

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

EVALUATING QUALITY OF WEB SERVICES:
A RISK-DRIVEN APPROACH

Natallia Kokash and Vincenzo D'Andrea

December 2006

Technical Report # DIT-06-093

.

Evaluating Quality of Web Services:
A Risk-driven Approach

Natallia Kokash and Vincenzo D’Andrea

DIT - University of Trento, Via Sommarive, 14, 38050 Trento, Italy
natallia.kokash@dit.unitn.it

dandrea@dit.unitn.it

Abstract. Composing existing web services to obtain new functionali-
ties is important for e-business applications. Deficiencies of aggregated
web services can be compensated involving a redundant number of them
for critical tasks. Key steps lie in Quality of Service (QoS) evaluation
and selection of web services with good quality in order to avoid fre-
quent and severe faults of a composite service. This paper, first, surveys
the existing approaches for QoS-driven web service selection. Then, it de-
scribes an improved selection algorithm that takes into account success
rate, response time and execution cost of involved web services. Finally,
we propose a novel approach for evaluating quality of redundant service
compositions through analysis of risk related to the use of external web
services.

1 Introduction

Web services are software applications with public interfaces described in XML.
According to the established standards, web service interfaces are defined in
Web Service Description Language (WSDL). Published in Universal Description,
Discovery and Integration (UDDI) directory, web services can be discovered and
invoked by other software systems. These systems interact with web services
using XML-based messages conveyed by Simple Object Access Protocol (SOAP).
Web services are considered a promising technology for Business-to-Business
(B2B) integration. A set of services from different providers can be composed
together to provide new functionalities. One of the most notable efforts in the
area of web service composition is the Business Process Execution Language for
Web Services (BPEL4WS). BPEL4WS is a language for describing service-based
business processes and specifying interaction protocols for involved services.

Web service composition is a complicated process involving careful analysis of
process requirements, semantics and behavior of existing services, service testing,
adaptation, contracting and management. Despite all the efforts, problems both
on technical and behavioral levels may appear. For example, modifications of
the involved services and their unexpected faults may affect a client application.
Erroneous services can be replaced with analogues to allow for correct behavior
of client applications in such situations. Since much work is required to safely
introduce a new component in a system, alternative services must be known in

advance. In redundant service compositions a set of services are not normally
used but cater for fault-tolerance, i.e. the ability of a system to behave in a
well-defined manner once faults occur.

Definition 1. A web service composition c is said to be redundant iff for all
executions E of c in which no faults occur, the set S of all services of c contains
services that are not invoked in E.

Due to unsteadiness of the business environment service-based systems re-
quire constant run-time monitoring. Statistics about user experience with web
services then may be used to select well-behaved services. Quality of Service (QoS)
is a set of parameters such as service execution cost, performance, reliability, ro-
bustness and the like. We also will refer to quality of composite web services as
to Quality of Composition (QoC). Analysis of QoS of web services is of para-
mount importance. Multiple proposals aiming at QoS evaluation and selection
of better services have appeared because of multi-dimensionality and volatility
of QoS parameters. They will be surveyed in the next section.

In this paper we present a novel web service selection algorithm. In contrast
to existing works, it does not rely on a simple additive weighting technique for
involving QoS parameters such as success rate, response time and execution cost
into an objective function. A generalized strategy for QoC evaluation inspired
from risk analysis is proposed. We apply our strategy to evaluate redundant
QoC, assuming failures of atomic services and regarding composition structure.

The paper is structured as follows. Section 2 discusses related work. A new
service selection algorithm is presented in Section 3. In section 4, a notation for
modelling redundant service compositions is explained. Section 5 discusses risk
management and its application for analysis of QoC. Sections 6 studies failures
of composed web services and evaluates impact of these failures on the service
composition. In Section 7, an example is given that helps better understand how
QoC is calculated. Section 8 presents experimental results. Finally, conclusions
and future work are sketched in the last section.

2 Related Work

Numerous works devoted to quality of web services were published in the last
years. They cover various research questions, for example:

– How to specify a variety of QoS factors?
– How to define run-time QoS information taking into account their volatility

and complexity?
– How to match user requirements with existing services in terms of QoS?
– How to specify user preferences about web services?
– How to perform ranking of similar services with respect to user preferences?
– How to predict QoS factors under certain environmental conditions implying

dependencies among QoS parameters and relations to contextual factors?

2.1 Representation of QoS information and user preferences

There are several proposals aiming at measuring and specifying QoS for web
services. Tosic et al. [1] developed a Web Services Offering Language (WSOL)
that allows a service provider to specify five QoS-related constructs: constraints
(functional constraints, QoS and access rights), statements, constraint groups,
constraint group templates and service offerings. Maximilen and Singh [2] pro-
pose an agent-based framework and ontology for QoS measurement. In this ap-
proach service providers publish their services to registries and agencies, and
service consumers use their agents in order to discover the desired service. The
metrics concept is absent in this ontology. A QoS ontology proposed in [3] fills
this gap. It consists of three layers: the QoS profile layer, used for matchmak-
ing; the QoS property definition layer, used to present the property’s domain and
range constraints; and the metrics layer that provides measurement details. Mul-
tiple QoS profiles can be attached to one service profile in this approach. Tian et
al. [4] extend the matchmaking mechanisms with the concept of service broker.
QoS parameters are classified into two main categories: network and server-client
parameters. An extension of service publication and discovery mechanisms with
QoS features is proposed in [5]. This approach exploits the finite automata theory
in multidimensional spaces. The proposed model performs well only with static
QoS parameters. One more ontology and vocabulary adequate for arbitrary web
services is proposed in in [6]. Bleul and Weiss [7] support service packaging and
include a Unit-Transformation-Ontology to define functional relations between
metrics. Four ontologies presented in [8]: requirements, measurement, traceabil-
ity and quality management, aim to minimize ambiguities in QoS evaluations.

An approach to specify user requirements with help of a QoS ontology and
a requirement matching tool are presented in [9]. Vu et al. [10] propose a model
for the users to describe their QoS selection criteria taking into account environ-
mental conditions. These conditions are specified by providers in their service
descriptions via description logics and Horn rules. The discovery, ranking and
selection of the matched services are customizable via the use of appropriate do-
main ontologies that represent both user preferences and provider specifications.
The basic steps of the discovery process are defined as algebraic operators of
a query execution model. This enables plug-in of different algorithms into the
discovery framework. Kerrigan [11] identifies two types of preferences that are
useful for service selection: filtering preferences, which filter the list of services
found during discovery, and ordering preferences, which sort the list services
found during discovery. Liu et al. [12] provide a model to measure QoS fac-
tors, including such of them as compensation, penalty policies and transaction,
through an active users feedback and monitoring.

Service Level Agreement (SLA) defines the agreed level of performance for a
particular service between a service provider and a service user. SLA parameters
can be measured with different metrics, including composite ones like maximum
response time or average availability. In [13] implementation of a rule engine for
SLA evaluation is presented. Ranganathan and Dan [14] present a framework for

allocating/de-allocating of physical resources and provisioning/de-provisioning
of service instances in Grid environment to meet SLA constraints.

2.2 QoS analysis and service selection

Another interesting task is how to choose web services to be used by a new
(composite) web service in order to have a guarantee that required quality level
of the composition is reached.

Cardoso et al. [15] introduced several useful models for QoS measurement in
workflows. In particular, the authors evaluate expected response time, execution
cost and reliability of a workflow applying sequential, parallel, conditional, loop
and fault-tolerant system reduction rules. Lakhal et al. [16] extends this work
by reviewing the estimation of reliability and response time of fault-tolerant web
service compositions. These results are consistent with reliability models valid
for general component-based software systems [17].

Norton [18] indicates several inconsistencies in QoS measures by Cardoso
and Sheth used in the METEOR-S approach [19]. He also proposes a new al-
gorithm to calculate the service fitness metric, normalized from 0 to 1. Balke
et al. [20] examine different techniques towards advanced personalization of web
service selection. Sharma et al. [21] experiment with dynamic request prioritiza-
tion schemes for web services. Sensoy [22] proposes an experience-based approach
for service provider selection, in which consumers record their experiences with
service providers rather than the overall, subjective ratings. Menasce et al. [23]
provide a methodology for planning service capacity. Knowledge about the num-
ber of potential users, frequency of service invocations and their time distribu-
tions are essential for the analysis. An accurate capacity planning can be quite
problematic because of parameter uncertainty and limited budget.

Service compositions that embed low-quality services inherit all their draw-
backs. This poses a big challenge for the software developers building new sys-
tems on the basis of available components. One can compensate composition
deficiency if many web services with compatible functionality exist. Elaborat-
ing this idea, a good number of QoS-driven service selection algorithms have
appeared.

One of the first works in this direction is done by Zeng et al. [24]. They
consider the service selection task as a global optimization problem. Linear pro-
gramming is applied to find the solution that represents the service composition
optimizing the target function. The target function is defined as a linear combi-
nation of five parameters: availability, successful execution rate, response time,
execution cost and reputation. If the global characteristics, like total amount of
money to accomplish a task, are not restricted, an optimal solution can be found
by a modified Dijkstra’s algorithm searching on the graph of available compo-
sitions [25]. In [26] the service selection is considered as a mixed integer linear
program where both local and global constraints are specified. The model by Yu
and Lin [27] comes to the complex multi-choice multi-dimension 0-1 knapsack
problem. In this approach, the practice of offering different quality levels by ser-
vices is taken into consideration. Gao et al. [28] apply integer programming to

dynamic web service selection in the presence of inter service dependencies and
conflicts. Wang et al. [29] consider the measurement of non-numerical qualities.
For example, reputation of a service may be evaluated as low, medium or high.
Accuracy, security and exception handling are taken into account. However, as
in the previous works, QoS-driven web service selection is based on assessment of
a linear combination of scaled QoS parameters. Yang et al. [30] turn QoS factors
to a form following the ascent property. Along with the five QoS attributes used
in [24], a service matching degree is analyzed. Matching degree defines a com-
pliance between composed services and, in principle, is a functional parameter.
The Multiple Criteria Decision Making (MCDM) technique is used to give an
overall evaluation for a composite service.

The above solutions depend strongly on user weights assigned to each pa-
rameter. There is no clear mechanism allowing a user to set up these weights
in order to obtain the desired result. Several approaches try to avoid a user
involvement in the selection procedure. For example, in [31] service selection
is formulated as Multiple Attribute Decision Making (MADM) problem. Four
modes for determining relative weights for QoS attributes are proposed: sub-
jective, single, objective and subjective-objective. Claro et al. [32] follows the
quality model proposed in [24] with several improvements. The first extension
concerns the concept of reputation that is ranked based on the user’s knowl-
edge of the service domain. Secondly, a multi-objective problem is considered
as opposed to Zeng’s aggregation functions. It is resolved using multi-objective
genetic algorithm called NSGA-II, without giving any weight to any quality cri-
terion. Canfora et al. [33] extend works by Cardoso and Zeng in a similar way.
A genetic algorithm for QoS-aware workflow re-planning is proposed. Hacigu-
mus [34] formalizes the problem of cost-driven web service composition as a
Weighted Set-Covering Problem. Similar to the previous work, Cao et al. [35]
examine only execution cost. They propose a genetic algorithm to search for the
web service composition with optimal cost, arguing that other methods are too
expensive. Interesting approach is given in the work by Martin-Diaz et al. [36]
where a constraint programming solution for procurement of web services with
temporal-aware demands and offers is proposed. Bonatti and Festa [37] formalize
three kinds of service selection problems to optimize the quality of the overall
mapping between multiple requests and multiple offers with respect to the pref-
erences associated to services and invocations. In particular, they prove that
the problem of cost minimization is NP-hard by reduction from the Uncapac-
itated Facility Location Problem. Exact and approximated algorithms to solve
the formulated problems are proposed.

Several works experiment with expressing user QoS preferences in a fuzzy
way. For example, Mou et al. [38] set up a QoS requirement model with sup-
port of fuzzy metrics for expressing user requirements on target service QoS.
In [39] the service selection problem is formalized as a Fuzzy Constraint Satis-
faction Problem. Deep-first branch-and-bound method is applied to search for
an appropriate web service composition. Gao et al.[40] study quality of service
compositions from the provider perspective. The objective of this work is to op-

timize the aggregate bandwidth utilization within an operator’s network. The
task is formalized as a problem of mapping a given arbitrary service graph to a
graph of physical network.

Assuming that the failure of any individual web service causes the failure of
the composite service, the overall reliability of composite service is the product
of the reliability of constituent web services. Therefore, one unreliable web ser-
vice could decrease the overall reliability to a very low level. The upper bound
of overall reliability is often determined by the weakest constituent web ser-
vices. Jaeger and Ladner [41] consider identification of such weak points. For
each weak point they identify alternative candidates that meet the functional
requirements. Three possible replacement patterns are analyzed: Additional Al-
ternative Candidate, AND-1/n and XOR-XOR. In the first template the original
service is replaced by an alternative service. In the second one, a structure con-
taining the alternative candidates in a parallel AND-split with 1-out-of-n-join
pattern is involved instead of the original service. These arrangements reduce
the response time, improve probability for the successful execution of the task,
and raise execution cost by the sum of all additionally executed services. In
XOR-XOR structure only one of the available alternative candidates is invoked.
Response time is reduced if the selected candidate executes quicker. Execution
cost is raised by the mean value of the individual costs. Reputation of services
in all patterns is reduced if additional candidates have lower reputation. Dealing
with the analogous problem, Stein et al. [42] apply an algorithm for provision-
ing workflows that achieve higher success probability in uncertain environments
through varying the number of providers provisioned for each task.

A consistent analysis of pros and cons of the listed algorithms is out of the
scope of this work. However, we must point out that this would be useful since
algorithms in the original works are compared mostly only with primitive or ran-
dom strategies. Among the negative characteristics of state-of-the-art algorithms
that will be addressed in this paper are:

– Choice of an objective function. Dependency between different QoS factors is
not considered by the existing solutions. Suppose that two weather forecast-
ing services are available: the first one provides reliable forecasts but, as a
consequence, it is expensive and rather slow, whereas the second one is cheap
and fast but generates forecasts by chance. Algorithms based on a simple
additive technique are likely to select the second web service despite the fact
that the service response time and execution cost are not important if the
service is unreliable. Another grave drawback of the methods comparing a
weighted sum of relative scores for each quality factor is that bigger compo-
sitions are likely to have higher total score. On the other hand, constraint
satisfaction algorithms that consider QoS separately will be unable to decide
which service from the two described in the above example is better.

– Absence of redundancy. Despite the efforts aimed at insuring web service re-
liability (e.g., contracts), service composition failures are almost inevitable.
Nevertheless, they can be gently treated without leading to the composition
breakdown. As failure-tolerance can be reached through composition redun-

dancy, an important characteristic of a service is the number and quality of
services compatible with it in a particular environment. This implies that
services must be selected with respect to their context within the composite
service and its structure. So, the problem must not be reduced to the selec-
tion of a simple execution path where only one web service is assigned to
each task.

3 Web Service Selection Algorithm

Description of QoS factors for web services can be found in [43] or in the works
that propose QoS ontologies, e.g. [3][7]. Among them are throughput (the num-
ber of requests served in a given time period), capacity (a limit of concurrent
requests for guaranteed performance), response time (the time taken by a service
to process its sequence of activities), execution cost (the amount of money for a
single service execution), availability (the probability that a service is available),
reliability (stability of a service functionality, i.e., ability of a service to perform
its functions under stated conditions), and so on.

Success rate of a service s is defined statistically as p(s) = Nsuc(s)/Ntotal(s),
where Nsuc is the number of successful service responses and Ntotal is the total
number of observed invocations. A service invocation is considered successful if
the user goal is satisfied or we can proceed along with the execution, i.e., (1)
the service is available, (2) the successful response message is received within an
established timeout, (3) no errors are detected automatically in the output, (4)
service effects are satisfied, (5) preconditions of a subsequent service are met. If
necessary, we can distinguish the above situations and consider several metrics
for service successful invocation. Success rate defines the probability of success
p(s) for future service invocations. Along with the probability of success we can
consider the probability of failure p(s) = 1− p(s).

For sequential composition we may distinguish additive metrics, such as re-
sponse time and execution cost, multiplicative metrics, such as availability, and
concave metrics such as throughput or capacity. QoS aggregation functions for
different patterns can be found in [15]. For example, execution cost of two par-
allel services c = (s2|s3) is qcost(c) = qcost(s1) + qcost(s2), their response time
qtime(c) = max(qtime(s1), qtime(s2)), and probabilities of success and failure
p(c) = p(s1)p(s2) and p(c) = p(s1) + p(s2)− p(s1)p(s2), correspondingly.

Our service selection algorithm is a modification of the method proposed
in [24]. This algorithm searches for a simple path (s1; ...; sk) between the start
and the end states in the composition graph that maximizes the following target
function:

f(c) = p(c)(qmax − q(c)) = p(s1; ...; sk)(qmax − q(s1; ...; sk)) =

=
k∏

i=1

p(si)(qmax −
k∑

i=1

q(si)),

where qmax defines the resource limit, taken from an SLA (or chosen big enough
to guarantee the positive value of f(c)). Here, q = {qtime, qcost} may refer either

to response time or to execution cost. In this case we have a dual criteria op-
timization problem. The basic approach is to put the less important parameter
into an objective function provided that the most important criterion meets some
constraints. Although it is hard to predict which of the identified dimensions is
more important (response time or execution cost), we suppose that for a provider
of composite web services focus should be put on the response time. Usually, the
internal structure of services is hidden from the end-user, so (s)he expects to pay
a fixed price for a single service execution (provided the same quality level). At
the same time, service delays can be indemnified by penalties. On conditions that
response time constraint is satisfied, a provider can optimize its own expenses. If
the user preferences are given, the above function can incorporate several scaled
QoS parameters, e.g.: q(s) = f(qtime, qcost). Assuming that f is a linear combi-
nation, we have q = w1qtime + w2qcost |w1 + w2 = 1, 0 ≤ w1, w2 ≤ 1. We do not
consider explicitly service availability, however, according to our definition, this
aspect is characterized by a service success rate.

4 Modelling Redundant Web Service Compositions

Composite web services can be defined using a set of workflow patterns [44]:

– Sequence. Several services are executed in a sequence.
– Loop. The execution of a service is repeated several times.
– AND split followed by AND join. Several services are invoked in parallel and

all services must be executed successfully.
– AND split followed by m-out-of-n join. Several services (n) are invoked si-

multaneously, but only m ≤ n of them must be executed successfully.
– XOR split followed by XOR join. Only one service is invoked from a set of

available services. The synchronizing operation considers only the invoked
service.

– OR split followed by OR join. Several services (n) from all available (k) are
invoked and all of the invoked services are required to be finished successfully
for synchronization.

– OR split followed by m-out-of-n join. Several services (n) from all available
(k) are invoked and m ≤ n services must be executed successfully.

As van der Aalst explains in [45], workflow patterns form a set of functional and
structural requirements which are applied to most flow languages for web service
composition. We suppose that sequential composition prescribes an order for the
execution of services. The situation when the execution of a set of services can be
performed in an arbitrary order is also possible in practice. It can be modelled as
a XOR split followed by a XOR join of all alternative sequences with a prescribed
order. Loop can be seen as a special case of a sequence composition. To specify
composite web services we will use a notation drawn in Table 1.

Several services are composed in an application that can be available as a new
web service (see Figure 1). The provider of this service is in a difficult situation
as (s)he must guarantee a certain level of QoS to end users, and in the same

Table 1. A notation for representing composite web services.

Graphical Syntactical Description

si si A web service.

The start and the end states.

→ (s1; s2; ...; sk) Sequential operator.

|mn (s1|s2|...|sk)m
n

Parallel operator. Indices m and n are used to
represent AND split followed by m-out-of-n join
(bottom index n = k and upper index m = n can
be omitted).

+m
n (s1 + s2 + ... + sk)m

n

Choice operator. Indices m and n are used to rep-
resent OR split followed by m-out-of-n join (bot-
tom index n = k and upper index m = 1 can be
omitted).

Fig. 1. Service-based workflow

time, quality of the provided service depends on agreements established among
the partners and quality of the involved services. For example, one of the possible
problems is a limited capacity of one of the atomic services. A composite service
will be forced to pay penalties to its clients because it cannot satisfy all requests
in a required time. To avoid such bottlenecks, the maximum capacity of the
composition must be controlled. A set of run-time changes in the composition
model should be taken into account:

– Service capacity correction. It reflects changes in the monitored service per-
formance related to the increase/decrease of service load by external clients,
problems in a communication network or middleware, etc.

– Service deletion. Some web service is not available for the invocation.
– Service addition. A new service is introduced in a composition.
– State deletion. All services that can be invoked from this state are deleted.
– Sub-composition deletion. Any service can be deleted if there is no a path be-

tween the start state and the end state that includes this service. Iteratively
repeating state and service deletion we can delete a sub-composition.

– Sub-composition addition. The reverse operation to sub-composition deletion
arises if a sub-composition is involved in the model.

Distributions of the service capacity and the expected number of concurrent
requests must be compared to guarantee a stable execution of the composite

service. Generally, we may speak about risk that the QoS of the composite
service will be affected because of the problems with involved services. If this
risk is significant, we must try to mitigate it, for example, negotiating with
partners about higher quality levels or adopting other services.

In the next section we discuss risk management and its application for QoS-
driven web service selection.

5 Risk Management

The purpose of risk management is to reduce or neutralize potential risks and
offer opportunities for some positive improvement. Risk is defined as a potential
impact that may arise from some present process or from some future event.
By this definition, risk can be expressed mathematically as the probability of
occurrence of loss/gain multiplied by its respective magnitude. Risk is commonly
associated with negative outcomes. Thee main steps of risk management are:

– Identification. Risk identification is needed for surfacing risks before they
become problems.

– Analysis. Risk analysis is a process of converting identified risk data into
decision-making information.

– Control. Risk control consists of monitoring the status of risk and actions
taken to ameliorate them. Appropriate risk metrics must be developed to
enable the evaluation of the risk status and mitigation plans.

Risk management covers all steps of software development and business
process modelling lifecycle. We will consider only risks specific for execution
of service-based business processes to that extent as they may affect the design
of service composition and selection of services to be involved.

5.1 Risk Identification

Risks that can affect web service compositions at run-time can be divided into
several categories:

– Inter-organizational risks. This category includes risks caused by providers
of web services used in a service composition. Into this category we can put
risks related to such events as disposal of a service by the provider, changes
in interface and behavioral logics of a service, contract violation, obtrusion of
a new contract with worse conditions, intentional disclosure of private user
information, etc.

– Management risks. Problems related to use of automatic management sys-
tems may occur. For example, requests from some unprivileged clients may
be ignored or delayed because of the limited capacity of a web service, etc.

– Technical risks. This group includes risks related to technical aspects of
distributed systems such as network or service failures.

5.2 Risk Analysis

Risk analysis uses two basic types of techniques: quantitative and qualitative.
Qualitative analysis involves the extensive use of mathematics and reports based
on probabilities of events and their estimated costs. Qualitative analysis is a
verbal report based on system knowledge, experience, and judgment. Statistical
information about service behavior is essential for risk analysis. It allows qualita-
tive assessment of the identified risks. Each external web service is seen as a black
box encapsulating unknown realization with a certain QoS. Without the benefit
of a quantitative assessment of the event probability is subjective and has to be
based largely on common sense and experience. For example, services provided
by a large well-known company can be considered less risky than services of a
small unknown company. The assessment has to be ongoing and evaluations of
the probability of events happening revised as the system is used and evaluates,
and the risk becomes clearer.

5.3 Risk Control

In ideal risk management, a prioritization process is followed whereby the risks
with the greatest loss and the greatest probability of occurring are handled first,
and risks with lower probability of occurrence and lower loss are handled later.
Several actions are possible to manage the risk caused by use of external web
services:

– Communicate with the service provider in order to establish an agreement
that can help to mitigate the risk.

– Mitigate the impact of the risk by identifying a triggering event and devel-
oping a contingency plan.

– Try to avoid risks by changing the design of the application. In particular,
functionality of unreliable services can be (1) implemented from scratch, (2)
taken from open source projects, (3) provided by software components that
are deployed locally.

– Accept the risk and take no further actions, thus, accepting the consequences.
– Study the risk further to acquire more information and better determine the

characteristics of the risk to enable decision making. For example, conditions
when failures of external services are more likely can be discovered.

As standard protocols simplify involvement of new web services, we can try
to reduce risk by careful selection of constituent services. However, if too many
services are included in the composition, its cost increases. A composition that
maximizes the overall profit must be selected. As risks define expected loss in
some period of time, the problem can be formalized as selection of a composition
c0, such that

Qprofit(c0) = Qincome(c0)−R(c0) = max
c∈C

(Qincome(c)−R(c)),

where Qincome(c) is an income expected by the provider, and

R(c) =
∑

ej∈E(c)

r(ej) =
∑

ej∈E(c)

p(ej)Qloss(ej)

is an estimated risk of the composition c internally used by the composite service.
Here, C denotes a set of all available compositions, E(c) is a set of all risk-related
events identified for a composition c, p(ej) is a probability that an event ej will
occur and Qloss(ej) is an estimated loss function in this case.

Let us consider a composite service that sequentially invokes a set of external
services. Suppose that the provider pays for these services only if all of them are
executed successfully, and no penalty is paid to a user if the composite service
fails. In order to maximize the profit, the percentage of the successful invocations
must be maximized and cost of each invocation must be minimized. From here
we get an objective function used in Section 3:

f(c) =
k∏

i=1

p(si)(qincome(c)−
k∑

i=1

q(si)),

where qincome(c) denotes the execution cost paid by the end-user of the composite
service. Naturally, this cost is higher than provider expenses to use other services.

6 Failure Risk

Failure risk is a characteristic considering probability that some fault will occur
and the resulting impact of this fault on the composite service. For an atomic
service si it equals

r(si) = p(si)q(si),

where p(si) is a failure probability of service si, and q(si) is a loss function.
Service s1 is better than service s2 if it has a smaller failure risk r(s1) < r(s2).

Let c = (s1; s2; ...; sk) be a sequential composition. If a service si fails the
results of services {s1, s2, ..., si} will be lost as well whereas their response time
and execution cost increase the total expenses to satisfy a user request. These
expenses are included in a loss function of a service si failure:

q(s1; ...; si) =
i∑

j=1

q(sj).

A failure risk of a service si in a sequential composition is

r(s1; ...; si) = p(s1; ...; si−1; si)q(s1; ...; si)

where

p(s1; ...; si−1; si) =
i−1∏

j=1

p(sj)p(si)

is the probability of the composition failure while service si is being executed.
Let us consider an example. Suppose that a user needs to translate a text from

Belarusian to Turkish provided that five translation web services are available:
b-e translates from Belarusian to English, b-g from Belarusian to German, g-t
from German to Turkish, e-t from English to Turkish, and g-e from German to
English. There are three configurations that can fulfill the user goal, i.e., the text
can be initially translated (1) from Belarussian to English and then from English
to Turkish, (2) from Belarussian to German and then from German to Turkish,
(3) from Belarussian to German, then from German to English and finally from
English to Turkish (see Figure 2). Suppose we have chosen the first composition.
If the service e-t fails, the task will not be completed and the translation done
by the service b-e will be lost. Instead, if the second composition is chosen, in
case of a failure of the service g-t, the task still can be completed successfully by
switching to the third composition without rollback.

Fig. 2. A redundant service composition with three possible execution paths.

In our example, r(e-t) = p(b-e)p(e-t)(q(b-e)+q(e-t)), where p(e-t) is a failure
probability of the service e-t and q(.) refers either to execution cost or response
time of the services b-e and e-t. Time losses may be important for tasks with
deadlines. A deadline defines the latest time for a task to be accomplished. Soft
deadlines can be violated with penalties. Tasks with hard deadlines should be
accomplished within a deadline or rejected immediately with a fixed penalty.

In complex service oriented systems calculation of a loss function may in-
volve analysis of transactional aspects of the process as rollback of a whole
transaction can be caused by a service failure. The loss function of the AND
split followed by AND join pattern with service sequences in each branch c =
(s1; ...; sn)|(t1; ...; tm) depends on the service coordination mechanism. We may
distinguish centralized and decentralized compositions. In the first case, parallel
branches can be interrupted immediately after the fault detection, therefore loss
functions of a service si failure are:

qtime(c|si) =
i∑

j=1

qtime(sj), qcost(c|si) =
i∑

j=1

qcost(sj) +
k∑

j=1

qcost(tj),

where k (1 ≤ k ≤ m) is the number of services executed before the si failure has
been detected. In the second case, additional expenses can be involved as time
is required to forward an error.

7 Failure Risk of Redundant Service Compositions

In this section, we provide an example of failure risk management for redundant
service compositions. Redundant compositions include one or more XOR/OR
split followed by a XOR/OR/m-out-of-n join patterns that define alternative
ways to accomplish some task.

In our scenario, end users invoke a composite web service, which invokes a
set of other services to fulfill user requests. If the user task is not satisfied, the
provider of the composite service pays a compensation. Similarly, if an atomic
service fails, the provider of the composite service receives a compensation from
the provider of this service. An SLA with the end user can be established in such
a way that a service composition will satisfy the constraints on response time
and execution cost provided the normal conditions, i.e., that no faults occur. The
unexpected failures of component services lead to resource loss and may cause the
violation of negotiated parameters. If there are reserve resources (the maximum
budget for a task is not reached and there is time left before task execution
deadline), a user task can be completed by other web services. Therefore, it is
reasonable to create a contingency plan in order to improve fault resistance of
a composite service. For redundant compositions a contingency plan is a set of
triples 〈ak, tj , ci〉, expressing the fact that a sub-composition ci is started from
a state tj after an event ak. Here, tj is one of the XOR/OR split states, and ak

refers to the actions discussed in Section 5.1.

(a) c1 = s1; s2 (b) c2 = (s1 + s3); s2

(c) c3 = (s1; s2) + (s3; s4) (d) c4 = s1; (s2 + s3)

(e) c5 = (s1; s2) + (s1; s4) + (s3; s2) + (s3; s4)

Fig. 3. Composite web services with different structure.

Let qcost(si) be the execution cost and qpnlt(si) the penalty for an atomic
service si. By qdiff (si) = qcost(si)−qpnlt(si) we will denote a difference between
service execution cost and penalty paid if a service execution fails. Let also

qpnlt(c) be a penalty paid by the provider of the composite service in case of its
failure. Assuming that service failures are independent, i.e., p(si|sj) = p(si), 1 ≤
i, j ≤ n, i 6= j, the failure risk for the composite services drawn in Figure 3 is
shown in Table 2. It defines an expected amount of money the provider will
loose, exploiting external services with certain QoS, provided different levels of
redundancy: in the first case, only one service is assigned to each task; in the
last case, two services are assigned to each task. An alternative combination is
used only if the previous one fails to complete the process.

Table 2. Failure risk for compositions in Figure 3: p(si) = p(si) = 0.5, qcost(si) =
qpnlt(si) = 1 and qpnlt(c) = 2.

ci Failure risk calculation formula R(ci)

c1 p(s1)
(
qdiff (s1) + qpnlt(c)

)
+ p(s1)p(s2)

(
qcost(s1) + qdiff (s2) + qpnlt(c)

)
. 1.75

c2 p(s1)
(
qdiff (s1) + p(s2)(qdiff (s2) + qpnlt(c)) + p(s2)p(s3)(qcost(s2) +

qdiff (s3) + qpnlt(c)
)

+ p(s1)p(s3)
(
qcost(s1) + qdiff (s3) + qpnlt(c)

)
.

1.625

c3 p(s1)
(
qdiff (s1) + p(s3)(qdiff (s3) + qpnlt(c)) + p(s3)p(s4)(qcost(s3) +

qdiff (s4)+ qpnlt(c))
)
+ p(s1)p(s2)

(
qcost(s1)+ qdiff (s2)+ p(s3)(qdiff (s3)+

qpnlt(c)) + p(s3)p(s4)(qcost(s3) + qdiff (s4) + qpnlt(c))
)
.

1.5625

c4 p(s1)
(
qdiff (s1) + qpnlt(c)

)
+ p(s1)p(s2)

(
qdiff (s2) + p(s3)(qcost(s1) +

qdiff (s3) + qpnlt(c))
)
.

1.375

c5 p(s1)
(
qdiff (s1) + p(s3)(qdiff (s3) + qpnlt(c)) + p(s3)p(s4)(qcost(s3) +

qdiff (s4)+ qpnlt(c))
)
+ p(s1)p(s2)

(
qdiff (s2)+ p(s4)(qcost(s1)+ qdiff (s4)+

qpnlt(c))
)
.

1.25

Failure risk is a compound measure considering probability of constituent
service failures, their response time and/or execution cost along with the struc-
ture of a composition graph. Intuitively, compositions with many OR branches
are more reliable. However, which configuration will be selected depends on the
balance between the above parameters. For example, if only two web services
can accomplish some task and one of them failed, it might be better for the
composite service to stop the execution instead of trying a second service if it is
too expensive.

8 Experimental evaluation

In order to analyze our approach empirically, we compared a service selection
algorithm described in Section 3 with the linear programming approach pro-
posed in [24]. We developed a simulation of a web service composition engine
and generated a large number of random service compositions. For the data
presented in this paper, we used 100 compositions of 10 atomic web services.
Such a relatively small number of services included in one composition is chosen
to follow the realistic scenarios. For each atomic web service its execution cost,

response time and success rate are defined randomly with uniform distribution,
from 0 to maxCost = 1000$ for execution cost, from 0 to timeout = 1000ms
for response time, and from 0.5 to 1 for success rate (values greater than 0.5
are generated to avoid services with very low success rate). We compared the
performance of our method with the performance of the linear programming ap-
proach by recording the expected response time, execution cost and success rate
of the compositions chosen by these two methods. We also simulated invocation
of the chosen compositions and compared their real success rates. We assigned
weights wi = 0.33 for each of the three parameters for the linear programming
approach, and wi = 0.5 for response time and execution cost in our approach.
The solutions proposed by our modified algorithm had better response time and
execution cost than the solutions found by the linear programming approach, in
97% and 89% of tests, correspondingly. In the same time, expected success rates
of these solutions were always better. The sources of these tests can be found in
http://www.dit.unitn.it/∼kokash. The corresponding experimental results
are shown in Figure 4. In this figure, arrows show the difference between to-
tal response time, execution cost and success rates (expected and obtained in
simulations) of the service compositions selected by two algorithms.

9 Conclusion

Diversity of quality metrics, their value ranges and measurements makes it diffi-
cult to provide a single QoS-driven selection algorithm for web services. The ex-
isting approaches cover a wide range of methods for multi-objective optimization,
but fail to provide a valid formalization of the problem that would sufficiently
reflect the real world conditions.

We have proposed a risk-driven methodology for QoS evaluation. Risk is the
probability of occurrence of some (negative) event multiplied by its respective
magnitude. This approach may help to simplify web service selection by con-
sidering cost equivalent of various QoS factors. We have demonstrated how risk
analysis can be used to measure impact of atomic service failures on a service
composition. Our experiments prove that the difference between expected in-
come and expenses better characterizes the problem of QoS-driven web service
selection from provider’s perspective than a linear combination of scores for var-
ious QoS factors.

An obvious drawback of our QoC metric for web service selection is that dif-
ferent compositions require risk recalculation, which makes the approach com-
putationally less efficient than methods relying on the QoS evaluation of well de-
fined patterns [41]. In our previous work [46] a polynomial-time greedy heuristic
selecting a less risky sub-composition in each XOR split state is proposed.

Service oriented systems are open to various risks. Different techniques might
be needed for their identification, analysis and control. In our future work we
are going to systematize and elaborate the above ideas.

0 20 40 60 80 100

1000

2000

3000

4000

5000

Response time

time(Linear programming) > time(New)
time(Linear programming) < time(New)

0 20 40 60 80 100

1000

2000

3000

4000

5000

Execution cost

cost(Linear programming) > cost(New)
cost(Linear programming) < cost(New)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Expected success rate

rate(Linear programming) > rate(New)
rate(Linear programming) < rate(New)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Success rate

rate(Linear programming) > rate(New)
rate(Linear programming) < rate(New)

Fig. 4. Comparison of QoS of web service compositions selected by two methods

References

1. Tosic, V., B.Pagurek, Patel, K.: Wsol a language for the formal specification of
classes of service for web services. In: Proceedings of ICWS, CSREA Press (2003)
375–381

2. Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic web ser-
vices selection. IEEE Internet Computing 8(5) (2004) 84–93

3. Zhou, C., Chia, L., Lee, B.: Daml-qos ontology for web services. In: International
Conference on Web Services (ICWS). (2004)

4. Tian, M., Gramm, A., Naumowicz, T., Ritter, H., Schiller, J.: A concept for qos
integration in web services. In: Fourth International Conference on Web Informa-
tion Systems Engineering Workshops (WISEW), IEEE Computer Society (2003)
149–155

5. Bianchini, D., Antonellis, V.D., Melchiori, M.: Qos in ontology-based service clas-
sification and discovery. In: 3rd International Workshop on Web Semantics. (2004)

6. Papaioannou, I., Tsesmetzis, D., Roussaki, I., Miltiades, E.: Qos ontology language
for web-services. In: Proceedings of the 20th International Conference on Advanced
Information Networking and Applications (AINA). (2006)

7. Bleul, S., Weiss, T.: An ontology for quality-driven web service discovery. In:
Workshop on Engineering Service Compositions. (2005) 35–42

8. Kim, H., Sengupta, A., Evermann, J.: Moq: Web services ontologies for qos and
general quality evaluations. In: European Conference on Information Systems
(ECIS). (2005)

9. Dobson, G., Lock, R., Sommerville, I.: Quality of service requirements specification
using an ontology. In: SOCCER Workshop, Requirements Engineering. (2005)

10. Vu, L.H., Porto, F., Hauswirth, M., Gerlach, S., Tajmouati, O., Aberer, K.: Qos-
enabled semantic web service discovery: a user’s perspective approach. Techni-
cal Report LSIR-REPORT-2006-012, Distributed Information Systems Laboratory
(2006)

11. Kerrigan, M.: Web service selection mechanisms in the web service execution
environment (wsmx). In: Proceedings of the 21st Annual ACM Symposium on
Applied Computing (SAC). (2006)

12. Liu, Y., Ngu, A.H., Zeng, L.: Qos computation and policing in dynamic web
service selection. In: Proceedings of 13th International Conference World Wide
Web. (2004) 66–73

13. Bostrom, G., Giambiagi, P., Olsson, T.: Quality of service evaluation in virtual or-
ganizations using slas. In: 1st International Workshop on Interoperability Solutions
to Trust, Security, Policies and QoS for Enhanced Enterprise Systems (IS-TSPQ).
(2006)

14. Ranganathan, K., Dan, A.: Proactive management of service instance pools for
meeting service level agreements. In: Proceedings of the Internationa Conference
on Service-Oriented Computing (ICSOC), Springer Verlag (2005) 296–309

15. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for
workflows and web service processes. Journal of Web Semantics 1(3) (2004) 281–
308

16. Lakhal, N.B., Kobayashi, T., Yokota, H.: A failure-aware model for estimating
the efficiency of web service compositions. In: Proceedings of IEEE Pacific Rim
International Symposium on Dependable Computing. (2005) 114–121

17. M.Ross, S.: Introduction to Probability Models. Harcourt Asia PTE LTD (1997)

18. Norton, B.: A sound mathematical basis for quality of service profiles in web service
discovery. In: Quality of Service Profiles in Web Service Discovery, Proceedings
of the COTS-Based Software Systems 4th International Conference (ICCBSS),
Springer Berlin / Heidelberg (2005)

19. Cardoso, J., Sheth, A.: Semantic e-workflow composition. Journal of Intelligent
Information Systems 21 (2003) 191–225

20. Balke, W.T., Wagner, M.: Towards personalized selection of web services. In: Pro-
ceedings of IEEE Pacific Rim International Symposium on Dependable Computing.
(2005) 114–121

21. Sharma, A., Adarkar, H., Sengupta, S.: Managing qos through prioritization in
web services. In: Proceedings of 4th Inernational Conference on Web Information
Systems Engineering Workshops, IEEE (2004) 140–148

22. Sensoy, M.: A framework for context-aware service selection. In: Proceedings of
the 4th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS). (2006)

23. Menasce, D., Almeida, V.: Capacity Planning for Web services. Prentice Hall,
Upper Saddle River, NJ (2002)

24. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-
aware middleware for web services composition. IEEE Transactions on Software
Engineering 30(5) (2004) 311–327

25. Gu, X., Chang, R.: Oos-assured service composition in managed service overlay
networks. In: Proceeding of The IEEE 23rd International Conference on Distrib-
uted Computing Systems (ICDCS). (2003)

26. Ardagna, D., Pernici, B.: Global and local qos constraints guarantee in web service
selection. In: IEEE International Conference on Web Services. (2005) 805–806

27. Yu, T., Lin, K.: Service selection algorithms for composing complex services with
multiple qos constraints. In: International Conference on Service-Oriented Com-
puting. (2005)

28. Gao, A., Yang, D., Tang, S., Zhang, M.: Qos-driven web service composition with
inter service conflicts. In: Frontiers of WWW Research and Development - APWeb:
8th Asia-Pacific Web Conference. Volume 3841. (2006)

29. Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A qos-aware selection model for
semantic web services. In: Proceedings of the Internationa Conference on Service-
Oriented Computing (ICSOC). LNCS, Springer (2006)

30. Yang, L., Dai, Y., Zhang, B., Gao, Y.: Dynamic selection of composite web ser-
vices based on a genetic algorithm optimized new structured neural network. In:
Proceedings of the International Conference on Cyberworlds. (2005)

31. Hu, J., Guo, C., Wang, H., Zou, P.: Quality driven web services selection. In: Pro-
ceedings of the IEEE International Conference on e-Business Engineering (ICEBE).
(2005)

32. Claro, D.B., Albers, P., Hao, J.K.: Selecting web services for optimal composition.
In: Proceedings of the ICWS Second International Workshop on Semantic and
Dynamic Web Processes. (2005) 32–45

33. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: (Qos-aware replanning of
composite web services)

34. Hacigumus, H.: Cost-effective service composition. In: WESC, in conjunction with
ICSOC. (2005) 93–100

35. Cao, L., Li, M., Cao, J.: Cost-driven web service selection using genetic algorithm.
In: Workshop on Internet and Network Economics. LNCS, Springer Berlin (2005)
906–915

36. Martin-Diaz, O., Ruize-Cortes, A., Duran, A., Muller, C.: An approach to
temporal-aware procurement of web services. In: International Conference on
Service-Oriented Computing, Springer (2005) 170–184

37. Bonatti, P.A., Festa, P.: On optimal service selection. In: Proceedings of the 14th
international conference on World Wide Web, ACM Press (2005) 530–538

38. Y. Mou, J. Cao, S.Z., Zhang, J.: Interactive web service choice-making based on
extended qos model. In: CIT. (2005) 1130–1134

39. Lin, M., Xie, J., Guo, H., hao Wang: Solving qos-driven web service dynamic
composition as fuzzy constraint satisfaction. In: IEEE International Conference on
e-Technology, e-Commerce and e-Service. (2005) 9–14

40. Gao, X., Jain, R., Ramzan, Z., Kozat, U.: Resource optimization for web service
composition. In: Proceedings of IEEE SCC. (2005)

41. Jaeger, M.C., Ladner, H.: Improving the qos of ws compositions based on redun-
dant services. In: Proceedings of the International Conference on Next Generation
Web Services Practices (NWeSP). (2005)

42. Stein, S., Gennings, N.R., Payne, T.R.: Flexible provisioning of service workflows.
In: Proceedings of the 17th European Conference on Artificial Intelligence, IOS
Press (2006) 295–299

43. Ran, S.: A model for web services discovery with qos. ACM SIGecom Exchanges
4(1) (2003) 1–10

44. van der Aalst, W.M., ter Hofstede, A.H., Kiepuszewski, B., Barros, A.: Workflow
patterns. Distributed and Parallel Databases 14(3) (2003) 5–51

45. van der Aalst, W.M.: Dont go with the flow: Web services composition standards
exposed. In: Issue of IEEE Intelligent Systems. (2003) 72–76

46. Kokash, N.: A service selection model to improve composition reliability. In:
International Workshop on AI for Service Composition, in conjunction with ECAI.
(2006) 9–14

