1t

t2 − γ2

which is regular in D̄α with a removable singularity at t = ±γ as one can see by:

lim
t→±γ

h0(t, α) = ±
d
dt
g0(±γ, α)− a1

2γ

Using (6.11) in (6.10) where φ̄ = −
(
t3

3
− γ2t

)
+ ρ as defined in (6.7), we have:

I(λ, α) = eλρ
∫
C̄

(a0 + a1t)e
−λ

�
t3

3
−γ2t

�
dt+ R0(λ, α) (6.14)

where the remainder R0 is equal to:

R0(λ, α) = eλρ
∫

C̄∩D̄α

(t2 − γ2)h0(t, α)e
−λ

�
t3

3
−γ2t

�
dt

The integral in (6.14) is over the whole path C̄ since the difference with its restriction to the

set C̄ ∩ D̄α equals an asymptotically small error. There remains to be evaluated an integral

which can be expressed in terms of the Airy function4 A and its derivative:

I(λ, α) � 2πieλρ
[
a0

3
√
λ

A (
3
√
λ2γ2) +

a1

3
√
λ2

A ′(
3
√
λ2γ2)

]
+
eλρ

λ
I1(λ, α) (6.15)

where:

I1(λ, α) ≡
∫

C̄∩D̄α

(
d

dt
h0(t, α)

)
e
−λ

�
γ3

3
−γ2t

�
dt (6.16)

In fact, in (6.14), the remainder R0 can be evaluated integrating by parts and the asymptoti-

cally negligible contributions from boundary terms can be discarded.

Setting g1(t, α) ≡ d
dt
h0(t, α) we see that I1(t, α) is of the form (6.10) multiplied by the

λ−1 factor. Hence it is natural to establish an iterated set of steps, to expand I1 in the way

already described for I, in order to obtain a third integral I3(t, α) again of the form (6.10) but

multiplied by a λ−2 factor and so on. Following this scheme we obtain the following asymptotic

expansion for IC (λ, α):

IC (λ, α) = 2πieλρ

[
A (

3
√
λ2γ2)

3
√
λ

N∑
n=0

a2n

λn
+

A ′(
3
√
λ2γ2)

3
√
λ2

N∑
n=0

a2n+1

λn

]
+ RN(λ, α) (6.17)

4See Ch.(5) Sec.(5.2.5).



6.2 Two Nearby Saddle Points 99

where

RN ≡ λ−(N+1)eλρ
∫

C̄∩D̄α

gn+1(t, α)e
−λ

�
t3

3
−γ2t

�
dt

The coefficients aj, j ∈ N, are given recursively by:

a2n ≡
gn(+γ, α) + gn(−γ, α)

2
; a2n+1 ≡

gn(+γ, α)− gn(−γ, α)

2γ

and

gn(t, α) ≡ a2n + a2n+1t+ (t2 − γ2)hn(t, α) ; gn+1 ≡
d

dt
hn(t, α)

The following theorem5 states that (6.17) is uniformly valid for d =| α+ − α− |→ 0:

Theorem 6.2.2. The previous recursive system yields an asymptotic expansion of I(λ, α), as

λ→∞, with respect to the asymptotic sequence:{
φn(λ, α) = eRe(λρ)

[
λ−n−

1
3 | A (

3
√
λ2γ2) | +λ−n−

2
3 | A ′(

3
√
λ2γ2) |

]}
n∈N

Moreover, this expansion is uniformly valid for small d =| α+ − α− |.

6.2.3. Last Underlying Principle

The transformation (6.7) modifies the phase function φ(z, α) in a polynomial of degree n + 1

and leaves us the task of determining n+2 constants. If our change of variable is such that the

n saddle points of φ are mapped into n saddle points of φ̄, then there remains a free constant

which can be chosen in order to obtain the possible simplest integral. Namely, in our abstract

example we choose a polynomial of degree 3 for which the coefficient of t2 is set to zero, this

choice leads us to work with a canonical integral of the form (6.10) expressed via the Airy

function and its derivative.

6.2.4. Stokes Phenomenon, again !

We have seen that in order to develop the asymptotic expansion for large values of the param-

eter λ of (6.6) we first start with the application of the standard method of steepest descent,

nevertheless, since our phase function φ depends on a second parameter α we have that, varying

α, it is possible for the two saddle points z± = to coalesce, say z± = 0 for α = 0.

It follows that the expansions of our integral, for a sufficiently large value of λ > λ0(α), give

rise to expansions involving exponential functions. But since the index N0(α) goes to infinity

when α approaches 0, then we have obtained a non-uniform expansion. Moreover if α = 0 we

have a different asymptotic expansion, see e.g. [Wat41] Sec. 8.21.

5See [CFF57] §5, [BH86] Th. 9.2.2 and [Olv54].
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The study of this breakdown, in a domain of the complex plane which contains α = 0,

is the key point of our previous discussion and results as those shown in (6.17) expressed in

terms of Airy function A . But what type of Airy function we have to chose ? The answer is

not unique, since it depends on the contour of integration and slightly different solutions had

been obtained by different authors. Anyway, compared to previous approaches like the ones

of [Nic10], [Wat41] or [Olv54], in [CFF57] one can find a consistent improvement due to the

fact that, instead of having an expansion in a region which shrinks to α = 0 when λ→∞, the

latter authors obtain an expansion which is uniform in a ball BRα(0) independently of λ.

Nevertheless this improvement cannot save us from the Stokes Phenomenon. As we have

seen in Sec. (5.29) the Airy integral:

∞e+
1
3 πi∫

∞e−
1
3 πi

eλ(
1
3
z3−αz)dz (6.18)

possesses an asymptotic expansion which seems to be discontinuous, see the remarks at the end

of this section, since its form changes in different sectors of the plane, i.e. for different values

of the parameter α that determines the behaviour of the two saddle points z±(α) = ±
√
α. In

particular the contribution due to z− becomes relevant when arg(α) increases through 2
3
π and

there is an apparent discontinuity, which constitutes namely the Stokes phenomenon.

Anyway this is only an apparent problem. Indeed the contribution from z+, for:

2

3
π < arg(α) < π − ε,

is exponentially large, compared to the one of z−. Along arg(α) = π the two contributions

are comparable. When arg(α) increases to 4
3
π the contribution from z− becomes dominant.

When arg(α) = 4
3
π the path of steepest descent thorugh z− passes from z+, i.e. we have a

new Stokes phenomenon. No Stokes phenomenon occurs when the path of (6.18) goes from

∞e−
1
3
πi to ∞e+

1
3
πi. Of course one could have another Stokes phenomenon for different limits of

integration in (6.18). Since the previous considerations depend on the values taken by arg(α),

one has that the whole complex plane in general and the domain Dα in particular, are divided

into three different regions by the Stokes lines: arg(α) ∈
{
0, 2

3
π, 4

3
π
}
. The same happens for

integrals of the general form (6.6). To fix ideas suppose that the integral over C equals the one

from ∞(−1
3
π) to ∞(1

3
π), then C can be deformed into an equivalent set of steepest descent

paths which pass only through one of the saddle points z± or through both of them provided

α is restricted to lie in Dα as mentioned before. With the same reasoning done for (6.18)

we can see that Dα is divided into three different regions by the following three Stokes lines:

arg(
√
γ) ∈

{
0, 2

3
π, 4

3
π
}
.

Remark 6.2.1. A different proof of the analyticity of the change of variables z = z(t) intro-

duced by (6.7) is stated in [Urs70]. In [Fri59] it is possible to find an extensive treatment of
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the material above and in [BH86] (Example 9.2.1) an application to the Hankel functions case

is given.

An improvement of the result given in [CFF57] is done in [Urs65] where the validity of the

used Airy function expansion is extended to a larger region which may be unbounded according

to the regularity of the involved phase and amplitude functions.

It is interesting to note that in several papers dealing with the Stokes phenomenon the

change in the asymptotic expansions of the integral under investigation is often interpreted as

discontinuos. Actually this is not the case as it is shown in [Ber88, Ber89, McL92], see also

Sec.11 and 12 of [Boy99] and references therein. In the latter a clear explanation of the Stokes

phenomenon using the Airy functions is given together with an extensive list of references on

the Stokes phenomenon subject with links to the new developments in the Resurgence theory,

see e.g. [CNP93, É81, Vor93], and Hyperasymptotics, see e.g. [BH91, Boy90, Daa98].



CHAPTER 7

Infinite Dimensional Integrals

7.1. Introduction

In this chapter we recall some basic notions about the rigourous derivation of the Feynman

path integrals as the infinite dimensional analogue of the usual finite dimensional oscillating

integrals in Rn: ∫
Rn

ei
Φ(x)

~ f(x)dx, (7.1)

where Φ : Rn → R, f : Rn → C and ~ > 0 is a parameter. Since a complete treatment of

the Feynman path integrals subject is out of the purposes of this work, we refer the reader to

[AHK76] and references therein, for a detailed description of the topic.

The integral (7.1) is strongly related to those discussed in Ch.5 and its study, originated in

optics, is a classical topic which ranges from mathematical physics to functional analysis. We

can define (7.1) also in the case in which f is not absolutely integrable as follows 1 :

Definition 7.1.1. The oscillatory integral of a Borel function f : Rn → C with respect to a

phase function Φ : Rn → R is defined if and only if for each test function φ ∈ S(Rn) such that

φ(0) = 1 the integral

Iε(f, φ) ≡
∫
Rn

ei
Φ(x)

~ f(x)φ(εx)dx (7.2)

exists for all ε > 0 and the limit limε→0 Iε(f, φ) exists and is independent of φ. In this case the

limit is called the oscillatory integral of f with respect to Φ and denoted by

◦∫
Rn

ei
Φ(x)

~ f(x)dx ≡ I(f,Φ)

1See [Hör71] and references therein.
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In the case where Φ(x) =| x2 | one calls: (2πi~)−
n
2 I(f,Φ) Fresnel (or normalized oscilla-

tory), integral of f . One also uses the notation:

(2πi~)−
n
2 I(f,Φ) =

◦̃∫
Rn

e
i

2~ |x|
2

f(x)dx

The symbol ˜ reminds us to the presence of the normalizing factor (2πi~)n/2 . Let us

introduce the following class of functions:

Definition 7.1.2. A Borel measurable function f : H → C is called F~ integrable if for

each sequence {Pn}n∈N of projectors onto n-dimensional subspaces of H, such that Pn ≤ Pn+1

and Pn → I strongly as n → ∞ (I being the identity operator in H), the finite dimensional

approximations of the oscillatory integral of f

F~
Pn

(f) =

◦∫
PnH

e
i

2~ |Pnx|2f(Pnx)d(Pnx)
( ◦∫
PnH

e
i

2~ |Pnx|2d(Pnx)
)−1

,

are well defined in the sense of the previous definition and the limit limn→∞F~
Pn

(f) exists and

is independent on the sequence {Pn}.
In this case the limit is called the infinite dimensional oscillatory integral of f and is denoted

by

F~(f) =

◦̃∫
H

e
i

2~ |x|
2

f(x)dx.

Even though a complete description of the class of all F~ integrable functions is still missing

(even in finite dimension), it is possible to show that this class includes F(H), the class of

Fresnel integrable functions defined in Ch.(2), Sec. (2.2). In particular the following theorem,

see [AHK76], holds:

Theorem 7.1.1. Let L : H → H be a self-adjoint trace class operator such that (I − L)

is invertible (I being the identity operator in H). Let us assume that f ∈ F(H). Then the

function g : H → C given by

g(x) = e−
i

2~ (x,Lx)f(x), x ∈ H

is F~ integrable and the corresponding infinite dimensional oscillatory integral F~(g) is given

by the following Cameron-Martin-Parseval type formula:

◦̃∫
H

e
i

2~ (x,(I−L)x)f(x)dx = (det(I − L))−1/2

∫
H

e−
i~
2

(x,(I−L)−1x)dµf (x) (7.3)
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where det(I − L) =| det(I − L) | e−πi Ind (I−L) is the Fredholm determinant of the operator

(I −L), | det(I −L)| its absolute value and Ind((I −L)) is the number of negative eigenvalues

of the operator (I − L), counted with their multiplicity.

Moreover, see [AHK76], it is also possible to define the normalized infinite dimensional

oscillatory integral with respect to an invertible operator B on H as follows:

Definition 7.1.3. A Borel function f : H → C is called F~
B integrable if and only for each

sequence {Pn}n∈N of projectors onto n-dimensional subspaces of H, such that Pn ≤ Pn+1 and

Pn → I strongly as n→∞ (I being the identity operator in H) the finite dimensional approx-

imations
◦∫

PnH

e
i

2~ (Pnx,BPnx)f(Pnx)d(Pnx),

are well defined and the limit

lim
n→∞

(detPnBPn)
1
2

◦̃∫
PnH

e
i

2~ (Pnx,BPnx)f(Pnx)d(Pnx) (7.4)

exists and is independent on the sequence {Pn}. In this case the limit is called the normalized

oscillatory integral of f with respect to B and is denoted by:

B̃∫
H

e
i

2~ (x,Bx)f(x)dx

Moreover if f ∈ F(H) then f ∈ F~
B and we have the following analogous of formula (7.3):

Theorem 7.1.2. Let us assume that f ∈ F(H). Then f is F~
B integrable and the corresponding

normalized oscillatory integral is given by the following Cameron-Martin-Parseval type formula:

B̃∫
H

e
i

2~ (x,Bx)f(x)dx =

∫
H

e−
i~
2

(x,B−1x)dµf (x) (7.5)

Remark 7.1.1. Theorem (7.1.2) shows that definitions (7.1.2) and (7.1.3) are not equivalent.

Indeed theorem (7.1.2) makes sense even if the operator L ≡ I −B is not trace class (in which

case the Fredholm determinant det(I −B) cannot be defined).

In fact it is possible to introduce different normalization constants in the finite dimensional

approximations and the properties of the corresponding infinite dimensional oscillatory integrals

are related to the trace properties of the operator associated to the quadratic part of the phase

function [AB95]. For example let us consider, for all integer p ≥ 2, the class of bounded linear

operators in H such that:

‖L‖p =
(
Tr(L∗L)

p
2

) 1
p
<∞



7.1 Introduction 105

For such an operator we define:

det
(p)

(I + L) = det

(
(I + L) exp

[
p−1∑
j=1

(−1)j

j
Lj

])

and the following normalized quadratic form on H:

Np(L)(x) = (x, Lx)− i~Tr

p−1∑
j=1

Lj

j
, x ∈ H (7.6)

then the following definition is well posed, see [AHK76]:

Definition 7.1.4. Let p ∈ N, p ≥ 2, L a bounded linear operator in H, f : H → C a Borel

measurable function. The class p normalized oscillatory integral of the function f with respect

to the operator L is well defined if for each sequence {Pn}n∈N of projectors onto n-dimensional

subspaces of H, such that Pn ≤ Pn+1 and Pn → I strongly as n → ∞ (I being the identity

operator in H) the finite dimensional approximations

◦̃∫
PnH

e
i

2~ |x|
2

e−
i

2~Np(PnLPn)(Pnx)f(Pnx)d(Pnx), (7.7)

are well defined and the limit

lim
n→∞

◦̃∫
PnH

e
i

2~ |x|
2

e−
i

2~Np(PnLPn)(Pnx)f(Pnx)d(Pnx) (7.8)

exists and is independent of the sequence {Pn}.
In this case the limit is denoted by

Ip,L(f) =

p̃∫
H

e
i

2~ |x|
2

e−
i

2~ (x,Lx)f(x)dx.

and it remains defined the class of p− normalized oscillatory integrals.

Previous results and definitions can be used in order to prove that, under suitable as-

sumptions on the initial datum φ, the solution of the Schrödinger equation for an anharmonic

oscillator potential: {
i~ ∂

∂t
ψ = − ~2

2m
∆ψ + (1

2
xA2x+ V (x))ψ

ψ(0, x) = φ(x)
(7.9)
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whith A2 ≥ 0 and V ∈ F (Rn), can be represented by a well defined infinite dimensional

oscillatory integral on the Hilbert space (Ht, ( , )) of real continuous functions γ(τ) from [0, t]

to Rd such that dγ
dτ
∈ L2([0, t]; Rd) and γ(t) = 0 with inner product

(γ1, γ2) =

t∫
0

dγ1

dτ
· dγ2

dτ
dτ

Let us define the following operator L on Ht:

(γ, Lγ) ≡
t∫

0

γ(τ)A2γ(τ)dτ,

and the function v : Ht → C

v(γ) ≡
t∫

0

V (γ(τ) + x)dτ + 2xA2

t∫
0

γ(τ)dτ, γ ∈ Ht, x ∈ Rd

The following theorem holds 2:

Theorem 7.1.3. Let φ ∈ F(Rd)∩L2(Rd) and let V ∈ F(Rd). Then the function fx : Ht → C,

x ∈ Rd, given by

fx(γ) = e−
i
~v(γ)φ(γ(0) + x)

is the Fourier transform of a complex bounded variation measure µfx on Ht and the infinite

dimensional Fresnel integral of the function gx(γ) = e−
i

2~ (γ,Lγ)fx(γ)

◦̃∫
Ht

e
i

2~ (γ,(I−L)γ)e−
i
~v(γ)φ(γ(0) + x)dγ.

is well defined, in the sense of (7.1.2), and is equal to

det(I − L)−1/2

∫
Ht

e−
i~
2

(γ,(I−L)−1γ)dµfx(γ).

Moreover it is a representation of the solution of equation (7.9) evaluated at x ∈ Rd at time t.

We would like to point out that definition (7.1.2) is more general than definition (7.1.3)

given in Ch.2. In [AM04b, AM05a] a further extension is given which provides a direct rigorous

Feynman path integral definition for the solution of the Schrödinger equation for an anharmonic

oscillator potential V (x) = 1
2
xA2x+ λx4, λ > 0 3.

2See [AHK76, ET84].
3See [AHK76], Sec.10.2 for a detailed description of the subject of Fresnel integrals and applications.
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7.1.1. Semiclassical Expansion

The theory of infinite-dimensional oscillatory integrals allows the rigorous generalization of

the Stationary Phase Method to the infinite dimensional scenario, see [AHK77, AB93]. This

means, in particular, that one can study the asymptotic semiclassical expansion of the solution4

of the Schrödinger equation in the limit ~ → 0.

In [AHK77] the authors consider Fresnel integrals of the form

I(~) =

∫̃
H
e

i
2~ |x|

2

e−
i
~V (x)g(x)dx, (7.10)

whereH is a real separable Hilbert space and V and g are in F(H), and prove, under additional

regularity assumptions on V, g, that if the phase function 1
2
|x|2−V (x) has only non degenerate

critical points, then I(~) is a C∞ function of ~ and its asymptotic expansion at ~ = 0 depends

only on the derivatives of V and g at these critical points. In particular the following holds5:

Theorem 7.1.4. Let H be a real separable Hilbert space, and V and g in F(H), i.e. there are

bounded complex measures on H such that

V (x) =

∫
H

eixαdµ(α) g(x) =

∫
H

eixαdν(α)

Let us assume V and g C∞, i.e. all moments of µ and ν exist, and that H = H1 ⊕H2, where

dim H2 < ∞, and if dµ(β, γ), dν(β, γ) are the measures on H1 ×H2 given by µ and ν. Then

there is a λ such that ‖µ‖ < λ2 and∫
H

e
√

2λ|β|d|µ|(β, γ) <∞,

∫
H

e
√

2λ|β| d|ν|(β, γ) <∞.

Then if the equation dV (x) = x has only a finite number of solutions x1, . . . , xn on the support

of the function g, such that none of the operators I − d2V (xi), i = 1, . . . , n, has zero as an

eigenvalue, then the function

I(~) =

∫̃
H
e

i
2~ |x|

2

e−
i
~V (x)g(x)dx

is of the following form

I(~) =
n∑
k=1

e
i

2~ |xk|2−V (xk)I∗k(~),

4For a detailed description of the subject see, eg. [AHK77, AB93, ABHK82, AdMBB82] and references
therein.

5See [AHK77].
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where I∗k(~) k = 1, . . . , n are C∞ functions of ~ such that

I∗k(0) = e
iπ
2
nk | det(I − d2V (xk))|−

1
2 g(xk)

where nk is the number of negative eigenvalues of the operator d2V (xk) which are larger than

1.

Moreover if V (x) is gentle, that is there exists a constant λ̄ > 0 with

‖µ‖ < λ̄2 and

∫
H

e
√

2λ̄|α|d|µ|(α) <∞, (7.11)

then the solutions of equation dV (x) = x have no limit points.

In [AHK77] Th.7.1.4 is applied to the study of the asymptotic behavior of the solution of the

Schrödinger equation (7.9), by using the Feynman path integral representation. In particular

the following theorem is proved:

Theorem 7.1.5. Consider the Schrödinger equation

i~
∂

∂t
ψ = − ~2

2m
∆ψ + V (x)ψ

where the potential V is the Fourier transform of some complex measure ν such that

V (x) =

∫
Rd

eixβdν(β)

with ∫
Rd

e|β|εd|ν|(β) <∞

for some ε > 0. Let the initial condition be

ψ(y, 0) = e
i
~f(y)χ(y)

with χ ∈ C∞
0 (Rd) and f ∈ C∞(Rd) and such that the Lagrange manifold Lf ≡ (y,−∇f)

intersects transversally the subset ΛV of the phase space made of all points (y, p), such that p

is the momentum at y of a classical particle that starts at time zero from x, moves under the

action of V and ends at y at time t.

Then ψ(t, x), given by the Feynman path integral∫̃
γ(t)=x

e
i

2~
R t
0 γ̇(τ)

2dτe−
i
~
R t
0 V (γ(τ))dτψ(γ(0), 0)dγ =

∫̃
γ(t)=x

e
i
~S(γ)ψ(γ(0), 0)dγ,

(which can be made precise as Fresnel integral as in Th.(7.1.3), with L = 0, see Ch.10 of

[AHK76]). has an asymptotic expansion in powers of ~, whose leading term is the sum of the

values of the function∣∣∣ det
((∂γ̄(j)

k

∂y
(j)
l

(y(j), t)
))∣∣∣−1/2(

e−
i
2
πm(j)

e−
i
~Se−

i
~fχ
)
(γ̄(j))
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taken at the points y(j) such that a classical particle starting at y(j) at time zero with mo-

mentum ∇f(y(j)) is in x at time t. S(γ̄(j)) is the classical action along this classical path

γ̄(j) and m(j)(γ̄(j)) is the Maslov index of the path γ̄(j), i.e. m(j) is the number of zeros of

det
((

∂γ̄
(j)
k

∂y
(j)
l

(y(j), τ)
))

as τ varies on the interval (0, t).

If some critical point of the phase function is degenerate, the study of the asymptotic

behavior of the integral I(~) in (7.10) becomes more complicated. Fo example in [AB93] the

study of the degeneracy is reduced on a finite dimensional subspace of the Hilbert space H,

then the same tecniques of Ch.5 Sec.5.1.5 are applied.

The authors of [AB93] assume that 1
2
(x,Bx) − V (x) has the point xc = 0 as the unique,

degenerate, stationary point and under suitable assumptions on B and V that the set:

Z ≡ Ker(B − d2V )(0) 6= {0}

is finite dimensional. By taking the subspace Y ≡ B(Z⊥) and applying the Fubini theorem

one has

I(~) =

◦̃∫
H

e
i

2~ (x,Bx)e−
i
~V (x)g(x)dx =

= CB

◦̃∫
Z

e
i

2~ (z,B2z)

◦̃∫
Y

e
i

2~ (y,B1y)e−
i
~V (y+z)dydz, (7.12)

where B1 and B2 are defined by

B1y = (πY ◦B)(y), y ∈ Y,

B2z = (πZ ◦B)(z), z ∈ Z,

and CB = (detB)−1/2(detB1)
1/2(detB2)

1/2. By assuming that V, g ∈ F(H), V = µ̂ and g = ν̂,

and under some growth conditions on µ and ν, one has that the phase function

y 7→ 1

2
(y,B1y)− V (y + z)

of the oscillatory integral J(z, ~) =
∫̃ ◦
Y
e

i
2~ (y,B1y)e−

i
~V (y+z)dy has only one nondegenerate sta-

tionary point a(z) ∈ Y . By applying then the theory developed for the nondegenerate case one

has

J(z, ~) = e
i

2~ (a(z),B1a(z))e−
i
~V (a(z)+z)J∗(z, ~),

J∗(z, 0) =
[
det
(
B1 −

∂2V

∂2y
(a(z) + z)

)]−1/2

g(a(z) + z).

As I(~) =
∫̃ ◦
Z
eφ(z)J∗(z, ~)dz, where φ(z) = i

2~(z, B2z) + i
2~(a(z), B1a(z)) − i

~V (a(z) + z), the

main ingredient for the asymptotic behavior of I(~) comes from J∗(z, 0).
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The phase function φ has z = 0 as a unique degenerate critical point and one can use the

finite dimensional theory in order to investigate the higher derivatives of φ at 0. For example

if dim(Z) = 1 and ∂3V
∂3z

(0) 6= 0 then

I(~) ∼ C~−1/6, as ~ → 0.

More generally it is possible to handle other cases, taking into account the classification of

different types of degeneracies, see, e.g. [AB93]).

In [ABHK82, AdMBB82] the Feynman path integral representation I(t, ~) for the trace of

the Schrödinger group Tre−
i
~Ht and the corrisponding asymptotics as ~ → 0 is studied. In

particular in [AdMBB82] the oscillatory integral

I(t, ~) =

◦̃∫
Hp,t

e
i
~ Φ(γ)dγ,

is considered, where Hp,t is the Hilbert space of periodic functions γ ∈ H1(0, t; Rd) such that

γ(0) = γ(t), with norm |γ|2 =
∫ t

0
γ̇(τ)2dτ+

∫ t
0
γ(τ)2dτ , and Φ(γ) = 1

2

∫ t
0
γ̇(τ)2dτ−

∫ t
0
V1(γ(τ))dτ,

V1(x) = 1
2
xΩ2x + V0(x) being the classical potential. If V1 : Rd → R is of class C2, then one

proves that the functional Φ is of class C2 and a path γ ∈ Hp,t is a stationary point for Φ if

and only if γ is a solution of the Newton equation

γ̈(τ) + V ′
1(γ(τ)) = 0 (7.13)

satisfying the periodic conditions

γ(0) = γ(t), γ̇(0) = γ̇(t). (7.14)

V1 is also assumed to satisfy the following conditions:

1. V1 has a finite number critical points c1, . . . , cs, and each of them is non-degenerate, i.e.

detV ′′
1 (cj) 6= 0;

2. t > 0 is such that the function γcj , given by γcj(τ) = cj, τ ∈ [0, t], is a non-degenerate

stationary point for Φ;

3. any non-constant t−periodic solution γ of (7.13) and (7.14) is a non-degenerate periodic

solution, i.e. dimKer(Φ′′(γ)) = 1, see [Eke90].

Under additional assumptions, the authors prove that the set M of stationary points of the

phase function Φ is a disjoint union of the following form:

M = {xc1 , . . . , xcs} ∪
r⋃

k=1

Mk,
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where xci , i = 1, . . . s, are nondegenerate and Mk are manifolds (diffeomorphic to S1) of

degenerate stationary points, on which the phase function is constant. Under some regularity

on V they also prove that, as ~ → 0

I(t, ~) =
s∑
j=1

e
i
~ tV1(cj)I∗j (~) + (2πi~)−1/2

[
e

i
~ Φ(bk)|MkI

∗∗
k (~) +O(~)

]
where cj are the points in condition 1, bk ∈ Mk are all noncongruent t-periodic solutions of

(7.13) and (7.14) as in condition 3, |Mk| is the Riemannian volume of Mk, I
∗
j and I∗∗k are C∞

functions of ~ ∈ R such that, in particular,

I∗j (0) =
(

det
[
2
[
cos
(
t
√
V ′′(cj)

)
− 1
]])−1/2

,

I∗∗k (0) =
( d
dε

det(Rk
ε (t)− I)|ε=1

)−1/2

,

where Rk
ε (t) denotes the fundamental solution of{

ẍ(τ) = −εV ′′(bk(τ))x(τ), τ > 0,

x(0) = x0, ẋ(0) = y0

written as a first order system of 2d equations for real valued functions.

Remark 7.1.2. The problem of corresponding asymptotic expansions in powers of ~ for the

case of the Schrödinger equation with a quartic potential requires a different treatement. For

the corresponding finite dimensional approximation a detailed presentation, including Borel

summability, is given in [AM05b]. The case of the Schrödinger equation itself is discussed in

[APM06a].

7.2. Further Infinite Dimensional Asymptotics

In this section we will consider the semiclassical limit of a particular class of infinite dimensional

oscillating integrals. Our study is based on the following work [AHK76, AHK77, AB93].

Let us start recalling the definition of the following spaces of symmetric linear continuous

operator from H into itself:

L+(H) ≡ {T : H → Hs.t.〈Tx, x〉 ≥ 0, T ∗ = T} (7.15)

L+
1 (H) ≡

{
T ∈ L+(H) : Tr(T ) <∞

}
(7.16)

Let us consider the couple (a,B) where a ∈ H and B ∈ L+
1 (H) and denote by

{ek : k ≥ 1} resp. {ck : k ≥ 1}
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a complete orthonormal basis for H resp. a sequence of nonnegative numbers such that:

B · ek = ckek ∀k ≥ 1

Since we can identify H with the set of all sequences of numbers which are square integrable,

i.e. with:

l2 ≡

{
{xi}i≥1 : xi ∈ R ,

∑
i≥1

| xi |2< +∞

}
we will use this identification in what follows. In the unidimensional case to any couple of

numbers (a, c) ∈ R × R+ there is associated the following unidimensional Gaussian measure:

µa,c ≡
1√
2πc

e−
(x−a)2

2c dx

We define the corresponding product measure µa,B ≡ ⊗∞
k=1µak,ck on the cartesian product

R∞ ≡ ×∞
k=1R, with the corresponding Borel σ − algebra, see e.g. [Hal50]. We call, in analogy

with the unidimensional case, the above defined measure µa,B Gaussian measure of average a

and Covariance matrix B. Besides the characteristic function of µa,B reads as follows:∫
H

ei〈α,x〉dµa,B(x) = ei〈a,α〉e−
1
2
〈Bα,α〉

Let us consider the following type of infinite dimensional oscillatory integral:∫
H×H

ei〈(γ−γ
′),(I−L)(γ+γ′)〉e−

i
2~ (γ−γ′),B(γ−γ′)〉f(γ, γ′)dγdγ′ (7.17)

where L : H → H is a self adjoint trace-class operator, such that (I − L) is invertible, and

f : H×H → C be the Fourier transform of a complex bounded variation measure µf on H×H,

while B is as before a positive definite operator on H.

The oscillatory integral in (7.17) is well defined by means of finite dimensional approxima-

tions, see [AHK76] and Sec.(7.1) of this chapter and Sec.(2.2) in Ch.(2). Moreover since the

function:

e−
1
2~ (γ−γ′),B(γ−γ′)

is the characteristic function of a zero-mean Gaussian measure µB
~
, on H evaluated at γ − γ′,

with covariance matrix ~−1B then for the previous integral an analogue of the Parseval formula

obtained in(2.2.2) holds. Let us consider the following form for the function f(γ, γ′):

f(γ, γ′) ≡ e−
i
~V (γ)+ i

~V (γ′) · g(γ, γ′) (7.18)

where g ∈ F(H,H) and V ∈ F(H). With suitable assumption on the operators I − L and B

we have that the phase:

φ(γ, γ′) =
i

2
(γ − γ′, (I − L) · (γ + γ′)− 1

2
(γ − γ′, B · (γ − γ′))− iV (γ) + iV (γ′) (7.19)



7.2 Further Infinite Dimensional Asymptotics 113

has a unique isolated stationary point. Let us indicate this point by (γc, γ
′
c), then, imposing

regularity conditions on the potential V , we have that (γc, γ
′
c) is non degenerate stationary

point for the phase φ. By the application of the Cameron-Martin formula, we can translate the

above mentioned point at the origin. Then we can perform the asymptotic expansion of (7.17)

as ~ → 0 using tecniques developed in Sec.3 of [AB93], see also Sec.(7.1.1) of this chapter and

[APM06b].
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[Erd56] A. Erdélyi. Asymptotic Expansions. Dover Publications, 1956.

[ET84] D. Elworthy and A. Truman. Feynman maps, Cameron-Martin formulae and

anharmonic oscillators. Ann. Inst. H. Poincaré Phys. Théor., 41(2):115–142, 1984.
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