
DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38100 Povo — Trento (Italy), Via Sommarive 14

http://dit.unitn.it/

REACTIVE SEARCH AND INTELLIGENT OPTIMIZATION

Roberto Battiti, Mauro Brunato, and Franco Mascia

Technical Report # DIT-07-049

Reactive Search
and

Intelligent Optimization

Roberto Battiti, Mauro Brunato and Franco Mascia

Dipartimento di Informatica e Telecomunicazioni,
Università di Trento, Italy

Version 1.02, July 6, 2007
Technical Report DIT-07-049, Università di Trento, July 2007

Available at: http://reactive-search.org/
Email for correspondence: battiti@dit.unitn.it

ii

Contents

Preface 1

1 Introduction 1
1.1 Parameter tuning and intelligent optimization . 2

1.2 Book outline . 3

Bibliography . 4

2 Reacting on the neighborhood 5
2.1 Local search based on perturbation . 5

2.2 Learning how to evaluate the neighborhood . 7

2.3 Learning the appropriate neighborhood in variable neighborhood search 8

2.4 Iterated local search . 12
Bibliography . 16

3 Reacting on the annealing schedule 19
3.1 Stochasticity in local moves and controlled worsening of solution values 19
3.2 Simulated Annealing and Asymptotics . 19

3.2.1 Asymptotic convergence results . 20

3.3 Online learning strategies in simulated annealing 22

3.3.1 Combinatorial optimization problems . 23

3.3.2 Global optimization of continuous functions 24

Bibliography . 25

4 Reactive prohibitions 27
4.1 Prohibitions for diversification (Tabu Search) . 27

4.1.1 Forms of Tabu Search . 28

4.1.2 Dynamical systems . 28
4.1.3 An example of Fixed Tabu Search . 29

4.1.4 Relation between prohibition and diversification 30

4.1.5 How to escape from an attractor . 31

4.2 Reactive Tabu Search (RTS) . 36

4.2.1 Self-adjusted prohibition period . 36

4.2.2 The escape mechanism . 37
4.3 Implementation: storing and using the search history 37

4.3.1 Fast algorithms for using the search history 38

4.3.2 Persistent dynamic sets . 39

Bibliography . 41

5 Model-based search 45
5.1 Models of a problem . 45

5.2 An example . 47

5.3 Dependent probabilities . 47

iii

iv CONTENTS

5.4 The cross-entropy model . 50
Bibliography . 51

6 Reacting on the objective function 53
6.1 Eliminating plateaus by looking inside the problem structure 57

6.1.1 Non-oblivious local search for SAT . 58
Bibliography . 59

7 Algorithm portfolios and restart strategies 63
7.1 Introduction: portfolios and restarts . 63
7.2 Predicting the performance of a portfolio from its component algorithms 64

7.2.1 Parallel processing . 66
7.3 Reactive portfolios . 67
7.4 Defining an optimal restart time . 68
7.5 Reactive restarts . 70
7.6 Summary . 71
Bibliography . 71

8 Racing 73
8.1 Introduction . 73
8.2 Racing to maximize cumulative reward by interval estimation 74
8.3 Aiming at the maximum with threshold ascent . 75
8.4 Racing for off-line configuration of meta-heuristics 77
Bibliography . 80

9 Metrics, landscapes and features 81
9.1 Selecting features with mutual information . 81
9.2 Measuring local search components . 83
9.3 Selecting components based on diversification and bias 84

9.3.1 The diversification-bias compromise (D-B plots) 86
9.3.2 A conjecture: better algorithms are Pareto-optimal in D-B plots 88

9.4 How to measure problem difficulty . 89
Bibliography . 91

Preface

Considerate la vostra semenza:
fatti non foste a viver come bruti,

ma per seguir virtute e canoscenza.

Li miei compagni fec’io sı̀ aguti,
con questa orazion picciola, al cammino,

che a pena poscia li avrei ritenuti;

e volta nostra poppa nel mattino,
de’ remi facemmo ali al folle volo,

sempre acquistando dal lato mancino.

Consider your origins:
you’re not made to live as beasts,

but to follow virtue and knowledge.

My companions I made so eager,
with this little oration, of the voyage,

that I could have hardly then contained them;

that morning we turned our vessel,
our oars we made into wings for the foolish flight,

always gaining ground toward the left.

(Dante, Inferno Canto XXVI, translated by Anthony LaPorta)

We would like to thank our colleagues, friends and students for reading preliminary ver-
sions, commenting, and discovering mistakes. Of course we keep responsibility for the re-
maining ones. In particular we wish to thank Elisa Cilia and Paolo Campigotto for their
fresh initial look at the book topics. Comments on different chapters have been submitted by
various colleagues and friends, including: Matteo Gagliolo, Holger Hoos, Vittorio Maniezzo.
This book is version 1.0, which means that we expect future releases in the next months as
soon as we carve out reading and writing time from our daily chores. Writing a more detailed
preface, including acknowledging all comments, also by colleagues who are reading version
1.0, is also on the stack. The Reactive Search website at http://reactive-search.org/ is
a good place to look for updated information. Finally, if you are working in areas related to
Reactive Search and Intelligent Optimization and you do not find references here, we will be
very happy to hear from you and to cite your work in the future releases.

Roberto, Mauro and Franco

1

2 PREFACE

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

Chapter 1

Introduction: Machine Learning
for Intelligent Optimization

Errando discitur
Chi fa falla; e fallando s’impara.

You win only if you aren’t afraid to lose. Rocky Aoki
Mistakes are the portals of discovery. James Joyce

This book is about learning for problem solving. Let’s start with some motivation if you
are not already an expert in the area, just to make sure that we talk about issues which are
not far from everybody’s human experience. Human problem solving is strongly connected to
learning. Learning takes places when the problem at hand is not well known at the beginning,
and its structure becomes more and more clear when more experience with the problem is
available. For concreteness, let’s consider skiing. What distinguishes an expert skier from
a novice is that the novice knows some instructions but needs a lot experience to fine tune

the techniques (with some falling down into local minima and restarts, so to speak) while the
real expert jumps seamlessly from sensors to action, without effort and ”symbolic” thinking.
The knowledge accumulated from the previous experience has been compiled into parameters

of a neural system working at very high speed. Think about you driving a car and try to
explain in detail how you move your feet when driving: after so many years the knowledge
is so compiled into your neural system that you hardly need any high-level thinking. Of
course, this kind of fine tuning of problem-solving strategies and knowledge compilation into
parameters of a dynamical system (our nervous system) is quite natural for us, while more
primitive creatures are more rigid in their behavior. Think about a fly getting burnt by an
incandescent light bulb (fooled because no light bulb was present during its genetic evolution
apart from a distant one called ”sun”). You know the rest of the story: the fly will get burnt
again and again and again. No learning and fine tuning can have disastrous consequences.
In addition to learning, search by trial-and-error, generation and test, repeated modifications
of solutions by small local changes are also part of the human life.

What is critical for men is critical also in many human-developed problem solving strate-
gies. It is not surprising that many methods for solving problems in Artificial Intelligence,
Operations Research and related areas, follow the search scheme, for example searching for

an optimal configuration on a tree of possibilities by adding one solution component at a time,
and backtracking if a dead-end is encountered, or searching by generating a trajectory of

candidate solutions on a landscape defined by the corresponding solution value.
For most of the relevant and difficult problems (see computational complexity at the voice

”NP-hardness”) researchers now believe that the optimal solution cannot be found exactly in

acceptable computing times, which grow as a low-order polynomial of the input size. This is
a well known negative result established in the last decades of theoretical computer science.
Hardness of approximation, in addition to NP-hardness, is a kind of “affirmative action” for

1

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

2 CHAPTER 1. INTRODUCTION

heuristics.
Heuristics used to suffer from a bad reputation, citing from Papadimitriou and Steiglitz

book [4]:

6. Heuristics Any of the < five > approaches above without a formal guarantee of
performance can be considered a “heuristic.” However unsatisfactory mathemati-

cally, such approaches are certainly valid in practical situations.

Unfortunately, because of the “hardness of approximation” results [6], the hope of finding
approximation algorithms with formal performance guarantees must be abandoned for many
relevant problems. We are condemned to live with heuristics for very long times, maybe
forever, and some effort is required to make them more satisfactory, both from a theoretical
and from a practical point of view.

A particular delicate issue in many heuristics is their detailed tuning. Some schemes are
not rigid but allow for the specification of choices in the detailed algorithm design, or values of
internal parameters. Think about our novice skier, its detailed implementation ranging from
world champion to ... the writers of this book: the difference in parameter tuning is evident.
The term meta-heuristics is used in some cases to denote generic algorithmic schemes which
can be specialized for different problems. We do not like the term too much because the
boundary between the heuristic and the meta-heuristic is not always clear-cut.

Parameter tuning is a crucial issue both in the scientific development and in the practical
use of heuristics. In some cases the detailed tuning is executed by a researcher or by a final
user. As parameter tuning is user dependent the reproducibility of the heuristics results is
difficult as is comparing different parametric algorithms. Algorithm A can be better than
algorithm B if tuned by Roberto, while it can be worse if tuned by Mauro.

In this book we consider some machine learning methods which can be profitably used
in order to automate the tuning process and make it an integral and fully documented
part of the algorithm. In particular the focus is on sub-symbolic learning schemes, where the
accumulated knowledge is compiled into the parameters of the method, or the parameters
regulating a dynamical system to build or search for a solution. In many cases sub-symbolic
learning schemes will work without giving a high-level symbolic explanation. Think about
neural networks, think about the champion skier who cannot explain how he allocates forces
to the different muscles during a slalom.

If learning acts on-line, i.e., while the algorithm is solving an instance of a problem, task-
dependent local properties can be used by the algorithm to determine the appropriate bal-
ance between diversification and intensification. Deciding whether it is better to look for gold
where the other miners are excavating (intensification/exploitation) or to go and explore other
valleys and uncharted territories (diversification/exploration) is an issue which excruciated
forty-niners and which we will meet over and over again in the following chapters. Citing for
example from [5]“diversification drives the search to examine new regions, and intensifica-
tion focuses more intently on regions previously found to be good. (Intensification typically
operates by re-starting from high quality solutions, or by modifying choice rules to favor the
inclusion of attributes of these solutions)”.

1.1 Parameter tuning and intelligent optimization

As we mentioned, many state-of-the-art heuristics are characterized by a certain number of
choices and free parameters, whose appropriate setting is a subject that raises issues of
research methodology [1, 2, 3]. In some cases the parameters are tuned through a feed-
back loop that includes the user as a crucial learning component: different options are
developed and tested until acceptable results are obtained. The quality of results is not au-
tomatically transferred to different instances and the feedback loop can require a slow “trial
and error” process when the algorithm has to be tuned for a specific application. The Machine

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

1.2. BOOK OUTLINE 3

Learning community, with significant influx from Statistics, developed in the last decades a
rich variety of “design principles” that can be used to develop machine learning methods and
algorithms and that can be profitably used in the area of parameter tuning for heuristics. In
this way one eliminates the human intervention. This does not imply higher unemployment
rates for researchers. On the contrary, one is now loaded with a heavier task: the algorithm
developer must transfer his intelligent expertise into the algorithm itself, a task that requires
the exhaustive description of the tuning phase in the algorithm. The algorithm complication
will increase, but the price is worth paying if the two following objectives are reached:

• Complete and unambiguous documentation. The algorithm becomes self-contained
and its quality can be judged independently from the designer or specific user. This
requirement is particularly important from the scientific point of view, where objective
evaluations are crucial. The recent introduction of software archives further simplifies
the test and simple re-use of heuristic algorithms.

• Automation. The time-consuming tuning phase is now substituted by an automated
process. Let us note that only the final user will typically benefit from an automated
tuning process. On the contrary, the algorithm designer faces a longer and harder
development phase, with a possible preliminary phase of exploratory tests, followed by
the above described exhaustive documentation of the tuning process when the algorithm
is presented to the scientific community.

In particular, Reactive Search advocates the integration of sub-symbolic machine learn-
ing techniques into local search heuristics for solving complex optimization problems. The
word reactive hints at a ready response to events during the search through an internal online

feedback loop for the self-tuning of critical parameters. In Reactive Search the past history of
the search is used for:

feedback-based parameter tuning the algorithm maintains the internal flexibility needed to
cover many problems, but the tuning is automated, and executed while the algorithm
runs and “monitors” its past behavior.

automated balance of diversification and intensification An automated heuristic balance
for the the “exploration versus exploitation” dilemma can be obtained through feed-
back mechanisms, for example by starting with intensification, and by progressively
increasing the amount of diversification only when there is evidence that diversification
is needed.

1.2 Book outline

The book does not aim at a complete coverage of the widely expanding research area of
heuristics, meta-heuristics, stochastic local search, etc. The task would be daunting and
bordering on the myth of Sisyphus, condemned by the gods to ceaselessly rolling a rock to
the top of a mountain, whence the stone would fall back of its own weight. The rolling stones
are in this case caused by the rapid development of new heuristics for many problems which
would render a book obsolete after a short span.

We aim at giving the main principles and at developing some fresh intuition for the ap-
proaches. We like mathematics but we also think that hiding the underlying motivations and
sources of inspiration takes some color out of the scientific work (“Grau, teurer Freund, ist
alle Theorie. Und grün des Lebens goldner Baum” — Johann Wolfgang von Goethe). On the
other hand, pictures and hand-waving can be very dangerous in isolation and we try to avoid
these pitfalls by giving also the basic equations when possible, or by at least directing the
reader to the bibliographic references for deepening a topic.

The point of view of the book is to look at the zoo of different optimization beasts to
underline opportunities for learning and self-tuning strategies.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

4 CHAPTER 1. INTRODUCTION

The focus is definitely more on methods than on problems. We introduce some problems
to make the discussion more concrete or when a specific problem has been widely studied by
reactive search and intelligent optimization heuristics.

Intelligent optimization, the application of machine learning strategies in heuristics it in
itself a very wide area, and the space dedicated to reactive search techniques (online learning
techniques applied to local search) is wider because of personal interest. We plan to produce
a more balanced version in the future.

The structure of the following chapters is as follows: i) the basic issues and algorithms are
introduced, ii) the parameters critical for the success of the different methods are identified,
iii) opportunities and schemes for the automated tuning of these parameters are presented
and discussed.

Bibliography

[1] R. S. Barr, B. L. Golden, J. P. Kelly, M. G. C. Resende, and W. Stewart, Designing and

reporting on computational experiments with heuristic methods, Journal of Heuristics 1
(1995), no. 1, 9–32.

[2] J.N. Hooker, Testing heuristics: We have it all wrong, Journal of Heuristics 1 (1995), no. 1,
33–42.

[3] Catherine C. McGeoch, Toward an experimental method for algorithm simulation, IN-
FORMS Journal on Computing 8 (1996), no. 1, 1–28.

[4] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization, algorithms and complex-

ity, Prentice-Hall, NJ, 1982.

[5] Y. Rochat and E. Taillard, Probabilistic diversification and intensification in local search for

vehicle routing, Journal of Heuristics 1 (1995), no. 1, 147–167.

[6] M. Sudan, Efficient checking of polynomials and proofs and the hardness of approximation

problems, Ph.D. thesis, Computer Science Division, University of California at Berkeley,
1992.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

Chapter 2

Reacting on the neighborhood

How many shoe-shops does one person visit before making a choice?
There is not a single answer, please specify whether male or female!

2.1 Local search based on perturbation

A basic problem-solving strategy consists of starting from an initial tentative solution and
trying to improve it through repeated small changes. At each repetition the current config-
uration is slightly modified (perturbed), the function to be optimized is tested, the change is
kept if the new solution is better, otherwise another change is tried. The function f(X) to
be optimized is called with more poetic names in some papers: fitness function, goodness

function, objective function.
Fig 2.1 shows an example in the history of bike design (do not expect historical fidelity

here, this book is about algorithms!). Model A is a starting solution with a single wheel, it
works but it is not optimal yet. Model B is a randomized attempt to add some pieces to the
original design, the situation is worse. One could revert back to model A and start other
changes. But let’s note that, if one insists and proceeds with a second addition, one may end
up with Model C, clearly superior from a usability and safety point of view! This real life story
has a lesson: local search by small perturbations is a tasty ingredient but additional spices
are in certain cases needed to obtain superior results. Let’s note in passing that everybody’s
life is an example of an optimization algorithm in action: most of the changes are localized,
dramatic changes do happen, but not so frequently. The careful reader may notice that the
goodness function of our life is not so clearly defined. To this we answer that this book is not
about philosophy, let’s stop here with far-fetched analogies and go down to the nitty-gritty of
the algorithms.

Local search based on perturbing a candidate solution, which we assume already known
to the reader, is a first paradigmatic case where simple learning strategies can be applied.
Let’s define the notation. X is the search space, X(t) is the current solution at iteration
(“time”) t. N(X(t)) is the neighborhood of point X(t), obtained by applying a set of basic moves
µ0, µ1, ..., µM to the current configuration:

N(X(t)) = {X ∈ X such that X = µi(X
(t)), i = 0, ...M}

If the search space is given by binary strings with a given length L: X = {0, 1}L, the moves
can be those changing (or complementing or flipping) the individual bits, and therefore M is
equal to the string length L.

Local search starts from an admissible configuration X(0) and builds a search trajectory

X(0), ..., X(t+1) where the successor of the current point is a point in the neighborhood with
a lower value of the function f to be minimized. If no neighbor has this property, i.e., if the
configuration is a local minimizer, the search stops.

5

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

6 CHAPTER 2. REACTING ON THE NEIGHBORHOOD

MODEL CMODEL A

MODEL B

Figure 2.1: A local search example: how to build a better bike.

Y ← IMPROVING-NEIGHBOR(N(X(t))) (2.1)

X(t+1) =

{
Y if f(Y) < f(X(t))
X(t) otherwise (search stops)

(2.2)

IMPROVING-NEIGHBOR returns an improving element in the neighborhood. In a simple case
this is the element with the lowest f values, but other possibilities exist, as we will see in
what follows.

Local search is surprisingly effective because most combinatorial optimization problems
have a very rich internal structure relating the configuration X and the f value. The analogy
when the input domain is given by real numbers in R

n is that of a continuously differentiable
function f(x) — continuous with continuous derivatives. If one stays in the neighborhood,
the change is limited by the maximum value of the derivative multiplied by the displace-
ment. Combinatorial optimization needs different measures to quantify the notion that a
small change of the configuration is coupled, at least in a statistical way, to a small change
of f , see also Chapter 9.

Now, a neighborhood is suitable for local search if it reflects the problem structure. For
example, if the solution is given by a permutation (like in TSP, or in sorting) an improper
neighborhood would be to consider single bit changes of a binary string describing the current
solution, which would immediately cause illegal configurations. A better neighborhood can
be given by all transpositions which exchange two elements and keep all others fixed. In
general, a sanity check for a neighborhood controls if the f values in the neighborhood are
correlated to the f value of the current point. If one starts at a good solution, solutions of
similar quality can, on the average, be found more in its neighborhood than by sampling a
completely unrelated random point. By the way, sampling a random point generally is much
more expensive than sampling a neighbor, provided that the f value of the neighbors can be
updated (“incremental evaluation”) and it does not have to be recalculated from scratch.

For many optimization problems of interest, a closer approximation to the global optimum
is required, and therefore more complex schemes are needed in order to continue the in-
vestigation into new parts of the search space, i.e., to diversify the search and encourage
exploration. Here a second structural element comes to the rescue, related to the overall
distribution of local minima and corresponding f values. In many relevant problems local
minima tend to be clustered, furthermore good local minima tend to be closer to other good

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

2.2. LEARNING HOW TO EVALUATE THE NEIGHBORHOOD 7

local minima

X

f(X)

massif central

Figure 2.2: Structure in optimization problems: the “massif central” hypothesis.

minima. Local minima like to be in good company! Let us define as attraction basin

associated to a local optimum the set of points X which are mapped to the the given local
optimum by the local search trajectory. An hydraulic analogy, where the local search trajec-
tory is now the trajectory of drops of water pulled by gravity, is that of watersheds, regions
bounded peripherally by a divide and draining ultimately to a particular lake (analogies have
limits and we stop at a lake otherwise we would end up trivially at the same global optimum,
the ocean!).

Now, if local search stops at a local minimum, kicking the system to a close attraction
basin can be much more effective than restarting from a random configuration. If evaluations
of f are incremental, completing a sequence of steps to move to a nearby basin can also be
much faster than restarting with a complete evaluation followed by a possibly long trajectory
descending to another local optimum. Try to move from the bottom of the Grand Canyon to
the Death Valley if not convinced. This structural property is also called Big Valley, or massif

central, see also [25] for a probabilistic analysis of local minima distribution in the Traveling
Salesman Problem (TSP), and Chapter 9 for additional comments.

To help the intuition, one may think about a smooth f surface in a continuous environ-
ment, with basins of attractions which tend to have a nested “fractal” structure, see Fig. 2.2.
A second continuous analogy is that of a (periodic) function containing components at differ-
ent wavelengths when analyzed with a Fourier transform. If you are not expert about Fourier
transforms, think about looking at a figure with de-focusing lenses. At first the large scale
details will be revealed (for example a figure of distant person), then by focusing finer and
finer details will be revealed (face arms and legs, then fingers, hair, etc.). The same anal-
ogy holds for music diffused by loudspeakers of different quality, allowing higher and higher
frequencies to be heard. What is important is that, at each scale, the situation is not ran-
dom noise and a pattern, a structure is always present. This multi-scale structure, where
smaller valleys are nested within larger ones, is the basic motivation for methods like Variable
Neighborhood Search (VNS), see Section 2.3 and Iterated Local Search (ILS), see Section 2.4.

2.2 Learning how to evaluate the neighborhood

It looks like there is little online or off-line learning to be considered for a simple technique like
local search. A closer look reveals some possibilities. In the function IMPROVING-NEIGHBOR

one has to decide about a neighborhood (a set of local moves to be applied) and about a way to

pick one of the neighbors to be the next point along the search trajectory. It is well known that
a neighborhood appropriate to a given problem is the most critical issue in the development
of efficient strategies, and this is mostly related to off-line learning techniques, like those
used formally or informally by researchers during the algorithm design process. But let’s
concentrate on online learning strategies which can be applied while local search runs on a

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

8 CHAPTER 2. REACTING ON THE NEIGHBORHOOD

specific instance. They can be applied in two contexts: selection of the neighbor or selection
of the neighborhood. A third option is of course to adapt both choices during a run.

Let’s start from the first context where a neighborhood is chosen before the run is started,
and only the process to select an improving neighbor is dynamic during the run. The average
progress in the optimization per unit of computational effort (the average “speed of descent”
∆fbest per second) will depend on two factors: the average improvement per move and the
average CPU time per move. There is a trade-off here: the longer to evaluate the neighborhood,
the better the chance of identifying a move with a large improvement, but the shorter the total
number of moves which one can execute in a second. The optimal setting depends on the
problem, the specific instance, and the local configuration of the f landscape.

The immediate brute-force approach consists of considering all neighbors, by applying all
possible basic moves, evaluating the corresponding f values and moving to the neighbor with
the best value, breaking ties randomly if they occur. The best possible neighbor is chosen at
each step. To underline this fact, the term “best-improvement local search” is used.

A second possibility consists of evaluating a sample of the possible moves (a subset of
neighbors). In this cases IMPROVING-NEIGHBOR can return the first candidate with a better
f value. This option is called FIRSTMOVE. If no such candidate exists the trajectory is at
a local optimum. A randomized examination order can be used to avoid spurious effect
due to a specific examination order. FIRSTMOVE is clearly adaptive: the exact number of
neighbors evaluated before deciding the next move depends not only on the instance but
on the particular local properties in the configuration space around the current point. One
may expect that a small number of candidates needs to be evaluated in the early phase of
the search, while identifying an improving move will become more and more difficult during
the later phases, when the configuration will be close to local optimality. The analogy is
that of learning a new language: the progress is fast at the beginning but it gets slower and
slower after reaching an advanced level. To repeat, if the number of examined neighbors is
adapted to the evaluation results (keep evaluating until either an improving neighbor is found
or all neighbors have been examined) no user intervention is needed for the self-tuning of the
appropriate number of neighbors.

Another possibility consists of examining a a random subset of neighbors, while ensuring
that the sample is representative of the entire neighborhood (for example stopping the ex-
amination when the possibility of finding better improving values is not worth the additional
computational effort).

A preliminary radical proposal which avoids analyzing any neighborhood and which chooses
a neighbor according to utility values determined by reinforcement learning [24] is presented
in [20]. The neighbor choice is dictated by the best-utility one among a set of repair heuris-
tics associated to constraints in Constraint Satisfaction Problems. The purpose is to ”switch
between different heuristics during search in order to adapt to specific regions of the search
space.”

In the next Section we will consider more structured strategies where the neighborhood
is not fixed at the beginning and the appropriate neighborhood to use at a given iteration is
picked from a set of different neighborhoods.

2.3 Learning the appropriate neighborhood in variable neigh-

borhood search

Consider the three possible sources of information to adapt a proper neighborhood: problem,
specific instance, and current position in the search space. There are cases when no optimal
and fixed neighborhood is defined for a problem because of lack of information, or cases when
adaptation of the neighborhood to the local configuration is beneficial.

To design an automated neighborhood tuning technique one has to specify the amount of
variability among the possible neighborhood structures. A possible way is to consider a set

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

2.3. LEARNING THE APPROPRIATE NEIGHBORHOOD IN VARIABLE NEIGHBORHOOD SEARCH9

Figure 2.3: Variable neighborhood search: the used neighborhood (”circle” around the current
configuration) varies along the search trajectory.

of neighborhoods, defined a priori at the beginning of the search, and then aim at using the
most appropriate one during the search, as illustrated in Fig. 2.3. This is the seminal idea of
the Variable Neighborhood Search (VNS) technique, see [8].

Let the set of neighborhoods be {N1, N2, ..., Nkmax}. A proper VNS strategy has to deal with
the following issues:

1. Which neighborhoods to use and how many of them. Larger neighborhoods may include
smaller ones or be disjoint.

2. How to schedule the different neighborhoods during the search (order of consideration,
transitions between different neighborhoods)

3. Which neighborhood evaluation strategy to use (first move, best move, sampling, etc.)

The first issue can be decided based on detailed problem knowledge, preliminary experi-
mentation, or simply availability of off-the-shelf software routines for the efficient evaluation
of a set of neighborhoods.

The second issue leads to a range of possible techniques. A simple implementation can
just cycle randomly among the different neighborhoods during subsequent iterations:
no online learning is present but possibly more robustness for solving instances with very
different characteristics or for solving an instance where different portions of the search
space have widely different characteristics.

Let’s note that local optimality depends on the neighborhood: as soon as a local minimum
is reached for a specific Nk, improving moves can in principle be found in other neighborhoods
Nj with j 6= k. A possibility to use online learning is based on the principle ”intensification
first, minimal diversification only if needed” which we often encounter in heuristics [3].
One orders the neighborhoods according to their ”diameter” (or to the strength of the pertur-
bation executed, or to the distance from the starting configuration to the neighbors measured
with an appropriate metric). For example, if the search space is given by binary strings and
the distance is the Hamming distance, one may consider as N1 changes of a single bit, N2

changes of two bits, etc. The default neighborhood N1 is the one with the least diameter,
if local search makes progress one sticks to this default neighborhood. As soon as a local
minimum with respect to N1 is encountered one tries to go to greater distances from the cur-
rent point aiming at discovering a nearby attraction basin, possibly leading to a better local
optimum.

Fig. 2.4 illustrates the reactive strategy: point a corresponds to the local minimum, point
b is the best point in neighborhood N1, and point c the best point in N2. The value of point c

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

10 CHAPTER 2. REACTING ON THE NEIGHBORHOOD

N3

f(X)

X

a

b

c

d

a b c d

neighborhoods of increasing diameter

e

e

N1

N2

Figure 2.4: Variable neighborhoods of different diameters. Neighboring points are on the
circumferences at different distances. The figure is intended to help the intuition: the actual
neighbors considered in the text are discrete.

is still worse, but the point is in a different attraction basin so that a better point e could now
be reached by the default local search. The best point d in N3 is already improving on a.

From the example one already identifies two possible strategies. In both cases one uses N1

until a local minimum of N1 is encountered. When this happens one considers N2, N3, In
the first strategy one stops when an improving neighbor is identified (point d in the figure). In
the second strategy one stops when one encounters a neighbor in a different attraction basin
with an improving local minimum (point c in the figure). How does one know that c is in a
different basin? For example by running local search from it and by looking at which point
the local search converges.

For both strategies, one reverts back to the default neighborhood N1 as soon as the di-

versification phase considering neighborhoods of increasing diameter is successful. Note a
strong similarity with the design principle of Reactive Tabu Search, see Chapter 4, where
diversification through prohibitions is activated when there is evidence of entrapment in an
attraction basin and gradually reduced when there is evidence that a new basin has been
discovered.

Many schemes for using the set of different neighborhoods in an organized way are possi-
ble [10]. Variable Neighborhood Descent (VND), see Fig. 2.5, uses the default neighborhood
first, and the ones with a higher number only if the default neighborhood fails (i.e., the cur-
rent point is a local minimum for N1), and only until an improving move is identified, after
which one reverts back to N1. When VND is coupled with an ordering of the neighborhoods
according to the strength of the perturbation, one realizes the principle “use the minimum
strength perturbation leading to an improved solution”.

REDUCED-VNS is a stochastic version where only one random neighbor is generated before
deciding about moving or not. Line 5 of Fig. 2.5 is substituted with:

X ′ ← RANDOMEXTRACT(Nk(X))

SKEWED-VNS modifies the move acceptance criterion by accepting also worsening moves
if they lead the search trajectory sufficiently far from the current point (“I am not improv-
ing but at least I keep moving without worsening too much during the diversification”), see

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

2.3. LEARNING THE APPROPRIATE NEIGHBORHOOD IN VARIABLE NEIGHBORHOOD SEARCH11

1. function VariableNeighborhoodDescent(N1 , . . . , Nkmax)
2. repeat until (no improvement or max CPU time elapsed)
3. k ← 1 default neighborhood

4. while k ≤ ktextmax:
5. X ′ ← BestNeighbor (Nk(X)) neighborhood exploration

6. if f(X ′) < f(X)
7. X ← X ′ ; k ← 1 success: back to default neighborhood

8. else
9. k← k + 1 try with the following neighborhood

Figure 2.5: The VND routine. Neighborhoods with higher numbers are considered only if the
default neighborhood fails and only until an improving move is identified. X is the current
point.

1. function SkewedVariableNeighborhoodDescent(N1 , . . . , Nkmax)
2. repeat until (no improvement or max CPU time elapsed)
3. k ← 1 default neighborhood

4. while k ≤ kmax

5. X ′ ← RandomExtract (Nk(X)) shake

6. X ′′ ← LocalSearch(X ′) local search to reach local minimum

7. if f(X ′′) < f(X) + αρ(X, X ′′)
8. X ← X ′′ ; k ← 1 success: back to default neighborhood

9. else
10. k ← k + 1 try with the following neighborhood

Figure 2.6: The SKEWED-VNS routine. Worsening moves are accepted provided that the
change leads the trajectory sufficiently far from the starting point. X is the current point.
ρ(X, X ′′) measures the solution distance.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

12 CHAPTER 2. REACTING ON THE NEIGHBORHOOD

Fig. 2.6. This version requires a suitable distance function ρ(X, X ′) between two solutions,
e.g., the Hamming distance for binary strings, and a skewness parameter α to regulate the
trade-off between movement distance and willingness to accept worse values. By looking at
Fig. 2.4, one is willing to accept the worse solution c because it is sufficiently far to possi-
bly lead to a different attraction basin. Of course, determining an appropriate metric and
skewness parameter is not a trivial task in general.

To determine an empirical α value [10] one could resort to a preliminary investigation
about the distribution of local minima, by using a multi-start version of VNS: one repeatedly
generates random initial configurations and runs VNS to convergence. Then one studies the
behavior of their expected f values as a function of the distance from the best known solution.
After collecting the above experimental data one at least knows some reasonable ranges for
α. For example one may pick α such that the probability of success of the escape operation
is different from zero. In any case a more principled way of determined α is a topic worth
additional investigation. Valley profiles are a second useful source of statistical information
for designing an appropriate VNS strategy. They are obtained by extracting random starting
points from different neighborhoods around a given point and by executing local search.
Then one estimates the probabilities that the trajectories go back to the initial point or to
other attraction basins and derives suggestions about the “strength of the kick” which is
needed to escape with a certain probability.

Other versions of VNS employ a stochastic move acceptance criterion, in the spirit of
Simulated Annealing as implemented in the large-step Markov-chain version [19, 17], where
“kicks” of appropriate strength are used to exit from local minima, see also Section 2.4 about
Iterated Local Search.

An explicitly reactive-VNS is considered in [5] for the VRPTW problem (vehicle routing with
time windows), where a construction heuristic is combined with VND using first-improvement
local search. Furthermore, the objective function used by the local search operators is modi-
fied to consider the waiting time to escape from a local minimum. A preliminary investigation
about a self-adaptive neighborhood ordering for VND is presented in [11]. Ratings to the dif-
ferent neighborhoods are derived according to their observed benefits in the past and used
periodically to order the various neighborhoods.

To conclude this section, let’s note some similarities between VNS and the adaptation of
the search region in stochastic search technique for continuous optimization. In both cases
the neighborhood is adapted to the local position in the search space. In addition to many
specific algorithmic differences, let’s note that the set of neighborhoods is discrete in VNS
while it consists of a portion of R

n for continuous optimization. Neighborhood adaptation in
the continuous case, see for example the Affine Shaker algorithm in [2], is mainly considered
to speed-up convergence to a local minimizer, not to jump to nearby valleys.

2.4 Iterated local search

If a local search “building block” is available, for example as a concrete software library, how
can it be used by some upper layer coordination mechanism as a black box to get better
results? An answer is given by iterating calls to the local search routine each time starting
from a properly chosen configuration. Of course, if the starting configuration is random,
one starts from scratch and knowledge about the previous searches is lost. This trivial form
actually is called simply repeated local search.

Learning implies that the previous history (for example information about the previously
found local minima) is mined to produce better and better starting points. The implicit as-
sumption is again that of a clustered distribution of local minima: determining good local
minima is easier when starting from a local minimum with a low f value than when starting
from a random point. It is also faster because trajectory lengths from a local minimum to a
nearby one tend to be shorter. Furthermore an incremental evaluation of f can often be used
instead of re-computation from scratch if one starts from a new point (updating f values after

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

2.4. ITERATED LOCAL SEARCH 13

E[f(x*)]

P
ro

ba
bi

lit
y

X

X*

X* (large dimensional problem)

f valuesf_best

Figure 2.7: Probability of low f values is larger for local minima in X ∗ than for a point ran-
domly extracted from X . Large-dimensional problems tend to have a very peaked distribution
for X ∗ values.

a move can be much faster than computing them from scratch). As usual, the only caveat
is to avoid confinement in a given attraction basin, so that the “kick” to transform a local
minimizer into the starting point for the next run has to be appropriately strong, but not too
strong to avoid reverting to memory-less random restarts (if the kick is stochastic). Iterated
Local Search is based on building a sequence of locally optimal solutions by: (i) perturbing
the current local minimum; (ii) applying local search after starting from the modified solution.

As it happens with many simple — but sometimes very effective — ideas, the same prin-
ciple has been rediscovered multiple times. For example, in [4] a local minimum of the depot
location problem is perturbed by placing artificial “hazards” zones. As soon as a new point
is reached, the hazard is eliminated and the usual local search starts again. Let’s note that
hazard zone are penalizing routes inside them: the f value is increased by a penalty value.
In other words, the perturbation is obtained by temporarily modifying the objective function
so that the old local minimum will now be suboptimal with the modified function. A quarter
of a century ago one already finds seminal ideas related to iterated local search and guided
local search [26].

One may also argue that iterated local search, at least its more advanced implementations,
shares many design principles with variable neighborhood search. A similar principle is
active in the iterated Lin-Kernighan algorithm of [12], where a local minimum is modified
by a 4-change (a “big kick” eliminating four edges and reconnecting the path) and used as
a starting solution for the next run of the Lin-Kernighan heuristic. In the stochastic local
search literature based on Simulated Annealing, the work about large-step Markov chain
of [19, 17, 18, 25] contains very interesting results coupled with a clear description of the
principles.

Our description follows mainly [15]. LOCALSEARCH is seen by ILS as a black box. It
takes as input an initial configuration X and ends up at a local minimum X∗. Globally, LO-
CALSEARCH maps from the search space X to the reduced set X ∗ of local minima. Obviously,
objective function values f at local minima are better than the values at the starting points,
unless one is so lucky to start already at a local minimum. If one searches for low-cost solu-
tions, sampling from X ∗ is therefore more effective than sampling from X , this is in fact the
basic feature of local search, see Fig. 2.7.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

14 CHAPTER 2. REACTING ON THE NEIGHBORHOOD

h

a

b

c

d

e

f

g

Figure 2.8: Neighborhood among attraction basins induced a neighborhood definition on local
minima in X ∗.

One may be tempted to sample in X ∗ by repeating runs of local search after starting from
different random initial points. Unfortunately, general statistical arguments [21] related to
the “law of large numbers” indicate that when the size of the instance increases, the proba-

bility distribution of the cost values f tends to become extremely peaked about the mean value
E(f(x∗)), mean value which can be offset from the best value fbest by a fixed percent excess.
If we repeat a random extraction from X ∗ we are going to get very similar values with a large
probability.

Relief is from the rich structure of many optimization problem which tends to cluster good
local minima together: instead of a random restart it is better to search in the neighborhood
of a current good local optimum. What one needs is a hierarchy of nested local searches:
starting from a proper neighborhood structure on X ∗ (proper as usual means that it makes
the internal structure of the problem “visible” during a walk among neighbors). Hierarchy
means that one uses local search to identify local minima, and then defines a local search in

the space of local minima. One could continue, but in practice one limits the hierarchy to two
levels. The sampling among X ∗ will therefore be biased and, if properly designed, can lead to
the discovery of f values significantly lower than those expected by a random extraction in
X ∗.

A neighborhood for the space of local minima X ∗ which is of theoretical interest is ob-
tained from the structure of the attraction basins around a local optimum. An attraction
basin contains all points mapped to the given optimum by local search, one says that the
local optimum is an attractor of the dynamical system obtained by applying the local search
moves. By definition, two local minima are neighbors if and only if their attraction basins are
neighbors, i.e., there are points on the boundary where a point in the other attraction basin
is a neighbor in the original space X . For example, in Fig. 2.8, local minima b, c, d, e, f are
neighbors of local minimum a. Points g, h are not neighbors of a.

A weaker notion of closeness (neighborhood) which permits a fast stochastic search in X ∗

and which does not require an exhaustive determination of the attraction basins geography
— a daunting task indeed — is based on creating a randomized path in X leading from a local
optimum to one of the neighboring local optima, see the path from a to b in the figure.

A final design issue is how to build the path connecting two neighboring local minima.
An heuristic solution is the following one, see Fig. 2.9 and Fig. 2.10: generate a sufficiently
strong perturbation leading to a new point and then apply local search until convergence at
a local minimum.

One has to determine the appropriate strength of the perturbation, furthermore one has

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

2.4. ITERATED LOCAL SEARCH 15

c

f(X)

X

a

a

neighborhoods of increasing diameter

perturbations of different strengths

b d

b c

Figure 2.9: ILS: a perturbation leads from a to b, then local search to c. If perturbation is too
strong one may end up at d therefore missing the closer local minima.

1. function IteratedLocalSearch ()
2. X0 ← InitialSolution()
3. X∗ ← LocalSearch (X0)
4. repeat
5. k ← 1 default neighborhood

6. while k ≤ kmax

7. X ′ ← Perturb (X∗, history)

8. X∗′ ← LocalSearch (X ′)

9. X∗ ← AcceptanceDecision (X∗, X∗′

, history)
10. until (no improvement or termination condition)

Figure 2.10: Iterated Local Search

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

16 CHAPTER 2. REACTING ON THE NEIGHBORHOOD

to avoid cycling: if the perturbation is too small there is the risk that the solution returns
back to the starting local optimum. After this happens, an endless cycle is produced if the
perturbation and local search are deterministic.

Learning based on the previous search history is of paramount importance also in this
case [23]. The principle of ”intensification first, minimal diversification only if needed”
can be applied, together with stochastic elements to increase robustness and discourage cy-
cling. As we have seen for VNS, minimal perturbations maintain the trajectory in the starting
attraction basin, while excessive ones bring the method closer to a random sampling, there-
fore loosing the boost from the problem structure properties. A possible solution consists of
perturbing by a short random walk of a length which is adapted by statistically monitoring
the progress in the search.

While simple implementations of ILS are often adequate to improve on local search results,
and do not require opening the “black box” local search, high performance can be obtained
by jointly optimizing the four basic components: INITIALSOLUTION, LOCALSEARCH, PERTURB,
and ACCEPTANCEDECISION. Greedy construction is often recommended in INITIALSOLUTION

to identify quickly low-cost solutions, while the effect of the initial point is less relevant for
long runs provided that sufficient exploration is maintained by the algorithm. Memory and
reactive learning can be used in a way similar to that of [1] to adapt the strength of the
perturbation to the local characteristics in the neighborhood of the current solution for the
considered instance. Creative perturbations can be obtained by temporarily changing the
objective function with penalties so that the current local minimum is displaced, like in [4, 6],
or by fixing some configuration variables and by optimizing sub-parts of the problem [16].
The ACCEPTANCEDECISION in its different realizations can range from a strict requirement of
improvement, which accepts a move only if it improves the f value, to a very relaxed random

walk which always accepts the randomly generated moves to favor diversification, to an
intermediate simulated annealing test, which accepts a move depending on the f difference
and on a temperature parameter T , with probability: exp{(f(X∗) − f(X∗′))/T }, leading to the
large-step Markov chain implementation of [17, 18].

It is already clear, and it will hopefully become more so in the following chapters, that the
design principles underlying many superficially different techniques are in reality strongly
related. We already mentioned the issue related to designing a proper perturbation, or “kick”,
or selecting the appropriate neighborhood, to lead a solution away from a local optimum, as
well as the issue of using online reactive learning schemes to increase the robustness and
permit more hands-off usage of software for optimization.

In particular, the Simulated Annealing method [14] is a popular technique to allow also
worsening moves in a stochastic way. In other schemes, diversification can be obtained
through the temporary prohibition of some local moves. Glover [7] and, independently, Hansen
and Jaumard [9] popularized the Tabu Search (TS) approach. Similar ideas have been used
in the past for the Traveling Salesman [22] and graph partitioning [13] problems.

We will encounter these more complex techniques in the following chapters.

Bibliography

[1] R. Battiti and M. Protasi, Reactive search, a history-sensitive heuristic for MAX-

SAT, ACM Journal of Experimental Algorithmics 2 (1997), no. ARTICLE 2,
http://www.jea.acm.org/.

[2] R. Battiti and G. Tecchiolli, Learning with first, second, and no derivatives: a case study

in high energy physics, Neurocomputing 6 (1994), 181–206.

[3] , The reactive tabu search, ORSA Journal on Computing 6 (1994), no. 2, 126–140.

[4] John Baxter, Local optima avoidance in depot location, The Journal of the Operational
Research Society 32 (1981), no. 9, 815–819.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

BIBLIOGRAPHY 17

[5] O. Braysy, A reactive variable neighborhood search for the vehicle-routing problem with

time windows, INFORMS JOURNAL ON COMPUTING 15 (2003), no. 4, 347–368.

[6] B. Codenotti, G. Manzini, L. Margara, and G. Resta, Perturbation: An efficient technique

for the solution of very large instances of the euclidean tsp, INFORMS JOURNAL ON COM-
PUTING 8 (1996), no. 2, 125–133.

[7] F. Glover, Tabu search - part i, ORSA Journal on Computing 1 (1989), no. 3, 190–260.

[8] N. Mladenovic P. Hansen, Variable neighborhood search, Computers and Operations Re-
search 24 (1997), no. 11, 1097–1100.

[9] P. Hansen and B. Jaumard, Algorithms for the maximum satisfiability problem, Comput-
ing 44 (1990), 279–303.

[10] P. Hansen and N. Mladenovic, A tutorial on variable neighborhood search, Tech. Report
ISSN: 0711-2440, Les Cahiers du GERAD, Montreal, Canada, July 2003.

[11] Bin Hu and Gnther R. Raidl, Variable neighborhood descent with self-adaptive

neighborhood-ordering, Proceedings of the 7th EU/MEeting on Adaptive, Self-Adaptive,
and Multi-Level Metaheuristics, malaga, Spain (Carlos Cotta, Antonio J. Fernandez, and
Jose E. Gallardo, eds.), 2006.

[12] D.S. Johnson, Local optimization and the travelling salesman problem, Proc. 17th Col-
loquium on Automata Languages and Programming, LNCS, vol. 447, Springer Verlag,
Berlin, 1990.

[13] B. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell
Systems Technical J. 49 (1970), 291–307.

[14] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, Optimization by simulated annealing,
Science 220 (1983), 671–680.

[15] H. R. Lourenco, O. C. Martin, and T. Stutzle, Iterated local search, ISORMS 57 (2002),
321.

[16] H.R. Lourenco, Job-shop scheduling: Computational study of local search and large-step

optimization methods, European Journal of Operational Research 83 (1995), 347–364.

[17] Olivier Martin, Steve W. Otto, and Edward W. Felten, Large-step markov chains for the

traveling salesman problem, Complex Systems 5:3 (1991), 299.

[18] , Large-step markov chains for the tsp incorporating local search heuristics, Opera-
tion Research Letters 11 (1992), 219–224.

[19] Olivier C. Martin and Steve W. Otto, Combining simulated annealing with local search

heuristics, ANNALS OF OPERATIONS RESEARCH 63 (1996), 57–76.

[20] Alexander Nareyek, Choosing search heuristics by non-stationary reinforcement learning,
(2004), 523–544.

[21] G. R. Schreiber and O. C. Martin, Cut size statistics of graph bisection heuristics, SIAM
JOURNAL OF OPTIMIZATION 10 (1999), no. 1, 231–251.

[22] K. Steiglitz and P. Weiner, Algorithms for computer solution of the traveling salesman

problem, Proceedings of the Sixth Allerton Conf. on Circuit and System Theory, Urbana,
Illinois, IEEE, 1968, pp. 814–821.

[23] T. Stuetzle, Local search algorithms for combinatorial problems - analysis, improvements,

and new applications, Ph.D. thesis, Darmstadt University of Technology, Dept. of Com-
puter Science, 1998.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

18 CHAPTER 2. REACTING ON THE NEIGHBORHOOD

[24] Richard S. Sutton and Andrew G. Barto, Reinforcement learning: An introduction, MIT
Press, 1998.

[25] T.W.M. Vossen, M.G.A. Verhoeven, H.M.M. ten Eikelder, and E.H.L. Aarts, A quantitative

analysis of iterated local search, Computing Science Reports 95/06, Department of Com-
puting Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,
Netherlands, 1995.

[26] Christos Voudouris and Edward Tsang, Guided local search and its application to the

traveling salesman problem, European Journal of Operational Research 113 (1999), 469–
499.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

Chapter 3

Reacting on the annealing
schedule

Temperature schedules are cool

3.1 Stochasticity in local moves and controlled worsening

of solution values

As mentioned previously, local search stops at a locally optimal point and for problems with
a rich internal structure encountered in many applications, searching in the vicinity of good

local minima may lead to the discovery of better minima. In the previous chapter 2 one
changed the neighborhood structure in order to push the trajectory away from the local
minimum. In this chapter the neighborhood structure is fixed, but the move generation and
acceptance are stochastic and one permits also a “controlled worsening” of solution values
aiming at escaping from the local attractor. Let’s note that a “controlled worsening” has
already been considered in the SKEWED-VNS routine of Section 2.3, where one accepted
worsening moves provided that they lead the trajectory sufficiently far.

Now, if one extends local search by accepting also worsening moves (moves leading to
worse f values) the trajectory moves to a neighbor of a local minimum. But the danger is
that, after raising the solution value at the new point, the starting local minimum will be
chosen at the second iteration, leading to an endless cycle of “trying to escape and falling
back immediately to the starting point”. This situation surely happens if the local minimum
is strict (all neighbors have worse f values) and if more than one step is needed before points
with f values better than that of the local minimum become accessible (until they become
neighbors of the current solution point).

To avoid deterministic cycles and to allow for worsening moves while still biasing the
exploration so that low f values are visited more frequently than large values, the Simulated
Annealing (SA) method has been investigated. We will summarize the technique, with a hint
at mathematical results, and then underline opportunities for self-tuning.

3.2 Simulated Annealing and Asymptotics

The Simulated Annealing method [17] is based on the theory of Markov processes. The trajec-
tory is built in a randomized manner: the successor of the current point is chosen stochas-
tically, with a probability that depends only on the current point and not on the previous
history.

19

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

20 CHAPTER 3. REACTING ON THE ANNEALING SCHEDULE

Y ← NEIGHBOR(N(X(t)))

X(t+1) ←

Y if f(Y) ≤ f(X(t))

Y if f(Y) > f(X(t)), with probability p = e−(f(Y)−f(X(t)))/T

X(t) if f(Y) > f(X(t)), with probability (1− p).

(3.1)

SA introduces a temperature parameter T which determines the probability that worsening
moves are accepted: a larger T implies that more worsening moves tend to be accepted,
and therefore a larger diversification. The rule in (3.1) is called exponential acceptance rule.
If T goes to infinity, then the probability that a move is accepted becomes 1, whether it
improves the result or not, and one obtains a random walk. Vice versa, if T goes to zero, only
improving moves are accepted as in the standard local search. Being a Markov process, SA
is characterized by a memory-less property: if one starts the process and waits long enough,
memory about the initial configuration is lost, the probability of finding a given configuration
at a given state will be stationary and only dependent on the value of f . If T goes to zero
the probability will peak only at the globally optimal configurations. This basic result raised
high hopes of solving optimization problems through a simple and general-purpose method,
starting from seminal work in physics [19] and in optimization [24, 7, 17, 2].

Unfortunately, after some decades it became clear that SA is not a panacea, furthermore
most mathematical results about asymptotic convergence (converge of the method when the
number of iterations goes to infinity) are quite irrelevant for optimization. First, one does
not care whether the final configuration at convergence is optimal or not, but that an opti-
mal solution (or a good approximation thereof) is encountered —and memorized— during the
search. Second, asymptotic convergence usually requires a patience which is excessive con-
sidering the limited length of our lives. Actually, repeated local search [11], and even random
search [8] have better asymptotic results for some problems.

Given the limited practical relevance of the theoretical results, a practitioner has to place
asymptotic results in the background and develop heuristics where high importance is at-
tributed to learning from a task before the search is started and from the current local
characteristics during the search. In the following, after a brief introduction about some
asymptotic convergence results, we will concentrate on the more recent developments in SA
considering adaptive and learning implementations.

3.2.1 Asymptotic convergence results

Let (S, f) be an instance of a combinatorial optimization problem, S being the search space
and f being the objective function. Let S∗ be the set of optimal solutions. One starts from an
initial configuration X(0) and repeatedly applies (3.1) to generate a trajectory X(t). Under ap-
propriate conditions, the probability of finding one of the optimal solutions when the number
of iterations go to infinity tends to one:

lim
k→∞

Pr(X(k) ∈ S∗) = 1. (3.2)

Let O denote the set of possible outcomes (states) of a sampling process, let X(k) be the
stochastic variable denoting the outcome of the k-th trial, then the elements of the transition

probability matrix P , given the probability that the configuration is at a specific state j given
that it was at state i before the last step, are defined as:

Pij(k) = Pr(X(k) = j|X(k−1) = i). (3.3)

A stationary distribution of a finite homogeneous (meaning that transitions do not depend
on time) Markov chain is defined as the stochastic vector q whose components are given by

qi = lim
k→∞

Pr(X(k) = i|X(0) = j), for all j ∈ O (3.4)

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

3.2. SIMULATED ANNEALING AND ASYMPTOTICS 21

If a stationary distribution exists, one has limk→∞ Pr(X(k) = i) = qi. Furthermore qT = qT P ,
the distribution is not modified by a single Markov step.

If a finite Markov chain is homogeneous, irreducible (for every i, j, there is a positive prob-
ability of reaching i from j in a finite number of steps) and aperiodic (the greatest common
divisor gcd(Di) = 1, where Di is the set of all integers n > 0 with (Pn)ii > 0), there exist a
unique stationary distribution, determined by the equation:

∑

j∈O
qjPji = qi (3.5)

Homogeneous model

In the homogeneous model one considers a sequence of infinitely long homogeneous Markov
chains, where each chain is for a fixed value of the temperature T .

Under appropriate conditions [1] (the generation probability must ensure that one can
move from an arbitrary initial solution to a second arbitrary solution in a finite number of
steps) the Markov chain associated to SA has a stationary distribution q(T) whose compo-
nents are given by:

qi(T) =
e−f(i)/T

∑
j∈S e−f(j)/T

(3.6)

and

lim
T→0

qi(T) = q∗i =
1

|S∗|χS
∗(i) (3.7)

where χS∗ is the characteristic function of the set S∗, equal to one if the argument belongs to
the set, zero otherwise.

It follows that:

lim
T→0

lim
k→∞

Pr
T

(X(k) ∈ S∗) = 1 (3.8)

The algorithm asymptotically finds an optimal solution with probability one, “converges
with probability one”.

Inhomogeneous model

In practice one cannot wait for a stationary distribution to be reached. The temperature Tk

must be lowered before converging: one has a non-increasing sequence of values Tk such that
limk→∞ Tk = 0.

If the temperature decreases in a sufficiently slow way:

Tk ≥
A

log(k + k0)
(3.9)

for A > 0 and k0 > 2, then the Markov chain converges in distribution to q∗ or, in other words

lim
k→∞

Pr(X(k) ∈ S∗) = 1 (3.10)

The theoretical value of A depends on the depth of the deepest local, non-global optimum, a
value which is not easy to calculate for a generic instance.

The above cited asymptotic convergence results of SA in both the homogeneous and inho-
mogeneous model are unfortunately irrelevant for the application of SA to optimization.

In any finite-time approximation one must resort to approximations of the asymptotic
convergence. The “speed of convergence” to the stationary distribution is determined by the
second largest eigenvalue of the transition probability matrix P (T) (not easy to calculate!).

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

22 CHAPTER 3. REACTING ON THE ANNEALING SCHEDULE

size of upward jump to escape from attractor

f(X)

X

size of temperature parameter T

b

Figure 3.1: Simulated Annealing: if the temperature is very low w.r.t. the jump size SA risks
a practical entrapment close to a local minimizer.

The number of transitions is at least quadratic in the total number of possible configura-
tions in the search space [1]. For the inhomogeneous case, it can happen (e.g., Traveling
Salesman Problem) that the complete enumeration of all solutions would take less time than
approximating an optimal solution arbitrarily closely by SA [1].

In addition, repeated local search [11], and even random search [8] has better asymptotic
results. According to [1] “approximating the asymptotic behavior of SA arbitrarily closely
requires a number of transitions that for most problems is typically larger than the size of
the solution space. Thus, the SA algorithm is clearly unsuited for solving combinatorial
optimization problems to optimality.” Of course, SA can be used in practice with fast cooling

schedules, i.e. ways to progressively reduce the temperature during the search, but then the
asymptotic results are not directly applicable. The optimal finite-length annealing schedules
obtained on specific simple problems do not always correspond to those expected from the
limiting theorems [26].

More details about cooling schedules can be found in [20, 13]. Extensive experimental
results of SA for graph partitioning, coloring and number partitioning are presented in [15,
16]. A comparison of SA and Reactive Search has been presented in [5, 6].

3.3 Online learning strategies in simulated annealing

If one wants to be poetic, the main feature of simulated annealing lies in its asymptotic
convergence properties, the main drawback lies in the asymptotic convergence. For a practical
application of SA if the local configuration is close to a local minimizer and the temperature is
already very small in comparison to the upward jump which has to be executed to escape from
the attractor, although the system will eventually escape, an enormous number of iterations
can be spent around the attractor. Given a finite patience time, all future iterations can be
spent while “circling like a fly around a light-bulb” (the light-bulb being a local minimum).
Animals with superior cognitive abilities get burnt once, learn, and avoid doing it again!

The memoryless property (current move depending only on the current state, not on the
previous history) makes SA look like a dumb animal indeed. It is intuitive that a better
performance can be obtained by using memory, by self-analyzing the evolution of the search,
by developing simple models and by activating more direct escape strategies aiming at a
better time-management than the “let’s go to infinite time” principle. In the following sections
we will summarize the main memory-based approaches developed in the years to make SA a
competitive strategy.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

3.3. ONLINE LEARNING STRATEGIES IN SIMULATED ANNEALING 23

3.3.1 Combinatorial optimization problems

Even if a vanilla version of SA is adopted (starting temperature Tstart, geometric cooling sched-
ule Tt+1 = αTt, with α < 1, final temperature Tend), a sensible choice has to be made for the
three involved parameters Tstart, α, and Tend. If the proper scale of the temperature is wrong,
extremely poor results are to be expected. The work [27] suggests to estimate: the mean of
the distribution of f values (f is usually called “energy” when exploiting physical analogies) to
define a maximum energy scale of the system, its standard deviation to define the maximum-
temperature scale, and the minimum change in energy to define the minimum-temperature
scale. These temperature scales tell us where to begin and end an annealing schedule (this
is the same as the cooling schedule introduced before).

The analogy with physics is pursued in [18], where concepts related to phase transitions

and specific heat are used. While we avoid entering physics, the idea is that a phase transition
is related to solving a sub-part of a problem. Before reaching the state after the transition, big
reconfigurations take place and this is signalled by wide variations of the f values. In detail, a
phase transition occurs when the specific heat is maximal, a quantity estimated by the ratio
between the estimated variance of the objective function and the temperature: σf

2/T . After a
phase transition corresponding to the big reconfiguration, finer details in the solution have to
be fixed, and this requires heuristically a slower decrease of the temperature. Concretely, one
defines two temperature-reduction parameters α and β, monitors the evolution of f along the
trajectory and after the phase transition takes place at a given Tmsp (Tmsp is the temperature
corresponding to the maximum specific heat, when the scaled variance reaches its maximal
value) one switches from a faster temperature decrease given by α to the slower one given by
β.

Up to now we discussed only about a monotonic decrease of the temperature. This process
has some weaknesses: for fixed values of Tstart, and α in the vanilla version one will reach
an iteration so that the temperature will be so slow that practically no tentative move will be
accepted with a non-negligible probability (given the finite users’ patience). The best value
reached so far fbest will remain stuck in a helpless manner even if the search is continued for
very long CPU times, see also 3.1. In other words, given a set of parameters Tstart and alpha,
the useful span of CPU time is practically limited, after the initial period the temperature
will be so low that the system “freezes” and, with large probability, no tentative moves will
be accepted anymore within the finite span of the run. Now, for a new instance, it is not so
simple to guess appropriate parameter values. Furthermore, in many cases one would like
to use an anytime algorithm, so that longer allocated CPU times are related to possibly better
and better values until the user decides to stop. Anytime algorithms — by definition — return
the best answer possible even if they are not allowed to run to completion, and may improve
on the answer if they are allowed to run longer.

Let’s note the stopping criterion in many cases should be decided a posteriori, for example
after determining that additional time has little probability to improve significantly on the
result.

Because this problem is related to a monotonic temperature decrease, a motivation arises
to consider non-monotonic cooling schedules, see [9, 23, 3]. A very simple proposal [9] suggests
resetting the temperature once and for all at a constant temperature high enough to escape
local minima but also low enough to visit them. For example, at the temperature Tfound when
the best heuristic solution is found in a preliminary SA simulation. The basic design principle
is related to: i) exploiting an attraction basin rapidly by decreasing the temperature so that the
system can settle down close to the local minimizer, ii) increase the temperature to diversify the
solution and visit other attraction basins, iii) decrease again after reaching a different basin.
As usual, the temperature increase in this kind of non-monotonic cooling schedule has to be
rapid enough to avoid falling back to the current local minimizer, but not too rapid to avoid
a random-walk situation (where all random moves are accepted) which would not capitalize
of the local structure of the problem (“good local minima close to other good local minima”).
The implementation details have to do with determining an entrapment situation, for example

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

24 CHAPTER 3. REACTING ON THE ANNEALING SCHEDULE

from the fact that no tentative move is accepted after a sequence tmax of tentative changes,
and determining the detailed temperature decrease-increase evolution as a function of events
occurring during the search. Possibilities to increase the temperature include resetting the
temperature to Treset = Tfound, the temperature value when the current best solution was
found [23]. If the reset is successful, one may progressively reduce the reset temperature:
Treset ← Treset/2. Alternatively [3] geometric re-heating phases can be used, which multiply
T by a heating factor γ larger than one at each iteration during reheat. Enhanced versions
involve a learning process to choose a proper value of the heating factor depending on the
system state. In particular, γ is close to one at the beginning, while it increases if, after a
fixed number of escape trials, the system is still trapped in the local minimum. More details
and additional bibliography can be found in the cited papers.

Let’s note that similar “strategic oscillations” have been proposed in tabu search, in par-
ticular in the reactive tabu search [4] see Chapter 4, and in variable neighborhood search,
see Chapter 2.

Modifications departing from the exponential acceptance rule and adaptive stochastic local
search methods for combinatorial optimization are considered in [21, 22]. Experimental evi-
dence shows that the a priori determination of SA parameters and acceptance function does
not lead to efficient implementations. Adaptations may be done “by the algorithm itself using

some learning mechanism or by the user using his own learning mechanism”. The authors
appropriately note that the optimal choices of algorithm parameters depend not only on the
problem but also on the particular instance and that a proof of convergence to a globally opti-
mum is not a selling point for a specific heuristic: in fact a simple random sampling, or even
exhaustive enumeration (if the set of configurations is finite) will eventually find the optimal
solution, although they are not the best algorithms to suggest. A simple adaptive technique
suggested in [22] is the SEQUENCEHEURISTIC: a perturbation leading to a worsening solution
is accepted if and only if a fixed number of trials could not find an improving perturbation
(this can be seen as deriving evidence of “entrapment” in a local minimum and activating
reactively an escape mechanism). In this way the temperature parameter is eliminated. The
positive performance of the SEQUENCEHEURISTIC in the area of design automation suggests
that the success of SA is “due largely to its acceptance of bad perturbations to escape from
local minima rather than to some mystical connection between combinatorial problems and
the annealing of metals” [22].

“Cybernetic” optimization is proposed in [12] as a way to use probabilistic information for
feedback during a run of SA. The idea is to consider more runs of SA running in parallel
and to aim at intensifying the search (by lowering the temperature parameter) when there is
evidence that the search is converging to the optimum value. If one looks for gold, one should
spend more time “looking where all the other prospectors are looking” [12] (but let’s note
that actually one may argue differently depending on the luck of the other prospectors!). The
empirical evidence is taken from the similarity between current configurations of different
parallel runs. For sure, if more solutions are close to the same optimum point, they are
also close to each other. The contrary is not necessarily true, nonetheless this is taken as
evidence of a (possible) closeness to the optimum point, implying intensification and causing
in a reactive manner a gradual reduction of the temperature.

3.3.2 Global optimization of continuous functions

The application of SA to continuous optimization (optimization of functions defined on real
variables in R) is pioneered by [10]. The basic method is to generate a new point with a random
step along a direction eh, evaluate the function and accept the move with the probability given
in (3.1). One cycles over the different directions eh during successive steps of the algorithm.
A first critical choice has to do with the range of the random step along the chosen direction.
A fixed choice obviously may be very inefficient: this opens a first possibility for learning from

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

BIBLIOGRAPHY 25

the local f surface. In particular a new trial point x′ is obtained from the current point x as:

x′ = x + Rand(−1, 1)vheh

where Rand(−1, 1) returns a random number uniformly distributed between -1 and 1, eh is
the unit-length vector along direction h, and vh is the step-range parameter, one for each
dimension h, collected into the vector v. The exponential acceptance rule is used to decide
whether to update the current point with the new point x′. The vh value is adapted during the
search with the aim of maintaining the number of accepted moves at about one-half of the
total number of tried moves. In particular, after a number NS of random moves cycling along
the coordinates directions, the step-range vector v is updated: each component is increased if
the number of accepted moves is greater than 60%, reduced if it is less than 40%. The speed
of increase/decrease could be different for the different coordinate dimensions (in practice
it is fixed to 2 and 1/2 in the above paper). After NSNT cycles, (NT being a second fixed
parameter), the temperature is reduced in a multiplicative manner: Tk+1 ← rT Tk, and the
current point is reset to the best-so-far point found during the previous search. Although the
implementation is already reactive and based on memory, the authors encourage more work
so that a “good monitoring of the minimization process” can deliver precious feedback about
some crucial internal parameters of the algorithm.

In Adaptive Simulated Annealing (ASA), also known as very fast simulated re-annealing [14]
the parameters that control temperature cooling schedule and random step selection are au-
tomatically adjusted according to algorithm progress. If the state is represented as a point
in a box and the moves as an oval cloud around it, the temperature and the step size are
adjusted so that all of the search space is sampled at a coarse resolution in the early stages,
while the state is directed to promising areas in the late stages [14].

Bibliography

[1] E. H. L. Aarts, J.H.M. Korst, and P.J. Zwietering, Deterministic and randomized local

search, Mathematical Perspectives on Neural Networks (M. Mozer P. Smolensky and
D. Rumelhart (Eds.), eds.), Lawrence Erlbaum Publishers, Hillsdale, NJ, 1995, to ap-
pear.

[2] E.H.L. Aarts and J.H.M. Korst, Boltzmann machines for travelling salesman problems,
European Journal of Operational Research 39 (1989), 79–95.

[3] D. Abramson, H. Dang, and M. Krisnamoorthy, Simulated annealing cooling schedules for

the school timetabling problem, Asia-Pacific Journal of Operational Research 16 (1999),
1–22.

[4] R. Battiti and G. Tecchiolli, The reactive tabu search, ORSA Journal on Computing 6
(1994), no. 2, 126–140.

[5] , Simulated annealing and tabu search in the long run: a comparison on qap tasks,
Computer and Mathematics with Applications 28 (1994), no. 6, 1–8.

[6] , Local search with memory: Benchmarking rts, Operations Research Spektrum 17
(1995), no. 2/3, 67–86.

[7] V. Cherny, A thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm, Journal of Optimization Theory and Applications 45 (1985), 41–45.

[8] T.-S. Chiang and Y. Chow, On the convergence rate of annealing processes, SIAM Journal
on Control and Optimization 26 (1988), no. 6, 1455–1470.

[9] D.T. Connolly, An improved annealing scheme for the qap, European Journal of Opera-
tional Research 46 (1990), no. 1, 93–100.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

26 CHAPTER 3. REACTING ON THE ANNEALING SCHEDULE

[10] A. Corana, M. Marchesi, C. Martini, and S. Ridella, Minimizing multimodal functions of

continuous variables with the simulated annealing algorithm, ACM Trans. Math. Softw.
13 (1987), no. 3, 262–280.

[11] A.G. Ferreira and J. Zerovnik, Bounding the probability of success of stochastic methods

for global optimization, Computers Math. Applic. 25 (1993), no. 10/11, 1–8.

[12] Mark A. Fleischer, Cybernetic optimization by simulated annealing: Accelerating conver-

gence by parallel processing and probabilistic feedback control, Journal of Heuristics 1
(1996), no. 2, 225–246.

[13] Bruce Hajek, Cooling schedules for optimal annealing, Math. Oper. Res. 13 (1988), no. 2,
311–329.

[14] L. Ingber, Very fast simulated re-annealing, Mathl. Comput. Modelling 12 (1989), no. 8,
967–973.

[15] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Schevon, Opti-

mization by simulated annealing: an experimental evaluation. part i, graph partitioning,
Oper. Res. 37 (1989), no. 6, 865–892.

[16] , Optimization by simulated annealing: an experimental evaluation; part ii, graph

coloring and number partitioning, Oper. Res. 39 (1991), no. 3, 378–406.

[17] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, Optimization by simulated annealing,
Science 220 (1983), 671–680.

[18] P. J. M. Laarhoven and E. H. L. Aarts (eds.), Simulated annealing: theory and applica-

tions, Kluwer Academic Publishers, Norwell, MA, USA, 1987.

[19] N. Metropolis, A. N. Rosenbluth, M. N. Rosenbluth, and A. H. Tellerand E. Teller, Equa-

tion of state calculation by fast computing machines, Journal of Chemical Physics 21
(1953), no. 6, 10871092.

[20] Debasis Mitra, Fabio Romeo, and Alberto Sangiovanni-Vincentelli, Convergence and

finite-time behavior of simulated annealing, Advances in Applied Probability 18 (1986),
no. 3, 747–771.

[21] Surendra Nahar, Sartaj Sahni, and Eugene Shragowitz, Experiments with simulated an-

nealing, DAC ’85: Proceedings of the 22nd ACM/IEEE conference on Design automation
(New York, NY, USA), ACM Press, 1985, pp. 748–752.

[22] , Simulated annealing and combinatorial optimization, DAC ’86: Proceedings of the
23rd ACM/IEEE conference on Design automation (Piscataway, NJ, USA), IEEE Press,
1986, pp. 293–299.

[23] Ibrahim Hassan Osman, Metastrategy simulated annealing and tabu search algorithms

for the vehicle routing problem, Ann. Oper. Res. 41 (1993), no. 1-4, 421–451.

[24] Martin Pincus, A monte carlo method for the approximate solution of certain types of con-

strained optimization problems, Operations Research 18 (1970), no. 6, 1225–1228.

[25] Patrick Siarry, Gérard Berthiau, François Durdin, and Jacques Haussy, Enhanced sim-

ulated annealing for globally minimizing functions of many-continuous variables, ACM
Trans. Math. Softw. 23 (1997), no. 2, 209–228.

[26] P. N. Strenski and Scott Kirkpatrick, Analysis of finite length annealing schedules, Algo-
rithmica 6 (1991), 346–366.

[27] S.R. White, Concepts of scale in simulated annealing, AIP Conference Proceedings, vol.
122, 1984, pp. 261–270.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

Chapter 4

Reactive prohibitions

It is a good morning exercise for a research scientist to discard a pet hypothesis every day before
breakfast. It keeps him young.

Konrad Lorenz

4.1 Prohibitions for diversification (Tabu Search)

The Tabu Search meta-heuristic [13] is based on the use of prohibition-based techniques and
“intelligent” schemes as a complement to basic heuristic algorithms like local search, with
the purpose of guiding the basic heuristic beyond local optimality. It is difficult to assign
a precise date of birth to these principles. For example, ideas similar to those proposed in
TS can be found in the denial strategy of [24] (once common features are detected in many
suboptimal solutions, they are forbidden) or in the opposite reduction strategy of [19] (in an
application to the Travelling Salesman Problem, all edges that are common to a set of local
optima are fixed). In very different contexts, prohibition-like strategies can be found in cutting

planes algorithms for solving integer problems through their Linear Programming relaxation
(inequalities that cut off previously obtained fractional solutions are generated) and in branch
and bound algorithms (subtrees are not considered if the leaves cannot correspond to better
solutions), see the textbook [22].

The renaissance and full blossoming of “intelligent prohibition-based heuristics” starting
from the late eighties is greatly due to the role of F. Glover in the proposal and diffusion of
a rich variety of meta-heuristic tools [13, 14], but see also [17] for an independent seminal
paper.

It is evident that Glover’s ideas have been a source of inspiration for many approaches
based on the intelligent use of memory in heuristics. Let’s only cite the four “principles”
about using long-term memory in tabu-search of recency, frequency, quality and influence,
also cited in [6]. A growing number of TS-based algorithms has been developed in the last
years and applied with success to a wide selection of problems [15]. It is therefore difficult, if
not impossible, to characterize a “canonical form” of TS, and classifications tend to be short-
lived. Nonetheless, at least two aspects characterize many versions of TS: the fact that TS is
used to complement local (neighborhood) search, and the fact that the main modifications to
local search are obtained through the prohibition of selected moves available at the current
point. TS acts to continue the search beyond the first local minimizer without wasting the
work already executed, as it is the case if a new run of local search is started from a new
random initial point, and to enforce appropriate amounts of diversification to avoid that the
search trajectory remains confined near a given local minimizer.

In our opinion, the main competitive advantage of TS with respect to alternative heuristics
based on local search like Simulated Annealing (SA) [18] lies in the intelligent use of the past
history of the search to influence its future steps.

27

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

28 CHAPTER 4. REACTIVE PROHIBITIONS

Table 4.1: A classification based on discrete dynamical systems.
Discrete Dynamical System

(search trajectory generation)

Deterministic Stochastic

Strict TS Probabilistic TS
Fixed TS Robust TS

Fixed TS with stochastic tie breaking
Reactive TS Reactive TS with stochastic tie breaking

Reactive TS with neighborhood sampling
(stochastic candidate list strategies)

Let us assume that the feasible search space is the set of binary strings with a given length
L: X = {0, 1}L). X(t) is the current configuration and N(X(t)) the previously introduced neigh-
borhood. In prohibition-based search (Tabu Search) some of the neighbors are prohibited,
a subset NA(X(t)) ⊂ N(X(t)) contains the allowed ones. The general way of generating the
search trajectory that we consider is given by:

X(t+1) = BEST -NEIGHBOR(NA(X(t))) (4.1)

NA(X(t+1)) = ALLOW(N(X(t+1)), X(0), ..., X(t+1)) (4.2)

The set-valued function ALLOW selects a subset of N(X(t+1)) in a manner that depends on the
entire search trajectory X(0), ..., X(t+1).

4.1.1 Forms of Tabu Search

There are several vantage points from which to view heuristic algorithms. By analogy with
the concept of abstract data type in Computer Science [1], and with the related object-oriented

software engineering techniques [8], it is useful to separate the abstract concepts and opera-
tions of TS from the detailed implementation, i.e., realization with specific data structures. In
other words, policies (that determine which trajectory is generated in the search space, what
the balance of intensification and diversification is, etc.) should be separated from mecha-

nisms that determine how a specific policy is realized. An essential abstract concept in TS is
given by the discrete dynamical system of (4.1)–(4.2) obtained by modifying local search.

Before starting the discussion on the use of memory to generate prohibitions in the next
section, let’s note in passing that other softer possibilities exist. For example the HSAT [12]
variation of GSAT introduces a tie-breaking rule into GSAT: if more moves produce the same
(best) ∆f , the preferred move is the one that has not been applied for the longest span. HSAT
can be seen as a “soft” version of Tabu Search: while TS prohibits recently-applied moves,
HSAT discourages recent moves if the same ∆f can be obtained with moves that have been
“inactive” for a longer time. It is remarkable to see how this innocent variation of GSAT can
increase its performance on some SAT benchmark tasks [12].

4.1.2 Dynamical systems

A classification of some TS-related algorithms that is based on the underlying dynamical
system is illustrated in Fig 4.1.

A first subdivision is given by the deterministic versus stochastic nature of the system. Let
us first consider the deterministic versions. Possibly the simplest form of TS is what is called
strict-TS: a neighbor is prohibited if and only if it has already been visited during the previous
part of the search [13] (the term “strict” is chosen to underline the rigid enforcement of its
simple prohibition rule). Therefore (4.2) becomes:

NA(X(t+1)) = {X ∈ N(X(t+1)) s. t. X 6∈ {X(0), ..., X(t+1)}} (4.3)

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

4.1. PROHIBITIONS FOR DIVERSIFICATION (TABU SEARCH) 29

Let us note that strict-TS is parameter-free.
Two additional algorithms can be obtained by introducing a prohibition parameter T that

determines how long a move will remain prohibited after the execution of its inverse. The
fixed-TS algorithm is obtained by fixing T throughout the search [13]. A neighbor is allowed if
and only if it is obtained from the current point by applying a move such that its inverse has
not been used during the last T iterations. In detail, if LASTUSED(µ) is the last usage time of
move µ (LASTUSED(µ) = −∞ at the beginning):

NA(X(t)) = {X = µ ◦X(t) s. t. LASTUSED(µ−1) < (t− T)} (4.4)

If T changes with the iteration counter depending on the search status (in this case the
notation will be T (t)), the general dynamical system that generates the search trajectory com-
prises an additional evolution equation for T (t), so that the three defining equations are now:

T (t) = REACT(T (t−1), X(0), ..., X(t)) (4.5)

NA(X(t)) = {X = µ ◦X(t) s. t. LASTUSED(µ−1) < (t− T (t)) (4.6)

X(t+1) = BEST -NEIGHBOR(NA(X(t)))} (4.7)

Let us note that µ = µ−1 for the basic moves acting on binary strings. Now, possible rules
to determine the prohibition parameter by reacting to the repetition of previously-visited con-
figurations have been proposed in [4] (reactive-TS, RTS for short). In addition, there are
situations where the single reactive mechanism on T is not sufficient to avoid long cycles in
the search trajectory and therefore a second reaction is needed [4]. The main principles of
RTS are briefly reviewed in Sec. 4.2.

Stochastic algorithms related to the previously described deterministic versions can be
obtained in many ways. For example, prohibition rules can be substituted with probabilis-

tic generation-acceptance rules with large probability for allowed moves, small for prohibited
ones, see for example the probabilistic-TS [13]. Stochasticity can increase the robustness of
the different algorithms, in addition [13] “randomization is a means for achieving diversity
without reliance on memory,” although it could “entail a loss in efficiency by allowing du-
plications and potentially unproductive wandering that a more systematic approach would
seek to eliminate.” Incidentally, asymptotic results for TS can be obtained in probabilistic
TS [11]. In a different proposal (robust-TS) the prohibition parameter is randomly changed
between an upper and a lower bound during the search [25]. Stochasticity in fixed-TS and
in reactive-TS can be added through a random breaking of ties, in the event that the same
cost function decrease is obtained by more than one winner in the BEST -NEIGHBOR computa-
tion. At least this simple form of stochasticity should always be used to avoid external search
biases, possibly caused by the ordering of the loop indices.

If the neighborhood evaluation is expensive, the exhaustive evaluation can be substituted
with a partial stochastic sampling: only a partial list of candidates is examined before choosing
the best allowed neighbor.

4.1.3 A worked out example of Fixed Tabu Search

Let us assume that the search space X is the set of 3-bit strings (X = [b1, b2, b3]) and the cost
function is:

f([b1, b2, b3]) = b1 + 2 b2 + 3 b3 − 7 b1 b2 b3

The feasible points (the edges of the 3-dimensional binary cube) are illustrated in Fig. 4.1
with the associated cost function. The neighborhood of a point is the set of points that are
connected with edges.

The point X(0) = [0, 0, 0] with f(X(0)) = 0 is a local minimizer because all moves produce a
higher cost value. The best of the three admissible moves is µ1, so that X(1) = [1, 0, 0]. Note
that the move is applied even if f(X(1)) = 1 ≥ f(X(0)), so that the system abandons the local
minimizer.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

30 CHAPTER 4. REACTIVE PROHIBITIONS

Trajectory with

= 0 (local minimizer)

E = 3

E = 1

E = 3

E = 4

E = 2
E = 5

T = 1

E = −1 (global minimizer)

101

010

000

100

110
111

011

001

E

Figure 4.1: Search space, f values and search trajectory.

If T (1) = 0, the best move from X(1) will again be µ1 and the system will return to its
starting point: X(1) = X(0). If T (t) remains equal to zero the system is trapped forever in the
limit cycle [0, 0, 0]→ [1, 0, 0]→ [0, 0, 0]→ [1, 0, 0].....

On the contrary, if T (t) = 1, µ1 is prohibited at t = 1 because it was used too recently, i.e. its
most recent usage time Λ(µ1) satisfies Λ(µ1) = 0 ≥ (t−T (t)) = 0. The neighborhood is therefore
limited to the points that can be reached by applying µ2 or µ3 (N([1, 0, 0]) = {[1, 1, 0], [1, 0, 1]}).
The best admissible move is µ2, so that X(2) = [1, 1, 0] with f(X(2)) = 3.

At t = 2 µ2 is prohibited, µ1 is admissible again because Λ(µ1) = 0 < (t− T (t)) = 1, and µ3 is
admissible because it was never used. The best move is µ3 and the system reaches the global
minimizer: X(3) = [1, 1, 1] with f(X(3)) = −1.

4.1.4 Relation between prohibition and diversification

The prohibition parameter T used in eq. 4.4 is related to the amount of diversification: the
larger T , the longer the distance that the search trajectory must go before it is allowed to
come back to a previously visited point. In particular, the following propositions can be
demonstrated:

• The Hamming distance H between a starting point and successive point along the tra-
jectory is strictly increasing for T + 1 steps.

H(X(t+τ), X(t)) = τ for τ ≤ T + 1

• The minimum repetition interval R along the trajectory is 2(T + 1).

X(t+R) = X(t) ⇒ R ≥ 2(T + 1)

The above relations are immediately demonstrated if one considers that, as soon as the
value of a variable is flipped, this value remains unchanged for the next T iterations. In order
to come back to the starting configuration, all T +1 variables changed in the first phase must
be changed back to their original values.

But large values of T imply that only a limited subset of the possible moves can be applied
to the current configuration. In particular, T must be less than or equal to n − 2 to assure

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

4.1. PROHIBITIONS FOR DIVERSIFICATION (TABU SEARCH) 31

that at least two moves can be applied (clearly, if only one move can be applied the choice is
not influenced by the f values in the neighborhood). It is therefore appropriate to set T to the
smallest value that guarantees diversification.

4.1.5 How to escape from an attractor

Local minima points are attractors of the search trajectory generated by deterministic local
search. If the cost function is integer-valued and lower bounded it can be easily shown that a
trajectory starting from an arbitrary point will terminate at a local minimizer. All points such
that a deterministic local search trajectory starting from them terminates at a specific local
minimizer make up its attraction basin. Now, as soon as a local minimizer is encountered,
its entire attraction basin is not of interest for the optimization procedure, in fact its points
do not have smaller cost values. It is nonetheless true that better points could be close to
the current basin, whose boundaries are not known. One of the problems that must be
solved in heuristic techniques based on local search is how to continue the search beyond
the local minimizer and how to avoid the confinement of the search trajectory. Confinements
can happen because the trajectory tends to be biased toward points with low cost function
values, and therefore also toward the just abandoned local minimizer. The fact that the
search trajectory remains close to the minimizer for some iterations is clearly a desired effect
in the hypothesis that better points are preferentially located in the neighborhood of good
suboptimal point rather than among randomly extracted points.

Simple confinements can be cycles (endless repetition of a sequence of configurations
during the search) or more complex trajectories with no clear periodicity but nonetheless
such that only a limited portion of the search space is visited (they are analogous to chaotic

attractors in dynamical systems).

An heuristic prescription is that the search point is kept close to a discovered local mini-
mizer at the beginning, snooping about better attraction basins. If these are not discovered,
the search should gradually progress to larger distances (therefore progressively enforcing
longer-term diversification strategies).

Some very different ways of realizing this general prescription are here illustrated for a
“laboratory” test problem defined as follows. The search space is the set of all binary strings
of length L. Let us assume that the search has just reached a (strict) local minimizer and
that the cost f in the neighborhood is strictly increasing as a function of the number of
different bits with respect to the given local minimizer (i.e., as a function of the Hamming
distance). Without loss of generality, let us assume that the local minimizer is the zero
string ([00...0]) and that the cost is precisely the Hamming distance. Although artificial, the
assumption is not unrealistic in many cases. An analogy in continuous space is the usual
positive-definite quadratic approximation of the cost in the neighborhood of a strict local
minimizer of a differentiable function. In the following parts the discussion is mostly limited
to deterministic versions.

Strict-TS

In the deterministic version of strict-TS, if more than one basic move produce the same cost
decrease at a given iteration, the move that acts on the right-most (least significant) bit of the
string is selected.

The set of obtained configuration for L = 4 is illustrated in Fig 4.2. Let us now consider
how the Hamming distance evolves in time, in the optimistic assumption that the search
always finds an allowed move until all points of the search space are visited. If H(t) is the
Hamming distance at iteration t, the following holds true:

H(t) ≤ ⌊log2(t)⌋+ 1 (4.8)

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

32 CHAPTER 4. REACTIVE PROHIBITIONS

t = 0 H = 0 string: 0 0 0 0
t = 1 H = 1 string: 0 0 0 1
t = 2 H = 2 string: 0 0 1 1
t = 3 H = 1 string: 0 0 1 0
t = 4 H = 2 string: 0 1 1 0
t = 5 H = 1 string: 0 1 0 0
t = 6 H = 2 string: 0 1 0 1
t = 7 H = 3 string: 0 1 1 1
t = 8 H = 4 string: 1 1 1 1
t = 9 H = 3 string: 1 1 1 0
t = 10 H = 2 string: 1 1 0 0
t = 11 H = 1 string: 1 0 0 0
t = 12 H = 2 string: 1 0 0 1
t = 13 H = 3 string: 1 0 1 1
t = 14 H = 4 string: 1 0 1 0
Stuck at t = 14
(String not visited: 1101)

Trajectory for L = 2

Trajectory for L = 3

Figure 4.2: Search trajectory for deterministic strict-TS: iteration t, Hamming distance H
and binary string.

Figure 4.3: Evolution of the Hamming distance for deterministic strict-TS (L = 32).

This can be demonstrated after observing that a complete trajectory for an (L − 1)-bit search
space becomes a legal initial part of the trajectory for L-bit strings after appending zero as the
most significant bit (see the trajectory for L = 3 in Fig 4.2). Now, a certain Hamming distance
H can be reached only as soon as or after the H-th bit is set (e.g, H=4 can be reached only at
or after t = 8 because the fourth bit is set at this iteration). Equation (4.8) trivially follows.

In practice the above optimistic assumption is not true: strict-TS can be stuck (trapped) at
a configuration such that all neighbors have already been visited. In fact, the smallest L such
that this event happens is L = 4 and the search is stuck at t = 14, so that the string [1101]
is not visited. The problem worsens for higher-dimensional strings. For L = 10 the search is
stuck after visiting 47 % of the entire search space, for L = 20 it is stuck after visiting only 11
% of the search space.

If the trajectory must reach Hamming distance H with respect to the local minimum point
before escaping (i.e., before encountering a better attraction basin) the necessary number of
iterations is at least exponential in H. Fig. 4.3 shows the actual evolution of the Hamming
distance for the case of L = 32. The detailed dynamics is complex, as “iron curtains” of visited
points (that cannot be visited again) are created in the configuration space and the trajectory

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

4.1. PROHIBITIONS FOR DIVERSIFICATION (TABU SEARCH) 33

must obey the corresponding constraints. The slow growth of the Hamming distance is related
to the “basin filling” effect [4] of strict-TS: all points at smaller distances tend to be visited
before points at larger distances (unless the iron curtains prohibit the immediate visit of
some points). On the other hand, let us note that the exploration is not as “intensifying”
as an intuitive picture of strict-TS could lead one to believe: some configurations at small
Hamming distance are visited only in the last part of the search. As an example let us note
that the point at H = 4 is visited at t = 8 while one point at H = 1 is visited at t = 11 (t is
the iteration). This is caused by the fact that, as soon as a new bit is set for the first time,
all bits to the right are progressively cleared (because new configurations with lower cost are
obtained). In particular, the second configuration at H = 1 is encountered at t > 2, the third at
t > 4,... the n-th at t > 2(n−1). Therefore, at least a configuration at H = 1 will be encountered
only after 2(L−1) have been visited.

Let us note that the relation of (4.8) is valid only in the assumption that strict-TS is
deterministic and that it is not stuck for any configuration. Let us now assume that one
manages to obtain a more “intensifying” version of strict-TS, i.e., that all configurations at
Hamming distance less than or equal to H are visited before configurations at distance greater
than H. The initial growth of the Hamming distance is in this case much slower. In fact, the
number of configurations CH to be visited is:

CH =
H∑

i=0

(
L
i

)
(4.9)

It can be easily derived that CH >> 2H , if H << L. As an example1, for L = 32 one obtains
from (4.9) a value C5 = 242 825, and therefore this number of configurations have to be
visited before finding a configuration at Hamming distance greater than 5, while 25 = 32. An
explosion in the number of iterations spent near a local optimum occurs unless the nearest
attraction basin is very close. The situation worsens in higher-dimensional search spaces:
for L = 64, C5 = 8 303 633, C4 = 679 121. This effect can be seen as a manifestation of the
“curse of dimensionality:” a technique that works in very low-dimensional search space can
encounter dramatic performance reductions as the dimension increases. In particular, there
is the danger that the entire search span will be spent while visiting points at small Hamming
distances, unless additional diversifying tools are introduced.

Fixed-TS

The analysis of fixed-TS is simple: as soon as a bit is changed it will remain prohibited
(“frozen”) for additional T steps. Therefore (see Fig. 4.4), the Hamming distance with respect
to the starting configuration will cycle in a regular manner between zero and a maximal value
H = T + 1 (only at this iteration the ice around the first frozen bit melts down and allows
changes that are immediately executed because H decreases). All configurations in a cycle
are different (apart from the initial configuration). The cycling T behavior is the same for
both the deterministic and the stochastic version, the property of the stochastic version is
that different configurations have the possibility of being visited in different cycles. In fact all
configurations at a given Hamming distance H have the same probability of being visited if
H ≤ T + 1, zero probability otherwise.

The effectiveness of fixed-TS in escaping from the local attractor depends on the size of the
T value with respect to the minimal distance such that a new attraction basin is encountered.
In particular, if T is too small the trajectory will never escape, but if T is too big an “over-
constrained” trajectory will be generated.

1Computations have been executed by Mathematica c©.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

34 CHAPTER 4. REACTIVE PROHIBITIONS

Figure 4.4: Evolution of the Hamming distance for both deterministic and stochastic fixed-TS
(L = 32, T = 10).

Reactive-TS

The behavior of reactive-TS depends on the specific reactive scheme used. Given the previ-
ously illustrated relation between the prohibition T and the diversification, a possible pre-
scription is that of gradually increasing T if there is evidence that the system is confined near
a local attractor, until a new attractor is encountered. In particular, the evidence for a con-
finement can be obtained from the repetition of a previously visited configuration, while the
fact that a new attraction basin has been found can be postulated if repetitions disappear for
a suitably long period. In this last case, T is gradually decreased. This general procedure was
used in the design of the RTS algorithm in [4], where specific rules are given for the entire
feedback process.

In the present discussion we consider only the initial phase of the escape from the attrac-
tor, when increases of T are dominant over decreases. In fact, to simplify the discussion, let
us assume that T = 1 at the beginning and that the reaction acts to increase T when a local
minimum point is repeated, in the following manner:

REACT(T) = min{max{T × 1.1, T + 1}, L− 2} (4.10)

The initial value (and lower bound) of one implies that the system does not come back imme-
diately to a just left configuration. The upper bound is used to guarantee that at least two
moves are allowed at each iteration. Non-integral values of T are cast to integers before using
them (the largest integer less than or equal to T).

The evolution of T for the deterministic version is shown in Fig. 4.5, repetitions of the
local minimum point cause a rapid increase up to its maximal value. As soon as the value
is reached the system enters a cycle. This limit cycle is caused by the fact that no additional
attraction basins exist in the test case considered, while in real-world fitness surfaces the
prohibition T tends to be small with respect to its upper bound, both because of the limited
size of the attraction basins and because of the complementary reaction that decreases T if
repetitions disappear.

The behavior of the Hamming distance is illustrated in Fig. 4.6. The maximal Hamming
distance reached increases in a much faster way compared to the strict-TS case.

Now, for a given T (t) the maximum Hamming distance that is reached during a cycle is
Hmax = T (t) + 1 and the cycle length is 2(T (t) + 1). After the cycle is completed the local
minimizer is repeated and the reaction occurs. The result is that T (t) increases monotonically,
and therefore the cycle length does also, as illustrated in Fig. 4.7 that expands the initial part
of the graph.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

4.1. PROHIBITIONS FOR DIVERSIFICATION (TABU SEARCH) 35

Figure 4.5: Evolution of the prohibition parameter T for deterministic reactive-TS with reac-
tion at local minimizers (L = 32).

Figure 4.6: Evolution of the Hamming distance for simplified reactive-TS (L = 32).

Let us now consider a generic iteration t at which a reaction occurs (like t = 4, 10, 18, ... in
Fig. 4.7). At the beginning (4.10) will increase T by one unit at each step. If the prohibition is
T just before the reaction, the total number t of iterations executed is:

t(T) =

T∑

i=1

2(i + 1) = 3T + T 2 (4.11)

t(Hmax) =
(
H2

max + Hmax − 2
)

(4.12)

Hmax(t) =
1

2

(√
9 + 4t− 1

)
(4.13)

where the relation T = Hmax − 1 has been used. Therefore the increase of the maximum
reachable Hamming distance is approximately O(

√
t) during the initial steps. The increase

is clearly faster in later steps, when the reaction is multiplicative instead of additive (when
⌊T × 1.1⌋ > T + 1 in (4.10)), and therefore the above estimate of Hmax becomes a lower bound
in the following phase.

Let us note that the difference with respect to strict-TS is a crucial one: one obtains
an (optimistic) logarithmic increase in the strict algorithm, and a (pessimistic) increase that
behaves like the square root of the number of iterations in the reactive case. In this last case
bold tours at increasing distances are executed until the prohibition T is sufficient to escape

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

36 CHAPTER 4. REACTIVE PROHIBITIONS

Figure 4.7: Evolution of the Hamming distance for reactive-TS, first 100 iterations (L = 32).

from the attractor. In addition, if the properties of the fitness surface change slowly in the
different regions, and RTS reaches a given local minimizer with a T value obtained during its
previous history, the chances are large that it will escape even faster.

4.2 Reactive Tabu Search (RTS)

Some problems arising in TS that are worth investigating are:

1. the determination of an appropriate prohibition T for the different tasks,

2. the robustness of the technique for a wide range of different problems,

3. the adoption of minimal computational complexity algorithms for using the search his-
tory.

The three issues are briefly discussed in the following sections, together with the RTS
methods proposed to deal with them.

4.2.1 Self-adjusted prohibition period

In RTS the prohibition T is determined through feedback (i.e., reactive) mechanisms during
the search. T is equal to one at the beginning (the inverse of a given move is prohibited only
at the next step), it increases only when there is evidence that diversification is needed, it de-
creases when this evidence disappears. In detail: the evidence that diversification is needed is
signaled by the repetition of previously visited configurations. All configurations found dur-
ing the search are stored in memory. After a move is executed the algorithm checks whether
the current configuration has already been found and it reacts accordingly (T increases if
a configuration is repeated, T decreases if no repetitions occurred during a sufficiently long
period).

Let us note that T is not fixed during the search, but is determined in a dynamic way
depending on the local structure of the search space. This is particularly relevant for “in-
homogeneous” tasks, where the statistical properties of the search space vary widely in the
different regions (in these cases a fixed T would be inappropriate).

An example of the behavior of T during the search is illustrated in Fig. 4.8, for a Quadratic
Assignment Problem task [4]. T increases in an exponential way when repetitions are en-
countered, it decreases in a gradual manner when repetitions disappear.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

4.3. IMPLEMENTATION: STORING AND USING THE SEARCH HISTORY 37

Figure 4.8: Dynamics of the the prohibition period T on a QAP task.

4.2.2 The escape mechanism

The basic tabu mechanism based on prohibitions is not sufficient to avoid long cycles (e.g.,
for binary strings of length L, T must be less than the length of the string, otherwise all
moves are eventually prohibited, and therefore cycles longer than 2 × L are still possible). In
addition, even if “limit cycles” (endless cyclic repetitions of a given set of configurations) are
avoided, the first reactive mechanism is not sufficient to guarantee that the search trajectory
is not confined in a limited region of the search space. A “chaotic trapping” of the trajectory in
a limited portion of the search space is still possible (the analogy is with chaotic attractors of
dynamical systems, where the trajectory is confined in a limited portion of the space, although
a limit cycle is not present).

For both reasons, to increase the robustness of the algorithm a second more radical diver-
sification step (escape) is needed. The escape phase is triggered when too many configura-
tions are repeated too often [4]. A simple escape action consists of a number of random steps
executed starting from the current configuration (possibly with a bias toward steps that bring
the trajectory away from the current search region).

With a stochastic escape, one can easily obtain the asymptotic convergence of RTS (in
a finite-cardinality search space, escape is activated infinitely often: if the probability for a
point to be reached after escaping is different from zero for all points, eventually all points
will be visited - clearly including the globally optimal points). The detailed investigation of the
asymptotic properties and finite-time effects of different escape routines to enforce long-term
diversification is an open research area.

4.3 Implementation: storing and using the search history

While the above classification deals with dynamical systems, a different classification is based
on the detailed data structures used in the algorithms and on the consequent realization of
the needed operations. Different data structures can possess widely different computational
complexities so that attention should be spent on this subject before choosing a version of TS
that is efficient on a particular problem.

Some examples of different implementations of the same TS dynamics are illustrated in
Fig. 4.9. Strict-TS can be implemented through the reverse elimination method (REM) [14, 9],
a term that refers to a technique for the storage and analysis of the ordered list of all moves
performed throughout the search (called “running list”). The same dynamics can be obtained
in all cases through standard hashing methods and storage of the configurations [27, 4], or,
for the case of a search space consisting of binary strings, through the radix tree (or “digital

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

38 CHAPTER 4. REACTIVE PROHIBITIONS

Strict TS

Reverse Elimination Method
Hashing (and storage of configuration)
Radix tree

. . .

Fixed TS
FIFO list
Storage of last usage time of moves
. . .

Reactive TS

Hashing

Storage of configuration
Storage of hashed value
Storage of cost function

. . .
Radix tree
List of visited configurations

. . .

Exact

Approx

Figure 4.9: The same search trajectory can be obtained with different data structures.

tree”) technique [4]. Hashing is an old tool in Computer Science: different hashing functions
– possibly with incremental calculation – are available for different domains [7]. REM is not
applicable to all problems (the “sufficiency property” must be satisfied [14]), in addition its
computational complexity per iteration is proportional to the number of iterations executed,
while the average complexity obtained through incremental hashing is O(1), a small and
constant number of operations. The worst-case complexity per iteration obtained with the
radix tree technique is proportional to the number of bits in the binary strings, and constant
with respect to the iteration. If the memory usage is considered, both REM and approximated
hashing use O(1) memory per iteration, while the actual number of bytes stored can be less
for REM, because only changes (moves) and not configurations are stored.

Trivially, fixed-TS (alternative terms [13, 14] are: simple TS, static tabu search – STS –
or tabu navigation method) can be realized with a first-in first-out list where the prohibited
moves are located (the “tabu list”), or by storing in an array the last usage time of each move
and by using (4.4).

Reactive-TS can be implemented through a simple list of visited configurations, or with
more efficient hashing or radix tree techniques. At a finer level of detail, hashing can be
realized in different ways. If the entire configuration is stored (see also Fig. 4.10) an exact
answer is obtained from the memory lookup operation (a repetition is reported if and only
if the configuration has been visited before). On the contrary, if a “compressed” item is
stored, like a hashed value of a limited length derived from the configuration, the answer
will have a limited probability of error (a repetition can be reported even if the configuration
is new, because the compressed items are equal by chance – an event called “collision”).
Experimentally, small collision probabilities do not have statistically significant effects on
the use of reactive-TS as heuristic tool, and hashing versions that need only a few bytes per
iteration can be used. The effect of collision probabilities when hashing is used in other
schemes is a subject worth investigating.

4.3.1 Fast algorithms for using the search history

The storage and access of the past events is executed through the well-known hashing or
radix-tree techniques in a CPU time that is approximately constant with respect to the num-
ber of iterations. Therefore the overhead caused by the use of the history is negligible for
tasks requiring a non-trivial number of operations to evaluate the cost function in the neigh-
borhood.

An example of a memory configuration for the hashing scheme is shown in Fig. 4.10. From
the current configuration phi one obtains an index into a “bucket array.” The items (configu-
ration or hashed value or derived quantity, last time of visit, total number of repetitions) are

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

4.3. IMPLEMENTATION: STORING AND USING THE SEARCH HISTORY 39

Bucket array

hash(φ1) P
P

Pq

hash(φ4) -

hash(φ5) �
�

�1

hash(φ2) -

hash(φ3) -

- φ1 t1 r1 - φ4 t4 r4 - φ5 t5 r5

- φ2 t2 r2

- φ2 t2 r2

⊲

⊲

⊲

⊲

⊲

⊲

⊲

⊲

⊲

⊲

Figure 4.10: Open hashing scheme: items (configuration, or compressed hashed value, etc.)
are stored in “buckets”. The index of the bucket array is calculated from the configuration.

then stored in linked lists starting from the indexed array entry. Both storage and retrieval
require an approximately constant amount of time if: i) the number of stored items is not
much larger than the size of the bucket array, and ii) the hashing function scatters the items
with a uniform probability over the different array indices. More precisely, given a hash table
with m slots that stores n elements, a load factor α = n/m is defined. If collisions are resolved
by chaining searches take O(1 + α) time, on the average.

4.3.2 Persistent dynamic sets

Persistent dynamic sets are proposed to support memory–usage operations in history-sensitive
heuristics in [3, 2].

Ordinary data structures are ephemeral [10], meaning that when a change is executed the
previous version is destroyed. Now, in many contexts like computational geometry, editing,
implementation of very high level programming languages, and, last but not least, the context
of history-based heuristics, multiple versions of a data structure must be maintained and
accessed. In particular, in heuristics one is interested in partially persistent structures, where
all versions can be accessed but only the newest version (the live nodes) can be modified. A
review of ad hoc techniques for obtaining persistent data structures is given in [10] that is
dedicated to a systematic study of persistence, continuing the previous work of [21].

Hashing combined with persistent red-black trees

The basic observation is that, because Tabu Search is based on local search, configuration
X(t+1) differs from configuration X(t) only because of the addition or subtraction of a single
index (a single bit is changed in the string). Let us define the operations INSERT(i) and
DELETE(i) for inserting and deleting a given index i from the set. As cited above, configuration
X can be considered as a set of indices in [1, L] with a possible realization as a balanced red-
black tree, see [5, 16] for two seminal papers about red-black trees. The binary string can be
immediately obtained from the tree by visiting it in symmetric order, in time O(L). INSERT(i)
and DELETE(i) require O(log L) time, while at most a single node of the tree is allocated or

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

40 CHAPTER 4. REACTIVE PROHIBITIONS

deallocated at each iteration. Rebalancing the tree after insertion or deletion can be done in
O(1) rotations and O(log L) color changes [26]. In addition, the amortized number of color
changes per update is O(1), see for example [20].

Now, the REM method [13, 14] is closely reminiscent of a method studied in [21] to obtain
partial persistence, in which the entire update sequence is stored and the desired version is
rebuilt from scratch each time an access is performed, while a systematic study of techniques
with better space-time complexities is present in [23, 10]. Let us now summarize from [23]
how a partially persistent red-black tree can be realized. An example of the realizations that
we consider is presented in Fig. 4.11.

The trivial way is that of keeping in memory all copies of the ephemeral tree (see the top
part of Fig. 4.11), each copy requiring O(L) space. A smarter realization is based on path

copying, independently proposed by many researchers, see [23] for references. Only the path
from the root to the nodes where changes are made is copied: a set of search trees is created,
one per update, having different roots but sharing common subtrees. The time and space
complexities for INSERT(i) and DELETE(i) are now of O(log L).

The method that we will use is a space-efficient scheme requiring only linear space pro-
posed in [23]. The approach avoids copying the entire access path each time an update
occurs. To this end, each node contains an additional “extra” pointer (beyond the usual left
and right ones) with a time stamp. When attempting to add a pointer to a node, if the extra
pointer is available, it is used and the time of the usage is registered. If the extra pointer is
already used, the node is copied, setting the initial left and right pointers of the copy to their
latest values. In addition, a pointer to the copy is stored in the last parent of the copied node.
If the parent has already used the extra pointer, the parent, too, is copied. Thus copying
proliferates through successive ancestors until the root is copied or a node with a free extra
pointer is encountered. Searching the data structure at a given time t in the past is easy:
after starting from the appropriate root, if the extra pointer is used the pointer to follow from
a node is determined by examining the time stamp of the extra pointer and following it iff
the time stamp is not larger than t. Otherwise, if the extra pointer is not used, the normal
left-right pointers are considered. Note that the pointer direction (left or right) does not have
to be stored: given the search tree property it can be derived by comparing the indices of
the children with that of the node. In addition, colors are needed only for the most recent
(live) version of the tree. In Fig. 4.11 NULL pointers are not shown, colors are correct only
for the live tree (the nodes reachable from the rightmost root), extra pointers are dashed and
time-stamped.

The worst-case time complexity of INSERT(i) and DELETE(i) remains of O(log L), but the
important result derived in [23] is that the amortized space cost per update operation is O(1).
Let us recall that the total amortized space cost of a sequence of updates is an upper bound
on the actual number of nodes created.

Let us now consider the context of history-based heuristics. Contrary to the popular usage
of persistent dynamic sets to search past versions at a specified time t, one is interested in
checking whether a configuration has already been encountered in the previous history of the
search, at any iteration.

A convenient way of realizing a data structure supporting X-SEARCH(X) is to combine
hashing and partially persistent dynamic sets, see Fig. 4.12. From a given configuration
X an index into a “bucket array” is obtained through a hashing function, with a possible
incremental evaluation in time O(1). Collisions are resolved through chaining: starting from
each bucket header there is a linked list containing a pointer to the appropriate root of
the persistent red-black tree and satellite data needed by the search (time of configuration,
number of repetitions).

As soon as configuration X(t) is generated by the search dynamics, the corresponding
persistent red-black tree is updated through INSERT(i) or DELETE(i). Let us now describe
X-SEARCH(X(t)): the hashing value is computed from X(t) and the appropriate bucket searched.
For each item in the linked list the pointer to the root of the past version of the tree is followed

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

BIBLIOGRAPHY 41

and the old set is compared with X(t). If the sets are equal, a pointer to the item on the linked
list is returned. Otherwise, after the entire list has been scanned with no success, a NULL

pointer is returned.

In the last case a new item is linked in the appropriate bucket with a pointer to the root
of the live version of the tree (X-INSERT(X, t)). Otherwise, the last visit time t is updated and
the repetition counter is incremented.

After collecting the above cited complexity results, and assuming that the bucket array size
is equal to the maximum number of iterations executed in the entire search, it is straight-
forward to conclude that each iteration of reactive-TS requires O(L) average-case time and
O(1) amortized space for storing and retrieving the past configurations and for establishing
prohibitions.

In fact, both the hash table and the persistent red-black tree require O(1) space (amortized
for the tree). The worst-case time complexity per iteration required to update the current X(t)

is O(log L), the average-case time for searching and updating the hashing table is O(1) (in
detail, searches take time O(1 + α), α being the load factor, in our case upper bounded by 1).
The time is therefore dominated by that required to compare the configuration X(t) with that
obtained through X-SEARCH(X(t)), i.e., O(L) in the worst case. Because Ω(L) time is needed
during the neighborhood evaluation to compute the f values, the above complexity is optimal
for the considered application to history-based heuristics.

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data structures and algorithms, Addison-
Wesley, 1983.

[2] R. Battiti, Partially persistent dynamic sets for history-sensitive heuristics, Tech. Report
UTM-96-478, Dip. di Matematica, Univ. di Trento, 1996, Revised version, Presented at
the Fifth DIMACS Challenge, Rutgers, NJ, 1996.

[3] , Time- and space-efficient data structures for history-based heuristics, Tech. Re-
port UTM-96-478, Dip. di Matematica, Univ. di Trento, 1996.

[4] R. Battiti and G. Tecchiolli, The reactive tabu search, ORSA Journal on Computing 6
(1994), no. 2, 126–140.

[5] R. Bayer, Symmetric binary b-trees: Data structure and maintenance algorithms, Acta
Informatica 1 (1972), 290–306.

[6] Christian Blum and Andrea Roli, Metaheuristics in combinatorial optimization: Overview

and conceptual comparison, ACM Comput. Surv. 35 (2003), no. 3, 268–308.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms, McGraw-Hill,
New York, 1990.

[8] B. J. Cox, Object oriented programming, an evolutionary approach, Addison-Wesley, 1990.

[9] F. Dammeyer and S. Voss, Dynamic tabu list management using the reverse elimination

method, Annals of Operations Research 41 (1993), 31–46.

[10] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, Making data structures persis-

tent, Proceedings of the 18th Annual ACM Symposium on Theory of Computing (Berke-
ley, CA), ACM, May 28-30 1986.

[11] U. Faigle and W. Kern, Some convergence results for probabilistic tabu search, ORSA
Journal on Computing 4 (1992), no. 1, 32–37.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

42 CHAPTER 4. REACTIVE PROHIBITIONS

[12] I.P. Gent and T. Walsh, Towards an understanding of hill-climbing procedures for sat,
Proceedings of the Eleventh National Conference on Artificial Intelligence, AAAI Press /
The MIT Press, 1993, pp. 28–33.

[13] F. Glover, Tabu search - part i, ORSA Journal on Computing 1 (1989), no. 3, 190–260.

[14] , Tabu search - part ii, ORSA Journal on Computing 2 (1990), no. 1, 4–32.

[15] , Tabu search: Improved solution alternatives, Mathematical Programming, State
of the Art (J. R. Birge and K. G. Murty, eds.), The Univ. of Michigan, 1994, pp. 64–92.

[16] L. J. Guibas and R. Sedgewick, A dichromatic framework for balanced trees, Proc. of the
19th Ann. Symp. on Foundations of Computer Science, IEEE Computer Society, 1978,
pp. 8–21.

[17] P. Hansen and B. Jaumard, Algorithms for the maximum satisfiability problem, Comput-
ing 44 (1990), 279–303.

[18] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, Optimization by simulated annealing,
Science 220 (1983), 671–680.

[19] S. Lin, Computer solutions of the travelling salesman problems, Bell Systems Technical J.
44 (1965), no. 10, 2245–69.

[20] D. Maier and S. C. Salveter, Hysterical b-trees, Information Processing Letters 12 (1981),
no. 4, 199–202.

[21] M. H. Overmars, Searching in the past ii: general transforms, Tech. report, Dept. of
Computer Science, Univ. of Utrecht, Utrecht, The Netherlands, 1981.

[22] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization, algorithms and complex-

ity, Prentice-Hall, NJ, 1982.

[23] N. Sarnak and R. E. Tarjan, Planar point location using persistent search trees, Commu-
nications of the ACM 29 (1986), no. 7, 669–679.

[24] K. Steiglitz and P. Weiner, Algorithms for computer solution of the traveling salesman

problem, Proceedings of the Sixth Allerton Conf. on Circuit and System Theory, Urbana,
Illinois, IEEE, 1968, pp. 814–821.

[25] E. Taillard, Robust taboo search for the quadratic assignment problem, Parallel Comput-
ing 17 (1991), 443–455.

[26] R. E. Tarjan, Updating a balanced search tree in o(1) rotations, Information Processing
Letters 16 (1983), 253–257.

[27] D. L. Woodruff and E. Zemel, Hashing vectors for tabu search, Annals of Operations
Research 41 (1993), 123–138.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

BIBLIOGRAPHY 43

9

8

3 6

4 9

8

3

4

6

7

3

8

7

94

6

5

t = 0 t = 1 t = 2
Ephemeral red-black tree

6

8

6

44

8

9

7

3 6

8

5

4 9

8 8

3

7

44

66

t = 1 t = 2
Ephemeral red-black tree with path copying

 = 1t

7

4

6

8

3

9

t = 1

 = 2t

9

6 6

7

4

8

3

5

t = 1 t = 2
Ephemeral red-black tree with limited node copying

Figure 4.11: How to obtain a partially persistent red-black tree from an ephemeral one (top),
containing indices 3,4,6,8,9 at t=0, with subsequent insertion of 7 and 5. Path copying
(middle), with thick lines marking the copied part. Limited node copying (bottom) with dashed
lines denoting the “extra” pointers with time stamp.

Figure 4.12: Open hashing scheme with persistent sets: a pointer to the appropriate root
for configuration X(t) in the persistent search tree is stored in a linked list at a “bucket”.
Items on the list contain satellite data. The index of the bucket array is calculated from the
configuration through a hashing function.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

44 CHAPTER 4. REACTIVE PROHIBITIONS

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

Chapter 5

Model-based search

The sciences do not try to explain, they hardly even try to interpret, they mainly make models.
By a model is meant a mathematical construct which, with the addition of certain verbal

interpretations, describes observed phenomena. The justification of such a mathematical construct
is solely and precisely that it is expected to work.

(Johann Von Neumann)

In the previous chapters we concentrated on how to solve optimization problems by ap-
plying different flavors of the local search paradigm. Nonetheless, the same problems can be
thought of from a more global point of view, leading to a different family of useful optimization
techniques.

5.1 Models of a problem

The main idea of model-based optimization is to create and maintain a model of the problem,
whose aim is to provide some clues about the problem’s solutions. If the problem is a function
to be minimized, for instance, it is helpful to think of such model as a simplified version of the
function itself; in more general settings, the model can be a probability distribution defining
the estimated likelihood of finding a good quality solution at a certain point.

To solve a problem, we resort to the model in order to generate a candidate solution,
then check it. The result of the check shall be used to refine the model, so that the future
generation is biased towards better and better candidate solutions. Clearly, for a model to
be useful it must provide as much information about the problem as possible, while being
somehow “more tractable” (in a computational or analytical sense) than the problem itself.
The initial model can be created through a priori knowledge or by uniformity assumptions.

Although memory-based technique can be used in both discrete and continuous domains,
the latter case better supports our intuition. In Fig. 5.1 a function (continuous line) must be
minimized. An initial model (the dashed line) provides a prior probability distribution for the
minimum (in case of no prior knowledge, a uniform distribution can be assumed). Based on
this estimate, some candidate minima are generated (points a through d), and the correspond-
ing function values are computed. The model is updated (dotted line) to take into account
the latest findings: the global minimum is more likely to occur around c and d, rather than a
and b. Further model-guided generations and tests shall improve the distribution: eventually
the region around the global minimum e shall be discovered and a high probability density
shall be assigned to its surroundings. The same example also highlights a possible drawback
of naı̈f applications of the technique: assigning a high probability to the neighborhood of c
and d could lead to a negligible probability of selecting a point near e, so the global minimum
would never be discovered. It looks like the emphasis is on intensification of the search. This
is why, in practice, the models are corrected to ensure a significant probability of generating
points also in unexplored regions.

45

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

46 CHAPTER 5. MODEL-BASED SEARCH

Unknown optimum

O

Function

1

2

model

model

Sampled points

x

f(x)

e a b c d

Figure 5.1: Model-based search: one generates sample points from model1 and updates the
generative model to increase the probability for point with low cost values (see model2). In
pathological cases, optimal point e runs the risk of becoming more and more difficult to
generate.

An alternative possibility would be to avoid the model altogether and to keep in memory
all or a fraction of the previously tested points (this hypothesis reminds of search algorithms
based on a dynamic population of sample points, also known as Genetic or Evolutionary Algo-
rithms). The informed reader will also notice a similarity between the machine learning sub-
division between instance-based and model-based learning techniques, see for example [11].

Now that we are supported by intuition, let’s proceed with the theoretical aspects. The
discussion is inspired by the recent survey in [15]. The scheme of a model-based search
approach is presented in Fig. 5.2. Represented entities are:

• a model used to generate sample solutions,

• the last samples generated,

• a memory containing previously accumulated knowledge about the problem (previous
solutions and evaluations).

The process develops in an iterative way through a feedback loop were new candidates are
generated by the model, and their evaluation —together with memory about past states— is
used to improve the model itself in view of a new generation.

The design choices consist of defining a suitable generative model, and an appropriate
learning rule to favor generation of superior models in the future steps. A lot of computational
complexity can lurk within the second issue, which is in itself an optimization task. In
particular one should avoid learning rules converging to local optima, as well as overtraining,
which would hamper generalization.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

5.2. AN EXAMPLE 47

(learning)

Generation

Long−term memory
Feedback

MemorySample

Model

Figure 5.2: Model-based architecture: a generative model is updated after learning from the
last generated samples and the previous long-term memory.

5.2 An example

Let’s start from a simple model. The search space X = {0, 1}n is the set of all binary strings of
length n, the generation model is defined by an n-tuple of parameters

p = (p1, . . . , pn) ∈ [0, 1]n,

where pi is the probability of producing 1 as the i-th bit of the string and every bit is in-
dependently generated. The motivation is to “remove genetics from the standard genetic
algorithm” [1]: instead of maintaining implicitly a statistic in a GA population, statistics are

maintained explicitly in the vector (pi).
The initial state of the model corresponds to indifference with respect to the bit values:

pi = 0.5, i = 1, . . . , n. In the Population-Based Incremental Learning (PBIL) algorithm [1] the
following steps are iterated:

1. Initialize p;
2. repeat:
3. Generate a sample set S using the vector p;

4. Extract a fixed number S̄ of the best solutions from S;
5. for each sample s = (s1, . . . , sn) ∈ S̄:
6. p ← (1− ρ)p + ρs,

where ρ is a learning rate parameter (regulating exploration versus exploitation). The moving
vector p can be seen as representing a moving average of the best samples, a prototype
vector placed in the middle of the cluster providing the best quality solutions. As a parallel
with machine learning literature, the update rule is similar to that used in Learning Vector
Quantization, see [7]. Variations include moving away from bad samples in addition to moving
towards good ones. A schematic representation is shown in Fig. 5.3.

Although this simple technique shows results superior to GA on some benchmark tasks [1],
the method has intrinsic weaknesses if the optimization landscape has a rich structure, for
example more than a single cluster, or complex configurations of the optimal positions corre-
sponding to dependencies among the individual bits.

5.3 Dependent probabilities

Estimates of probability densities for optimization considering possible dependencies in the
form of pairwise conditional probabilities are studied in [3], which also suggest a clear theo-
retical framework. Their MIMIC technique (Mutual-Information-Maximizing Input Clustering)
aims at estimating a probability density for points with value below a given threshold (remem-
ber that the function is to be minimized). The method aims at modeling the distribution pθ,

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

48 CHAPTER 5. MODEL-BASED SEARCH

t
()t−

O

−
−

−

− −

−

+

+

+ +

+
+

Good quality
solutions

Bad quality solutions

p

p
2

1

p (+1)
p

Figure 5.3: PBIL: the “prototype” vector p gradually shifts towards good quality solutions
(qualitative example in two dimensions).

uniform over inputs X with f(X) ≤ θ, zero elsewhere:

pθ(x) =

1

measure(X)
if f(x) ≤ θ

0 otherwise.

If this distribution is known and the best value θ̂ = minX f(X) is also known, a single sample

from pθ̂ would be sufficient to identify the optimizer.
Before proceeding with the method, a proper threshold θ is to be selected. In the absence

of a priori knowledge, we can aim at tuning θ so that it permits a non-trivial estimation of
pθ (if θ is too low no sample point will make it, if it is too large all points are in). The choice
in [3] is to adapt θ so that it is equal to a fixed N-th percentile of the data (so that a specific
fraction of the sample points is below the threshold). If the model is appropriate, one aims
at a threshold-descent behavior: the threshold will be high at the beginning, then the areas
leading to lower and lower costs will be identified leading to a progressively lower threshold
(a similar technique will be encountered for racing in Chapter 8). The algorithm therefore
proceeds as follows:

1. Generate a random initial population uniformly in the input space;
2. θ0 ← mean f value on this population; t← 0;
3. repeat:

4. Update the density estimator model pθt ;

5. Generate more samples from the model pθt ;
6. θt+1 ← N-th percentile of the data;

7. retain only the points less than θt+1; t← t + 1;

What is left is the choice of a (parametric) model so that it can be used and updated within
acceptable CPU times and without requiring an excessive number of sample points. In [3] one
first approximates the true distribution p(X) with a distribution p̂(X) chosen from a reduced
set of possibilities. The closest p̂(X) is defined as the one minimizing the Kullback-Leibler
divergence D(p‖p̂), a widely used measurement of the agreement between distributions. Fi-
nally, because identifying the optimal p̂(X) requires excessive computational resources, one
resorts to a greedy construction of the distribution p̂(X).

Now that the path is clear, let’s see the details. The joint probability distribution

p(X) = p(X1|X2, . . . , Xn)p(X2|X3, . . . , Xn) . . . p(Xn−1|Xn)p(Xn)

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

5.3. DEPENDENT PROBABILITIES 49

is approximated starting from pairwise conditional probabilities p(Xi|Xj). In detail, one con-
siders a class of probability distributions p̂π(X) where each member is defined by a permuta-
tion π of the indices between 1 and n.

p̂π(X) = p(Xπ1 |Xπ2)p(Xπ2 |Xπ3) · · · p(Xπn−1 |Xπn
)p(Xπn

)

One aims at picking the the permutation π such that p̂π(X) has minimum divergence with
the actual distribution. The Kullback-Leibler divergence D(p‖p̂) to minimize is:

D(p‖p̂π) =

∫

X

p(X)
(
log p(X)− log p̂π(X)

)
dX

= Ep[log p]− Ep[log p̂π]

= −h(p) + h(Xi1 |Xi2) + h(Xi2 |Xi3) + · · ·+ h(Xin−1 |Xin
) + h(Xin

),
︸ ︷︷ ︸

(5.1)

where the properties of the logarithm and the definition of entropy h were used. Actually, the
first term in the summation does not depend on π so that the cost function to be minimized
is give by the rest of the summation (the terms within the underbrace). Because searching
among all n! permutations is too demanding one adopts a greedy algorithm to fix indices
sequentially:

1. in ← arg min
j
ĥ(Xj);

2. for k = n− 1, n− 2, . . . , 1:

3. ik ← arg min
j 6∈{ik+1,...,in}

ĥ(Xj |Xik+1).

where ĥ is the estimated empirical entropy. After the distribution is chosen one generates
samples as follows:

1. Randomly pick a value for Xin based on the estimated p̂(Xin);
2. for k = n− 1, n− 2, . . . , 1:
3. pick a value for Xik

based on the estimated p̂(Xik
|Xik+1).

While an approximated probability distribution is found in an heuristic greedy manner
above, an alternate standard technique is that of stochastic gradient ascent. For simplicity,
assume that f is positive (otherwise make it positive by applying a suitable transformation).
Here one starts from an initial value for the parameters θ of the probabilistic construction
model and does steepest descent where the exact gradient is estimated by sampling [12]. In
detail, let’s assume that the probabilistic sample generation model is determined by a vector of
parameters θ ∈ Θ, and that the related probability distribution over generated solutions pθ is
differentiable. The combinatorial optimization problem is now substituted with a continuous
optimization problem: determine the model parameters leading to the highest expected value
of f :

θ∗ = arg max
θ

Epθ
f(X)

Gradient ascent consists of starting from an initial θ0 and, at each step, calculating the
gradient and updating θt+1 = θt + ǫt∇E(θt), where ǫt is a suitably small step-size.

Next, because

∇E(θ) = ∇
∑

X

f(X)Pθ(X) =
∑

X

f(X)∇Pθ(X)

=
∑

X

f(X)Pθ

∇Pθ(X)

Pθ

=
∑

X

f(X)Pθ∇ lnPθ, (5.2)

The gradient of the expectation can be substituted with an empirical mean from samples s

extracted from the distribution St, obtaining the following update rule:

θt+1 = θt + ǫt

∑

s∈St

f(X)∇ lnPθt (5.3)

We leave to the reader the gradient calculation, because it is dependent on the specific model.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

50 CHAPTER 5. MODEL-BASED SEARCH

5.4 The cross-entropy model

The cross-entropy method of [14] [2] builds upon the above ideas and upon [13] which con-
siders an adaptive algorithm for estimating probabilities of rare events in stochastic systems.
One starts from a distribution p0 which is progressively updated to increase the probability
of generating good solutions. If we multiply at each iteration the starting distribution by the
function evaluation p̂(X) ∝ pt(X)f(X) we obtain higher probability values for higher function
values, it looks like we are on the correct road: when n goes to infinity pn(X) ∝ pt(X)(f(X))n

the probability tends to be different from zero only at the global optima solutions! Unfortu-
nately there is an obstacle: if pt is a distribution which can be obtained by fixing parameters θ

in our model, there is no guarantee that also p̂ is going to be a member of this parametric fam-
ily. Here our cross-entropy measure (CE) comes to the rescue, we will project p̂ to the closest
distribution is the parametric family, where closeness is measured by the Kullback-Leibler
divergence:

D(p̂‖p) =
∑

X

p̂ ln
p̂(X)

p(X)
(5.4)

or, taking into account that
∑

X p̂ ln p̂ is constant when minimizing over p, by the cross-entropy:

h(p̂|p) = −
∑

X

p̂ ln p(X) (5.5)

Because our p̂ is proportional to pt · f , the final distribution update is given by solving the
maximization problem:

pt+1 = arg max
θ

∑

X

pt(X)f(X) ln p(X). (5.6)

What holds for the original f also holds for monotonic transformations of f , which may also
depend on memory (so that different functions can be used at different steps). An example
is an indicator function I(f < θt) as used in the MIMIC technique, or a Boltzmann function
fT = exp−f/T where the temperature T can be adapted (large T values tend to smooth f
differences leading to a less aggressive search).

Similarly to what was done for stochastic gradient descent, a fast sample approximation
can substitute the summation over the entire solution space:

pt+1 = arg max
θ

∑

s∈St

f(X) ln p(X). (5.7)

We already anticipate the final part of the story: the above maximization problem usually
cannot be solved exactly but again one can resort to stochastic gradient ascent, for example
starting from the previous pt solution (and again remembering the pitfalls of local minima).
If instead of a complete ascent one follows only one step along the (estimated) gradient on
actually recovers the stochastic gradient ascent rule:

θt+1 = θt + ǫt

∑

s∈St

f(s)∇ ln pθt
(s) (5.8)

The Cross-Entropy method therefore appears as a generalization of the SGA technique,
allowing for time-dependent quality functions.

The theoretical framework above is surely of interest, unfortunately many issues have to
be specified before obtaining an effective algorithm for a specific problem. In particular the
model has to be sufficiently simple to allow fast computation but also sufficiently flexible to
accommodate the structural properties of specific landscapes. In addition local minima are
haunting along the way of gradient ascent in the solution of the embedded optimization tasks
implicit in the technique. An intrinsic danger is related on the “intensification” (exploitation)
flavor of the approach, one tends to search where previous searches have been successful.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

BIBLIOGRAPHY 51

Unfortunately, a new gold mine will never be found if the first iterations concentrate the
exploration too much, see also Fig. 5.1. Contrary to gold mining, the reward in optimization
is not on revisiting old good solutions but on rapidly exploiting a promising region and then
moving on to explore uncharted territory.

In spite of the practical challenges, some approaches based on analogies with ant colonies
behavior [4] are based on similar principles: solution construction happens via a model which
is influenced by the quality of previously generated solutions, although the most successful
ACO applications are in fact combinations of the basic technique with advanced memory-
based features, local search, and problem specific heuristic information about the a priori
desirability of the different solution components.

The Greedy Randomized Adaptive Search (GRASP) framework [5] is based on repetitions
of randomized greedy constructions and local search starting from the just constructed solu-
tion. Different starting points for local search are obtained by either stochastically breaking
ties during the selection of the next solution component or by relaxing the greediness, i.e.,
putting at each greedy iteration a fraction of the most promising solution components in a re-
stricted candidate list, from which the winner is randomly extracted. The bigger the candidate
list, the larger the exploration characteristics of the construction. In spite of the name, there
is actually no adaptation to previous runs in GRASP, but the opportunity arises for a set of
self-tuning possibilities. For example the size of the candidate list can be self-tuned, or statis-
tics about relationships between final quality and individual components (or more complex
structural properties learned from the previous constructions) can influence the choice of the
next solution component to add, going towards the model-base search context. Preliminary
investigations about Reactive-GRASP are presented in [10, 6]. The purpose is to adapt the
size of the candidate list by considering information gathered about the quality of solutions
generated with different values. In detail, a parameter α is defined as the fraction of elements
that are considered in the restricted candidate list; a set of possible values {α1, . . . , αn} is
considered. A value of α is chosen at each construction with probability pi. The adaptation
acts on the probabilities: at the beginning they are uniform (pi = 1/n), while after a number
of GRASP constructions the average solution value ai obtained when using αi is computed
and the probabilities are updated so that they become proportional to these average values
(of course scaled so that they sum up to one). The power of reactive-GRASP is derived both
from the additional diversification implicit when considering different values for α and on the
reactive adaptation of the probabilities.

Estimation of Distributions (EDA) [8] algorithms have been proposed in the framework
of evolutionary computation for modeling promising solutions in a probabilistic manner, and
use it to produce the next generation. A survey in [9] considers population-based probabilistic
search algorithms based on modeling promising solutions by estimating their probability
distribution and using the model to guide the exploration of the search space”.

Bibliography

[1] S. Baluja and R. Caruana, Removing the genetics from the standard genetic algorithm,
Tech. report, School of Computer Science, Carnegie Mellon University, 1995, CMU-CS-
95-141.

[2] P. de Boer, D. Kroese, S. Mannor, and R. Rubinstein, A tutorial on the cross-entropy

method, Annals of Operations Research 134 (2005), 19–67.

[3] Jeremy S. de Bonet, Charles L. Isbell Jr., and Paul Viola, MIMIC: Finding optima by

estimating probability densities, Advances in Neural Information Processing Systems
(Michael C. Mozer, Michael I. Jordan, and Thomas Petsche, eds.), vol. 9, The MIT Press,
1997, p. 424.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

52 CHAPTER 5. MODEL-BASED SEARCH

[4] Marco Dorigo and Christian Blum, Ant colony optimization theory: a survey, Theor. Com-
put. Sci. 344 (2005), no. 2-3, 243–278.

[5] T.A. Feo and M.G.C. Resende, Greedy randomized adaptive search procedures, Journal
of Global Optimization 6 (1995), 109–133.

[6] Fernando C. Gomes, Panos Pardalos, Carlos S. Oliveira, and Mauricio G. C. Resende, Re-

active grasp with path relinking for channel assignment in mobile phone networks, DIALM
’01: Proceedings of the 5th international workshop on Discrete algorithms and meth-
ods for mobile computing and communications (New York, NY, USA), ACM Press, 2001,
pp. 60–67.

[7] J.A. Hertz, A. Krogh, and R.G. Palmer, Introduction to the theory of neural computation,
Addison-Wesley Publishing Company, Inc., Redwood City, CA, 1991.

[8] H. Mühlenbein and G. Paa, From recombination of genes to the estimation of distributions

i. binary parameters, Parallel Problem Solving from NaturePPSN IV (A. Eiben, T. Bäck,
M. Shoenauer, and H. Schwefel, eds.), 1996, p. 178187.

[9] M. Pelikan, D.E. Goldberg, and F. Lobo, A survey of optimization by building and using

probabilistic models, Computational Optimization and Applications 21 (2002), no. 1, 5–
20.

[10] M. Prais and C. C. Ribeiro, Reactive grasp: An application to a matrix decomposition

problem in tdma traffic assignment, INFORMS JOURNAL ON COMPUTING 12 (2000),
no. 3, 164–176.

[11] J. R. Quinlan, Combining instance-based and model-based learning, Proceedings of the
Tenth International Conference on Machine Learning (Amherst, Massachusetts), Morgan
Kaufmann, 1993, pp. 236–243.

[12] H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Stat. 22
(1951), 400–407.

[13] R. Rubinstein, Optimization of computer simulation models with rare events, European
Journal of Operations Research 99 (1997), 89–112.

[14] , The cross-entropy method for combinatorial and continuous optimization,
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY 1 (1999), no. 2, 127–190.

[15] M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo, Model-based search for combinato-

rial optimization, pp. 373–395.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

Chapter 6

Reacting on the objective function

How to Do a Proper Push-Up. Push-ups aren’t just for buff army trainees; they are great upper body,

low-cost exercise. Here’s the proper way to do them anywhere. (ad. in the web)

This chapter considers reactive modification of the objective function in order to support
appropriate diversification of the search process. Contrary to to the model-based search
techniques, here the focus is not on modeling a solution-generation process to intensify the
search in promising regions, but on modifying the objective function so that previous promis-
ing areas in the solution space appear less favorable, and the search trajectory will be gently
pushed to visit new portions of the search space. To help the intuition, see also Fig. 6.1, one
may think about pushing up the search landscape at a discovered local minimum, so that
the search trajectory will flow into neighboring attraction basins.

As with many algorithmic principles, it is difficult to pinpoint a seminal paper in this
area. The literature about stochastic local search for the Satisfiability problem is of particular
interest. Different variations of local search with randomness techniques have been proposed
for SAT and MAX-SAT starting from the late eighties, for some examples see [11], [27], and
the updated review of [14]. These techniques were in part motivated by previous applications
of “min-conflicts” heuristics in the area of Artificial Intelligence, see for example [10] and [18].

The influential algorithm GSAT [27] consists of multiple runs of LS+ local search, each one
consisting of a number of iterations that is typically proportional to the problem dimension n.
Different “noise” strategies to escape from attraction basins are added to GSAT in [25, 26]. In
particular, the GSAT-with-walk algorithm.

The algorithm is briefly summarized in Fig. 6.2. A certain number of tries (MAX-TRIES) is
executed, where each try consists of a number of iterations (MAX-FLIPS). At each iteration
a variable is chosen by two possible criteria and then flipped by the function FLIP, i.e., xi

becomes equal to (1 − xi). One criterion, active with “noise” probability p, selects a variable
occurring in some unsatisfied clause with uniform probability over such variables, the other
one is the standard method based on the function f given by the number of satisfied clauses.
For a generic move µ, the quantity ∆µf (or ∆f for short) is defined as f(µ X(t)) − f(X(t)).
The straightforward book-keeping part of the algorithm is not shown. In particular, the best
assignment found during all trials is saved and reported at the end of the run. In addition,
the run is terminated immediately if an assignment is found that satisfies all clauses.

In local search for SAT [27] methods (GSAT) single bits are flipped repeatedly in order to
increase the number of satisfied clauses. After a local minimum is reached a plateau search
phase, when bits are flipped without changing the number of satisfied clauses, is often a
tax to pay before reaching attraction basins with a lower number of unsatisfied clauses.
Instead of executing an approximate random-walk trajectory along the plateau it would be
better to “give some tilt” to the plateau surface to fasten the identification of other attraction
basins in the neighborhood. If all clauses are not born to be equal, getting different values
in the neighborhood is facilitated, and soon after the first proposals, method based on clause

53

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

54 CHAPTER 6. REACTING ON THE OBJECTIVE FUNCTION

new local minimum

��
��
��
��

�
�
�
�

a

b

c

local minimum

dynamic penalty
��
��
��
��

Figure 6.1: Transformation of the objective function to gently push the solution out of a given
local minimum.

GSAT-WITH-WALK

1
2
3
4
5
6
7
8

for i← 1 to MAX-TRIES

X ← random truth assignment
for j ← 1 to MAX-FLIPS

if RANDOM < p then
var ← any variable occurring in some unsatisfied clause

else
var ← any variable with largest ∆f

FLIP(var)

Figure 6.2: The “GSAT-with-walk” algorithm. RANDOM generates random numbers in the
range [0, 1]

weighting appeared [19, 28].

Clause–weighting has been proposed in [24] in order to increase the effectiveness of GSAT
for problems characterized by strong asymmetries. In this algorithm a positive weight is
associated to each clause to determine how often the clause should be counted when deter-
mining which variable to flip. The weights are dynamically modified during problem solving
and the qualitative effect is that of “filling in” local optima while the search proceeds. Clause–
weighting can be considered as a “reactive” technique where a repulsion from a given local
optimum is generated in order to induce an escape from a given attraction basin.

A weight wi is associated to each clause, and the objective function becomes not a simple
count of the satisfied clauses but a sum of the corresponding weights. New parameters are
introduced and therefore new possibilities for tuning the parameters based on feedback from
preliminary search results. The algorithm in [28] suggest to use weights to encourage more
priority on satisfying the “most difficult” clauses. One aims at learning how difficult a clause

is to satisfy. These hard clauses are identified as the one which remain unsatisfied after a
try of local search descent followed by plateau search, and their weight is increased so that
future runs will give them more priority when picking a move. More algorithm based on the
same weighting principle are proposed in [7, 8], where clause weights are updated after each
flip: the reaction from the unsatisfied clauses is now immediate as one does not wait until
the end of a try (weighted GSAT or WGSAT). If weights are only increased, after some time
their size becomes large and their relative magnitude will reflect overall statistics of the SAT
instance, more than the local characteristics of the portion of the search space where the
current configuration lies. To combat this problem, two techniques are proposed in [8], either
reducing the clause weight when a clause is satisfied, or storing the weights increments which

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

55

took place recently, which is obtained by a weight decay scheme (each weight is reduced by
a factor p before updating it). Depending on the size of the increments and decrements,
one achieves “continuously weakening incentives not to flip a variable” instead of the strict
prohibitions of Tabu Search (see Chapter 4). The second scheme takes the recency of moves

into account, the implementation is through a weight decay scheme updating so that each
weight is reduced before a possible increment by δ if the clause is not satisfied:

wi ← p wi + δ

where one introduces a decay rate p and a “learning rate” δ. A faster decay (lower p value)
will limit the temporal extension of the context and imply a faster forgetting of old informa-
tion. The effectiveness of the weight decay scheme is interpreted by the authors as “learning
the best way to conduct local search by discovering the hardest clauses relative to recent
assignments.”

A different opportunity for self-adaptation is identified in [12], which proposes and adap-
tive noise mechanism for WalkSAT. In WalkSAT [25], one repeatedly flips a variable in an
unsatisfied clause. If there is at least one variable which can be flipped without breaking
already satisfied clauses, one of them is flipped. Otherwise, a noise parameter p determines
if a random variable is flipped, or if a greedy step is executed (with probability (1−p)) favoring
minimal damage to the already satisfied clauses. In [17] it appears that appropriate noise
settings achieve a good balance between the greedy “steepest descent” component and the
exploration of other search areas away from already considered attractors. Parameters with a
diversifying effect similar to the noise in WalkSAT are present in many techniques (for exam-
ple, in prohibition-based techniques, see Chapter 4). [17] considers this generalized notion of
a “noise” parameter and suggests tuning the proper noise value by testing different settings
through a preliminary series of short runs on a specific instance. Furthermore, an heuristic
statistics to track which is closely related to the algorithm performance is suggested as the
ratio between the average final values obtained at the end of the short runs and the variance
of the f values over the runs. Quite consistently, the best “noise” setting corresponds to
the one leading to the lowest empirical ratio increased by about 10%. A faster tuning can
be obtained if the examination of a predefined series of noise values is substituted with a
faster adaptive search which considers a smaller number of possible values ([21] uses Brent’s
method [6]).

An adaptive noise scheme is also proposed in [12], where the noise setting p is dynamically
adjusted based on search progress. If too many steps elapse since the last improvement, the
noise value is increased, while it is gradually decreased if evidence of stagnation disappears.

A different approach based on optimizing the noise setting on a given instance prior to the
actual search process (with a fixed noise setting) is considered in [21].

A more recent proposal of a dynamic local search (DSL) for SAT is in [30]. The authors
start from the Exponentiated Sub-Gradient (ESG) algorithm [22], which alternates search
phases and weight updates, and develop a scheme with low time complexity of its search
steps: Scaling and Probabilistic Smoothing (SAPS). Weights of satisfied clauses are multiplied
by αsat, while weights of unsatisfied clauses are multiplied by αunsat, then all weights are
smoothed towards their mean w̄: w ← w ρ+(1− ρ) w̄. They also introduce a reactive version of
SAPS (RSAPS) that adaptively tunes one of the algorithm’s important parameters. Following
a scheme similar to that of [12], higher noise levels are determined in a reactive manner if
and only if there is evidence of search stagnation, otherwise they are gradually reduced.

While we concentrated on the SAT problem above, a similar approach has been proposed
with the term of Guided Local Search (GLS) [31, 33]. GLS aims at enabling intelligent search
schemes to that exploit problem- and search-related information to guide a local search al-
gorithm in a search space. Penalties depending on solution features are introduced and
dynamically manipulated to distribute the search effort over the regions of a search space.

Let us stop for a moment with an historical digression to show how many superficially
distinct concepts are in fact deeply related. Inspiration for GLS comes from a previously pro-
posed neural net algorithm (GENET) [35] and from tabu search [9], simulated annealing [15],

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

56 CHAPTER 6. REACTING ON THE OBJECTIVE FUNCTION

and tunneling [16]. The use of “neural networks” for optimization consists of setting up a

dynamical system whose attractors correspond to good solutions of the optimization problem.
Once the dynamical system paradigm is in the front stage, it is natural to use it not only
to search for but also to escape from local minima. According to the authors [32], GENET’s
mechanism for escaping resembles reinforcement learning [3]: patterns in a local minimum
are stored in the constraint weights and are discouraged to appear thereafter. GENET’s
learning scheme can be viewed as a method to transform the objective function so that a local

minimum gains an artificially higher value. Consequently, local search will be able to leave the
local minimum state and search other parts of the space. In tunneling algorithms [16] the
modified objective function is called the tunneling function. This function allows local search
to explore states which have higher costs around or further away from the local minimum
aiming at nearby states with lower costs. In the framework of continuous optimization similar
ideas have been rediscovered multiple times. Rejection-based stochastic procedures are pre-
sented in [16, 2, 20]. Citing from a seminal paper [16], one combines “a minimization phase
having the purpose of lowering the current function value until a local minimizer is found
and a tunneling phase that has the purpose of finding a point ... such that when employed as
starting point for the next minimization phase, the new stationary point will have a function
value no greater than the previous minimum found.” The “strict” prohibitions of tabu search
become “softer” penalties in GLS, which are determined by reaction to feedback from the local

optimization heuristic under guidance [33].
A complete GLS scheme [33] defines appropriate solution features fi (for example the

presence of an edge in a TSP path) and combines three ingredients:

feature penalties pi to diversify the search away from already-visited local minima (the re-

active part)

feature costs ci to account for the a priori promise of solution features (for example the edge
cost in TSP)

neighborhood activation scheme depending on the current state.

The augmented cost function h(X) is defined as:

h(X) = f(X) + λ
∑

i

pi Ii(X) (6.1)

where Ii(X) is an indicator function returning 1 if feature i is present in solution X, 0 other-
wise. The augmented cost function is used by local search instead of the original function.

Penalties are zero at the beginning (there is no need to escape from local minima until
they are encountered!). Local minima are then the learning opportunities of GLS: when a
local minimum of h is encountered the augmented cost function is modified by updating the
penalties pi. One considers all features fi present in the local minimum solution X ′ and
increments by one the penalties which maximize:

Ii(X
′)

ci

1 + pi
(6.2)

The above mechanism kills more birds with one stone. First a higher cost ci, and therefore
an inferior a priori desirability for feature fi in the solution, implies a higher tendency to be
penalized. Second, the penalty pi which is also a counter of how many times a feature has
been penalized, appears at the denominator, and therefore discourages penalizing features
which have been penalized many times in the past. If costs are comparable, the net effect is
that penalties tend to alternate between different features present in local minima.

GLS is usually combined with “fast local search” FLS. FLS includes both implementation
details which speedup each step but do not impact the dynamics (which do not change the
search trajectory), for example an incremental evaluation of the h function, and qualitative
changes in the form of sub-neighborhoods. The entire neighborhood is broken down into a

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

6.1. ELIMINATING PLATEAUS BY LOOKING INSIDE THE PROBLEM STRUCTURE 57

number of small sub-neighborhoods. Only active sub-neighborhoods are searched. Initially
all of them are active, then, if no improving move is found in a sub-neighborhood, it becomes
inactive. Depending on the move performed, a number of sub-neighborhoods are activated
where one expects improving moves to occur as a result of the move just performed. For
example, after a feature is penalized, the sub-neighborhood containing a move eliminating
the feature from the solution is activated. Let’s note that the mechanism is equivalent to
prohibiting examination of the inactive moves, in a tabu search spirit. As an example, in TSP
one has a sub-neighborhoods per city, containing all moves exchanging edges where at least
one of the edges terminated at the given city. After a move is performed, all sub-neighborhoods

corresponding to cities at the ends of the edges involved in the move are activated, to favor a
chain of moves involving more cities.

While the details of sub-neighborhoods definition and update are problem-dependent, the
lesson learned is that much faster implementations can be obtained by avoiding a brute-
force evaluation of the neighborhood, “evaluate only a subset of neighbors where you expect
improving moves.” In addition to a faster evaluation per search step one obtains a possible
additional diversification effect related to the implicit prohibition mechanism. This technique
to speedup the evaluation of the neighborhoods is similar to the the “don’t look bits” method
in [5]. One flag bit is associated to every node, and if its value is 1 the node is not considered
as a starting point to find an improving move. Initially all bits are zero, then if an improving
move could not be found starting at node i the corresponding bit is set. The bit is cleared as
soon as an improving move is found that insert an edge incident to node i.

The parameter λ controls the importance of penalties w.r.t the original cost function: a
large λ implies a large diversification away from previously visited local minima. A reactive
determination of the parameter λ is suggested in [33].

While the motivations of GLS are clear, the interaction between the different ingredients
causes a somewhat complicated dynamics. Let’s note in passing that different units of mea-
sure for the cost in (6.1) can impact the dynamics, something which is not particularly de-
sirable: if the cost of edge in TSP is measured in kilometers the dynamics is not the same as
if the cost is measured in millimeters. Furthermore, the definition of costs ci for a general
problem is not obvious and the consideration of “costs” ci in the penalties in a way duplicates
the explicit consideration of the real problem costs in the original function f . In general,
when penalties are added and modified, a desired effect (minimal required diversification)
is obtained indirectly by modifying the objective function and therefore by possibly causing
unexpected effects, like new spurious local minima, or shadowing of promising yet-unvisited
solutions. For example, an unexplored local minimum of f may not remain a local minimum
of h and therefore it may be skipped by modifying the trajectory.

A penalty formulation for TSP including memory-based trap-avoidance strategies is pro-
posed in [34]. One of the strategies avoids visiting points that are close to points visited
before, a generalization of the STRICT -TS strategy, see Chapter 4. A recent algorithm with an
adaptive clause weight redistribution is presented in [13], it adopts resolution-based prepro-
cessing and reactive adaptation of the total amount of weight to the degree of stagnation of
the search. Stagnation is identified after a long sequence of flips without improvement, long
periods of stagnation will produce “oscillating phases of weight increase and reduction”.

6.1 Eliminating plateaus by looking inside the problem struc-

ture

In the above presentation we considered modifications of the objective functions in order to
modify the trajectory dynamics to escape from already-visited attractors. We now consider
modifications which have a different purpose: that of eliminating plateaus. A plateau is a
situation where one has a local minimum, but some neighbors have the same f value. By
moving on a plateau one keeps a good starting point at a low f value, with the usual hope

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

58 CHAPTER 6. REACTING ON THE OBJECTIVE FUNCTION

to eventually reach an improving move. But large plateaus are always “embarrassing”: one
is stuck at a flat desert looking for water, no sun to give a direction. If one is not careful a
lot of time can be spent looking around, maybe retracing the previous steps, with the thirst
growing harder and harder. One would like some hints about a promising direction to take,
maybe some mold caused by humidity so that water will get closer and closer by following
the mold. Coming back from mirages to ...algorithms, one aims at breaking the ties among
seemingly equivalent solutions (when considering only the f values). In particular, it may
be the case that, while f is constant, some internal changes in the solution structure will
eventually favor the discovery of an improving move. For example, in the MAX-SAT problem,
even if the number of satisfied clauses remains the same, the amount of redundancy in their
satisfaction (the number of different literals which make a clause satisfied) may pave the
way to eventually flipping a variable which is redundant to satisfy some already-satisfied
clauses in order to satisfy a new one. Aiming at a redundant satisfaction eliminates the
embarrassment in selecting among seemingly similar situations and favors an improvement
after a smaller number of steps than those required by a random-walk on the plateau.

6.1.1 Non-oblivious local search for SAT

In the design of efficient approximation algorithms for MAX–SAT an approach of interest is
based on the use of non-oblivious functions independently introduced in [1] and in [29]. Let
us consider the classical local search algorithm LS for MAX–SAT, here redefined as oblivious

local search (LS-OB). Now, a different type of local search can be obtained by using a different

objective function to direct the search, i.e., to select the best neighbor at each iteration.
Local optima of the standard objective function f are not necessarily local optima of the
different objective function. In this event, the second function causes an escape from a
given local optimum. Interestingly enough, suitable non-oblivious functions fNOB improve
the performance of LS if one considers both the worst-case performance ratio and, as it has
been shown in [4], the actual average results obtained on benchmark instances.

Let us introduce the notation and mention a theoretical result for MAX–2–SAT. Given an
assignment X, let Si denote the set of clauses in the given task in which exactly i literals are
true and let w(Si) denote the cardinality of Si. In addition, a d-neighborhood of a given truth
assignment is defined as the set of all assignment where the value of at most d variables is
changed. The theoretically-derived non–oblivious function for MAX–2–SAT is:

fNOB(X) =
3

2
w(S1) + 2w(S2)

Theorems 7-8 of [29] state that the performance ratio for any oblivious local search al-
gorithm with a d-neighborhood for MAX–2–SAT is 2/3 for any d = o(n), while non-oblivious
local search with an 1-neighborhood achieves a performance ratio 3/4. Therefore LS-NOB im-
proves considerably the performance ratio even if the search is restricted to a much smaller
neighborhood. In general, LS-NOB achieves a performance ratio 1 − 1

2k for MAX–k–SAT. The
oblivious function for MAX–k–SAT is of the form:

fNOB(X) =

k∑

i=1

ciw(Si)

and the above given performance ratio is obtained if the quantities ∆i = ci+1 − ci satisfy:

∆i =
1

(k − i + 1)

(
k

i− 1

)

k−i∑

j=0

(
k
j

)

Because the positive factors ci that multiply w(Si) in the function fNOB are strictly increasing
with i, the approximations obtained through fNOB tend to be characterized by a “redundant”

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

BIBLIOGRAPHY 59

satisfaction of many clauses. Better approximations, at the price of a limited number of
additional iterations, can be obtained by a two-phase local search algorithm (NOB&OB): after
a random start fNOB guides the search until a local optimum is encountered. As soon as this
happens a second phase of LS is started where the move evaluation is based on f . A further
reduction in the number of unsatisfied clauses can be obtained by a “plateau search” phase
following NOB&OB: the search is continued for a certain number of iterations after the local
optimum of OB is encountered, by using LS+, with f as guiding function.

Let’s note that a similar proposal to define an objective function that considers ”how
strongly clauses are satisfied” has been proposed later in [23], coupled with a multiplicative
re-weighting of unsatisfied clauses (”smoothed descent and flood”). According to the authors,
”additive updates do not work very well because clauses develop large weight differences over
time, and this causes the update mechanism to lose its ability to rapidly adapt the weight
profile to new regions of the search space”. Again, the possibility to react rapidly to local
characteristics is deemed of particular importance.

Bibliography

[1] P. Alimonti, New local search approximation techniques for maximum generalized sat-

isfiability problems, Proc. Second Italian Conf. on Algorithms and Complexity, 1994,
pp. 40–53.

[2] J. Bahren, V. Protopopescu, and D. Reister, Trust: a deterministic algorithm for global

optimization, Science 276 (1997), 10941097.

[3] A. G. Barto, R. S. Sutton, and C. W. Anderson, Neurolike adaptive elements that can

solve difficult learning problems, IEEE Transactions on Systems, Man and Cybernetics
13 (1983), 834–846.

[4] R. Battiti and M. Protasi, Solving max-sat with non-oblivious functions and history-based

heuristics, Tech. report, Dipartimento di Matematica, Unversita’ di Trento, Via Som-
marive, 14 - 38050 Povo (Trento) Italia, March 1996.

[5] J.L. Bentley, Experiments on traveling salesman heuristics, Proceedings of the first an-
nual ACM-SIAM symposium on Discrete algorithms (1990), 91–99.

[6] R. P. Brent, Algorithms for minimization without derivatives, Prentice-Hall, Englewood
Cliffs, New Jersey, USA, 1973.

[7] J. Frank, Weighting for godot: Learning heuristics for GSAT, PROCEEDINGS OF THE NA-
TIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, vol. 13, JOHN WILEY & SONS
LTD, USA, 1996, pp. 338–343.

[8] , Learning short-term weights for GSAT, Proc. INTERNATIONAL JOINT CONFER-
ENCE ON ARTIFICIAL INTELLIGENCE, vol. 15, LAWRENCE ERLBAUM ASSOCIATES
LTD, USA, 1997, pp. 384–391.

[9] F. Glover, Tabu search - part i, ORSA Journal on Computing 1 (1989), no. 3, 190–260.

[10] J. Gu, Parallel algorithms and architectures for very fast ai search, Ph.D. thesis, Univer-
sity of Utah, 1989.

[11] Jun Gu, Efficient local search for very large-scale satisfiability problem, ACM SIGART
Bulletin 3 (1992), no. 1, 8–12.

[12] H.H. Hoos, An adaptive noise mechanism for WalkSAT, PROCEEDINGS OF THE NA-
TIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, vol. 18, AAAI Press; MIT Press,
1999, pp. 655–660.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

60 CHAPTER 6. REACTING ON THE OBJECTIVE FUNCTION

[13] A. Ishtaiwi, J. R. Thornton, Sattar A. Anbulagan, and D. N. Pham, Adaptive clause

weight redistribution, Proceedings of the 12th International Conference on the Principles
and Practice of Constraint Programming, CP-2006, Nantes, France, 2006, pp. 229–243.

[14] Gu J. and Du B., A multispace search algorithm (invited paper), DIMACS Monograph on
Global Minimization of Nonconvex Energy Functions, to appear.

[15] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, Optimization by simulated annealing,
Science 220 (1983), 671–680.

[16] A. Levy and A. Montalvo, The tunneling algorithm for the global minimization of functions,
SIAM Journal on Scientific and Statistical Computing 6 (1985), 15–29.

[17] D. McAllester, B. Selman, and H. Kautz, Evidence for invariants in local search, PRO-
CEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, no. 14,
JOHN WILEY & SONS LTD, USA, 1997, pp. 321–326.

[18] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird, Minimizing Conflicts: A Heuristic

Repair Method for Constraint Satisfaction and Scheduling Problems, Artificial Intelligence
58 (1992), no. 1-3, 161–205.

[19] P. Morris, The breakout method for escaping from local minima, PROCEEDINGS OF THE
NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, no. 11, JOHN WILEY &
SONS LTD, USA, 1993, p. 40.

[20] E.M. Oblow, Pt: a stochastic tunneling algorithm for global optimization, Journal of Global
Optimization 20 (2001), no. 2, 191–208.

[21] D.J. Patterson and H. Kautz, Auto-walksat: A self-tuning implementation of walk-sat,
Electronic Notes in Discrete Mathematics (ENDM), 2001.

[22] D. Schuurmans, F. Southey, and R.C. Holte, The exponentiated subgradient algorithm for

heuristic boolean programming, Proc. INTERNATIONAL JOINT CONFERENCE ON ARTI-
FICIAL INTELLIGENCE, vol. 17, LAWRENCE ERLBAUM ASSOCIATES LTD, USA, 2001,
pp. 334–341.

[23] Dale Schuurmans and Finnegan Southey, Local search characteristics of incomplete sat

procedures, Artif. Intell. 132 (2001), no. 2, 121–150.

[24] B. Selman and H.A. Kautz, An empirical study of greedy local search for satisfiability

testing, Proceedings of the eleventh national Conference on Artificial Intelligence (AAAI-
93) (Washington, D. C.), 1993, to appear.

[25] B. Selman, H.A. Kautz, and B. Cohen, Noise strategies for improving local search, PRO-
CEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, vol. 12,
JOHN WILEY & SONS LTD, USA, 1994.

[26] , Local search strategies for satisfiability testing, Proceedings of the Second
DIMACS Algorithm Implementation Challenge on Cliques, Coloring and Satisfiability
(M. Trick and D. S. Johson, eds.), DIMACS Series on Discrete Mathematics and The-
oretical Computer Science, no. 26, 1996, pp. 521–531.

[27] B. Selman, H. Levesque, and D. Mitchell, A new method for solving hard satisfiability

problems, Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-
92) (San Jose, Ca), July 1992, pp. 440–446.

[28] Bart Selman and Henry Kautz, Domain-independent extensions to GSAT: Solving large

structured satisfiability problems, Proceedings of IJCAI-93, 1993, pp. 290–295.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

BIBLIOGRAPHY 61

[29] S.Khanna, R.Motwani, M.Sudan, and U.Vazirani, On syntactic versus computational

views of approximability, Proc. 35th Ann. IEEE Symp. on Foundations of Computer Sci-
ence, 1994, pp. 819–836.

[30] F. Hutter D.A.D. Tompkins and H.H. Hoos, Scaling and probabilistic smoothing: Efficient

dynamic local search for sat, Proc. Principles and Practice of Constraint Programming
- CP 2002 : 8th International Conference, CP 2002, Ithaca, NY, USA, September 9-13,
LNCS, vol. 2470, Springer Verlag, 2002, pp. 233–248.

[31] C. Voudouris and E. Tsang, Partial constraint satisfaction problems and guided local

search, Proceedings of 2nd Int. Conf. on Practical Application of Constraint Technology
(PACT 96), London, April 1996, pp. 337–356.

[32] Chris Voudouris and Edward Tsang, The tunneling algorithm for partial CSPs and combi-

natorial optimization problems, Tech. Report CSM-213, 1994.

[33] Christos Voudouris and Edward Tsang, Guided local search and its application to the

traveling salesman problem, European Journal of Operational Research 113 (1999), 469–
499.

[34] B.W. Wah and Z. Wu, Penalty Formulations and Trap-Avoidance Strategies for Solving

Hard Satisfiability Problems, Journal of Computer Science and Technology 20 (2005),
no. 1, 3–17.

[35] C.J. Wang and E.P.K. Tsang, Solving constraint satisfaction problems using neural net-

works, Proc. Second International Conference on Artificial Neural Networks, 1991,
pp. 295–299.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

62 CHAPTER 6. REACTING ON THE OBJECTIVE FUNCTION

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

Chapter 7

Algorithm portfolios and restart
strategies

Union gives strength.

(Aesop)

7.1 Introduction: portfolios and restarts

Let us consider Las Vegas algorithms, which always terminate with a correct solution to a
problem with a stochastic distribution of solution times. Let us assume that we are interested
both in the expected value of the solution time and in its standard deviation. There are two
simple ways to combine the execution of different algorithms or of different versions of the
same algorithm (with different random seeds) to obtain different expected solution times and
standard deviations: one is based on restarting an algorithm if it does not terminate within
a given time, the other one is based on combining more runs in a time-sharing interleaving
manner: the portfolio approach.

The algorithm portfolio method, first proposed in [8], follows the standard practice in eco-
nomics to obtain different return-risk profiles in the stock market by combining stocks char-
acterized by individual return-risk values. Risk is related to the standard deviation of return.
Using an algorithm portfolio consists of running more algorithms concurrently on a sequen-
tial computer, in a time-sharing manner, by allocating a fraction of the total CPU cycles to
each of them. The first algorithm to finish determines the termination time of the portfo-
lio, while the other algorithms are stopped immediately after one reports the solution, see
Fig. 7.1.

It is intuitive that the CPU time can be radically reduced in this manner. To clarify ideas
consider an extreme example where, depending on the initial random seed, the termination
time can be of 1 second or of 1000 seconds, with the same probability. If I run a single
process the expected termination time is approximately of 500 seconds. If I run more copies,
the probability that at least one of them is lucky (i.e., terminates in 1 second) increases very
rapidly towards one. Even if termination is now longer than 1 second because more copies
share the same CPU, it is intuitive that the expected time will be much shorter than 500.

A portfolio can consist of different algorithms but also of different runs of the same algo-
rithm, with different random seeds. In the case of more runs of the same algorithm there is
a different way to have more runs share a given CPU, by terminating a run prematurely and
restarting the algorithm.

In the above example, a run can be stopped if it does not terminate within 1 second.
Because the probability to have a sequence of unlucky cases rapidly goes to zero, again the
expected time of the restart strategy will be much less than 500 seconds.

63

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

64 CHAPTER 7. ALGORITHM PORTFOLIOS AND RESTART STRATEGIES

0

3

2

1

t

A B

A terminates,

B is killed

Figure 7.1: A sequential portfolio strategy.

As another example, when surfing the web the response time to deliver a page can vary a
lot. Again, it is intuitive that clicking again on the same link after the patience is finished can
save the user from an ”endless” waiting time.

7.2 Predicting the performance of a portfolio from its com-

ponent algorithms

To make the above intuitive arguments precise let TA be the random variable describing the
time of arrival of process A when the whole CPU time is allocated to it. Let pA(t) be its
probability distribution. The survival function SA(t) is the probability that process A takes
longer that t to complete:

SA(t) = Pr(TA > t) =

∫

τ>t

pA(τ) dτ = 1− FA(t)

where FA(t) is the corresponding cumulative distribution function. If only a fraction α of the
total CPU time is dedicated to it in a time-sharing fashion with arbitrarily small time quanta
and no process swapping overhead, we can model the new system as a process A′ whose time
of completion is described by random variable TA′ = α−1TA. Its probability distribution and
cumulative distribution function are respectively:

pA′(t) = pA(αt), FA′(t) = FA(αt), SA′(t) = SA(αt).

Consider a portfolio of two algorithms A1 and A2. To simplify the notation, let T1 and T2

be the random variables associated with their termination times (each being executed on the
whole CPU), with survival functions S1 and S2. Let α1 be the fraction of CPU time allocated to
process running algorithm A1. Then the fraction dedicated to A2 is a2 = 1−α1. The completion
time of the two-process portfolio system is therefore described by the random variable

T = min{α−1
1 T1, α

−1
2 T2}. (7.1)

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

7.2. PREDICTING THE PERFORMANCE OF A PORTFOLIO FROM ITS COMPONENT ALGORITHMS65

6 8 10 12 14 16 18

10
12

14
16

18

Expected completion time

R
is

k
(s

ta
nd

ar
d

de
vi

at
io

n)

Parametric portfolio
Pareto frontier

Algorithm A

Algorithm BAlpha = 0.245

Alpha = 0.445

Alpha = 0.93

Alpha = 0.95

Figure 7.2: Expected time versus standard deviation (risk) plot. The efficient frontier contains
the set of non-dominated configurations (a.k.a. Pareto-optimal or extremal points).

The survival function of the portfolio is

S(t) = Pr(T > t) = Pr(min{α−1
1 T1, α

−1
2 T2} > t)

= Pr(α−1
1 T1 > t ∧ α−1

2 T2 > t) = Pr(α−1
1 T1 > t) Pr(α−1

2 T2 > t)

= Pr(T1 > α1t) Pr(T2 > α2t)

= S1(α1t)S2(α2t).

The probability distribution of T can be obtained by differentiation:

p(t) = −∂S(t)

∂t
.

Finally, the expected termination value E(T) and the standard deviation
√

Var(T) can be
calculated.

By turning the α1 knob, therefore, a series of possible combinations of expected completion
time E(T) and risk

√
Var(T) becomes available. Fig. 7.2 illustrates an interesting case where

two algorithms A and B are given. Algorithm A has a fairly low average completion time, but
suffers from a large standard deviation (because the distribution is bimodal or heavy-tailed),
while algorithm B has a higher expected completion time, but with the advantage of a lower
risk of having a longer computation. By combining them as described above, we obtain a
parametric distribution whose expected value and standard deviation are plotted against each

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

66 CHAPTER 7. ALGORITHM PORTFOLIOS AND RESTART STRATEGIES

all other are killed.

0

3

2

1

t

B B BAA

Algorithm terminates,

Figure 7.3: A portfolio strategy on a parallel machine.

other for α1 going from 0 (only B executed) to 1 (pure A). Some of the obtained distributions
are dominated (there are parameter values that yield distributions with lower mean time and

lower risk) and can be eliminated from consideration in favor of better alternatives, while the
choice among the non-dominated possibilities (on the efficient frontier shown in black dots
in the figure) has to be specified depending on the user preferences between lower expected
time or lower risk. The choice along the Pareto frontier is similar when investing in the stock
market: while some choices are obviously discardable, there are no free meals and a higher
return comes with a higher risk.

7.2.1 Parallel processing

Let us consider a different context [6] and assume that N equal processors and two algorithms
are available so that one has to decide how many copies ni to run of the different algorithms,
as illustrated in Fig. 7.3. Of course no processor should remain idle, therefore n1 + n2 = N .

Consider time as a discrete variable (clock ticks or fractions of second), let Ti be the discrete
random variable associated with the termination time of algorithm i having probability pi(t),
the probability that process i halts precisely at time t. As in the previous case, we can define
the corresponding cumulative probability and survival functions:

Fi(t) = Pr(T ≤ t) =

t∑

τ=0

pi(τ), Si(t) = Pr(T > t) =

∞∑

τ=t+1

pi(τ).

To calculate the probability p(t) that the portfolio terminates exactly at time T = t, we must
sum probabilities for different events: the event that one processor terminates at t while the
other ones take more than t, the event that two processors terminate at t while the other ones
take more than t, and so on. The different runs are independent and therefore probabilities
are multiplied. If n1 = N (all processors are assigned to the same algorithm), this leads to:

p(t) =
N∑

i=1

(
N

i

)
p1(t)

iS1(t)
N−i

(7.2)

The portfolio survival function S(t) is easier to compute on the basis of the survival function
of the single process S1(t):

S(t) = S1(t)
N (7.3)

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

7.3. REACTIVE PORTFOLIOS 67

When two algorithms are considered, the probability computation has to be modified to take
into account the different ways to distribute i successes at time t among the two sets of copies
such that i1 + i2 = i (i1 and i2 being non-negative integers).

p(t) =
∑

0≤i1≤n1
0≤i2≤n2
i1+i2≥1

(
n1

i1

)
p1(t)

i1S1(t)
n1−i1

(
n2

i2

)
p2(t)

i2S2(t)
n2−i2 . (7.4)

Similar although more complicated formulas hold for more algorithms. As before, the com-
plete knowledge about p(t) can then be used to calculate the mean and variance of the termi-
nation times. Portfolios can be effective to “cure” the typical heavy-tailed behavior of pi(t) in
many complete search methods, where very long runs occur more frequently than one may
expect, in some cases leading to infinite mean or infinite variance [5]. Heavy-tailed distribu-
tions are characterized by a power-law decay, also called tails of Pareto-Lévy form, namely:

P (X > x) ≈ Cx−α

where 0 < α < 2 and C is a constant.
Experiments with the portfolio approach [8, 6] show that in some cases only a slight “mix-

ing” of strategies can be beneficial provided that one component has a relatively high probabil-
ity of finding a solution fairly quickly. Portfolios are also particularly effective when negatively
correlated strategies are combined: one algorithm tends to be good on the cases which are
more difficult for the other one, and vice versa. In branch-and-bound applications [6] one
finds that ensembles of “risky” strategies can outperform the more conservative best-bound
strategies. In a suitable portfolio, a depth-first strategy which often quickly reaches a solu-
tion can be preferable to a breadth first strategy with lower expected time but longer time to
obtain a first solution.

Portfolios can also be applied to component routines inside a single algorithm, for example
to determine an acceptable move in a local-search based strategy.

7.3 Reactive portfolios

The assumption in the above analysis is that the statistical properties of the individual al-
gorithms are known beforehand, so that the expected time and risk of the portfolio can be
calculated, the efficient frontier determined and the final choice executed depending on the
risk-aversion nature of the user. The strategy is therefore off-line: a preliminary exhaustive
study of the components precedes the portfolio definition.

If the distributions pi(t) are unknown, or if they are only partially known, one has to
resort to reactive strategies, where the strategy is dynamically changed in an online manner
when more information is obtained about the task(s) being solved and the algorithm status.
For example, one may derive a maximum-likelihood estimate of pi(t), use it to define a first
value of f1 and then refine the estimate of pi(t) when more information is received and use it
to define subsequent values of f1. A preliminary suggestion of dynamic online strategies is
present in [8].

A “life-long learning” approach for dynamic algorithm portfolios is considered in [2]. The
general approach of ”dropping the artificial boundary between training and usage, exploiting
the mapping during training, and including training time in performance evaluation”, also
termed Adaptive Online Time Allocation [1], is fully in the reactive search spirit. In the
inter-problem AOTA framework, see Fig. 7.4, a set of algorithms Ai is given, together with
a sequence of problem instances bk, and the goal is to minimize the solution time of the
whole set of instances. The model used to predict the termination time pi(t) of algorithm Ai

is updated after each new instance bk is solved. The portion of CPU time αi is allocated to
each algorithm Ai in the portfolio with a heuristic function which is decreasing for longer
estimated termination times τi.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

68 CHAPTER 7. ALGORITHM PORTFOLIOS AND RESTART STRATEGIES

Variable Scope Meaning

Ai (input) i-th algorithm (i = 1, . . . , n)
bk (input) k-th problem instance (k = 1, . . . , m)
fP (input) Function deciding time slice according to expected completion time
fτ (input) Function estimating the expected completion time based on history

τi (local) Expected remaining time to completion of current run of algorithm Ai

αi (local) Fraction of CPU time dedicated to algorithm Ai

history (local) Collection of data about execution and status of each process

1. function AOTA(A1, . . . ,An, b1, . . . , bm, fP , fτ)
2. repeat ∀bk

3. initialize (τ1, . . . , τn)
4. while (bk not solved)
5. update (α1, . . . , αn)← fP (τ1, . . . , τn)
6. repeat ∀Ai

7. run Ai for a slot of CPU time αi∆t
8. update history of Ai

9. update estimated termination τi ← fτ (history)
10. update model fτ considering also the complete history of the last solved instance

Figure 7.4: The inter-problem AOTA framework.

7.4 Defining an optimal restart time

Restarting an algorithm at time τ is beneficial if its expected time to convergence is less than
the expected additional time to converge given that it is still running at time τ [13]:

E[T] < E[T − τ |T > τ]. (7.5)

Whether restart is beneficial or not depends of course on the distribution of solution times.
As a trivial example, if the distribution is exponential, restarting the algorithm does not modify
the expected solution time.

If the distribution is heavy-tailed, restart easily cures the problem. For example, heavy
tails can be encountered if a stochastic local search algorithm like simulated annealing is
trapped in the neighborhood of a local minimizer. Although eventually the optimal solution
will be visited, an enormous number of iterations can be spent in the attraction basin around
the local minimizer before escaping. Restart is a method of choice to escape local minima!

If the algorithm is always restarted at time τ , each run corresponds to a Bernoulli trial
which succeeds with probability Pτ = Pr(T ≤ τ) — remember that T is the random variable
associated with termination time of an unbounded run of the algorithm. The number of runs
executed by the restart strategy before success follows a geometric distribution with parame-
ter Pτ , in fact the probability of a success at repetition k is (1 − Pτ)k−1Pτ . The distribution of
the termination time Tτ of the restart strategy with restart time τ can be derived by observing
that at iteration t one has had ⌊t/τ⌋ restarts and (t mod τ) remaining iterations. Therefore,
the survival function of the restart strategy is

Sτ (t) = Pr(Tτ > t) = (1− Pτ)⌊t/τ⌋ Pr(T > t mod τ). (7.6)

The tail decays now in an exponential manner: the restart portfolio is not heavy-tailed.

In general, a restart strategy consists of executing a sequence of runs of a randomized
algorithm, to solve a given instance, stopping each run k after a time τ(k) if no solution is
found, and restarting an independent run of the same algorithm, with a different random
seed. The optimal restart strategy is uniform, i.e., one in which a constant τk = τ is used to

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

7.4. DEFINING AN OPTIMAL RESTART TIME 69

bound each run [10]. In this case, the expected value of the total run-time Tτ , i.e., the sum
of run-times of the successful run, and all previous unsuccessful runs is equal to:

E(Tτ) =

τ −
∫ τ

0

F (t) dt

F (τ)
(7.7)

where F (τ) is the cumulative distribution function of the run-time T for an unbounded run of
the algorithm, i.e., the probability that the problem is solved before time τ . The demonstration
is simple. For a given cutoff τ , each run succeeds with probability F (τ) (Bernoulli trials) and
the mean number of trials before a successful run is encountered is 1/F (τ). The expected
length of each run is: ∫ τ

0

tp(t) dt + τ(1 − F (τ))

Consider the cases when termination is within τ or later, so that the run is terminated pre-
maturely. Because p(t) = F ′(t), this is equal to:

∫ τ

0

tF ′(t) dt.

The result follows from the fact that:

d

dt
(tF (t)) = tF ′(t) + F (t)

and therefore: ∫ τ

0

tF ′(t) dt +

∫ τ

0

F (t) dt = τF (τ)

giving (7.7).
In the discrete case:

E(Tτ) =
τ −∑t<τ F (t)

F (τ)
(7.8)

If the distribution is known, an optimal cutoff time can be determined by minimizing (7.7).
If the distribution is not known, a universal non-uniform strategy, with cutoff sequence:
(1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, . . .) achieves a performance within a logarithmic factor of the ex-
pected run-time of the optimal policy, see [10] for details.

Calculating the run-time distribution can require large amounts of CPU time in case of
heavy tails because one has to wait for the termination of very long runs. In this case the
censored sampling approach can be used. Censored sampling allows to bound the duration
of each experimental run and still exploit the information obtained from the runs which
converge before the censoring threshold [11]. Let us model the probability density function
as g(t|θ), θ being the parameter to be identified from the experiments. Without censoring one
can determine g by maximizing the likelihood L of the obtained sequence of termination times
T = (t1, t2, . . . , tk) given θ:

L(T |θ) =

k∏

i=1

L(ti|θ) =

k∏

i=1

g(ti|θ) (7.9)

With censoring, some experimental runs will exceed the cutoff time tc. In these cases the
corresponding multiplicative term in (7.9) is substituted with

Lc(tc|θ) =

∫ ∞

tc

g(τ |θ) dτ = 1−G(tc|θ) (7.10)

where G(t|θ) is the conditional cumulative distribution function corresponding to g.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

70 CHAPTER 7. ALGORITHM PORTFOLIOS AND RESTART STRATEGIES

One has to decide about a proper cutoff threshold tc. A way to determine it is to ask
for target u on the fraction of terminated runs (uncensored samples), run k experiments in
parallel (or with interleaving) and stop as soon as the desired target is reached.

The final receipt is therefore: i) choose an appropriate parametric model for the run-time
distribution, ii) determine the “best” parameters of the model by maximizing the likelihood,
where some terms are substituted with the censored likelihood of (7.10), iii) use the estimated
run-time distribution to determine the optimal restart time. Some examples of parametric
models are considered in [3].

7.5 Reactive restarts

Up to now the assumption has been that the only observation which can be used is given by
the length of a run and that the runs are independent. Let us now consider more advanced
strategies where at least one of these assumptions is relaxed. Given the results mentioned
in the previous section, it looks as if the problem is solved for the complete knowledge case
and the zero knowledge case (within a multiplicative constant and logarithmic factor which
can be large for practical applications). Actually, the most interesting case is between the two
situations, when a partial knowledge is available which is increasing as soon as more data
during a run or during a sequence of runs on related instances become available. Real-time
observations about the characteristics of a specific instance and the state of the solver during

a run permit better results.

In [7, 9] it is shown how to use features capturing the state of a solver during the initial
phase of the run to predict the length of a run, so that the prediction can be used by dy-
namic restart policies. Bayesian models to predict the run time starting from both structural
evidence available at the beginning of the run, and execution evidence available during the
run (in a “reactive” manner) are trained in a supervised manner. To be more precise, the dis-
crimination is between “long” and “short” runs, i.e., runs longer or shorter than the median.
The dynamic policy considered in [7] is as follows:

1. observe a run for O steps (observation horizon)

2. if the run is not terminated predict whether it will converge in a total of L steps

3. if the prediction is negative restart immediately, otherwise run up to a total of L steps
before restarting.

Because the model is not perfect, an important parameter is the model accuracy A (the
probability of a correct prediction). If pi is the probability of a run ending within i steps, the
probability of convergence during a single run is therefore pO + A(pL − pO) and the expected
number of runs until a solution is found is E(n) = 1/(pO + A(pL − pO)). An upper bound
on the expected number of steps in a single run can be derived by assuming that runs
ending within O steps take exactly O steps, while runs terminating between O + 1 and O + L
steps take exactly L steps. The probability of continuation, taking the limited accuracy into
account, is ApL + (1 − A)(1 − pL). An upper bound on the length of a single run is therefore
Eub(R) = O + (L − O)(ApL + (1 − A)(1 − pL)), and an upper bound on the expected time to
solve a problem with the above policy is E(n)Eub(R). The estimate can be now minimized by
varying L and the observation horizon. In spite of the crudeness of the model (for example
no observations during the steps after O are used, only a bound and not the exact expected
number of steps is minimized) significantly superior results of the dynamic policy w.r.t. the
static one are demonstrated. Three different contexts are defined: in the single instance

context one has to solve a specific instance as soon as possible, in the multiple instance

context one draws cases from a distribution of instances and has to solve either any instance

as soon as possible, or as many instances as possible for a given amount of time allocated
(max instances problem), see [7] for details.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

7.6. SUMMARY 71

The assumption of independence among runs is relaxed in [12]. For example, indepen-
dence is not valid if more runs are on the same instance picked at the beginning from one of
several probability distributions. As an example, consider two distributions, one consisting
of instances which are solved in 10 iterations, the other one of instances which are solved in
100 iterations. If an instance is not solved in 10 iterations we know that 100 iterations are
needed and restarting would only waste computing cycles. Compare this with the situation
of a single distribution with probability 0.5 of converging at iteration 10, probability 0.5 of
converging at iteration 1000, with independence among the runs. Here restarting is clearly
useful as shown in section 7.4. The work in [12] considers the context where one among
several RTD is picked at the beginning - without informing the user - and a new sample is
extracted at each run from the same distribution (e.g., consider two different distributions
corresponding to satisfiable or unsatisfiable instances of SAT). The task is to find the opti-
mal restart policy (t1, t2, . . .) but now, after each unsuccessful run, the solver’s belief about
the source distribution can be updated. The problem of finding the optimal restart policy is
formulated as a Markov decision process and solved with dynamic programming, considering
both the case in which only the termination time is observed, and the case when other pre-
dictors of the distribution can be used (for example evidence obtained during the run about
the fact that a SAT instance is or is not satisfiable).

7.6 Summary

Bibliography

[1] M. Gagliolo and J. Schmidhuber, A neural network model for inter-problem adaptive online

time allocation, Proceedings Artificial Neural Networks: Formal Models and Their Appli-
cations - ICANN 2005, 15th Int. Conf. (Warsaw) (W. Duch et al., ed.), vol. 2, Springer,
Berlin, 2005, pp. 7–12.

[2] , Dynamic algorithm portfolios, Proceedings AI and MATH ’06, Ninth International
Symposium on Artificial Intelligence and Mathematics (Fort Lauderdale, Florida), Jan
2006.

[3] , Impact of censored sampling on the performance of restart strategies, CP 2006 -
Twelfth International Conference on Principles and Practice of Constraint Programming
- Nantes, France, Springer, Berlin, Sep 2006, pp. 167–181.

[4] , Learning restart strategies, IJCAI 2007 - Twentieth International Joint Confer-
ence on Artificial Intelligence, January 6-12, Hyderabad, India, 2007, in press.

[5] Carla Gomes, Bart Selman, Nuno Crato, and Henry Kautz, Heavy-tailed phenomena in

satisfiability and constraint satisfaction problems, J. of Automated Reasoning 24 (2000),
no. (1/2), 67–100.

[6] Carla P. Gomes and Bart Selman, Algorithm portfolios, Artif. Intell. 126 (2001), no. 1-2,
43–62.

[7] E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and D. M. Chickering, A bayesian

approach to tackling hard computational problems, Seventeenth Conference on Uncer-
tainty in Artificial Intelligence (Seattle,USA), Aug 2001, pp. 235–244.

[8] Bernardo A. Huberman, Rajan M. Lukose, and Tad Hogg, An economics approach to hard

computational problems, Science 275 (1997), 51–54.

[9] Henry Kautz, Eric Horvitz, Yongshao Ruan, Carla Gomes, and Bart Selman, Dynamic

restart policies, Eighteenth national conference on Artificial intelligence (Menlo Park, CA,
USA), American Association for Artificial Intelligence, 2002, pp. 674–681.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

72 CHAPTER 7. ALGORITHM PORTFOLIOS AND RESTART STRATEGIES

[10] M. Luby, A. Sinclair, and D. Zuckerman, Optimal speedup of las vegas algorithms, Infor-
mation Processing Letters 47 (1993), no. 4, 173180.

[11] W. Nelson, Applied life data analysis, Jon Wiley, New York, 1982.

[12] Y. Ruan, E. Horvitz, and H. Kautz, Restart policies with dependence among runs: A

dynamic programming approach, (2002).

[13] A. van Moorsel and K. Wolter, Analysis and algorithms for restart, 2004.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

Chapter 8

Racing

The smart player goes with the winners. . .

8.1 Introduction

Portfolios and restarts are simple ways to combine more algorithms, or more runs of a given
randomized strategy, to obtain either a lower expected convergence time, or a lower risk
(variance), or both.

We have already seen that more advanced reactive strategies can be obtained by using
a learning loop while the portfolio or restart scheme run. In this way some of the portfolio
parameters or the restart threshold can take fresh information into account.

A related strategy using a “life-long” learning loop to optimize the allocation of time among
a set of alternative algorithms for solving a specific instance is termed racing. Running
algorithms are like horses, after the competition is started we get more and more informa-
tion about the relative performance and we can update periodically our bets on the winning
horses, which are assigned a growing fraction of the available future computing cycles, see
Fig. 8.1.

A racing strategy is characterized by two components: i) the estimate of the future potential
given the current state of the search (i.e., given the history of the previous iterations and the
corresponding results), ii) the allocation of the CPU cycles to maximize the overall objective of
minimizing a function.

Racing is related to a paradigmatic problem in machine leaning and intelligent heuristics
known as the k-armed bandit problem. One is faced with a slot machine with k arms which,
when pulled, yield a payoff from a fixed but unknown distribution. One wants to maximize
the expected total payoff over a sequence of n trials. If the distribution is known one would
immediately pull only the better performing arm. What makes the problems intriguing is
that one has to split the effort between exploration to learn the different distributions and
exploitation to pull the better arm once the winner becomes clear. One is reminded of
the critical exploration-versus-exploitation dilemma observed in optimization heuristics, but
there is an important difference: in optimization one is not interested in maximizing the
total payoff but in maximizing the best pull (the maximum value obtained by a pull in the
sequence). The paper [7] is dedicated to determining a sufficient number of pulls to select
with a high probability an arm (an hypothesis) whose average payoff is near-optimal. The max
version of the bandit problem is considered in [4, 3]. An asymptotically optimal algorithm is
presented in [10], in the assumption of a generalized extreme value (GEV) payoff distribution
for each arm. Our explanation follows closely [9], which presents a simple distribution-free
approach.

73

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

74 CHAPTER 8. RACING

B is the most promising horse

A B

A

A

A

B

B

t=1

t=2
t=3

time

EVALUATION

DIFFERENT CPU ALLOCATION
B

A

A

A

A

B

B

B

A

B is killed

B terninates!B
B

Figure 8.1: A racing strategy. The different horses (algorithms) are evaluated periodically to
reallocate the CPU time shares.

8.2 Racing to maximize cumulative reward by interval esti-

mation

The first algorithm CHERNOFF-INTERVAL-ESTIMATION is for the classical bandit problem, which
is then used as a starting point for the THRESHOLD-ASCENT algorithm dedicated to the max
k-armed bandit problem. The assumption is that pulling an arm produces a random variable
Xi ∈ [0, 1]. Because some effort is spent in exploration to determine (in an approximated man-
ner) the best arm, of course the performance is less than that obtainable by knowing the best
arm and pulling it all the time. What one misses by not having the information about the
winning horse at the beginning is called regret. Precisely, regret is the difference between the
payoff obtained by always pulling the best arm on a specific instance minus the cumulative
payoff actually received during the racing strategy.

CHERNOFF-INTERVAL-ESTIMATION pulls arms and keeps an estimate of: the number of
times ni of pulls of the i-th arm, the expected reward µ̄i = xi

ni
and an upper bound (with a

specific minimum probability) on the reward U(µ̄i, ni). At each iteration, the arm with the
highest upper bound is pulled, see Fig. 8.2 and Fig. 8.3. The upper bound is derived from
Chernoff’s inequality and is as follows:

U(µ, n) =

{
µ +

α+
√

2nµα+α2

n if n > 0
∞ otherwise

(8.1)

where α = ln
(

2nk
δ

)
and δ regulates our confidence requirements, see later.

Chernoff’s inequality estimates how much the empirical average can be different from the
real average. Let X =

∑
i=1 nXi be the sum of independent identically distributed random

variables with Xi ∈ [0, 1], and µ = E[Xi] be the real expected value. The probability of an error
of the estimate greater than βµ decreases in the following exponential way:

P

[
X

n
< (1− β)µ

]
< e−

nµβ2

2 (8.2)

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

8.3. AIMING AT THE MAXIMUM WITH THRESHOLD ASCENT 75

highest upper bound

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��payoff

arms

 k1 2 3 4 5 6 7

upper bound

average payoff

��
��
��

��
��
��

Figure 8.2: Racing with interval estimation. At each iteration an estimate of the expected
payoff of each arm as well as its “error bar” are available.

1. function Chernoff Interval Estimation(n, δ)
2. forall i ∈ {1, 2, ..., k} Initialize xi ← 0, ni ← 0
3. repeat n times:

4. î← argmaxi U(µ̄i, ni)

5. pull arm î, receive payoff R
6. xi ← xi + R, ni ← ni + 1

Figure 8.3: The CHERNOFF-INTERVAL-ESTIMATION routine.

From this basic inequality, which does not depend on the particular distribution, one
derives that, if arms are pulled according to the algorithm in Fig. 8.3, with probability at least
(1 − δ/2), for all arms and for all n repetitions the upper bound is not wrong: U(µ̄i, ni) > µi.
Therefore each suboptimal arm (with µi < µ∗, µ∗ being the best arm expected reward) is not
pulled many times and the expected regret is limited to at most:

(1 − δ)2
√

3µ∗n(k − 1)α + δµ∗n (8.3)

A similar algorithm based on Chernoff-Hoeffding’s inequality has been presented in a
previous work [1]. In their simple UCB1 deterministic policy, after pulling each arm once,

one then pulls the arm with the highest bound U(µ̄, ni) = µ̄ +
√

2 lnn
ni

, see [1] for more details

and experimental results.

8.3 Aiming at the maximum with threshold ascent

Our optimization context is characterized by a set of horses (different stochastic algorithms)
aiming at discovering the maximum value for an instance of an optimization problem, for
example different greedy procedures characterized by different ordering criteria, see [9] for
an application to the Resource Constrained Project Scheduling Problem. The “reward” is the
final result obtained by a single run of an algorithm. Racing is a way to allocate more runs to
the algorithms which tend to get better results on the given instance.

We are therefore not interested in cumulative reward, but in the maximum reward obtained
at any pull. A way to estimate the potential of different algorithms is to put a threshold Thres,
and to estimate the probability that each algorithm produces a value above threshold by the
corresponding empirical frequency. Unfortunately the appropriate threshold is not known at
the beginning, and one may end up with a trivial threshold - so that all algorithms become
indistinguishable - or with an impossible threshold, so that no algorithm will reach it. The

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

76 CHAPTER 8. RACING

1. function Threshold Ascent(s, n, δ)
2. Thres ← 0
3. forall i ∈ {1, 2, ..., k}
4. forall R values
5. Initialize ni,R ← 0
6. repeat n times:
7. while (number of payoffs received above threshold ≥ s)
8. Thres← Thres + ∆ (raise threshold)

9. î← argmaxi U(ν̄i, ni)

10. pull arm î, receive payoff R
11. ni,R ← ni,R + 1

Figure 8.4: The THRESHOLD-ASCENT routine.

raise threshold until S payoffs are left above

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
�� ��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

payoff

arms

 k1 2 3 4 5 6 7

received payoffs
��
��
��
��

Figure 8.5: Threshold ascent: the threshold is progressively raised until a selected number
of experimented payoffs is left.

heuristic solution presented in [9] reactively learns the appropriate threshold while the racing
scheme runs, see Fig. 8.5 and Fig. 8.4.

The threshold starts from zero (remember that all values are bounded in [0, 1]), and it is
progressively raised so that an appropriate number of less than s received rewards about the
threshold is reached. For simplicity, but it is easy to generalize, one assumes that payoffs
are integer multiples of a suitably small ∆, R ∈ {0, ∆, 2∆, ..., 1 − ∆, 1}. In the figure, ν̄i is the
frequency with with arm i received a value greater than Thres in the past, an estimate of the
probability that it will do so in the future. This quantity is easily calculated from ni,R, the
number of payoffs equal to R received by horse i, which is updated in the algorithm. The
upper bound U is the same as before.

The parameter s controls the tradeoff between intensification and diversification. If s = 1
the threshold becomes so high that no algorithm reaches it: the bound is determined only
by ni and the next algorithm to run is the one with the lowest ni (Round Robin). For larger
values of s one start differentiating between the individual performances. A larger s means a
more robust evaluation of the different strategies (not based on pure luck - so to speak), but a
very large value means that the threshold gets lower and lower so that even poor performers
have a chance of being selected. The specific setting of s is therefore not so obvious and it
looks like more work is needed.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

8.4. RACING FOR OFF-LINE CONFIGURATION OF META-HEURISTICS 77

8.4 Racing for off-line configuration of meta-heuristics

The context here is that of selecting in an off-line manner the best configuration of parameters
θ for an heuristic solving repetitive problems [2]. Let’s assume that the set of possible θ values
is finite. For example, a pizza delivery service receives orders and, at regular intervals, has to
determine the best route to serve the last customers. In this case an off-line algorithm tuning
(or “configuration”), even if expensive, is worth the effort because it is going to be used for a
long time in the future.

There are two sources of randomness in the evaluation: the stochastic occurrence of
an instance (with a certain probability distribution) and the intrinsic stochasticity in the
randomized algorithm while solving a given instance. Given a criterion C(θ) to be optimized
with respect to θ, for example the average cost of the route in the above example over different
instances and different runs, the ideal solution of the configuration problem is:

θ∗ = argmin
θ
C(θ) (8.4)

where C(θ) is the following Lebesgue integral (I is the set of instances, C is the range for the
cost of the best solution found in a run, depending on the instance i and the configuration θ):

C(θ) = EI,C [c(θ, i)] =

∫

I

∫

C

c(θ, i)dPC(c|θ, i)dPI(i) (8.5)

Because the probability distributions are not known at the beginning, ideally one could use
a brute force approach, considering a very large number of instances and runs, tending to
infinity, to calculate the expected value for each of the finite configurations. Unfortunately
this approach is tremendously costly, usually each run to calculate c(θ, i) implies a non-trivial
CPU cost, and one has to resort to smarter methods.

First, the above integral in (8.5) is estimated in a Monte-Carlo fashion by considering a
set of instances. Second, as soon as the first estimates become available, the manifestly
poor configurations are discarded so that the estimation effort is more concentrated onto
the most promising candidates. This process is actually a bread-and-butter issue for re-
searchers in heuristics, with racing one aims at a statistically sound hands-off approach. In
particular, one needs a statistically sound criterion to determine that a candidate configu-
ration θj is significantly worse than the the current best configuration available, given the
current state of the experimentation.

The situation is illustrated in Fig. 8.6, at each iteration a new test instance is generated
and the surviving candidates are run on the instance. The expected performance and error
bars are updated. Afterwards, if some candidates have error bars that show a clear inferior
performance, they are eliminated from further consideration. Before deciding for elimination,
a candidate checks to see whether its optimistic value (top error bar) can beat the pessimistic
real value of the best performer, see Fig. 8.6.

The advantage is clear: costly evaluation cycles to get better estimates of performance
are dedicated only to the most promising candidates. Racing is terminated when a single
candidate emerges as the winner or when a certain maximum number of evaluations have
been executed, or when a target error bar ǫ has been obtained, depending on available CPU
time and application requirements.

The variations of the off-line racing technique depend on the way in which error bars are
derived from the experimental data.

In [8], racing is used to select models in a supervised learning context (in particular for
“lazy” or memory-based learning). Two methods are proposed for calculating error bars. One
is based on Hoeffding’s bound which makes the only assumption of independence of the
samples: the probability that the true error Etrue being more than ǫ away from the estimate
Eest is:

Prob(‖Etrue − Eest‖ > ǫ) < 2e
−nǫ2

B2 (8.6)

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

78 CHAPTER 8. RACING

X������������
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

payoff

1 2 3 4 5 6 7

upper bound

highest upper bound

 n

algorithm configurations

average cost
pessimistic bound

best performer so far

X������������

Figure 8.6: Racing for off-line optimal configuration of meta-heuristics. At each iteration an
estimate of the expected performance with error bars is available. Error bars are reduced
when more tests are executed, exact value depends also on confidence parameter δ. In the
figure, configurations 2 and 6 perform significantly worse than the best performer 4 and can
be immediately eliminated from consideration (even if the real value of their performance is
at the top of the error bar they cannot beat number 4).

....

theta_1 theta_n

....

instance_1

instance_k

instance_i X

X

X

X

X

"block" of results on instance i

X: discarded because of inferior performance
or similar performance to other configurations

X X X X X X one or more winning candidate configurations

....

....

Figure 8.7: Racing for off-line optimal configuration of meta-heuristics. The most promising
candidate algorithm configurations are identified asap so that these can be evaluated with a
more precise estimate (more test instances). Each block corresponds to results of the various
configurations on the same instance.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

8.4. RACING FOR OFF-LINE CONFIGURATION OF META-HEURISTICS 79

θ

θ1

3θ

2

Figure 8.8: Bayesian elimination of inferior models, from the posterior distribution of costs
of the different models one can eliminate the models which are inferior in a statistically
significant manner, for example model θ3 in the figure, in favor of model θ2, while the situation
is still undecided for model θ1.

where B bound the largest possible error (in practice this can be heuristically estimated as
some multiple of the estimated standard deviation). Given the confidence parameter δ for the
right-hand side of (8.6) (we want the probability of a large error to be less than δ), one easily
solves for the error bar ǫ(n, δ):

ǫ(n, δ) =

√
B2 log(2/δ)

2n
(8.7)

If the accuracy ǫ and the confidence δ are fixed one can solve for the required number of
samples n. The value (1− δ) is the confidence in the bound for a single model during a single
iteration, additional calculations provide a confidence (1 −∆) of selecting the best candidate
after the entire algorithm is terminated [8].

Tighter error bounds can be derived by making more assumptions about the statistical dis-
tribution. If the evaluation errors are normally distributed one can use Bayesian statistics,
this is the second method proposed in [8]. One candidate model is eliminated if the proba-
bility that a second model has a better expected performance is above the usual confidence
threshold:

Prob(Ej
true > Ej′

true‖ej(1), ..., ej(n), ej′ (1), ..., ej′(n)) > 1− δ (8.8)

Additional methods for shrinking the intervals, as well as suggestions for using a statisti-
cal method known as blocking are explained in [8]. Model selection in continuous space is
considered in [6].

In [2] the focus is explicitly on meta-heuristics configuration. Blocking through ranking
is used in their F-RACE algorithm (based on the Friedman test), in addition to an aggregate
test over all candidates performed before considering pairwise comparisons. Each block,
see fig. 8.7 consists of the results obtained by the different candidate configurations θj on
an additional instance i. From the results one gets a ranking Rlj of θj within block l, from

the smallest to the largest, and Rj =
∑k

l=1 Rlj the sum of the ranks over all instances. The
Friedman test [5] considers the statistics T :

T =
(n− 1)

∑n
j=1

(
Rj − k(n+1)

2

)2

∑k
l=1

∑n
j=1 Rlj

2 − kn(n+1)2

4

(8.9)

Under the null hypothesis that the candidates are equivalent so that all possible rankings
are equally likely T is χ2 distributed with (n − 1) degrees of freedom. If the observed t value
exceeds the (1 − δ) quantile of the distribution, the null hypothesis is rejected in favor of the

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

80 CHAPTER 8. RACING

hypothesis that at least one candidate tends to perform better than at least another one. In
this case one proceed with a pairwise comparison of candidates. Configurations θj and θh are
considered different if:

‖Rj −Rh‖√
2k(1− T

k(n−1)
)
“

P

k
l=1

P

n
j=1 Rij

2−kn(n+1)2

4

”

(k−1)(n−1)

> t1−δ/2 (8.10)

where t1−δ/2 is the (1 − δ/2) quantile of the Student’s t distribution.

Bibliography

[1] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer, Finite-time analysis of the multiarmed

bandit problem, Machine Learning 47 (2002), no. 2/3, 235–256.

[2] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, A racing algorithm for configuring

metaheuristics, Proceedings of the Genetic and Evolutionary Computation Conference
(San Francisco, CA, USA) (W.B. Langdon et al., ed.), Morgan Kaufmann Publishers, 2002,
Also available as: AIDA-2002-01 Technical Report of Intellektik, Technische Universität
Darmstadt, Darmstadt, Germany, pp. 11–18.

[3] Vincent Cicirello and Stephen Smith, The max k-armed bandit: A new model for explo-

ration applied to search heuristic selection, 20th National Conference on Artificial Intelli-
gence (AAAI-05), July 2005, Best Paper Award.

[4] Vincent A. Cicirello and Stephen F. Smith, Principles and practice of constraint program-

ming cp 2004, Lecture Notes in Computer Science, vol. 3258, ch. Heuristic Selection for
Stochastic Search Optimization: Modeling Solution Quality by Extreme Value Theory,
pp. 197–211, Springer Berlin / Heidelberg, 2004.

[5] W. J. Conover, Practical nonparametric statistics, John Wiley & Sons, December 1999.

[6] Artur Dubrawski and Jeff Schneider, Memory based stochastic optimization for validation

and tuning of function approximators, Conference on AI and Statistics, 1997.

[7] Philip W. L. Fong, A quantitative study of hypothesis selection, International Conference
on Machine Learning, 1995, pp. 226–234.

[8] Oden Maron and Andrew W. Moore, The racing algorithm: Model selection for lazy learn-

ers, Artificial Intelligence Review 11 (1997), no. 1-5, 193–225.

[9] M. J. Streeter and S.F. Smith, A simple distribution-free approach to the max k-armed

bandit problem, Proceedings of the Twelfth International Conference on Principles and
Practice of Constraint Programming (CP 2006), 2006.

[10] Matthew J. Streeter and Stephen F. Smith, An asymptotically optimal algorithm for the

max k-armed bandit problem, AAAI, 2006.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

Chapter 9

Metrics, landscapes and features

Measure what is measurable, and make measurable what is not so.
(Galileo Galilei)

In the scientific challenge of using learning strategies in the area of heuristics, finding
appropriate metrics and appropriate features is an indispensable building block.

Let’s consider some challenging questions:

• How can I predict the future evolution of an heuristic? E.g., the running time to
completion, the probability of finding a solution within given time bounds, etc.

• How can I predict which is the most effective heuristic for a given problem, or for a
specific instance?

• How can I predict that a problem is intrinsically more difficult for a given search
technique?

While a complete review of the literature in this area is beyond the scope of this book, in the
next sections we will briefly mention some interesting research issues related to: evaluating
input parameters (features), see Section 9.1, measuring individual algorithm components and
selecting them based on a diversification and bias metric, see Section 9.2 and Section 9.3,
measuring problem difficulty, see Section 9.4.

9.1 Selecting features with mutual information

As in all scientific challenges the development of models with predicting power has to start
from appropriate measurements, statistics, input features. The literature for selecting fea-
tures is very rich in the area of pattern recognition, neural networks, and machine learning.
Before starting to learn a parametric or non-parametric model from the examples one must
be sure that the input data (input features) have sufficient information to predict the outputs.
This qualitative criterion can be made precise in a statistical way with the notion of mutual

information (MI for short).
An output distribution is characterized by an uncertainty which can be measures from the

probability distribution of the outputs. The theoretically sound way to measure the uncer-
tainty is with the entropy, see below for the precise definition. Now, after one knows a specific
input value x , the uncertainty in the output can decrease, depending on the form of the
conditional distribution p(x|y). The amount by which the uncertainty in the output decreases
after the input is known is termed mutual information.

If the mutual information between a feature and the output is zero, knowledge of the
input does not reduce the uncertainty in the output. In other words, the selected feature

81

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

82 CHAPTER 9. METRICS, LANDSCAPES AND FEATURES

input features

internal parameters
of the classifier

c

x1 x2 x3 x4 ...

otuput class

feature extraction process

original data

Figure 9.1: A classifier mapping input features extracted from the data to an output class.

cannot be used (in isolation) to predict the output - no matter how sophisticated our model.
The MI measure between a vector of input features and the output (the desired prediction) is
therefore very relevant to identify promising (informative) features. Its use in feature selection
is pioneered in [1].

Let’s now come to some definitions for the case of a classification task where the output
variable c identifies one among Nc classes and the input variable x has a finite set of possible
values, see Fig. 9.1. For example, one may think about predicting whether a run of an
algorithm on an instance will converge (class 1) or not (class 0) within the next minute. Among
the possible features extracted from the data one would like to obtain a highly-informative
set, so that the classification problem starts from sufficient information, and only the actual
construction of the classifier is left. One may ask at this point: why not using the raw data
instead of features? For sure there is not better way to use all possible information. True,
but the curse of dimensionality holds here: if the dimension of the input is too large, the
learning task becomes unmanageable. Think for example about the difficulty of estimating
probability distributions from samples in very large-dimensional spaces. Heuristically, one
aims at a small subset of features, possibly close to the smallest possible, which contains
sufficient information to predict the output.

If P (c), c = 1, ..., Nc, are the probabilities of the different output values, the initial uncer-
tainty in the output class is measured by the entropy:

H(C) = −
Nc∑

c=1

P (c) lnP (c) (9.1)

The average uncertainty after knowing the feature vector x with n components is the con-

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

9.2. MEASURING LOCAL SEARCH COMPONENTS 83

ditional entropy:

H(C|x) = −
n∑

i=1

P (x)

(
Nc∑

c=1

P (c|x) lnP (c|x)

)
(9.2)

where P (c|x) is the conditional probability of class c given input x. The conditional entropy
is always less-than or equal-to the initial entropy. It is equal if and only if the input fea-
tures and the output class are statistically independent: the joint probability P (c,x) is equal
to P (c) P (x). The amount by which the uncertainty decreases is by definition the mutual
information I(X ; C) between variables x and c:

I(X ; C) = I(C; X) = H(C)−H(C|X) (9.3)

An equivalent expression which makes the symmetry between X and C evident is:

I(X ; C) =
∑

c,x

P (x, c) ln
P (c, f)

P (c) P (f)
(9.4)

Although very powerful theoretically, estimating the MI for a high-dimensional feature
vector starting from labeled samples is not a trivial task. An heuristic method which uses
only the MI between individual features and the output is presented in [1], using Fraser’s
algorithm in [9].

Let’s note that the MI measure is different from the widely-used correlation measure. A
feature can be informative even if not linearly correlated with the output.

The widely used measure of linear relationship is the Pearson product-moment correlation
coefficient, which is obtained by dividing the covariance of the two variables by the product
of their standard deviations. In detail, the correlation ρX,Y between random variables X and
Y with expected values µX and µY and standard deviations σX and σY is defined as:

ρX,Y =
cov(X, Y)

σXσY
=

E((X − µX)(Y − µY))

σXσY
, (9.5)

where E is the expected value of the variable and cov is the covariance. After simple transfor-
mations one obtains the equivalent formula:

ρX,Y =
E(XY)− E(X)E(Y)√

E(X2)− E2(X)
√

E(Y 2)− E2(Y)
(9.6)

The correlation value is between 1 and -1. Correlation close to 1 means increasing linear
relationship (an increase of X relative to the mean is usually accompanied by an increase of
Y), close to -1 means a decreasing linear relationship. The closer the coefficient is to zero,
the weaker the correlation between the variables. For example the plot of (X, Y) points looks
like an isotropic cloud around the expected values, without an evident direction.

As mentioned before, statistically independent variables have zero correlation, but zero
correlation does not imply that the variables are independent. The correlation coefficient
detects only linear dependencies between two variables: it may well be that one variable has
full information and actually determines the value of the second, as in the case that y = f(X),
while still having zero correlation. To make it short: trust correlation only if you have reasons
to suspect linear relationships, use mutual information to estimate arbitrary dependencies!

9.2 Measuring local search components

To ensure progress in algorithmic research it is not sufficient to have a horse-race of different
algorithms on a set of instances and declare winners and losers. Actually, very little infor-
mation can be obtained by these kinds of comparisons. In fact, if the number of instances

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

84 CHAPTER 9. METRICS, LANDSCAPES AND FEATURES

for the benchmark is limited and if sufficient time is given to an intelligent researcher (...and
very motivated to get publication!) be sure some promising results will be finally obtained,
via a careful tuning of algorithm parameters.

A better method is to design a generator of random instances so that it can produce in-
stances used during the development and tuning phase, while a different set of instances
extracted from the same generator is used for the final test. This method mitigates the effect
of “intelligent tuning done by the researcher on a finite set of instances”, it can determine a
winner in a fairer horse-race, but still does not explain why a method is better than another
one. Explaining why is related to the generality and prediction power of the model. If one
is capable of predicting the performance of a technique on a problem (or on a single instance)
– of course before the run is finished, predicting the past is always easy! – then he takes some
steps towards understanding.

This exercise takes different forms depending on what one is predicting, what are the
starting data, what is the computational effort spent on the prediction, etc. To make some
examples, the work in [2] dedicated to solving the MAX-SAT problem with non-oblivious local
search aims at relating the final performance to measures obtained after short runs of a
method. In particular, the average f value (bias) and the average speed in Hamming distance
from a starting configuration (diversification) is monitored and related to the final algorithm
performance.

9.3 Selecting components based on diversification and bias

Let us focus onto local-search based heuristics: it is well known that the basic compromise
to be reached is that between diversification and bias. Given the obvious fact that only a
negligible fraction of the admissible points can be visited for a non-trivial task, the search
trajectory X(t) should be generated to visit preferentially points with large f values (bias) and
to avoid the confinement of the search in a limited and localized portion of the search space
(diversification). The two requirements are conflicting: as an extreme example, random search
is optimal for diversification but not for bias. Diversification can be associated with different
metrics. Here we adopt the Hamming distance as a measure of the distance between points
along the search trajectory. The Hamming distance H(X, Y) between two binary strings X
and Y is given by the number of bits that are different.

The investigation in [2] follows this scheme:

• After selecting the metric (diversification is measured with the Hamming distance and
bias with mean f values visited), the diversification of simple random walk is analyzed
to provide a basic system against which more complex components are evaluated:

• The diversification-bias metrics (D-B plots) of different basic components are investi-
gated and a conjecture is formulated that the best components for a given problem are
the maximal elements in the diversification-bias (D-B) plane for a suitable relation of
partial order (Sec. 9.3.2).

• The conjecture is validated by a competitive analysis of the components on a benchmark
suite [2].

Let us now consider the diversification properties of Random Walk. Random Walk gen-
erates a Markov chain by selecting at each iteration a random move, with uniform probability:

X(t+1) = µr(t)X
(t) where r(t) = RANDOM {1, n}

Without loss of generality, let us assume that the search starts from the zero string: X(0) =
(0, 0, ..., 0). In this case the Hamming distance at iteration t is:

H(X(t), X(0)) =

n∑

i=1

x
(t)
i

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

9.3. SELECTING COMPONENTS BASED ON DIVERSIFICATION AND BIAS 85

Figure 9.2: Average Hamming distance reached by Random Walk, LS+ and TS(0.1) from the
first local optimum of LS, with standard deviation (MAX-3-SAT). Random walk evolution is
also reported for reference.

and therefore the expected value of the Hamming distance at time t, defined as Ĥ(t) =

Ĥ(X(t), X(0)), is:

Ĥ(t) =

n∑

i=1

x̂i
(t) = n x̂(t) (9.7)

The equation for x̂(t), the probability that a bit is equal to 1 at iteration t, is derived by
considering the two possible events that i) the bit remains equal to 1 and ii) the bit is set to
1. In detail, after defining as p = 1/n the probability that a given bit is changed at iteration t,
one obtains:

x̂(t+1) = x̂(t) (1− p) + (1− x̂(t)) p = x̂(t) + p (1− 2x̂(t)) (9.8)

It is straightforward to derive the following theorem:

Theorem 1 If n > 2 (and therefore 0 < p < 1
2) the difference equation 9.8 for the evolution of the

probability x̂(t) that a bit is equal to one at iteration t, with initial value x̂(0) = 0, is solved for t
integer, t ≥ 0 by:

x̂(t) =
1− (1− 2p)t

2
(9.9)

The qualitative behavior of the average Hamming distance can be derived from the above.

At the beginning Ĥ(t) has a linear growth in time:

Ĥ(t) ≈ t (9.10)

For large t the expected Hamming distance Ĥ(t) tends to its asymptotic value of n/2 in an
exponential way, with a “time constant” τ = n/2

Let us now compare the evolution of the mean Hamming distance for different algorithms.
The analysis is started as soon as the first local optimum is encountered by LS, when diver-
sification becomes crucial. LS+ has the same evolution as LS with the only difference the it
always moves to the best neighbor, even if the neighbor has a worse solution value f . LS+,
and Fixed-TS with fractional prohibition Tf equal to 0.1, denoted as TS(0.1), are then run for
10 n additional iterations. Fig. 9.2 shows the average Hamming distance as a function of
the additional iterations after reaching the LS optimum, see [2] for experimental details.

Although the initial linear growth is similar to that of Random Walk, the Hamming distance
does not reach the asymptotic value n/2 and a remarkable difference is present for the two
algorithms. The fact that the asymptotic value is not reached even for large iteration numbers

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

86 CHAPTER 9. METRICS, LANDSCAPES AND FEATURES

Figure 9.3: Probability of different Hamming distances for n = 500.

implies that all visited strings tend to lie in a confined region of the search space, with
bounded Hamming distance from the starting point.

Let’s note that, for large n values, most binary strings are at distance of approximately
n/2 from a given string. In detail, the Hamming distances are distributed with a binomial
distribution with the same probability of success and failure (p = q = 1/2): the fraction of
strings at distance H is equal to (

n
H

)
× 1

2n
(9.11)

It is well known that the mean is n/2 and the standard deviation is σ =
√

n/2. The above
coefficients increase up to the mean n/2 and then decrease. Because the ratio σ/n tends to
zero for n tending to infinity, for large n values most strings are clustered in a narrow peak at
Hamming distance H = n/2. As an example, one can use the Chernoff bound [11]:

Pr[H ≤ (1− θ)pn] ≤ e−θ2np/2 (9.12)

the probability to find a point at a distance less than np = n/2 decreases in the above expo-
nential way (θ ≥ 0). The distribution of Hamming distances for n = 500 is shown in Fig. 9.3.

Clearly, if better local optima are located in a cluster that is not reached by the trajectory,
they will never be found. In other words, a robust algorithm demands that some stronger
diversification action is executed. For example, an option is to activate a restart after a
number of iterations that is a small multiple of the time constant n/2.

9.3.1 The diversification-bias compromise (D-B plots)

When a local search component is started, new configurations are obtained at each itera-
tion until the first local optimum is encountered, because the number of satisfied clauses
increases by at least one. During this phase additional diversification schemes are not nec-
essary and potentially dangerous, because they could lead the trajectory astray, away from
the local optimum.

The compromise between bias and diversification becomes critical after the first local op-
timum is encountered. In fact, if the local optimum is strict, the application of a move will
worsen the f value, and an additional move could be selected to bring the trajectory back to
the starting local optimum.

The mean bias and diversification depend on the value of the internal parameters of the
different components. All runs proceed as follows: as soon as the first local optimum is
encountered by LS, it is stored and the selected component is then run for additional 4n

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

9.3. SELECTING COMPONENTS BASED ON DIVERSIFICATION AND BIAS 87

Figure 9.4: Diversification-bias plane. Mean number of unsatisfied clauses after 4 n itera-
tions versus mean Hamming distance. MAX-3-SAT tasks. Each run starts from GSAT local
optimum, see [2].

iterations. The final Hamming distance H from the stored local optimum and the final value
of the number of unsatisfied clauses u are collected. The values are then averaged over
different tasks and different random number seeds.

Different diversification-bias (D-B) plots are shown in Fig. 9.4. Each point gives the D-

B coordinates (Ĥn, û), i.e., average Hamming distance divided by n and average number of
unsatisfied clauses, for a specific parameter setting in the different algorithms. The Hamming

distance is normalized with respect to the problem dimension n, i.e., Ĥn ≡ Ĥ/n. Three
basic algorithms are considered: GSAT-with-walk, Fixed-TS, and HSAT. For each of these,
two options about the guiding functions are studied: one adopts the “standard” oblivious
function, the other the non-oblivious fNOB introduced in Sec. 6.1.1. Finally, for GSAT-with-
walk one can change the probability parameter p, while for Fixed-TS one can change the
fractional prohibition Tf : parametric curves as a function of a single parameter are therefore
obtained.

GSAT, Fixed-TS(0.0), and GSAT-with-walk(0.0) coincide: no prohibitions are present in TS
and no stochastic choice is present in GSAT-with-walk. The point is marked with “0.0” in
Fig. 9.4. By considering the parametric curve for GSAT-with-walk(p) (label “gsat” in Fig. 9.4)
one observes a gradual increase of û for increasing p, while the mean Hamming distance
reached at first decreases and then increases. The initial decrease is unexpected because
it contradicts the intuitive argument that more stochasticity implies more diversification.
The reason for the above result is that there are two sources of “randomness” in the GSAT-
with-walk algorithm (see Fig. 6.2), one deriving from the random choice among variables in
unsatisfied clauses, active with probability p, the other one deriving from the random breaking
of ties if more variables achieve the largest ∆f .

Because the first randomness source increases with p, the decrease in Ĥn could be ex-
plained if the second source decreases. This conjecture has been tested and the results are
collected in Fig. 9.5, where the average number of ties (number of moves achieving the largest
∆f) is plotted as a function of p, with statistical error bars. The hypothesis is confirmed. The
larger amount of stochasticity implied by a larger p keeps the trajectory on a rough terrain
at higher values of f , where flat portions tend to be rare. Vice versa, almost no tie is present
when the non-oblivious function is used. The algorithm on the optimal frontier of Fig. 9.4 is
Fixed-TS(Tf), and the effect of a simple aspiration criterion [10], and a tie-breaking rule for
it is studied in [2].

The advantage of the D-B plot analysis is clear: it suggests possible causes for the behavior
of different algorithms, leading to a more focused investigation.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

88 CHAPTER 9. METRICS, LANDSCAPES AND FEATURES

Figure 9.5: Mean number of ties as a function of the probability p in GSAT-with-walk(p), for
the oblivious (OB) and non-oblivious (NOB) f . Values at 4 n iterations.

9.3.2 A conjecture: better algorithms are Pareto-optimal in D-B plots

Aa conjecture about the relevance of the diversification-bias metric is proposed in [2]. A
relation of partial order, denoted by the symbol ≥ and called “domination”, in introduced
in a set of algorithms in the following way: given two component algorithms A and B, A

dominates B (A ≥ B) if and only if it has a larger or equal diversification and bias: f̂A ≥ f̂B

and ĤnA ≥ ĤnB.

By definition, component A is a maximal element of the given relation if the other compo-
nents in the set do not possess both a higher diversification, and a better bias. In the graph
one plots the number of unsatisfied clauses versus the Hamming distance, therefore the max-

imal components are in the lower–right corner of the set of (Ĥn, û) points. The points are
characterized by the fact that no other point has both a larger diversification and a smaller
number of satisfied clauses.

Conjecture

If local-search based components are used in heuristic algorithms for optimization, the compo-

nents producing the best f values during a run, on the average, are the maximal elements in

the diversification-bias plane for the given partial order.

The conjecture produces some “falsifiable” predictions that can be tested experimentally.
In particular, a partial ordering of the different components is introduced: component A is

better than component B if ĤnA ≥ ĤnB and ûA ≤ ûB. The ordering is partial because no
conclusions can be reached if, for example, A has better diversification but worse bias when
compared with B.

Clearly, when one applies a technique for optimization, one wants to maximize the best
value found during the run. This value is affected by both the bias and the diversification.
The search trajectory must visit preferentially points with large f values but, as soon as one
of this point is visited, the search must proceed to visit new regions. The above conjecture is
tested experimentally in [2], with fully satisfactory results.

A definition of three metrics is used in [18] [22] for studying algorithms for SAT and CSP.
The first two metrics depth (average unsatisfied clauses) and mobility (Hamming distance
speed) correspond closely to the above used bias and diversification. The third measure

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

9.4. HOW TO MEASURE PROBLEM DIFFICULTY 89

(coverage) takes a more global view at the search progress. In fact, one may have a large
mobility but nonetheless remain confined in a small portion of the search space. A two-
dimensional analogy is that of bird flying at high speed along a circular trajectory: if fresh
corn is not on the trajectory it will never discover it. Coverage is intended to measure how

systematically the search explores the entire space. In other words, coverage is what one
needs to ensure that eventually the optimal solution will be identified, no matter how it is
camouflaged in the search landscape.

Once the motivation for a speed of coverage measure is intuitively clear, the detailed defini-
tion and implementation is somewhat challenging. In [18] a worst-case scenario is considered
and coverage is defined as the size of the largest unexplored gap in the search space. For a
binary string this is given by the maximum Hamming distance between any unexplored as-
signment and the nearest explored assignment.

Unfortunately, measuring it is not so fast, actually it can be NP-hard for problems with bi-
nary strings, and one has to resort to approximations [18]. For an example, one can consider
sample points given by the negation of the visited points along the trajectory and determine
the maximum minimum distance between these points and points along the search trajec-
tory. The rationale for this heuristic choice is that the negation of a string is the farthest point
from a given string (one tries to be on the safe side to estimate the real coverage). After this
estimate is available one divides by the number of search steps. Alternatively, one could con-
sider how fast coverage decreases during the search (a discrete approximation of the coverage
speed). Dual measures on the constraints are studied in [22].

9.4 How to measure problem difficulty

While before we concentrated on understanding why an algorithm is better performing, here
we consider the issue of understanding why a problem is more difficult to solve for a
stochastic local search method. One aims at relationships between problem characteristics
and problem difficulty. Because the focus is on local search methods, one would like to char-
acterize statistical properties of the solution landscape leading to a more difficult exploration.

The effectiveness of a stochastic local search method is determined by how ”microscopic”

local decisions made at each search step interact to determine the ”macroscopic” global be-

havior of the system, in particular the function value f . Statistical mechanics has been very
successful in the past at relating local and global behaviors of systems [12], for example start-
ing from the molecule-molecule interaction to derive macroscopic quantities like pressure and
temperature. Statistical mechanics builds upon statistics, by identifying appropriate statis-
tical ensembles (configurations with their probabilities of occurrence) and deriving typical
global behaviors of the ensemble members. When the numbers are large, the variance in the
behavior is very small so that most members of the ensemble will behave in a similar way. As
an example, if one has two communicating containers of one liter and a gas with five flying
molecules, the probability to find all molecules in one container is not negligible. On the
other hand, the probability to observe 51% of the molecules in one container is very close to
zero if the containers are filled with air at normal pressure: even if the individual motion is
very complex, the macroscopic behavior will produce a 50% subdivision with a very small and
hardly measurable random deviation (the molecule count is left as an exercise to the reader).

Unfortunately the situation for combinatorial search problems is much more complicated
than the situations for physics-related problems so that the precision of theoretical results
is more limited. Nonetheless, a growing body of literature exists which progressively sheds
light onto different aspects of combinatorial problems and permits a level of understanding

and explanation which goes beyond the simple empirical models derived from massive exper-
imentation. For example, an extensive review of models applied to constraint satisfaction
problems, in particular the graph coloring problem, is present in [12]. The SAT problem, in
particular the 3-SAT, has been the playground for many investigations, see for example [6],
[7], [17], [20].

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

90 CHAPTER 9. METRICS, LANDSCAPES AND FEATURES

Phase-transitions have been identified as a mechanism to study and explain problem
difficulty. A phase transition in a physical system characterized by the abrupt change of its
macroscopic properties at certain values of the defining parameters. For example, consider
the transitions from ice to water to steam at specific values of temperature and pressure.
Phenomena analogous to phase transitions have been studied for random graphs [8, 4]: as a
function of the average node degree some macroscopic property like connectivity change in a
very rapid manner. [14] predicts that large-scale artificial intelligence systems and cognitive
models will undergo sudden phase transitions from disjointed parts into coherent structures
as their topological connectivity increases beyond a critical value. “This phenomenon, anal-
ogous to phase transitions in nature, provides a new paradigm with which to analyze the
behavior of large-scale computation and determine its generic features.”

Constraint satisfaction and SAT phase transitions have been widely analyzed, for a few
references see [5] [16] [19] [15] [21] [17]. A clear introduction to phase transitions and the
search problem is present in [13]. A surprising result is that hard problem instances are
concentrated near the same parameter values for a wide variety of common search
heuristics, on average. This location also corresponds to a transition between solvable and
unsolvable instances. For example, a complete backtracking algorithm on the solution tree
and local search show very long computing times for SAT problems in the same transition
region when more clauses are added to the instances.

For backtracking, this is due to a competition between two factors: i) number of solutions
and ii) facility of pruning many subtrees. A small number of clauses (under-constrained

problem) implies many solutions, it is easy to find one of them. At the other extreme, a large
number of clauses (over-constrained problem) implies that any tentative solution is quickly
ruled out (pruned from the tree), it is fast to rule out all possibilities and conclude with no
solution. The critically constrained instances in between are the hardest ones.

For local search one has to be careful. The method is not complete and one must limit
the experimentation to solvable instances. One may naively expect that the search becomes
harder with a smaller number of solutions but the situation is not so simple. At the limit, if
only one solution is available but the attraction basin is very large, local search will easily
find it. Not only the number of solutions but also the number and depth of sub-optimal local

minima play a role. A large number of deep local minima is causing a waste of search time
in a similar way to tentative solutions in backtracking which fail only after descending very
deeply in the search tree. Intuition helps, for a growing body of experimental research see for
example [6] for results on CSP and SAT, [7] for experimental results on the crossover point in
random 3-SAT.

In addition to being of high scientific interest, identifying zones where the most difficult
problems are is very relevant for generating difficult instances to challenge algorithms. As
strange as it may sound at the beginning, it is not so easy to identify difficult instances for NP-
hard problems (let’s remember that the computational complexity classes are defined through
a worst-case analysis), see for example [19] for generating hard Satisfiability problems.

More empirical descriptive cost models of problem difficulty aim at identifying measur-
able instance characteristics (features) influencing the search cost. A good descriptive
model should account for a significant portion of the variance in search cost.

The work [6] demonstrates that the logarithm of the number of optimal solutions accounts
for a large portion of the variability in local search cost for the SAT problem. The papers
[17] and [20] study the distribution of SAT solutions and demonstrate that the size of the
backbone (the set of Boolean variables that have the same value in all optimal solutions)
is positively correlated to the solution cost. The contribution [23] considers the Job Shop
Scheduling problem (JSP) and demonstrates experimentally that the mean distance between
random local minima and the nearest optimal solution is highly correlated with the cost of
solving the problem to optimality (a simple version of tabu search is used in the tests).

Big-Valley models [3] (a.k.a. massif central models) have been considered to explain the
success of local search, and the preference for continuing from a given local optimum instead

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

BIBLIOGRAPHY 91

of restarting from scratch. These models measure the auto-correlation of the time-series of f
values produced by a random walk. The autocorrelation function of a random process (ACF)
describes the correlation between the process at different points in time. Let Xt be the search
configuration at time t. If Xt has mean µ and variance σ2 then the ACF is

R(t, s) =
E[(Xt − µ)(Xs − µ)]

σ2
(9.13)

The correlation length is a measure derived from the ACF of the range over which fluctua-
tions of f in one region of space are correlated with those in another region.

Unfortunately, for many problems the correlation length is a function of problem size and
it does not explain the variance in computational cost among instances of the same size [23].

Bibliography

[1] R. Battiti, Using the mutual information for selecting features in supervised neural net

learning, IEEE Transactions on Neural Networks 5 (1994), no. 4, 537–550.

[2] R. Battiti and M. Protasi, Reactive search, a history-sensitive heuristic for MAX-

SAT, ACM Journal of Experimental Algorithmics 2 (1997), no. ARTICLE 2,
http://www.jea.acm.org/.

[3] KD Boese, AB Kahng, and S. Muddu, On the big valley and adaptive multi-start for dis-

crete global optimizations, Operation Research Letters 16 (1994), no. 2.

[4] Bollobás, Random Graphs, Cambridge University Press, 2001.

[5] P. Cheeseman, B. Kanefsky, and W.M. Taylor, Where the really hard problems are, Pro-
ceedings of the 12th IJCAI (1991), 331–337.

[6] David A. Clark, Jeremy Frank, Ian P. Gent, Ewan MacIntyre, Neven Tomov, and Toby
Walsh, Local search and the number of solutions, Principles and Practice of Constraint
Programming, 1996, pp. 119–133.

[7] James M. Crawford and Larry D. Auton, Experimental results on the crossover point in

random 3-sat, Artif. Intell. 81 (1996), no. 1-2, 31–57.

[8] P. Erdos and A. Renyi, On random graphs, Publ. Math. Debrecen 6 (1959), 290–297.

[9] Andrew M. Fraser and Harry L. Swinney, Independent coordinates for strange attractors

from mutual information, Phys. Rev. A 33 (1986), no. 2, 1134–1140.

[10] F. Glover, Tabu search - part i, ORSA Journal on Computing 1 (1989), no. 3, 190–260.

[11] T. Hagerup and C. Rueb, A guided tour of chernoff bounds, Information Processing Letters
33 (1989/90), 305–308.

[12] Tad Hogg, Applications of statistical mechanics to combinatorial search problems, vol. 2,
pp. 357–406, World Scientific, Singapore, 1995.

[13] Tad Hogg, Bernardo A. Huberman, and Colin P. Williams, Phase transitions and the

search problem, Artif. Intell. 81 (1996), no. 1-2, 1–15.

[14] B.A. Huberman and T. Hogg, Phase transitions in artificial intelligence systems, Artificial
Intelligence 33 (1987), no. 2, 155–171.

[15] Scott Kirkpatrick and Bart Selman, Critical behavior in the satisfiability of random

boolean expressions, Science 264 (1994), 1297–1301.

T
e
c
h

n
ic

a
l
R

e
p
o
rt

D
IT

-0
7
-0

4
9
,

U
n

iv
e
rs

ità
d
i
T

re
n

to
,
J
u

ly
2
0
0
7
.

C
o
p
y
rig

h
t

(C
)
2
0
0
7

R
o
b
e
rto

B
a
ttiti,

M
a
u

ro
B

ru
n

a
to

a
n

d
F

ra
n

c
o

M
a
s
c
ia

,
a
ll

rig
h

ts
re

s
e
rv

e
d
.

92 CHAPTER 9. METRICS, LANDSCAPES AND FEATURES

[16] D. Mitchell, B. Selman, and H. Levesque, Hard and easy distributions of SAT problems,
Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92) (San
Jose, Ca), July 1992, pp. 459–465.

[17] Andrew J. Parkes, Clustering at the phase transition, AAAI/IAAI, 1997, pp. 340–345.

[18] Dale Schuurmans and Finnegan Southey, Local search characteristics of incomplete sat

procedures, Artif. Intell. 132 (2001), no. 2, 121–150.

[19] Bart Selman, David G. Mitchell, and Hector J. Levesque, Generating hard satisfiability

problems, Artif. Intell. 81 (1996), no. 1-2, 17–29.

[20] Josh Singer, Ian Gent, and Alan Smaill, Backbone Fragility and the Local Search Cost

Peak, Journal of Artificial Intelligence Research 12 (2000), 235–270.

[21] B.M. Smith, Phase transition and the mushy region in constraint satisfaction problems,
Proceedings of the 11th European Conference on Artificial Intelligence (1994), 100–104.

[22] Finnegan Southey, Theory and applications of satisfiability testing, ch. Constraint Metrics
for Local Search, pp. 269–281, Springer Verlag, 2005.

[23] Jean-Paul Watson, J. Christopher Beck, Adele E. Howe, and L. Darrell Whitley, Problem

difficulty for tabu search in job-shop scheduling, Artif. Intell. 143 (2003), no. 2, 189–217.

	Preface
	Introduction
	Parameter tuning and intelligent optimization
	Book outline
	Bibliography

	Reacting on the neighborhood
	Local search based on perturbation
	Learning how to evaluate the neighborhood
	Learning the appropriate neighborhood in variable neighborhood search
	Iterated local search
	Bibliography

	Reacting on the annealing schedule
	Stochasticity in local moves and controlled worsening of solution values
	Simulated Annealing and Asymptotics
	Asymptotic convergence results

	Online learning strategies in simulated annealing
	Combinatorial optimization problems
	Global optimization of continuous functions

	Bibliography

	Reactive prohibitions
	Prohibitions for diversification (Tabu Search)
	Forms of Tabu Search
	Dynamical systems
	An example of Fixed Tabu Search
	Relation between prohibition and diversification
	How to escape from an attractor

	Reactive Tabu Search (RTS)
	Self-adjusted prohibition period
	The escape mechanism

	Implementation: storing and using the search history
	Fast algorithms for using the search history
	Persistent dynamic sets

	Bibliography

	Model-based search
	Models of a problem
	An example
	Dependent probabilities
	The cross-entropy model
	Bibliography

	Reacting on the objective function
	Eliminating plateaus by looking inside the problem structure
	Non-oblivious local search for SAT

	Bibliography

	Algorithm portfolios and restart strategies
	Introduction: portfolios and restarts
	Predicting the performance of a portfolio from its component algorithms
	Parallel processing

	Reactive portfolios
	Defining an optimal restart time
	Reactive restarts
	Summary
	Bibliography

	Racing
	Introduction
	Racing to maximize cumulative reward by interval estimation
	Aiming at the maximum with threshold ascent
	Racing for off-line configuration of meta-heuristics
	Bibliography

	Metrics, landscapes and features
	Selecting features with mutual information
	Measuring local search components
	Selecting components based on diversification and bias
	The diversification-bias compromise (D-B plots)
	A conjecture: better algorithms are Pareto-optimal in D-B plots

	How to measure problem difficulty
	Bibliography

