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Quantum Genetic Optimization
Andrea Malossini1,3, Enrico Blanzieri1 and Tommaso Calarco2,3,4

Abstract

The complexity of the selection procedure of a genetic algorithm that requires reordering, if we restrict the class

of the possible fitness functions to varying fitness functions, isO (N log N) whereN is the size of the population.

The Quantum Genetic Optimization Algorithm (QGOA) exploits the power of quantum computation in order to speed

up genetic procedures. While the quantum and classical genetic algorithms use the same number of generations, the

QGOA outperforms the classical one in identifying the high-fitness subpopulation at each generation. InQGOA the

classical fitness evaluation and selection procedures are replaced by a single quantum procedure. We show that the

complexity of ourQGOA is O (1) in terms of number of oracle calls in the selection procedure. Such theoretical

results are confirmed by the simulations of the algorithm.

Index Terms

Evolutionary computing and genetic algorithms, quantum computation.

I. I NTRODUCTION

Quantum algorithms exploit the laws of quantum mechanics inorder to perform efficient computation. Such

efficiency is granted when the algorithm is run on a quantum computer, whereas the simulation on a classical

computer can be very resource-consuming. It has been shown that quantum computation can dramatically improve

performance for solving problems like factoring [1] or searching in an unstructured database [2]. On the other hand,

genetic algorithms [3] can be described, basically, as search algorithms. They work on a set of elements, called

population, that evolves, by means of crossover and mutation, towards amaximum of the fitness function. Since

their proposition, genetic algorithms have proved to be efficient and flexible algorithms for solving a wide range

of problems. Some attempts have been made in order to have fast hardware implementation of genetic algorithms

[4]. In this perspective, having a quantum version of a genetic algorithm seems to be a relevant topic in the future,

when quantum computers will be available. Moreover, the integration between the two paradigms can be a way of

applying quantum computation to hard problems [5] for whicha quantum algorithm is not available yet.

1University of Trento. Department of Information and Communication Technology.
2Consiglio Nazionale delle Ricerche, BEC-INFM Trento
3ECT* - European Centre for Theoretical studies in nuclear physics and related areas.
4ITAMP, Harward University.
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The possible interplay between quantum and genetic algorithms has been only partially explored. One of the first

attempts to analyze benefits and drawbacks of a quantum approach to genetic algorithm is presented by Rylander

et al. [6], where the elements of the population are quantum individuals (qubits). The qubit representation for

the elements of the population is a key point for the use of thequantum algorithm. For example by adopting a

qubit chromosome representation, a classical population can be generated by repeatedly measuring the quantum

population and then its best elements are used to update the quantum population [7]. Other interesting approaches

are to consider the elements of the population as quantum circuits and then to evolve them toward a target quantum

circuit [8] or to use a quantum neural network to measure simultaneously the fitness values of all the possible

elements of the population [9]. A recent survey on quantum genetic algorithms in general discussed some of the

drawbacks of existing quantum genetic algorithms and presented some genetic algorithms for quantum circuit design

[10]. Applications of quantum computation are wide-spreading in many different areas, for example quantum genetic

algorithms for feature selection [11] or quantum algorithms for handling probabilistic, interval and fuzzy uncertainty

[12].

A promising area in which the combination of quantum computation and genetic algorithms can give advantages

is that of applications with varying fitness functions. In these applications the fitness function varies between

genetic steps depending on some external time-dependent physical input. A very relevant example is given by noise

in quantum control processes. In this scenario (already employed, in its classical version, in quantum chemistry

experiments), genetic algorithms are used to select optimally shaped fields to drive a desired physical process, for

instance a laser-assisted molecular reaction [13], [14]. In such a case, the oracle consists of the physical process

itself, rather than of a mathematical construction.

In this paper, we present a quantum genetic optimization algorithm (QGOA), a quantum algorithm that exploits

the power of quantum computation in the fitness evaluation and selection procedures, and we show how to take

advantage of quantum phenomena to efficiently speed up classical computation. In particular, we will see that the

QGOA outperforms a classical genetic algorithm when the fitness function is varying [15] between genetic steps.

We exploit the power of quantum computation not only to represent the population by means of qubits, but

also to perform fitness evaluation and selection. The algorithm is based on the Dürr–Høyer quantum algorithm for

finding the minimum in an unsorted table [16]. Our results rely on the observation that it is possible to stop the

quantum procedure of the Dürr–Høyer algorithm and to use the partial result for the selection.QGOA uses the

whole population at each genetic step, and in this sense it can be considered a “global search” algorithm.

A theoretical description ofQGOA is provided as well as a detailed analysis of the algorithm complexity. In

particular, we show that the complexity of the quantum selection procedure (which includes the quantum fitness

evaluation) does not depend on the size of the populationN . Moreover, we show that the convergence speed, in

terms of genetic steps, of the quantum genetic optimizationalgorithm is comparable to the convergence speed of a

classical steady–state genetic algorithm with truncationselection. Finally, we provide a simulation of the algorithm,

which fully validates the theoretical results.

The remainder of the present section is devoted to introducing the concepts related to genetic and quantum
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computation that are necessary for presenting the algorithm. In Table I we present the notations used in the paper.

Section II presents ourQGOA. Section III presents the analysis of the complexity whereas Section IV is devoted

to simulating the algorithm and to empirically validating the theoretical results. Finally, we draw some conclusions

in Section V.

A. Introduction to Genetic Algorithms

Genetic algorithms are adaptive search algorithms based onthe evolutionary ideas of natural selection and genetics.

They are based on the principle first laid down by Charles Darwin of survival of the most fit. First pioneered by

John Holland [17], genetic algorithms have been widely studied, tested and applied in many fields. A generic

steady–state genetic algorithm is sketched in Fig. 1. The first step is the creation of a random population where

each element is coded using a specific representation that encodes a set of features defined by the problem. Then

a fitness functionis used to evaluate each individual, and the reproductive success varies with the fitness value.

Two high–fitness elements are chosen for crossover and mutation. The procedure generates two new offspring that

replace two random elements of the population. The process continues until the population’s total fitness reaches a

specified threshold or the number of genetic steps attains a predefined value.

In genetic algorithms thefitness functionof the problem leads the population to converge toward a population

that fits the solution requirements. For complex problems the definition of an exact fitness function that describes

perfectly the nature of the problem is often not possible andone is forced to use approximate fitness functions.

This implies that during the selection procedure one cannotdiscriminate between two individuals with almost the

same fitness value and a more fruitful approach is to select a fraction of high–fitness individuals and to use them

for generating new offspring. This selection procedure is called truncation selection[18], [19]. In thegenerational

approach a new population is generated at every genetic step, which substitutes the old population. In theincremental

(or steady–state) approach only two new offspring are generated at every genetic step and inserted in the population.

The latter approach is needed when we are dealing with varying fitness functions.

B. Introduction to Quantum Search Algorithms

The basic unit of information in quantum computation is thequbit. A qubit is a two–level quantum system and

it can be represented by a unit vector of a two dimensional Hilbert space (α, β ∈ C):

|ψ 〉 = α| 0 〉 + β| 1 〉, |α|2 + |β|2 = 1

where we denote with| 0 〉 and| 1 〉 the basis states, adopting theket notationfor quantum state vectors. A two–level

quantum system is described by a superposition of the basis states, whereas a two–level classical system can be

just in one of the basis states 0 or 1.

The evolution of a quantum system is described by special linear operators,unitary operators1 U which operate

1A linear operator is said to beunitary if UU† = U†U =11, whereU† denotes the adjoint of the operatorU .
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on qubits.

U |ψ 〉 = U [α| 0 〉 + β| 1 〉] = αU | 0 〉+ β U | 1 〉.

An important consequence of the linearity of quantum operators is that the evolution of a two–level quantum system

is the linear combination of the evolution of the basis states | 0 〉 and| 1 〉. This is known asquantum parallelism. On

the contrary in a two–level classical system we are forced toevolve the two possible states 0 and 1 separately. When

we want to transfer information from the quantum system to a classical one, we have to performmeasurementsof

the quantum state, whose result is probabilistic: we get thestateU | 0 〉 with probability|α|2 and the stateU | 1 〉 with

probability |β|2. The No cloning theorem, see [20], states that it is not possible to clone a quantum state |ψ 〉 and

consequently to obtain full information on the coefficientsα andβ from a single copy of|ψ 〉. Another important

feature arising from the linearity of quantum mechanics isentanglement. The state of a composite classical system

AB is completely determined by the state of its sub–systems.On the contrary, the state of a composite quantum

system is thetensor product⊗ of the states of the component systems; so a state of a composite system|ψ 〉AB

could be like

|Bell 〉AB =
1√
2
[| 0 〉A ⊗ | 0 〉B + | 1 〉A ⊗ | 1 〉B],

which is not of the form| · 〉A⊗| · 〉B. Such aBell stateis said to beentangled. Entanglement is a quantum resource

that permits, for instance, quantum teleportation [21].

The two main quantum algorithms developed up to now are Quantum Fourier Transform (QFT) [1], and the

Grover Search Algorithm [2].QFT can be used to solve problems like discrete logarithm, orderfinding and factoring

[22] and it lies out of the scope of this paper. The Grover algorithm has been used in theBBHT algorithm [23]

(BBHT is the acronym of the authors’ names) and in the Dürr–Høyer algorithm [16]. We briefly review the three

algorithms below.

1) Grover algorithm: The algorithm solves the problem of searching in an unstructured database. It has been

shown that the Grover algorithm isO
(

√

N/t
)

whereN is the number of entries in the database andt is the

number of possible solutions [2]. Classical algorithms forsolving this problem must, instead, look at each entry

of the database until a solution is found, i. e. , they areO (N/t). The basic idea of the Grover’s algorithm is to

amplify the coefficients of the superposition of all elements, that correspond to the solutions of the given problem,

while reducing the others. This procedure is performed by applying a unitary operatorO
(

√

N/t
)

times. Then a

measurement of the quantum state obtained will yield, with high probability, one of the possible solutions. The

non–structuredness requirement is essential for achieving the speed–up stated above, otherwise classical binary tree

search would solve the problem inO (logN). It should be emphasized that a classical procedure always permits to

collect all the solutions in the database (by seeking through all the entries); on the contrary the probabilistic nature

of quantum measurement allows to get one solution at random among the solutions of the database. By repeating

the whole quantum procedure, however, it is possible to obtain other solutions.

2) BBHT algorithm:When the number of solutions is known in advance, one can use Grover’s algorithm to look

for one of them. Without previous knowledge of the number of solutions t marked by the oracle, one cannot use
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the Grover algorithm. This impossibility arises because inthe amplitude amplification process we cannot compute

the number of iterations to be performed in order to maximizethe coefficients of the solution. However, when the

number of solutionst is a priori unknown, it is still possible to use a remarkable quantum algorithm calledBBHT

[23] for finding a solution in a set of items{Ti}i=0,...,N−1 given an oracle that recognizes a solution.

Here we give a brief summary of theBBHT algorithm and report the main complexity result. We assume,at

first, that1 ≤ t ≤ 3N/4, whereN is the total number of elements.

1) Initializem = 1, setλ = 6/5 (any value between 1 and 4/3 would do) and create the state|Ψ0 〉 = H⊗n| 0 〉 =

1√
N

∑

j | j 〉.
2) Choosei uniformly at random among the non-negative integers smaller thanm.

3) Apply i iterations of Grover’s algorithm starting from the initialstate|Ψ0 〉.
4) Measure the register: leto be the outcome.

5) If the selected elementTo is a solution thenexit.

6) Otherwise, setm to min(λm,
√
N) and go back to step 2.

The caset > 3N/4 can be treated in constant time by classical sampling.

Theorem 1.1:The BBHT algorithm finds a solution in an expected time ofO
(

√

N/t
)

.

Proof: See [23].

Remark 1.2:As a step of the proof the authors showed that the number of oracle queries is bounded from above

by 4
√

N/t = κBBHT

√

N/t when t≪ N .

3) Dürr–Høyer algorithm:The Dürr–Høyer algorithm is a quantum algorithm for findingthe minimum within an

unsorted table ofN items [16]. The core of the algorithm is a procedure which returns the index of an item smaller

than the item determined by a particular threshold, by usingthe BBHT algorithm. This procedure is iterated until

the minimum is reached. Dürr and Høyer showed that such an algorithm requires an expected number ofO
(√

N
)

iterations.

4) Quantum evaluation of functions:In classical computation a small set of classical gates (e.g. AND OR NOT)

can be used to compute an arbitrary classical function; a similar result is still true in quantum computation.

A set of gates is said to beuniversal for quantum computationif any unitary operation may be approximated to

arbitrary accuracy by a quantum circuit involving only those gates. It has been shown that usingHadamard, phase,

CNOT andπ/8 gates, any arbitrary unitary operation can be approximatedto arbitrary accuracy [22] Moreover,

any classical circuit can be made reversible by introducinga special gate namedToffoli gate. The Toffoli gate has

three input bits,a, b, and c; a and b are the first and the second “control bits”, whilec is the “target bit”. The

gate does not change the control bits and flips the target bit only if both control bits are set. The Toffoli gate can

be used to implementNAND and FANOUT and it is reversible. Since a quantum version of the Toffoli gate has

been developed (see e.g. [22]), a classical reversible circuit that computes a functionf : {0, 1}n → {0, 1}m can be

converted to a quantum circuit that computes the same function. Note that if the function is not injective, one can

use ancilla qubit to make the circuit reversible.
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II. QUANTUM GENETIC OPTIMIZATION ALGORITHM

The basic structure of our quantum genetic optimization algorithm is based on the classical structure of a steady–

state genetic algorithm. We present here the problem using a“global search” strategy, where we are considering

all the elements of the population. In particular we have developed a quantum selection procedure that includes a

quantum fitness evaluation unit.

In Fig. 2 a comparison between the classical genetic algorithm and the quantum genetic optimization algorithm

is shown. Notice that no external quantum evaluation procedure is needed since quantum fitness recalculation is

computed inside the quantum selection procedure. This procedure is based on the quantum algorithm for finding

the minimum proposed by [16], where it was shown that it is possible to find the minimum of a list by using a

variant of the Grover quantum search algorithm inO
(√

N
)

.

By reducing the number of iterations, we show that we can select a sub–population of optimal elements in

constant time and that the convergence speed, in terms of genetic steps, of such an algorithm is comparable to the

convergence speed of a classical steady–state genetic algorithm with truncation selection. The main difference is

that, in the quantum selection procedure, at each genetic step the choice of an optimal sub–population is performed

in constant time, whereas in a classical selection procedure an ordering algorithm is needed.

A. Quantum fitness evaluation unit

As explained in the introduction, given a classical reversible circuit that computes a fitness functionF (j) = Fj ,

wherej ∈ {0, . . . , N − 1} are the elements of the population in binary representation, it can be converted into a

quantum circuit yielding aquantum fitness evaluationoperatorUF . Clearly there is no general recipe for constructing

UF because its physical realization depends on the problem at hand.

If we use quantum binary encodings2 for the elements, the superposition of all elements of the population is

denoted by

|Ψ 〉 =
1√
N

N−1
∑

j=0

| j 〉.

and the action of the quantum black box results in

UF |Ψ 〉| 0 〉 =
1√
N

N−1
∑

j=0

| j 〉|Fj 〉,

Hence, usingUF only once, we can compute all the fitness values{Fj | j = 0, . . . , N − 1} of the population,

whereas the classical procedure requiresN fitness evaluations. The process of measurement would destroy such a

superposition, giving us only one fitness value. So at this stage we could not gain any useful information on the

best elements of the population. The oracle of the quantum selection procedure includes this unit to “mark” all the

elements of the population that fulfill the conditionFj ≥ Fy, wherey is a threshold index.

2Given j = b0 ∗ 20 + b1 ∗ 21 + · · · + bn−1 ∗ 2n−1 wherebi ∈ {0, 1}, then | j 〉 = | b0 〉 ⊗ | b1 〉 ⊗ · · · ⊗ | bn−1 〉
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The oracle is always the same during the computation. Its input is a superposition of all theN elements of the

population at every genetic step (this is a ”global search”). Hence, its capacity is N. The oracle is the same at

every genetic step; however, the fitness function can vary between steps depending on some external time-dependent

physical input, in addition to the logical input provided bythe qubits.

B. Quantum selection procedure

The quantum selection procedure is based on the algorithm offor finding the minimum of a list ofN items [16].

The authors showed that for finding the (absolute) minimum, anumber of iterationsO
(√

N
)

is needed. Here, we

are not interested in finding the minimum, but in selecting a sub–population of near–optimal elements of the whole

population, namely elements with a relatively high value offitness. The algorithm works as described in Fig. 3.

Definition 2.1: A Dürr–Høyer iteration is the sequence of operations defined in 2a, 2b, 2c of the Quantum

Selection Algorithm. We denote withnh the number of Dürr–Høyer iterations.

Remark 2.2:Whennh = 1, we obtain theBBHT algorithm. Dürr and Høyer analyzed the casenh = ∞.

One might argue that a probabilistic algorithm could do about the same, by choosingO (logR) elements, whereR

is a fraction of the entire population, evaluating the fitness function for the chosen elements (and only for them), and

picking the best one. Such an assumption is not correct sincethe convergence of the genetic algorithm is different

for the two selection procedures. Afternh iterations we have a probability for choosing the best element of the

population equal toR/N ; instead in this classical probabilistic algorithm the probability would be onlylogR/N

(exponentially smaller). The main difference is that in onecase we choose among the best elements, in the other

we choose in a completely random way.

III. C OMPLEXITY OF THE ALGORITHM

In this section we present a complexity analysis of the Quantum Genetic Optimization Algorithm, in order to

compare it with a classical genetic algorithm. We do not consider the computational cost of crossover, mutation

and substitution of theQGOA because they are constant for each genetic step and classical for both algorithms,

and concentrate our analysis on the quantum selection procedure, whose time–complexity in terms of oracle calls

will be deeply investigated. The time required for a single oracle call will depend on the technology used for

implementing the oracle.

Let us consider the complexity of the quantum selection procedure step by step. Steps (1) and (3) of the Quantum

Selection Procedure do not enter in the complexity calculation since they are performed only once and in constant

time. Step (2a) initializes the quantum memory and it is performednh times. Step (2c) performs the measurement

process and it requiresnh classical computations of the fitness function. Step (2b), in terms of number ofn-qubit

operators, is the most onerous and, from the point of view of the complexity, it requires a deeper analysis. We will

analyze this step in terms of number oforacle calls. The oracle includes the quantum fitness evaluation unit and

inverts the amplitude of the elements with fitness greater then or equal to a given thresholdFy. We will consider
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an oracle call as thetime step unitfor our analysis of step (2b) without taking into account steps (1), (3), (2a) and

(2c), because their cost depends linearly onnh and it does not depend on the number of qubitsn = logN .

We are interested in the expected number of oracle calls in the quantum selection procedure; it is known that the

BBHT algorithm requiresO
(

√

N/t
)

oracle calls, wheret is the number of marked elements (see Theorem 1.1).

Dürr and Høyer found that the expected number of oracle calls of their algorithm in order to find the minimum

is 22.5
√
N . In our algorithm the number of Dürr–Høyer iterations is a parameter and we need to characterize its

relation with the expected number of oracle calls. We will show in this section (Theorem 3.4) that the expected

number of oracle calls is bounded from above byκ · 2(2nh − 1) whereκ is a constant andnh is the number of

Dürr–Høyer iterations. This is our main result because it states that the expected number of oracle calls does not

depend on the dimension of the populationN . In order to show this result we will need a bound on the expected

number of oracle calls (Theorem 3.3). Moreover we will show that nh is directly related to the selection pressure

(Theorem 3.7).

In order to characterize the expected number of oracle callsof step (2b) of theQuantum selection procedure, we

need to prove a Lemma. We consider a list ofN elements and a fitness functionf that maps each element onto a

real positive value.

We define as therank of an element its positions ∈ {1, N} in the list sorted in descending order of fitness

function values.

Lemma 3.1:The probabilityPr(s,m) of choosing an element of ranks as threshold before them-th Dürr–Høyer

iteration, is

Pr(s,m) =































1

N
if m = 1

N
∑

jm=1,
jm−1=1,

...,
j2=1

θ(jm − s)θ(jm−1 − jm) · · · θ(j2 − j3)

jm · jm−1 · · · j3 · j2 ·N
(1)

whereθ(x) is the step function3

Proof: We denote withPr(s, l) the probability that we choose an element of ranks before thel−th Dürr–

Høyer iteration and withPr(s | j, l) the conditional probability that we choose an element of rank s before the

l−th Dürr–Høyer iteration, after an element of rankj has been chosen in the previous iteration. We use thetotal

probability equation

Pr(s, l) =
N

∑

j=1

Pr(s | j, l) · Pr(j, l − 1),

which holds because the set of possible events “choosing an element of rankj” is a partition of the set of events.

During each Dürr–Høyer iteration we have thatPr(s|j, l) = 1
j

if s ≤ j or zero otherwise, as ensured by step 3 of

3θ(x) =

{

1 x ≥ 0

0 otherwise
.
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the algorithm:

Pr(s|j, l) =
θ(j − s)

j
.

The first index is chosen uniformly at random from all elements, soPr(s, 1) = 1
N

, whereN = 2n. Using thetotal

probability equation recursively we finally obtain that

Pr(s, 2) =

N
∑

j2=1

Pr(s | j2, 2) · Pr(j2, 1)

=

N
∑

j2=1

θ(j2 − s)
1

j2 ·N

Pr(s, 3) =
N

∑

j3=1

Pr(s | j3, 3) · Pr(j3, 2)

=

N
∑

j3=1

N
∑

j2=1

θ(j3 − s)θ(j2 − j3)

j3 · j2 ·N
...

Pr(s,m) =

N
∑

jm=1,
jm−1=1,

...,
j2=1

θ(jm − s)θ(jm−1 − jm) · · · θ(j2 − j3)

jm · jm−1 · · · j3 · j2 ·N

Definition 3.2: Let Nm be the random variablenumber of oracle calls during them-th Dürr–Høyer iteration.

Moreover, letN be the random variabletotal number of oracle calls in the quantum selection procedure.

The following theorem uses the previous Lemma in order to bound the expected number of oracle calls.

Theorem 3.3:The expectation of the total number of oracle calls in the quantum selection procedure is

E [N ] ≤ κ√
N

N
∑

s=1

1√
s
·Q(s), (2)

where

Q(s) = 1 +

nh
∑

m=2

N
∑

jm=1,
jm−1=1,

...,
j2=1

θ(jm − s) θ(jm−1 − jm) · · · θ(j2 − j3)

jm · jm−1 · · · j3 · j2

andκ is a constant.

Proof: From the very definition of expectation and Theorem 1.1, the expected number of oracle calls during

them− th Dürr–Høyer iteration is

E [Nm] ≤
N

∑

s=1

κ

√

N

s
· Pr(s,m);
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using Lemma 3.1 (Eq. 1) we show that

E [Nm] ≤











































κ√
N

N
∑

s=1

1√
s

if m = 1

κ√
N

N
∑

s=1,
jm=1,

jm−1=1,
...,

j2=1

θ(jm − s)√
s

[

m
∏

l=3

θ(jl−1 − jl)

jl
· 1

j2

]

. (3)

From the definition ofN it is clear that

N =

nh
∑

m=1

Nm,

whence we obtain

E [N ] ≤
nh
∑

m=1

E [Nm].

The bound of Theorem 3.3 depends on the number of elements of the population. We now want to calculate

another upper bound for the expectation ofN . In particular, this upper bound is independent of the cardinality of

the population, as stated by the following theorem.

Theorem 3.4:The expected number of oracle calls in the quantum selectionprocedure is bounded by

E [N ] < κ · 2 (2nh − 1) , (4)

whereκ is a decreasing function ofnh.

Proof: First we show that for allm ∈ {1, N}

E [Nm] < κ · 2m. (5)

From calculus we have that

N
∑

s=1

1√
s
< 1 +

∫ N

1

1√
s

ds = 2
√
N − 1 < 2

√
N.

Taking κ = 1 for simplicity of notation, form = 1, from Eq. 3 it follows

1√
N

N
∑

s=1

1√
s
<

1√
N

(2
√
N − 1) < 2.
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Form > 1 we have
N

∑

s=1

√

N

s
·

N
∑

jm=1,
jm−1=1,

...,
j2=1

θ(jm − s) θ(jm−1 − jm) · · · θ(j2 − j3)

jm · jm−1 · · · j3 · j2 ·N

=
1√
N

N
∑

j2=1

j2
∑

j3=1

· · ·
jm−1
∑

jm=1

jm
∑

s=1

1√
s
· 1

jm · jm−1 · · · j3 · j2

<
1√
N

N
∑

j2=1

j2
∑

j3=1

· · ·
jm−1
∑

jm=1

2
√

jm · 1

jm · jm−1 · · · j3 · j2

=
2√
N

N
∑

j2=1

j2
∑

j3=1

· · ·
jm−1
∑

jm=1

1√
jm

· 1

jm−1 · · · j3 · j2

<
22

√
N

N
∑

j2=1

j2
∑

j3=1

· · ·
jm−2
∑

jm−1=1

√

jm−1 ·
1

jm−1 · · · j3 · j2
...

<
2m−1

√
N

N
∑

j2=1

1√
j2
<

2m−1

√
N

· 2
√
N = 2m.

Now using Theorem 3.3 and the above results,

E [N ] < κ

nh
∑

m=1

2m = κ · 2 (2nh − 1) .

Remark 3.5:It is important to emphasize that the bound depends onnh only and does not depend on the

dimension of the populationN .

We have seen that the number of Dürr–Høyer iterationsnh determines an upper bound to the number of oracle

calls during the quantum selection; it is an important parameter of our algorithm and we want to understand deeply

its meaning.

Definition 3.6: We denote withTm the random variablenumber of marked elements after them-th Dürr–Høyer

iteration.

Theorem 3.7:Let N = 2n; the expected number of marked elements afterm Dürr–Høyer iterations is

E [Tm] = 1 + (2n − 1) · 2−m. (6)

Proof: For m = 1, E [T1] =
∑N

s=1 s · Pr(s, 1) = (N + 1)/2. Form > 1, we change the order of summation

and obtain that

E [Tm] =
N

∑

s=1

s · Pr(s,m)

=

N
∑

s=1

s ·
N

∑

jm=1,
jm−1=1,

...,
j2=1

θ(jm − s) θ(jm−1 − jm) · · · θ(j2 − j3)

jm · jm−1 · · · j3 · j2 ·N



12 IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION, VOL. 0, NO, 0, MARCH 2007

=
N

∑

j2=1

j2
∑

j3=1

· · ·
jm−1
∑

jm=1

jm
∑

s=1

s · 1

jm · jm−1 · · · j3 · j2 ·N

=

N
∑

j2=1

j2
∑

j3=1

· · ·
jm−1
∑

jm=1

jm(jm + 1)

2
· 1

jm · jm−1 · · · j3 · j2 ·N

=
1

2 ·N

N
∑

j2=1

j2
∑

j3=1

· · ·
jm−1
∑

jm=1

jm + 1

jm−1 · · · j3 · j2

=
1

2 ·N
N

∑

j2=1

j2
∑

j3=1

· · ·
jm−2
∑

jm−1=1

·
(

jm−1(jm−1 + 1)

2
+ jm−1

)

·

· 1

jm−1 · · · j3 · j2

=
1

4 ·N

N
∑

j2=1

j2
∑

j3=1

jm−2
∑

jm−1=1

jm−1 + 3

jm−2 · · · j3 · j2
...

=
1

2m−1 ·N
N

∑

j2=1

(j2 + 2m−1 − 1)

=
1

2m−1 ·N

(

N(N + 1)

2
+N · (2m−1 − 1)

)

=
N + 2m − 1

2m
.

With m = nh, Theorem 3.7 shows clearly hownh determines the expected number of marked elements, and thus

the selection pressure. The effect of Dürr–Høyer iterations is shown in Fig. 4. The cardinality of the marked sub–

population approximatively halves for increasingnh. This implies thatnh grows logarithmically with the number

of marked elements.

IV. SIMULATION

In this section we present the results of a simulation of theQGOA in order to show the validity of Theorem 3.3 and

Theorem 3.7 which bound the expected number of oracle calls and characterize the selection pressure respectively.

We used a particular fitness function in order to compare the convergence speed of the total fitness of theQGOA

with respect to a classical genetic algorithm with truncation selection.

Simulations of the classical genetic algorithm and of the quantum genetic algorithm were performed using the

symbolic languageMathematicaTM. The quantum fitness evaluation unit was simulated as a blackbox without

modelling the quantum circuits. The maximum number of qubits used isn = 8, because beyond that value too

many computational resources were needed, since the resources needed to simulate a quantum computer on a

classical one increase exponentially withn.
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A. Fitness function

The fitness value of each element of the population reflects the quality of the characteristics that it encodes. It

is quite common to have a noisy environment in which the problem is being studied, which means that the fitness

function can vary at every genetic step. We refer to the classof fitness functions which can vary at every genetic

step asvarying fitness functions. We have simulated a varying function by adding to the fitnessvalue of an element

a random quantityǫ obtained from a Gaussian distribution of mean value 0 and varianceσǫ = 10 · µ, whereµ is

the mutation probability.4 The multi–peak varying fitness function used in the simulations is

f(x) = sin(πx) · (9x mod 1) + ǫGaussian(0,σǫ). (7)

This function is plotted in Fig. 5. Notice that, even if the function in not injective, it is possible to build a reversible

circuit for computing such function (as discussed in the introduction).

B. Expected number of oracle calls

Eq. 2 gives a bound on the expected number of oracle calls in the quantum selection procedure. We recall that we

need two elements of the population to cross over, so we have to run the quantum selection algorithm twice (or more

if the elements coincide) to obtain two different elements because the measurement process destroys the quantum

superposition. We can argue that for a large population it suffices to run it only twice. To verify Eq. 2 we considered

different population cardinalitiesN = 2n, with n = 2, 3, 4, 5, 6. We have generated 100 random populations for

each population cardinality and fornh = 1, 2, 3, 4, and we have run the quantum genetic optimization algorithm

to select two offspring. Results are shown in Table II.5 In order to verify the bound we need an estimate of the

constantκ appearing in Eq. 2. Unfortunately an estimate is known only for nh = 1 andt≪ N (BBHT algorithm).

Our strategy was to fit the bound against the data and to compare the values of the parameters. Then we ran a

regression on the experimental points using Eq. 2 and estimatedκ, as shown in Table III. Finally, Fig. 6 shows the

experimental plots (and error bars) and the regression function for different numbers of Dürr–Høyer iterations.

When nh = 1, our quantum selection procedure coincides withBBHT (Remark 2.2), so it is interesting to

compare the empirical value with the theoretical bound. From Remark 1.2,κBBHT ≈ 4. In Table III we obtain

κreg = 3.79 ± 0.08 for nh = 1. But since in the selection procedure we need two different elements to crossover,

we expect to use the quantum selection procedure at least twice. Henceκ ≤ 3.79/2 = 1.895 < 4 = κBBHT.

C. Performance comparison

Here we show that the convergence speed, in terms of genetic steps, of the quantum genetic optimization algorithm

is comparable to a classical truncation selection algorithm where two elements of the fraction of the population are

used to generate the new offspring. This means that the totalfitness function (the sum of all fitness values of the

4If the value ofσǫ is too small, the mutation procedure masks the noisy effect of the noisy fitness function.

5Some combinations ofn and nh are useless because the quantum genetic optimization algorithm selects almost always the element with

maximum fitness, being it impossible to cross over two different elements.
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elements of the population) versus genetic steps should be equal within the statistical errors. The real power of the

QGOA is exploited at each genetic step where the computational complexity of the fitness selection procedure is

O (1).

The number of genetic steps performed during the simulationis a multiple ofN/2. After N/2 genetic steps we

expect on average a complete change of the population (namely a new generation). Hence afterM genetic steps we

expect a number of generationsI ≈ 2M/N . The simulation has been performed using the same fitness function of

Eq. 7 and withI = 10. The results of a simulation with a population of cardinality 64 = 26 andnh = 3 (i.e. about

a fraction of1/8 of the population at each genetic step) are shown in Fig. 7 andthey confirm the analysis made.6

Finally, the regressions for the mean number of marked solution as a function ofnh and for different values of

n are shown in Table IV; the corresponding plot is shown in Fig.8.

V. CONCLUSIONS

When the first quantum computers will start becoming available for applications, the need for quantum algorithms

exploiting the power of such hardware will be pressing and the existing quantum algorithms will be subject to test.

The number of quantum algorithms that fully exploit the power of quantum computation in order to gain significant

speed-up is rather limited. Hence, a general approach for applying quantum computation to a wide range of problems

is needed.

Our efforts in such direction have yielded a quantum geneticoptimization algorithmQGOA that outperforms its

classical analogue in terms of number of oracle calls. However, as explained above, starting from the complexity

of Grover’s algorithm we know that we can speed up the processonly if no structure is defined on the problem

(hence the name “unstructured database search” used to refer to the Grover quantum search algorithm).7 Such

requirement implies that, in order to achieve a quantum speed–up, we must restrict the problem class to varying

fitness functions, where the structure created by the evaluation of population elements is “broken” at every genetic

step. In other words,in order to gain a significant advantage over a classical approach using a quantum algorithm

based on Grover search algorithm, we have to consider problems where the fitness function is varying.

Under these conditions, ourQGOA outperforms the classical one in terms of oracle calls. In fact, whereas the

classical selection procedure requiresO (N logN) for reordering of the elements, we have shown that the quantum

selection procedure requires onlyO (1) quantum oracle calls. Our results do not contradict the well-known fact

that in the black-box model the quantum speedup can be at mostpolynomial in the number of qubits. In fact, our

algorithm does not search for a single marked element but fora fraction of marked elements with high fitness.

The quantum fitness evaluation unit has to be implemented inside the quantum selection procedure, which is

performed twice, and it computes the fitness in parallel on a superposition of elements at every genetic step. On

6We have done other simulations by changing the number of qubits andnh; we obtain that the two curves are the same within the errors.

See [24].

7If the fitness function is fixed a structure can be created by ordering the initial results of fitness computation inO (N log N) and maintaining

the order inO (log N), exploiting such informations to speed up the computation.
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the contrary a classical fitness evaluation has to be performedN times at every genetic step. We have to note that

the quantum selection procedure selects the best elements of the population (the selection pressure depends on a

parameter of the quantum genetic optimization algorithm,nh), and from them two elements are randomly chosen

for the mating pool.

Truncation selection is one of the selection procedures used in classical genetic algorithms. It computes the fitness

values of all the elements of the population, it orders them accordingly and it picks randomly two or more elements

among a fraction of the best ones.

The convergence speed of our algorithm, in terms of genetic steps, is comparable to a classical genetic algorithm

with truncation selection, and the real power of quantum computation is exploited at every genetic step where the

fitness evaluation and selection procedure are performed inO (1). Moreover the selection pressure of the algorithm

can be controlled by a parameter of theQGOA, nh.

QGOA is a quantum algorithm that combines the principles of genetic computation with the principles of

quantum search. The result is that running on a quantum machine QGOA will provide a sensible speed–up from

O (N logN) to O (1) on each genetic step whereN is the dimension of the population. This result permits to use

bigger populations as the number of qubits (logN ) used for the encoding will hopefully grow thanks to technology.

The advantage will be far more useful for varying fitness function, for example in quantum control processes. In

this case each oracle interrogation is effected via an instance realization of the process involved, and therefore it is

affected by unavoidable imperfections and noise, as no reallaboratory experiment can be performed with ideally

perfect conditions. Thus the physical ”black box” embodying the oracle remains the same and needs not be re-built

at every step; nevertheless, the value of the fitness function (in our example, the probability amplitude to reach a

desired final state as a result of the quantum chemical reaction) is subject to fluctuations from step to step. This is

relevant to quantum computation in general, beyond the specific example outlined here, as in that context one can

never fully disregard the physical embodiment of the logical operations.

In this sense, a genetic algorithm (likeQGOA) that works in the presence of noise can be regarded as an example

of built-in algorithmic fault tolerance, and this is a majoradvantage with respect to its classical counterpart, as we

have demonstrated quantitatively in our work.

When and how a quantum machine will be available is an open question. However, our proposal will permit to

apply the advantages of quantum computation to a broader setof problems related to genetic algorithms.
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Fig. 1. A typical steady–state genetic algorithm
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CLASSICAL GENETIC ALGORITHM

Given a representation of the population and the fitness function
RepeatM times

• Evaluate fitness: Evaluate the fitness of every element of the population.
• Select two elements: Select a subpopulation usingtruncation selection(a fractionp of the best elements

of the population) and then choose randomly two elements from it.
• Crossover and mutation: Perform crossover of the two elements by exchanging two random substrings.

Then with probabilityPM mutate each allele (i. e. bit) of the strings.
• Substitution: Choose two random elements from the population and then replace them with the new

offspring.

QUANTUM GENETIC OPTIMIZATION ALGORITHM

Given a qubit representation of the population and a quantumevaluation unit
RepeatM times

• Select two elements [Quantum]: Use thequantum selection procedure(which performs the creation of
a superposition of all elements of the population and the application of the quantum fitness evaluation
unit) to choose one element. Run it again to choose another element.

• Crossover and mutation [Classical]: As above.
• Substitution [Classical]: As above.

Fig. 2. Classical and Quantum Genetic Optimization Algorithm. Note that we need to run the quantum selection procedure twice because the
measurement process destroys the superposition of the elements.
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QUANTUM SELECTION PROCEDURE

1) Choose randomly an indexy ∈ {0, 1, . . . , N − 1} corresponding to the thresholdFy. Compute
classicallyFy = F (y).

2) Performnh times:

a) Initialize memory to| 0 〉| y 〉.
b) Perform the algorithmBBHT (the step 1 of BBHT transforms the state| 0 〉| y 〉 into

1√
N

∑

j | j 〉| y 〉), where the oracle (that includes a quantum fitness evaluation unit) inverts the
amplitude of the elements that satisfyFj ≥ Fy.

c) Measure the first ket and get a new indexy′. Compute classicallyFy′ = F (y′). If Fy′ > Fy then
set the indexy to y′.

3) Return the indexy.

Fig. 3. The Quantum Selection Algorithm.
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Fig. 4. Change in the cardinality of the sub–population whennh is changed from1 to 3.
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Fig. 5. Main fitness function used in the simulation. A realization of the added Gaussian noise is also shown.
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Fig. 6. Mean number of oracle calls for different values of the number of elements of the populationN and with numbers of Dürr–Hoyer
iterationsnh = 1, 2, 3, 4. Experimental data and fitted curves based on Theorem 3.4.
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Fig. 7. Total fitness (mean and variance) of Quantum genetic optimization algorithm (brighter line) and classical genetic algorithm with
truncation selection as a function of the number of genetic steps. Each genetic step requiresO (N log N) in the classical selection procedure
andO (1) in the quantum selection procedure.
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TABLE I
NOTATION USED IN THIS PAPER.

QGOA Quantum Genetic Optimization Algorithm
C Complex space
| · 〉 A Hilbert space vector
U A unitary operator
UF Unitary operator for fitness evaluation
⊗ Tensor product of Hilbert spaces
N Number of elements of a population
M Number of genetic steps
n Number of qubits
H⊗n n–qubit Hadamard–Walsh gate
nh Number of Dürr–Høyer iterations
κBBHT Constant appearing in theBBHT algorithm
f(·) Fitness function
Fi = F (i) = f(x1) Fitness function computed on the elementxi

t Number of marked solutions
θ(·) Heaviside function
E(·) Expectation value
∑

j

∑N−1

j=0
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TABLE II
MEAN NUMBER OF ORACLE CALLS AND ITS STANDARD DEVIATION IN THE QUANTUM SELECTION PROCEDURE AS RESULTS OF THE

SIMULATIONS.

n nh = 1 nh = 2 nh = 3 nh = 4
2 6.3 ± 1.3 10.9 ± 1.6 - -
3 6.4 ± 0.9 10.6 ± 1.3 13.4 ± 1.2 -
4 6.8 ± 0.8 10.8 ± 0.8 14.4 ± 0.8 18.2 ± 1.0
5 6.6 ± 0.4 11.2 ± 0.4 15.6 ± 0.6 21.0 ± 0.8
6 6.8 ± 0.3 11.7 ± 0.3 17.6 ± 0.4 25.1 ± 0.6
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TABLE III
REGRESSION COEFFICIENTS OF THEEQ. 2 DATA IN TABLE II.

nh Coefficientκreg Coefficient of determinationR2

1 3.79 ± 0.08 0.9984
2 2.52 ± 0.07 0.9965
3 2.00 ± 0.03 0.9989
4 1.76 ± 0.02 0.9997
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TABLE IV
REGRESSION OF SIMULATION DATA.

n E [Tnh ] R2

2 (1.01 ± 0.02) + (2.81 ± 0.12) · 2−nh 0.9816
3 (0.98 ± 0.03) + (7.76 ± 0.19) · 2−nh 0.9940
4 (0.95 ± 0.03) + (16.16 ± 0.17) · 2−nh 0.9989
5 (1.06 ± 0.11) + (30.53 ± 0.69) · 2−nh 0.9944
6 (1.19 ± 0.13) + (64.46 ± 0.78) · 2−nh 0.9986
7 (0.96 ± 0.52) + (125.81 ± 2.53) · 2−nh 0.9976


