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1 Introduction

In this document we propose the use of a widely known learning—from—examples
paradigm, namely the Support Vector Machines (SVMs), for system identifica-
tion problems.

Since they were first introduced by V. Vapnik in the mid-90s [1], SVMs
have been successfully employed in a variety of applications, including both
classification and regression problems. Here we will focus on the Support Vector
Machines for Regression (SVRs), since they are expressly designed for situations
in which a real function has to be estimated on the basis of a set of input/output
measures characterizing the (typically unknown) system of interest.

In [2] we have proposed to exploit SVRs for the dynamic compensation of
sensors based on inverse modeling. Although probably Neural Networks (NNs)
are currently the most popular solution for sensor compensation, our choice
was motivated by the fact that SVRs have shown interesting properties when
compared to NNs: they do not suffer from the problem of encountering local
minima during the optimization process because it consists in solving a con-
strained quadratic problem; moreover such kind of learning machines are based
on a robust statistical theory, that is, Vapnik’ Statistical Learning Theory [3].

Besides these evident theoretical advantages, SVR-based sensor compensa-
tion algorithms proved to be quite effective also when implemented on resource-
constrained devices like simple 8-bits microcontrollers [2].

The encouraging results — both in terms of simulation and hardware imple-
mentation experiments — obtained applying SVRs to the case of sensor compen-
sation have suggested the possibility to extend our approach to the more general
class of system identification problems. In particular, we decided to start off
with the identification of a simple linear system taken from [4], and to proceed
with the non-linear case as a second step.



Before illustrating the proposed methodology, we need to provide a clear
explaination of the theory of SVRs, in order to better understand the philosophy
lying behind our approach, and a brief review on the state of the art.

2 Support Vector Machines for Regression

In this section we describe different formulations of the SVR which are consid-
ered in this work, namely standard v-SVR [5], the Reduced SVR (RSVR) by Lee
and Mangasarian [6], and a novel sub-optimal reduced-set method, Extended
Reduced SVR (ERSVR).

2.1 Standard SVR algorithms

The broad class of regression problems refers to all those situations in which one
has to reconstruct a real function y = f(x), on the basis of a set of examples
Z = {(xi,y;)}™, the training set. Here y; € R, and x; € R? are vectors of d
features z;(n),z;(n — 1),...,2;(n —d + 1).

In particular, we are looking for an approximating function f(-) that needs to
be sufficiently smooth, and for which training errors are penalized only outside
a so-called insensitive zone, whose width is indicated by e [3]. This regression
function is obtained, following the v»-SVR approach, by solving a constrained
quadratic optimization problem, here expressed in the primal form [5]:
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Here || f . is a norm in the Hilbert space H defined by suitable kernel functions

k(-,-), C is the regularization factor, and &, £* are two vectors of slack variables,
introduced in order to deal with small errors. More in details, &, £* represent the
distances from the two edges of the e-tube, the region within which errors are
considered to be negligible. This formulation of the SVR problem was proposed
in [5] by Scholkopf et al. in order to control the trade-off between the size of
the e-tube and model complexity. In fact, hyperparameter v can be seen as
an upper bound on the fraction of errors and a lower bound on the fraction of
parameters needed to build the regression function. Moreover, the choice of v
permits to automatically compute the value of €, which does not need to be
specified beforehand [5].



Usually problem (1) is solved in its dual form, which is obtained exploiting
the Lagrange multipliers approach [5]:
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where «; and o are the Lagrange multipliers associated with constraints (2)
and (3).
As a result, the estimating function § can be expressed as follows [3]:
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where SV is the set of indices of the only examples (called the Support Vec-
tors) needed to build the regression function, and parameter b can be computed
exploiting the Karush-Kuhn-Tucker conditions (see [5] for the details).

2.2 Sub-optimal reduced-set SVR algorithms

Although usually very accurate, in many cases standard SVR algorithms are
not suitable for practical applications. Thus, alternative approaches should
be investigated, in order to better control the number of parameters which
characterize the approximating function. In recent years, a lot of work has been
done in this direction, leading to the formulation of several algorithms with
reduced complexity, but still guaranteeing a good level of accuracy [6], [7].

Among others, the Reduced Support Vector Machine (RSVR) proposed in
2001 by Lee and Mangasarian randomly selects a (small) portion of the training
set as the set of “support vectors”, to build a sparse approximating function [6].

We propose instead the use of a novel algorithm, the Extended RSVR
(ERSVR), which is inspired by RSVR. However, while in the latter the sup-
port vectors are a randomly chosen subset of the original dataset, our approach
considers this small set of samples only in the initial step. More specifically, we
fix a priori a number N, of “support vectors” and write:
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where 9 (x;) defines a kernel function k(-, x;).

Then a further optimization procedure is performed to generate new “sup-
port vectors”, which can actually be quite different from the examples of the
training set and will therefore be referred to as “expansion vectors” (and de-
noted with z;). This procedure somehow follows the idea presented in [8] for
classification problems, but here it has been modified to fit the regression case.
Moreover, we suggest to solve the primal form instead of the dual one, since it
leads to several improvements, first of all in terms of computational complexity.

Thus, problem (1) becomes:
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obtained by adding the term %bg into the objective function to be minimized.
Notice also that hyperparameter v does not appear in this formulation of the
ERSVR problem, since it has been developed on the basis of the standard e-
SVR approach [5]. To emphasize the role of the double optimization procedure,
we can express the ERSVR problem in a compact notation as:
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subject to the usual constraints (2)-(5). Here QF; = k(z;,2;) are the entries
of the kernel matrix Q. Problem (13) is in practice composed by two different
levels of optimization. The inner one consists in solving a standard quadratic
programming problem by Newton method, while the outer one finds, after sev-
eral iterations, new vectors z by gradient-descent method.

As a solution to the above problem, the final estimating function will take

the form:
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Notice that the bias term b does not appear in the ERSVR function, since
it has been incorporated in the minimization problem. Moreover, it is worth
noting that the number N,, of expansion vectors is typically chosen to be much
smaller than the size m of the original training set.

Both RSVR and ERSVR are an approximation of the standard SVR prob-
lem, thus their solutions must be considered sub-optimal. However, they appear
as interesting and promising approaches for practical applications, since they al-
low to reduce substantially the number of parameters of the regression function,
thus lowering the complexity of the algorithm that needs to be implemented.



3 State of the Art on SVMs and System Iden-
tification

SVRs have been used for approximating linear and nonlinear functions, also in
presence of noise. To select the best configuration of hyperparameters, some
knowledge about noise distribution in the training data can be useful. For time
series prediction and system identification problems, the goal is to find a set
of parameters for a proposed model, on the basis of measured input/output
values. One of the main advantages of using SVRs for estimating model param-
eters is that the number (and position) of the support vectors (that is, of the
kernel functions needed to approximate the system) is found automatically and
optimally. When dealing with noisy data, the choice of the e-insensitivity can
help in trading off model errors and complexity [9]. Moreover, in comparison
with ANN-based methods, SVRs are not affected by local minima problems and
guarantee faster convergence.

Traditional approaches for system identification try to obtain system model
by a set of input/output data by minimizing an error cost. SVRs, instead,
adopts structural risk minimizaton principle to guarantee good generalization
ability on unseen samples. A good level of accuracy is reached, without specific
knowledge about the system to be identified, or the model structure. Nonlin-
ear identification problems appear as suitable candidate applications, thanks to
the employment of kernel functions to express the nonlinear SVR relationship
between input and output [10].

A different formulation of the SVR algorithm, namely the Least Squares
SVM (LS-SVM), can be also used for dynamic system identification. However,
the sparseness property which constitutes one of the nicest aspects of standard
SVMs is lost for LS-SVMs [11].

A partially-linear version of the LS-SVM has been proposed in order to
identify models for which there is a specific knowledge that nonlinearities apply
only on a subset of the inputs. The goal is to increase the performance respect
to considering a full linear model, but at the same time to reduce the complexity
that would result from a full nonlinear technique [12].

SVRs have been also used to design a technique for ARMA modeling, where
the parameters that characterize the model are included in the cost function to
be minimized [13]. This formulation of the problem has been developed also in
a reproducing kernel Hilbert space (RKHS) framework. Composite kernels can
be considered, in order to emphasize the input/ouput cross information [14].

4 Proposed Methodology and Simulation Re-
sults
To verify the viability of a SVR-based approach for system identification we have

decided to study first a simple linear case. In order to perform a comparison
with traditional techniques, the “Simulation Example 17 illustrated in [4] in



Section 7.15.1 was chosen. The idea was to provide a performance plot as the
one showed in Figure 7-8, obtained by evaluating the relative square error of
the transfer function estimate similarly to Equation (7-126). (In this preliminar
phase of the work, we did not consider different realizations of the data set, thus
a proper (relative) mean square error could not be computed. However, we plan
to complete this part as soon as possible).

The first step in order to be able to apply SVRs to the considered case study
is to translate the problem from the frequency domain to the time domain, so
that the data set can be expressed in the form Z = {(x;, y;)}™,, where y; € ®
and x; = z;(n),z;(n — 1),...,2;(n —d + 1). Starting from the coefficients of
the transfer function that has to be estimated provided in Table 7-2, we have
derived the following difference equation:
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with coefficients:

ap =1 bo = 0.0188
a1 = —3.8503 b1 =0.0192
az = 6.0347 by = —0.0364
az = —4.7971 bz = —0.0364
as = 1.9298 by = 0.0192
as = —0.3138 bs = 0.0188

The input signal z(n) has been generated as a Gaussian-distributed random
variable with zero mean and variance equal to 1. A Gaussian noise with zero
mean and variance 2 - 1075 has been been added to both the input and output
signals. Moreover, since the d features x;(n), z;(n—1),...,z;(n—d+1) represent
past values of the input signal, information obtained from the analysis of the
impulse response function can be exploited in order to have an idea of the
number of past samples that need to be taken into consideration. In Figure 1 a
plot of the impulse response function of system (16) is provided.

Different training sets Z; has been generated, with an increasing number d
of features (from 1 to 64). The idea is to add d to the set of SVR parameters
that have to be tuned in the training phase, thus trying to reduce the overall
complexity of the estimation function y. Each training set Z; was made of 400
input/output examples.

Optimal configurations of SVR parameters have been searched for by em-
ploying a popular Genetic Algorithm, namely NSGA-II [15], in the model se-
lection phase, following a multi-objective optimization approach. Our objective
functions to be minimized are (i) an error index, the MSE computed on a test
set made of 100 unseen examples, and (ii) a complexity term that expresses
the computational effort needed for a single evaluation of §. The latter term
is a suitably chosen function of the number of support vectors and the number
of features. Resulting solutions of such a multi-objective approach can not be
really considered “optimal” ones, but are rather trade-off solutions for which
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Figure 1: Impulse response function of the considered system.

one objective function can not be improved unless the other one is increased
[16]. In the typical situation in which no a priori information is available for
the choice of the final solution, the user has to select, among these trade-off
points, the one that best fits to the requirements of the problem. In this work,
since the implementation was not yet an issue, we have selected the solution
with least MSE value (that is, with highest complexity). However, to test the
validity of our methodology, we have considered also solutions whose complexity
was reduced by one half (with an obvious increase of the MSE). In those cases,
results are of course slightly worse in terms of the transfer function error, but
can still be considered satisfactory when stringent constraints on the complexity
have to be met.

After the training phase has been performed, and once the final SVR model
is selected, one hundred validation sets representing sinusoids at different fre-
quencies in the range [0.05H z, 5H z] (with step 0.05H z) were generated. In this
way it was possible to evaluate the SVR transfer function estimate in the band

~ 2
of interest, and to compute the relative square error }(GSVR — Go)/GO} .

Figure 2 depicts the results obtained with the three different SVR algorithms.
We can notice that, compared to the performance of the traditional estimators
presented in [4] in Figure 7-8, the v-SVR approach performs as well as (or
even slightly better than) the GTLS method, but only in the first half of the
considered band, then the error value tends to remain higher than the ones
resulting from all traditional approaches. However, our goal here is not that
of proposing the use of an SVR-based approach to solve linear identification
problems, but instead these results should be considered as a first step towards
the application of SVRs to the nonlinear case. Moreover, we have to stress the
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Figure 2: Relative square error (in dB) of the transfer function estimated with the
v-SVR (blue line), RSVR (red line) and ERSVR (green line).

fact that SVR algorithms try to approximate the behavior of the system only on
the basis of a set of input/output examples, without specific knowledge about
the structure of the system.

As far as RSVR and ERSVR algorithms are concerned we must observe an
increase in the error values respect to the standard v-SVR, (due to the fact that
they are sub-optimal approaches), although we can see that the ERSVR plot is
still quite close to the v-SVR curve.

As a second step, we have decided to change the power of the noise added
to the input and output signals. In the previous examples the variance of the
noise was fixed equal to 2 - 1075 now we will see the effects of increasing it
to 10* and 1072, In particular, we would like to understand how robust to
noise disturbance the SVR approach can be. In Figure 3 results in terms of the
relative transfer function square error are shown, for different values of the noise
power. We can see that increasing noise power to 10™* does not really affect
the performance, but when higher values are considered the v-SVR approach
does not seem to be particularly robust.

Finally, we have started to take a look at the nonlinear case, by introducing
in the formulation of the difference equation (16) a nonlinear distorsion. The
modified system equation is expressed as follows:

5 5
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with the same coeflicients used previously. Since SVR algorithms are nonlinear
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Figure 3: Relative square error (in dB) of the transfer function estimated with the
v-SVR, when noise power on input and output signals is increased from 2-107% (blue
line), to 10™*(red line), and to 1072 (green line).

approaches, they are expected to work well when the system to be identified
is characterized by nonlinear distorsions. Clearly, in the nonlinear case we can
not provide a result plot as for the examples above, but the SVR, training MSE
value can give an idea of the performance. Table 1 summarizes the MSE values
obtained in the SVR training phase in all situations described in this work,
together with indications about the complexity (in terms of number of features
and number of support vectors). As a first comment, we can say that the results
we have discussed so far essentially mirror the SVR MSE values. Moreover, we
observe that for the analyzed problem the performance in the nonlinear case is
slightly worse than the one obtained for the linear problem, but these results
can still be considered quite satisfactory. As far as complexity is concerned, it
is evident that RSVR and ERSVR allow to reduce significantly the number of
support vectors.

5 Conclusions

This document briefly reports some preliminar results we have obtained ap-
plying state of the art learning—from—examples algorithms to the problem of
system identification. The results for both the linear and the nonlinear case are
acceptable, although a decrease in the performance is observed for the nonlinear
problem. However, this work is to be intended as a first attempt to face these
issues, many interesting aspects still need to be investigated more thoroughly.



algorithm noise power MSE features | SVs

v-SVR 2.107° 3.7-1074 51 220

RSVR 2.1076 1.5-1073 40 49
ERSVR 2.1076 2.3-1074 95 4

v-SVR 1074 5.8-1074 56 382

v-SVR 1072 2.5-1072 35 126

v-SVR (nonlinear case) 21076 5.1-1073 16 23
RSVR (nonlinear case) 2.107° 3.4-1073 15 22
ERSVR (nonlinear case) 2-1076 4.3-1073 35 4

Table 1: MSE and complexity values resulting from the SVR, training phase.

We are currently making an effort to complete the missing parts of this work,
especially in order to study the possibility of employing SVR algorithms in the
nonlinear case.
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