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Abstract. The problem of computing Craig Interpolants for propositional (SAT)

formulas has recently received a lot of interest, mainly for its applications in for-

mal verification. However, propositional logic is often not expressive enough for

representing many interesting verification problems, which can be more naturally

addressed in the framework of Satisfiability Modulo Theories, SMT.

Although some works have addressed the topic of generating interpolants in SMT,

the techniques and tools that are currently available have some limitations, and

their performace still does not exploit the full power of current state-of-the-art

SMT solvers.

In this paper we try to close this gap. We present several techniques for interpolant

generation in SMT which overcome the limitations of the current generators men-

tioned above, and which take full advantage of state-of-the-art SMT technology.

These novel techniques can lead to substantial performance improvements wrt.

the currently available tools.

We support our claims with an extensive experimental evaluation of our imple-

mentation of the proposed techniques in the MathSAT SMT solver.

1 Introduction

Since the seminal paper of McMillan [18], interpolation has been recognized to be a

substantial tool for verification in the case of boolean systems [7, 16, 17]. The tremen-

dous improvements of Satisfiability Modulo Theory (SMT) solvers in the recent years

have enabled the lifting of SAT-based verification algorithms to the non-boolean case [2,

1], and made it practical the implementation of other approaches such as CEGAR [20].

However, the research on interpolation for SMT has not kept the pace of the SMT

solvers. In fact, the current approaches to producing interpolants for SMT [19, 29, 26,

15, 14] all suffer from a number of limitations. Some of the approaches are severely

limited in terms of their expressiveness. For instance, the tool described in [26] can

only deal with conjunctions of literals, whilst the recent work described in [15] can

not deal with many useful theories. Furthermore, very few tools are available [26, 19],

and these tools do not seem to scale particularly well. More than to naı̈ve implemen-

tation, this appears to be due to the underlying algorithms, that substantially deviate

from or ignore choices common in state-of-the-art SMT. For instance, in the domain

⋆ This work has been partly supported by ORCHID, a project sponsored by Provincia Autonoma

di Trento, and by a grant from Intel Corporation.



of linear arithmetic over the rationals (LA(Q)), strict inequalities are encoded in [19]

as the conjunction of a weak inequality and a disequality; although sound, this choice

destroys the structure of the constraints, requires additional splitting, and ultimately re-

sults in a larger search space. Similarly, the fragment of Difference Logic (DL(Q)) is

dealt with by means of a general-purpose algorithm for full LA(Q), rather than one

of the well-known and much faster specialized algorithms. An even more fundamental

example is the fact that state-of-the-art SMT reasoners use dedicated algorithms for

Linear Arithmetic [9].

In this paper, we tackle the problem of generating interpolants within a state of the

art SMT solver. We present a fully general approach that can generate interpolants for

the most effective algorithms in SMT, most notably the algorithm for deciding LA(Q)
presented in [9] and those for DL(Q) in [8, 22]. Our approach is also applicable to the

combination of theories, based on the Delayed Theory Combination (DTC) method [5,

6], as an alternative to the traditional Nelson-Oppen method.

We carried out an extensive experimental evaluation on a wide range of benchmarks.

The proposed techniques substantially advance the state of the art: our interpolator can

deal with problems that can not be expressed in other solvers; furthermore, a compari-

son on problems that can be dealt with by other tools shows dramatic improvements in

performance, often by orders of magnitude.

The paper is structured as follows. In §2 we present some background on interpo-

lation in SMT. In §3 and §4 we show how to efficiently interpolate LA(Q) and the

subcase of DL(Q). In §5 we discuss interpolation for combined theories. In §6 we an-

alyze the experimental evaluation, whilst in §7 we draw some conclusions. The proofs

of the theorems are reported in Appendix A.

2 Background

2.1 Satisfiability Modulo Theory – SMT

Our setting is standard first order logic. A 0-ary function symbol is called a constant. A

term is a first-order term built out of function symbols and variables. A linear term is

either a linear combination c1x1 + . . .+cnxn +c, where c and ci are numeric constants

and xi are variables. When doing arithmetic on terms, simplifications are performed

where needed. We write t1 ≡ t2 when the two terms t1 and t2 are syntactically identi-

cal. If t1, . . . , tn are terms and p is a predicate symbol, then p(t1, . . . , tn) is an atom.

A literal is either an atom or its negation. A (quantifier-free) formula φ is an arbitrary

boolean combination of atoms. We use the standard notions of theory, satisfiability,

validity, logical consequence. We consider only theories with equality. We call Satis-

fiability Modulo (the) Theory T , SMT (T ), the problem of deciding the satisfiability of

quantifier-free formulas wrt. a background theory T . 3

We denote formulas with φ, ψ, A, B, C, I , variables with x, y, z, and numeric con-

stants with a, b, c, l, u. Given a theory T , we write φ |=T ψ (or simply φ |= ψ) to denote

that the formula ψ is a logical consequence of φ in the theory T . With φ ¹ ψ we denote

3 The general definition of SMT deals also with quantified formulas. Nevertheless, in this paper

we restrict our interest to quantifier-free formulas.



that all uninterpreted (in T ) symbols of φ appear in ψ. Without loss of generality, we

also assume that the formulas are in Conjunctive Normal Form (CNF). If C is a clause,

C ↓ B is the clause obtained by removing all the literals whose atoms do not occur

in B, and C \ B that obtained by removing all the literals whose atoms do occur in

B. With a little abuse of notation, we might sometimes denote conjunctions of literals

l1 ∧ . . .∧ ln as sets {l1, . . . , ln} and vice versa. If η ≡ {l1, . . . , ln}, we might write ¬η
to mean ¬l1 ∨ . . . ∨ ¬ln.

We call T -solver a procedure that decides the consistency of a conjunction of literals

in T . If S ≡ {l1, . . . , ln} is a set of literals in T , we call (T )-conflict set any subset η
of S which is inconsistent in T . 4 We call ¬η a T -lemma (notice that ¬η is a T -valid

clause). Given a set of clauses S ≡ {C1, . . . , Cn} and a clause C, we call a resolution

proof that
∧

i Ci |=T C a DAG P such that:

1. C is the root of P;

2. the leaves of P are either elements of S or T -lemmas;

3. each non-leaf node C ′ has two parents Cp1
and Cp2

such that Cp1
≡ p ∨ φ1,

Cp2
≡ ¬p ∨ φ2, and C ′ ≡ φ1 ∨ φ2. The atom p is called the pivot of Cp1

and Cp2
.

If C is the empty clause (denoted with ⊥), then P is a resolution proof of unsatisfiability

for
∧

i Ci.

A standard technique for solving the SMT(T ) problem is to integrate a DPLL-based

SAT solver and a T -solver in a lazy manner (see, e.g., [27] for a detailed description).

DPLL is used as an enumerator of truth assignments for the propositional abstraction of

the input formula. At each step, the set of T -literals S corresponding to the current as-

signment is sent to the T -solver to be checked for consistency in T . If S is inconsistent,

the T -solver returns a conflict set η, and the corresponding T -lemma ¬η is added as

a blocking clause in DPLL, and used to drive the backjump mechanism. With a small

modification of the embedded DPLL engine, a lazy SMT solver can also be used to

generate a resolution proof of unsatisfiability.

2.2 Interpolation in SMT

We consider the SMT (T ) problem for some background theory T . Given an ordered

pair (A,B) of formulas such that A ∧ B |=T ⊥, a Craig interpolant (simply “inter-

polant” hereafter) is a formula I s.t.:

a) A |=T I ,

b) I ∧ B |=T ⊥,

c) I ¹ A and I ¹ B.

The use of interpolation in formal verification has been introduced by McMillan

in [18] for purely-propositional formulas, and it was subsequently extended to han-

dle SMT(EUF ∪ LA(Q)) formulas in [19], EUF being the theory of equality and

uninterpreted functions. The technique is based on earlier work by Pudlák [24], where

4 In the next sections, as we are in an SMT (T ) context, we often omit specifying “in the theory

T ” when speaking of consistency, validity, etc.



two interpolant-generation algorithms are described: one for computing interpolants for

propositional formulas from resolution proofs of unsatisfiability, and one for generating

interpolants for conjunctions of (weak) linear inequalities in LA(Q). An interpolant for

(A,B) is constructed from a resolution proof of unsatisfiability of A ∧B, generated as

outlined in §2.1. The algorithm can be described as follows:

Algorithm 1: Interpolant generation for SMT (T )

1. Generate a proof of unsatisfiability P for A ∧ B.

2. For every T -lemma ¬η occurring in P , generate an interpolant I¬η for (η \ B, η ↓ B).
3. For every input clause C in P , set IC ≡ C ↓ B if C ∈ A, and IC ≡ ⊤ if C ∈ B.

4. For every inner node C of P obtained by resolution from C1 ≡ p ∨ φ1 and C2 ≡
¬p∨φ2, set IC ≡ IC1

∨IC2
if p does not occur in B, and IC ≡ IC1

∧IC2
otherwise.

5. Output I⊥ as an interpolant for (A,B).

Notice that Step 2. of the algorithm is the only part which depends on the theory

T , so that the problem of interpolant generation in SMT (T ) reduces to that of find-

ing interpolants for T -lemmas. To this extent, in [19] McMillan gives a set of rules

for constructing interpolants for T -lemmas in the theory of EUF , that of weak linear

inequalities (0 ≤ t) in LA(Q), and their combination. Linear equalities (0 = t) can be

reduced to conjunctions (0 ≤ t) ∧ (0 ≤ −t) of inequalities. Thanks to the combination

of theories, also strict linear inequalities (0 < t) can be handled in EUF ∪ LA(Q) by

replacing them with the conjunction (0 ≤ t) ∧ (0 6= t),5 but this solution can be very

inefficient. The combination EUF ∪ LA(Q) can also be used to compute interpolants

for other theories, such as those of lists, arrays, sets and multisets [14].

In [19], interpolants in the combined theory EUF∪LA(Q) are obtained by means of

ad-hoc combination rules. The work in [29], instead, presents a method for generating

interpolants for T1 ∪ T2 using the interpolant-generation procedures of T1 and T2 as

black-boxes, using the Nelson-Oppen approach [21].

Also the method of [26] allows to compute interpolants in EUF ∪LA(Q). Its pecu-

liarity is that it is not based on unsatisfiability proofs. Instead, it generates interpolants in

LA(Q) by solving a system of constraints using an off-the-shelf Linear Programming

(LP) solver. The method allows both weak and strict inequalities. Extension to unin-

terpreted functions is achieved by means of reduction to LA(Q) using a hierarchical

calculus. The algorithm works only with conjunctions of atoms, although in principle

it could be integrated in Algorithm 1 to generate interpolants for T -lemmas in LA(Q).
As an alternative, the authors show in [26] how to generate interpolants for formulas

that are in Disjunctive Normal Form (DNF).

Another different approach is explored in [15]. There, the authors use the eager

SMT approach to encode the original SMT problem into an equisatisfiable propositional

problem, for which a propositional proof of unsatisfiability is generated. This proof is

later “lifted” to the original theory, and used to generate an interpolant in a way similar

to Algorithm 1. At the moment, the approach is however limited to the theory of equality

only (without uninterpreted functions).

5 The details are not given in [19]. One possible way of doing this is to rewrite (0 6= t) as

(y = t) ∧ (z = 0) ∧ (z 6= y), z and y being fresh variables.



HYP
Γ ⊢ φ

φ ∈ Γ LEQEQ
Γ ⊢ 0 = t

Γ ⊢ 0 ≤ t
COMB

Γ ⊢ 0 ≤ t1 Γ ⊢ 0 ≤ t2

Γ ⊢ 0 ≤ c1t1 + c2t2
c1, c2 > 0

Fig. 1. Proof rules for LA(Q) (without strict inequalities).

All the above techniques construct one interpolant for (A,B). In general, however,

interpolants are not unique. In particular, some of them can be better than others, de-

pending on the particular application domain. In [11], it is shown how to manipulate

proofs in order to obtain stronger interpolants. In [12, 13], instead, a technique to re-

strict the language used in interpolants is presented and shown to be useful in preventing

divergence of techniques based on predicate abstraction.

3 Interpolation for Linear Arithmetic with a state-of-the-art solver

Traditionally, SMT solvers used some kind of incremental simplex algorithm [28] as

T -solver for the LA(Q) theory. Recently, Dutertre and de Moura [9] have proposed

a new simplex-based algorithm, specifically designed for integration in a lazy SMT

solver. The algorithm is extremely efficient and was shown to significantly outperform

(often by orders of magnitude) the traditional ones. It has now been integrated in several

SMT solvers, including ARGOLIB, CVC3, MATHSAT, YICES, and Z3. Remarkably,

this algorithm allows for handling also strict inequalities.

In this Section, we show how to exploit this algorithm to efficiently generate inter-

polants for LA(Q) formulas. In §3.1 we begin by considering the case in which the

input atoms are only equalities and non-strict inequalities. In this case, we only need to

show how to generate a proof of unsatisfiability, since then we can use the interpolation

rules defined in [19]. Then, in §3.2 we show how to generate interpolants for problems

containing also strict inequalities and disequalities.

3.1 Interpolation with non-strict inequalities

Similarly to [19], we use the proof rules of Figure 1: HYP for introducing hypothe-

ses, LEQEQ for deriving inequalities from equalities, and COMB for performing linear

combinations.6 As in [19], we consider an atom “0 ≤ c”, c being a negative numerical

constant, as a synonym of ⊥.

The original Dutertre-de Moura algorithm. In its original formulation, the Dutertre-

de Moura algorithm assumes that the variables xi are partitioned a priori in two sets,

hereafter denoted as B̂ (“initially basic”) and N̂ (“initially non-basic”), and that the

algorithm receives as inputs two kinds of atomic formulas: 7

6 In [19] the LEQEQ rule is not used in LA(Q), because the input is assumed to consist only of

inequalities.
7 Notationally, we use the hat symbol ˆ to denote the initial value of the generic symbol.



– a set of equations eqi, one for each xi ∈ B̂, of the form
∑

xj∈N̂ âijxj + âiixi = 0

s.t. all âij’s are numerical constants;

– elementary atoms of the form xj ≥ lj or xj ≤ uj s.t. lj , uj are numerical constants.

The initial equations eqi are then used to build a tableau T :

{xi =
∑

xj∈N aijxj | xi ∈ B}, (1)

where B (“basic”), N (“non-basic”) and aij are such that initially B ≡ B̂, N ≡ N̂ and

aij ≡ −âij/âii.

In order to decide the satisfiability of the input problem, the algorithm performs

manipulations of the tableau that change the sets B and N and the values of the co-

efficients aij , always keeping the tableau T in (1) equivalent to its initial version. An

inconsistency is detected when it is not possible to satisfy all the bounds on the vari-

ables introduced by the elementary atoms: as the algorithm ensures that the bounds on

the variables in N are always satisfied, then there is a variable xi ∈ B such that the

inconsistency is caused either by the elementary atom xi ≥ li or by the atom xi ≤ ui

[9]. In the first case, 8 a conflict set η is generated as follows:

η = {xj ≤ uj |xj ∈ N+} ∪ {xj ≥ lj |xj ∈ N−} ∪ {xi ≥ li}, (2)

where xi =
∑

xj∈N aijxj is the row of the current version of the tableau T (1) corre-

sponding to xi, N
+ is {xj ∈ N|aij > 0} and N− is {xj ∈ N|aij < 0}. Notice that

η is a conflict set in the sense that it is made inconsistent by (some of) the equations in

the tableau T (1), i.e. T ∪ η |=LA(Q) ⊥.

In order to handle problems that are not in the above form, a satisfiability-preserving

preprocessing step is applied upfront, before invoking the algorithm.

Our variant. In our variant of the algorithm, instead, the input is an arbitrary set of

inequalities lk ≤
∑

h âkh yh or uk ≥
∑

h âkh yh, and the preprocessing step is ap-

plied internally. In particular, we introduce a “slack” variable sk for each distinct term
∑

h âkh yh occurring in the input inequalities. Then, we replace such term with sk (thus

obtaining lk ≤ sk or uk ≥ sk) and add an equation sk =
∑

h âkh yh. Notice that we

introduce a slack variable even for “elementary” inequalities (lk ≤ yk). With this trans-

formation, the initial tableau T (1) is:

{sk =
∑

h âkh yh}k, (3)

s.t. B̂ is made of all the slack variables sk’s, N̂ is made of all the original variables yh’s,

and the elementary atoms contain only slack variables sk’s.

In our variant, we can use η to generate a conflict set η′, thanks to the following

lemma.

8 Here we do not consider the second case xi ≤ ui as it is analogous to the first one.



Lemma 1. In the set η of (2), xi and all the xj’s are slack variables introduced by our

preprocessing step. Moreover, the set η′ ≡ ηN+ ∪ ηN− ∪ ηi is a conflict set, where

ηN+ ≡ {uk ≥
∑

h âkh yh|sk ≡ xj and xj ∈ N+},

ηN− ≡ {lk ≤
∑

h âkh yh|sk ≡ xj and xj ∈ N−},

ηi ≡ {lk ≤
∑

h âkh yh|sk ≡ xi}.

We construct a proof of inconsistency as follows. From the set η of (2) we build a

conflict set η′ by replacing each elementary atom in it with the corresponding original

atom, as shown in Lemma 1. Using the HYP rule, we introduce all the atoms in ηN+ ,

and combine them with repeated applications of the COMB rule: if uk ≥
∑

h âkh yh is

the atom corresponding to sk, we use as coefficient for the COMB the aij (in the i-th
row of the current tableau) such that sk ≡ xj . Then, we introduce each of the atoms in

ηN− with HYP, and add them to the previous combination, again using COMB. In this

case, the coefficient to use is −aij . Finally, we introduce the atom in ηi and add it to

the combination with coefficient 1.

Lemma 2. The result of the linear combination described above is the atom 0 ≤ c,

such that c is a numerical constant strictly lower than zero.

Besides the case just described (and its dual when the inconsistency is due to an elemen-

tary atom xi ≤ ui), another case in which an inconsistency can be detected is when two

contradictory atoms are asserted: lk ≤
∑

h âkh yh and uk ≥
∑

h âkh yh, with lk > uk.

In this case, the proof is simply the combination of the two atoms with coefficient 1.

The extension for handling also equalities like bk =
∑

h âkh yh is straightforward:

we simply introduce two elementary atoms bk ≤ sk and bk ≥ sk and, in the construc-

tion of the proof, we use the LEQEQ rule to introduce the proper inequality.

Finally, notice that the current implementation in MATHSAT (see §6) is slightly

different from what presented here, and significantly more efficient. In practice, η, η′

are not constructed in sequence; rather, they are built simultaneously. Moreover, some

optimizations are applied to eliminate some slack variables when they are not needed.

3.2 Interpolation with strict inequalities and disequalities

Another benefit of the Dutertre-de Moura algorithm is that it can handle strict inequali-

ties directly. Its method is based on the following lemma.

Lemma 3 (Lemma 1 in [9]). A set of linear arithmetic atoms Γ containing strict in-

equalities S = {0 < p1, . . . , 0 < pn} is satisfiable iff there exists a rational number

ε > 0 such that Γε = (Γ ∪ Sε) \ S is satisfiable, where Sε = {ε ≤ p1, . . . , ε ≤ pn}.

The idea of [9] is that of treating the infinitesimal parameter ε symbolically instead

of explicitly computing its value. Strict bounds (x < b) are replaced with weak ones

(x ≤ b − ε), and the operations on bounds are adjusted to take ε into account.

We use the same idea also for computing interpolants. We transform every atom

(0 < ti) occurring in the proof of unsatisfiability into (0 ≤ ti − ε). Then we compute

an interpolant Iε in the usual way. As a consequence of the rules of [19], Iε is always a

single atom. As shown by the following lemma, if Iε contains ε, then it must be in the

form (0 ≤ t − c ε) with c > 0, and we can rewrite Iε into (0 < t).



Lemma 4 (Interpolation with strict inequalities). Let Γ , S, Γε and Sε be defined

as in Lemma 3. Let Γ be partitioned into A and B, and let Aε and Bε be obtained

from A and B by replacing atoms in S with the corresponding ones in Sε. Let Iε be an

interpolant for (Aε, Bε). Then:

– If ε 6¹ Iε, then Iε is an interpolant for (A,B).
– If ε ¹ Iε, then Iε ≡ (0 ≤ t−c ε) for some c > 0, and I ≡ (0 < t) is an interpolant

for (A,B).

Thanks to Lemma 4, we can handle also negated equalities (0 6= t) directly. Suppose

our set S of input atoms (partitioned into A and B) is the union of a set S′ of equalities

and inequalities (both weak and strict) and a set S 6= of disequalities, and suppose that

S′ is consistent. (If not so, an interpolant can be computed from S′.) Since LA(Q) is

convex, S is inconsistent iff exists (0 6= t) ∈ S 6= such that S′∪{(0 6= t)} is inconsistent,

that is, such that both S′ ∪ {(0 < t)} and S′ ∪ {(0 > t)} are inconsistent.

Therefore, we pick one element (0 6= t) of S 6= at a time, and check the satisfiability

of S′ ∪ {(0 < t)} and S′ ∪ {(0 > t)}. If both are inconsistent, from the two proofs

we can generate two interpolants I− and I+. We combine I+ and I− to obtain an

interpolant I for (A,B): if (0 6= t) ∈ A, then I is I+ ∨ I−; if (0 6= t) ∈ B, then I is

I+ ∧ I−, as shown by the following lemma.

Lemma 5 (Interpolation for negated equalities). Let A and B two conjunctions of

LA(Q) atoms, and let n ≡ (0 6= t) be one such atom. Let g ≡ (0 < t) and l ≡ (0 > t).
If n ∈ A, then let A+ ≡ A \ {n} ∪ {g}, A− ≡ A \ {n} ∪ {l}, and B+ ≡ B− ≡ B.

If n ∈ B, then let A+ ≡ A− ≡ A, B+ ≡ B \ {n} ∪ {g}, and B− ≡ B \ {n} ∪ {l}.

Assume that A+ ∧ B+ |=LA(Q) ⊥ and that A− ∧ B− |=LA(Q) ⊥, and let I+ and I−

be two interpolants for (A+, B+) and (A−, B−) respectively, and let

I ≡

{

I+ ∨ I− if n ∈ A
I+ ∧ I− if n ∈ B.

Then I is an interpolant for (A,B).

4 Graph-based Interpolation for Difference Logic

Several interesting verification problems can be encoded using only a subset of LA(Q),
the theory of Difference Logic (DL(Q)), in which all atoms are inequalities of the form

(0 ≤ y − x + c), where x and y are variables and c is a numerical constant. Equalities

can be handled as conjunctions of inequalities. Here we do not consider the case when

we also have strict inequalities (0 < y−x+ c), because in DL(Q) they can be handled

in a way which is similar to that described in §3.2 for LA(Q). Moreover, we believe

that our method may be extended straightforwardly to DL(Z) because the graph-based

algorithm described in this section applies also to DL(Z); in DL(Z) a strict inequality

(0 < y−x+c) can be safely rewritten a priori into the inequality (0 ≤ y−x+c−1).
DL(Q) is simpler than full linear arithmetic. Many SMT solvers use dedicated,

graph-based algorithms for checking the consistency of a set of DL(Q) atoms [8, 22].



Intuitively, a set S of DL(Q) atoms induces a graph whose vertexes are the variables

of the atoms, and there exists an edge x
c
−→ y for every (0 ≤ y − x + c) ∈ S. S is

inconsistent if and only if the induced graph has a cycle of negative weight.

We now extend the graph-based approach to generate interpolants. Consider the

interpolation problem (A,B) where A and B are sets of inequalities as above, and let

C be (the set of atoms in) a negative cycle in the graph corresponding to A ∪ B.

If C ⊆ A, then A is inconsistent, in which case the interpolant is ⊥. Similarly,

when C ⊆ B, the interpolant is ⊤. If neither of these occurs, then the edges in the

cycle can be partitioned in subsets of A and B. We call maximal A-paths of C a path

x1
c1−→ . . .

cn−1

−−−→ xn such that (I) xi
ci−→ xi+1 ∈ A, and (II) C contains x′ c′

−→ x1 and

xn
c′′

−→ x′′ that are in B. Clearly, the end-point variables x1, xn of the maximal A-path

are such x1, xn ¹ A and x1, xn ¹ B.

Let the summary constraint of a maximal A-path x1
c1−→ . . .

cn−1

−−−→ xn be the in-

equality 0 ≤ xn−x1+
∑n−1

i=1 ci. We claim that the conjunction of summary constraints

of the A-paths of C is an interpolant. In fact, using the rules for LA(Q) it is easy to see

that a maximal A-path entails its summary constraint. Hence, A entails the conjunction

of the summary constraints of maximal A-paths. Then, we notice that the conjunction of

the summary constraints is inconsistent with B. In fact, the weight of a maximal A-path

and the weight of its summary constraint are the same. Thus the cycle obtained from C
by replacing each maximal A-path with the corresponding summary constraint is also a

negative cycle. Finally, we notice that every variable x occurring in the conjunction of

the summary constraints is an end-point variable, and thus x ¹ A and x ¹ B.

A final remark is in order. In principle, to generate a proof of unsatisfiability for

a conjunction of DL(Q) atoms, the same rules used for LA(Q) [19] could be used.

However, the interpolants generated from such proofs are in general not DL(Q) formu-

las anymore and, if computed starting from the same inconsistent set C, they are either

identical or weaker than those generated with our method. In fact, due to the interpola-

tion rules in [19], it is easy to see that the interpolant obtained is in the form (0 ≤
∑

i ti)
s.t.

∧

i(0 ≤ ti) is the interpolant generated with our method.

Example 1. Consider the following sets of DL(Q) atoms:

A = {(0 ≤ x1 − x2 + 1), (0 ≤ x2 − x3), (0 ≤ x4 − x5 − 1)}

B = {(0 ≤ x5 − x1), (0 ≤ x3 − x4 − 1)}. −1

−10
x1 x5

1

0

1

A
B

x2

x3

x4

corresponding to the negative cycle on the right. It is straightforward to see from the

graph that the resulting interpolant is (0 ≤ x1 − x3 + 1) ∧ (0 ≤ x4 − x5 − 1), because

the first conjunct is the summary constraint of the first two conjuncts in A.

Applying instead the rules of Figure 1, the proof of unsatisfiability is:



HYP

(0 ≤ x1 − x2 + 1)

HYP

(0 ≤ x2 − x3)

COMB (0 ≤ x1 − x3 + 1)

HYP

(0 ≤ x4 − x5 − 1)

COMB (0 ≤ x1 − x3 + x4 − x5)

HYP

(0 ≤ x5 − x1)

COMB (0 ≤ −x3 + x4)

HYP

(0 ≤ x3 − x4 − 1)

COMB (0 ≤ −1)

By using the interpolation rules for LA(Q) (see [19]), the interpolant we obtain is

(0 ≤ x1 − x3 + x4 − x5), which is not in DL(Q), and is weaker than that computed

above.

5 Computing interpolants for combined theories via DTC

One of the typical approaches to the SMT problem in combined theories, SMT (T1 ∪
T2), is that of combining the solvers for T1 and for T2 with the Nelson-Oppen (NO)

integration schema [21].

The NO framework works for combinations of stably-infinite and signature-disjoint

theories Ti with equality. Moreover, it requires the input formula to be pure (i.e., s.t. all

the atoms contain only symbols in one theory): if not, a purification step is performed,

which might introduce some additional variables but preserves satisfiability. In this set-

ting, the two decision procedures for T1 and T2 cooperate by exchanging (disjunctions

of) implied interface equalities, that is, equalities between variables appearing in atoms

of different theories (interface variables).

The work in [29] gives a method for generating an interpolant for a pair (A, B)
of T1 ∪ T2-formulas using the NO schema. Besides the requirements on T1 and T2

needed to use NO, it requires also that T1 and T2 are equality-interpolating. A theory

T is said to be equality-interpolating when for all pairs of formulas (A,B) in T and

for all equalities xa = xb such that (i) xa 6¹ B and xb 6¹ A (i.e. xa = xb is an

AB-mixed equality), and (ii) A ∧ B |=T xa = xb, there exists a term t such that

A ∧ B |=T xa = t ∧ t = xb, t ¹ A and t ¹ B. E.g., both EUF and LA(Q) are

equality-interpolating.

Recently, an alternative approach for combining theories in SMT has been proposed,

called Delayed Theory Combination (DTC) [5, 6]. With DTC, the solvers for T1 and

T2 do not communicate directly. The integration is performed by the SAT solver, by

augmenting the boolean search space with up to all the possible interface equalities.

DTC has several advantages wrt. NO, both in terms of ease of implementation and in

reduction of search space [5, 6], so that many current SMT tools implement variants of

DTC. In this Section, we give a method for generating interpolants for a pair of T1∪T2-

formulas (A,B) when T1 and T2 are combined using DTC. As in [29], we assume that

A and B have been purified using disjoint sets of auxiliary variables.

5.1 Combination without AB-mixed interface equalities

Let Eq be the set of all interface equalities introduced by DTC. We first consider the

case in which Eq does not contain AB-mixed equalities. That is, Eq can be partitioned



into two sets (Eq \ B) ≡ {(x = y)|(x = y) ¹ A and (x = y) 6¹ B} and (Eq ↓
B) ≡ {(x = y)|(x = y) ¹ B}. In this restricted case, nothing special needs to be

done, despite the fact that the interface equalities in Eq do not occur neither in A nor

in B, but might be introduced in the resolution proof P by T -lemmas. This is because

—as observed in [19]— as long as for an atom p either p ¹ A or p ¹ B holds, it is

possible to consider it part of A (resp. of B) simply by assuming the tautology clause

p ∨ ¬p to be part of A (resp. of B). Therefore, we can treat the interface equalities in

(Eq \ B) as if they appeared in A, and those in (Eq ↓ B) as if they appeared in B.

5.2 Combination with AB-mixed interface equalities

We can handle the case in which some of the equalities in Eq are AB-mixed under the

hypothesis that T1 and T2 are equality-interpolating. Currently, we also require that T1

and T2 are convex, although the extension of the approach to non-convex theories is

part of ongoing work.

The idea is similar to that used in [29] in the case of NO: using the fact that

the Ti’s are equality-interpolating, we reduce this case to the previous one by “split-

ting” every AB-mixed interface equality (xa = xb) into the conjunction of two parts

(xa = t)∧ (t = xb), such that (xa = t) ¹ A and (t = xb) ¹ B. The main difference is

that we do this a posteriori, after the construction of the resolution proof of unsatisfia-

bility P . This makes it possible to compute different interpolants for different partitions

of the input problem into an A-part and a B-part from the same proof P . Besides the

advantage in performance of not having to recompute the proof every time, this is par-

ticularly important in some application domains like abstraction refinement [10], where

the relation between interpolants obtained from the same proof tree is exploited to prove

some properties of the refinement procedure. 9 To do this, we traverse P and split every

AB-mixed equality in it, performing also the necessary manipulations to ensure that the

modified DAG is still a resolution proof of unsatisfiability (according to the definition

in §2.2). As long as this requirement is met, our technique is independent from the exact

procedure implementing it. In the rest of this Section, we describe the algorithm that

we have implemented, for the combination EUF ∪ LA(Q). Due to lack of space, we

can not describe it in detail, rather we only provide the main intuitions.

First, we control the branching and learning heuristics of the SMT solver to ensure

that the generated resolution proof of unsatisfiability P has a property that we call

locality wrt. interface equalities. We say that P is local wrt. interface equalities (ie -

local) if the interface equalities occur only in subproofs P ie

i of P , in which both the root

and the leaves are T1 ∪ T2-valid, the leaves of P ie

i are also leaves of P , the root of P ie

i

does not contain any interface equality, and in P ie

i all the pivots are interface equalities.

9 In particular, the following relation: IA,B∪C(P) ∧ C =⇒ IA∪C,B(P) (where IA,B(P) is

an interpolant for (A, B) generated from the proof P) is used to show that for every spurious

counterexample found, the interpolation-based refinement procedure is able to rule-out the

counterexample in the refined abstraction [10]. It is possible to show that a similar relation

holds also for IA,B∪C(P1) and IA∪C,B(P2), when P1 and P2 are obtained from the same

P by splitting AB-mixed interface equalities with the technique described here. However, for

lack of space we can not include such proof.



In order to generate ie -local proofs, we adopt a variant of the DTC Strategy 1 of [6].

We never select an interface equality for case splitting if there is some other unassigned

atom, and we always assign false to interface equalities first. Moreover, when splitting

on interface equalities, we restrict both the backjumping and the learning procedures

of the DPLL engine as follows. Let d be the depth in the DPLL tree at which the first

interface equality is selected for case splitting. If during the exploration of the current

DPLL branch we have to backjump above d, then we generate by resolution a conflict

clause that does not contain any interface equality, and “deactivate” all the T -lemmas

containing some interface equality, so that they can not be used elsewhere in the search

tree. Only when we start splitting on interface equalities again, we can re-activate such

T -lemmas.

The idea of the Strategy just described is that of “emulating” the NO combination

of the two Ti-solvers. The conflict clause generated by resolution plays the role of the

T -lemma generated by the NO-based T1 ∪ T2 solver, and the T -lemmas containing

positive interface equalities are used for exchanging implied equalities. The difference

is that the combination is performed by the DPLL engine, and encoded directly in the

ie -local subproofs P ie

i of P .

Since AB-mixed equalities can only occur in P ie

i subproofs, we can handle the rest

of P in the usual way. Therefore, we now describe only how to manipulate the P ie

i ’s

such that all the AB-mixed equalities are split.

In order accomplish this task, we exploit the following fact: since we are considering

only convex theories, all the Ti-lemmas generated by the Ti-solvers contain at most one

positive interface equality (x = y).10 Let C ≡ (x = y) ∨ ¬η be one such Ti-lemma.

Then η |=Ti
(x = y). Since Ti is equality-interpolating, if (x = y) is AB-mixed, we

can split C into C1 ≡ (x = t) ∨ ¬η and C2 ≡ (t = y) ∨ ¬η. (E.g. by using the

algorithms given in [29] for EUF and LA(Q).) Then, we replace every occurrence of

¬(x = y) in the leaves of P ie

i with the disjunction ¬(x = t) ∨ ¬(t = y). Finally, we

replace the subproof

(x = y) ∨ ¬η ¬(x = y) ∨ φ

¬η ∨ φ
with

(x = t) ∨ ¬η ¬(x = t) ∨ ¬(t = y) ∨ φ

¬η ∨ ¬(t = y) ∨ φ
(t = y) ∨ ¬η

¬η ∨ φ
.

If this is done recursively, starting from Ti-lemmas ¬η ∨ (x = y) such that ¬η contains

no negated AB-mixed equality, then the procedure terminates and the new proof P ie

i
′

contains no AB-mixed equality.

Finally, we wish to remark that what just described is only one possible way of

splitting AB-mixed equalities in P . In particular, the restrictions on the branching and

learning heuristics needed to generate ie -local proofs might have a negative impact

in the performance of the SMT solver. In fact, we are currently investigating some

alternative strategies.

10 There is a further technical condition that must be satisfied by the Ti-solvers, i.e. they must not

generate conflict sets containing redundant disequalities. This is true for all the Ti-solvers on

EUF , DL(Q) and LA(Q) implemented in MATHSAT.



Family # of problems MATHSAT-ITP FOCI CLP-PROVER

kbfiltr.i 64 0.16 0.36 1.47

diskperf.i 119 0.33 0.78 3.08

floppy.i 235 0.73 1.64 5.91

cdaudio.i 130 0.35 1.07 2.98

Fig. 2. Comparison of execution times of MATHSAT-ITP, FOCI and CLP-PROVER on problems

generated by BLAST.

6 Experimental evaluation

The techniques presented in previous sections have been implemented within MATH-

SAT 4 [4] (Hereafter, we will refer to such implementation as MATHSAT-ITP). MATH-

SAT is an SMT solver supporting a wide range of theories and their combinations. In

the last SMT solvers competition (SMT-COMP’07), it has proved to be competitive

with the other state-of-the-art solvers. In this Section, we experimentally evaluate our

approach.

6.1 Description of the benchmark sets

We have performed our experiments on two different sets of benchmarks. The first

is obtained by running the BLAST software model checker [10] on some Windows

device drivers; these are similar to those used in [26]. This is one of the most important

applications of interpolation in formal verification, namely abstraction refinement in

the context of CEGAR. The problem represents an abstract counterexample trace, and

consists of a conjunction of atoms. In this setting, the interpolant generator is called

very frequently, each time with a relatively simple input problem.

The second set of benchmarks originates from the SMT-LIB [25], and is composed

of a subset of the unsatisfiable problems used in the 2007 SMT solvers competition

(http://www.smtcomp.org). The instances have been converted to CNF and then

split in two consistent parts of approximately the same size. The set consists of problems

of varying difficulty and with a nontrivial boolean structure.

The experiments have been performed on a 3GHz Intel Xeon machine with 4GB

of RAM running Linux. All the tools were run with a timeout of 600 seconds and a

memory limit of 900 MB.

6.2 Comparison with the state-of-the-art tools available

In this section, we compare with the only other interpolant generators which are avail-

able: FOCI [19, 12] and CLP-PROVER [26]. Other natural candidates for comparison

would have been ZAP [3] and LIFTER [15]; however, it was not possible to obtain them

from the authors.

The comparison had to be adapted to the limitations of FOCI and CLP-PROVER. In

fact, the current version of FOCI does not handle the full LA(Q), but only the DL(Q)
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fragment11. We also notice that the interpolants it generates are not always DL(Q)
formulas. (See, e.g., Example 1 of Section 4.) CLP-PROVER, on the other hand, does

handle the full LA(Q), but it accepts only conjunctions of atoms, rather than formulas

with arbitrary boolean structure. These limitations made it impossible to compare all

the three tools on all the instances of our benchmark sets. Therefore, we perform the

following comparisons:

– We compare all the three solvers on the problems generated by BLAST;

– We compare MATHSAT-ITP with FOCI on SMT-LIB instances in the theories of

EUF , DL(Q) and their combination. In this case, we compare both the execution

times and the sizes of the generated interpolants (in terms of number of nodes in

the DAG representation of the formula). For computing interpolants in EUF , we

apply the algorithm of [19], using an extension of the algorithm of [23] to generate

EUF proof trees. The combination EUF ∪ DL(Q) is handled with the technique

described in §5;

– We compare MATHSAT-ITP and CLP-PROVER on LA(Q) problems consisting of

conjunctions of atoms. These problems are single branches of the search trees ex-

plored by MATHSAT for some LA(Q) instances in the SMT-LIB. We have col-

lected several problems that took more than 0.1 seconds to MATHSAT to solve,

and then randomly picked 50 of them. In this case, we do not compare the sizes of

the interpolants as they are always atomic formulas.

The results are collected in Figures 2, 3 and 4. We can observe the following facts:

– Interpolation problems generated by BLAST are trivial for all the tools. In fact, we

even had some difficulties in measuring the execution times reliably. Despite this,

MATHSAT-ITP seems to be a little faster than the others.

11 For example, it fails to detect the LA(Q)-unsatisfiability of the following problem: (0 ≤
y − x + w) ∧ (0 ≤ x − z − w) ∧ (0 ≤ z − y − 1) .



– For problems with a nontrivial boolean structure, MATHSAT-ITP outperforms FOCI

in terms of execution time. This is true even for problems in the combined theory

EUF ∪DL(Q), despite the fact that the current implementation is still preliminary.

– In terms of size of the generated interpolants, the gap between MATHSAT-ITP and

FOCI is smaller on average. However, the right plot of Figure 3 (which considers

only instances for which both tools were able to generate an interpolant) shows that

there are more cases in which MATHSAT-ITP produces a smaller interpolant.

– On conjunctions of LA(Q) atoms, MATHSAT-ITP outperforms CLP-PROVER, some-

times by more than two orders of magnitude.

7 Conclusions

In this paper, we have shown how to efficiently build interpolants using state-of-the-

art SMT solvers. Our methods encompass a wide range of theories (including EUF ,

difference logic, and linear arithmetic), and their combination (based on the Delayed

Theory Combination schema). A thorough experimental evaluation shows that the pro-

posed methods are vastly superior to the state of the art interpolants, both in terms of

expressiveness, and in terms of efficiency.

In the future, we plan to investigate the following issues. First, we will improve

the implementation of the interpolation method for combined theories, that is currently

rather naı̈ve, and limited to the case of convex theories. Second, we will investigate

interpolation with other rules, in particular Ackermann’s expansion. Finally, we will

integrate our interpolator within a CEGAR loop based on decision procedures, such as

BLAST or the new version of NuSMV. In fact, such an integration raises interesting

problems related to controlling the structure of the generated interpolants [12, 13], e.g.

in order to limit the number or the size of constants occurring in the proof.
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A Appendix: Proofs

A.1 Proof of Lemma 1

Proof. In order to prove the lemma, we need to give some details on how the Dutertre-

de Moura algorithm detects an inconsistency. The algorithm maintains a mapping β :
B ∪N 7−→ Q representing a candidate model which, at every step, satisfies the follow-

ing invariants:

∀xj ∈ N , lj ≤ β(xj) ≤ uj , ∀xi ∈ B, β(xi) =
∑

j∈N aijβ(xj). (4)

The algorithm tries to adjust the values of β and the sets B and N , and hence the

coefficients aij of the tableau, such that li ≤ β(xi) ≤ ui holds also for all the xi’s in

B. Inconsistency is detected when this is not possible without violating any constraint

in (4).

We consider the case in which η (2) is generated from a row xi =
∑

xj∈N aij xj in

the tableau T (1) such that β(xi) < li. In [9] it is shown that in this case the following

facts hold:

∀xj ∈ N+, β(xj) = uj , and ∀xj ∈ N−, β(xj) = lj . (5)

(We recall that N+ = {xj ∈ N|aij > 0} and N− = {xj ∈ N|aij < 0}.) The

bounds uj and lj can be introduced only by elementary atoms. Since in our variant

the elementary atoms contain only slack variables, each xj must be a slack variable

(namely sk). The same holds for xi (since its value is bounded by li).
Now consider η again. In [9] it is shown that when a conflict is detected because

β(xi) < li, then the following fact holds:

β(xi) =
∑

xj∈N+ aijuj +
∑

xj∈N− aij lj . (6)

From the i-th row of the tableau T (1) we can derive

0 ≤
∑

xj∈N aij xj − xi. (7)

If we take each inequality 0 ≤ uj−xj multiplied by the coefficient aij for all xj ∈ N+,

each inequality 0 ≤ xj − lj multiplied by coefficient −aij for all xj ∈ N−, and the

inequality (0 ≤ xi − li) multiplied by 1, and we add them to (7), we obtain

0 ≤
∑

N+ aij uj +
∑

N− aij lj − li, (8)

which by (6) is equivalent to 0 ≤ β(xi) − li. Thus we have obtained 0 ≤ c with

c ≡ β(xi) − li, which is strictly lower than zero. Therefore, η is inconsistent under the

definitions in T . Since we know that xi and all the xj’s in η are slack variables, we can

replace every xj (i.e., every sk) with its corresponding term
∑

h âkh yh, thus obtaining

η′, which is thus inconsistent. ⊓⊔

A.2 Proof of Lemma 2

Proof. Follows immediately by the proof of Lemma 1. ⊓⊔



A.3 Proof of Lemma 4

Proof. Since the side condition of the COMB rule ensures that equations are combined

only using positive coefficients, and since the atoms introduced in the proof either do

not contain ε or contain it with a negative coefficient, if ε appears in Iε, it must have a

negative coefficient.

If ε does not appear in Iε, then Iε has been obtained from atoms appearing in A or

B, so that Iε is an interpolant for (A,B).
If ε appears in Iε, since its value has not been explicitly computed, it can be arbitrar-

ily small, so thanks to Lemma 3 we have that Bε∧Iε |=LA(Q) ⊥ implies B∧I |=LA(Q)

⊥.

We can prove that A |=LA(Q) I as follows. We consider some interpretation µ which

is a model for A. Since ε does not occur in A, we can extend µ by setting µ(ε) = δ for

some δ > 0 such that µ is a model also for Aε. As Aǫ |=LA(Q) Iǫ, µ is also a model for

Iε, and hence µ is also a model for I . Thus, we have that A |=LA(Q) I . ⊓⊔

A.4 Proof of Lemma 5

Proof. We have to prove that:

a) A |=LA(Q) I
b) B ∧ I |=LA(Q) ⊥
c) I ¹ A and I ¹ B.

a) If n ∈ A, then A |=LA(Q) g ∨ l. By hypothesis, we know that A+ |=LA(Q) I+

and A− |=LA(Q) I−. Then trivially A ∪ {g} |=LA(Q) I+ and A ∪ {l} |=LA(Q)

I−. Therefore A ∪ {g} |=LA(Q) I+ ∨ I− and A ∪ {l} |=LA(Q) I− ∨ I+, so that

A |=LA(Q) I .

If n ∈ B, then A+ ≡ A− ≡ A. By hypothesis A |=LA(Q) I+ and A |=LA(Q) I−,

so that A |=LA(Q) I .

b) If n ∈ A, then B+ ≡ B− ≡ B. By hypothesis B ∧ I+ |=LA(Q) ⊥ and B ∧
I− |=LA(Q) ⊥, so that B ∧ I |=LA(Q) ⊥.

If n ∈ B, then B |=LA(Q) g ∨ l, so that either B → g or B → l must hold. By

hypothesis we have B+∧I+ |=LA(Q) ⊥, so that B∪{g}∧I+ |=LA(Q) ⊥. If B → g
holds, then B ∧ I+ |=LA(Q) ⊥, and hence B ∧ I |=LA(Q) ⊥. Similarly, if B → l
holds, then B ∧ I− |=LA(Q) ⊥, and so again B ∧ I |=LA(Q) ⊥.

c) By the hypothesis, both I+ and I− contain only symbols common to A and B, so

that I ¹ A and I ¹ B. ⊓⊔


