

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

A COMPARISON OF WEB SERVICE INTERFACE
SIMILARITY MEASURES

Natallia Kokash

April 2006

Technical Report # DIT-06-025

.

A Comparison of Web Service Interface
Similarity Measures

Natallia Kokash

DIT - University of Trento, Via Sommarive, 14, 38050 Trento, Italy
email: natallia.kokash@dit.unitn.it

Abstract. Web service technology allows access to advertised services
despite of their location and implementation platform. However, con-
siderable differences on structural, semantical and technical levels along
with the growing number of available web services makes their discovery
a significant challenge. Keyword-based matchmaking methods can help
users to locate quickly the set of potentially useful services, but they
are insufficient for automatic retrieval. On the other hand, the high cost
of formal ontology-based methods alienates service designers from their
use in practice. Several information retrieval approaches to assess the
similarity of web services have been proposed. In this paper we proceed
with such a study. In particular, we examine advantages of using Vector-
Space Model, WordNet and semantic similarity metrics for this purpose.
A matching algorithm relying on the above techniques is presented and
an experimental study to choose the most effective approach is provided.

1 Introduction

During the last years the idea of software composition and refinement as opposed
to software building from scratch was elaborated to the platform independent,
distributed and based on open standards services paradigm. The state-of-the-
art in system integration is defined by the implementation of service-oriented
architectures using web service technology. Web services are loosely coupled,
distributed and independent software entities, that can be described, published,
discovered and invoked via the web infrastructure using a stack of standards
such as SOAP, WSDL and UDDI [11]. Potentially, a large amount of compat-
ible services simplifies building of new applications from existing components.
However, the problem is very intricate due to the absence of service behavior
specifications and control over the service lifecycle. Self-adaptivity is a highly
desired property for service-based systems: troublesome components should be
automatically changed to the analogues but troublefree ones. In this context
the problem of service discovery acquires significant importance. Garofalakis et
al. [5] provide a survey of different perspectives in this area. Discovery can be
carried out by developers at design-time or by self-assembling applications at
either design or run time. These processes are referred to as manual and au-
tomated discovery. Under manual discovery, a requester-human searches for a

2 Natallia Kokash

service description that meets the desired criteria. Under automated discovery,
a requester-agent performs and evaluates this task.

State-of-the-art on automated and semi-automated web service discovery
consists of many sound proposals. Simple keyword-based service search is traded
against formal methods that require manual annotation of service specifications
with semantic information. The latter ones do not fully bring the issue to a close
and spawn additional problems such as multiple ontology mapping. As an effort
to increase precision of web service discovery without involving any additional
level of semantic markup, several approaches based on Information Retrieval
(IR) techniques have been proposed [7] [16] [17] [19]. All of them report en-
hances in precision of automated service matchmaking. In this paper we provide
a comparative analysis of the ideas underlying the nominated solutions to lo-
cate the most promising strategy. Further, we provide an implementation of a
matching algorithm that combines similarity scores by searching the maximum-
score assignment between different specification elements. WSDL specifications
contain several elements, some of which can be very similar whereas another
can be completely different. This presumes combination of lexical and structural
information matchings.

The paper is organized as follows. In Section 2, we review the related work.
In Section 3, web service description formats are discussed. Section 4 introduces
similarity assessment techniques used in our approach. Section 5 describes the
proposed web service matching algorithm. Experimental results are presented in
Section 6. Finally, Section 7 concludes the paper and outlines future work.

2 Related Work

Currently UDDI registries1 are the dominating technological basis for web ser-
vice discovery. Alternatively, ebXML registries2 can be used to advertise services
available on the web. They allow storing actual WSDL specifications in a reposi-
tory. As a consequence, such abilities as retrieval of WSDL using custom ad hoc
queries are enabled. The question about the use of registries seems to be irrele-
vant due to the advantages they bring to the technology. But existing registries
are still small and mostly private. The discovery supported by registry APIs is
inaccurate as retrieved services may be inadequate due to low precision and low
recall. Users may need to examine different registries before they find an ap-
propriate service. Approaches that reduce manual activities in service discovery
and allow intelligent agents to identify useful services automatically are required.
Below we analyze the existing methods targeted at improving automated service
matchmaking.

Generally, information matching can be accomplished on two levels:

– In syntactic matching we look for the similarity of data using syntax driven
techniques. Usually, the similarity of two concepts is a relation with values
between 0 (completely dissimilar) and 1 (completely similar).

1 http://www.uddi.org
2 http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrim.pdf

A Comparison of Web Service Interface Similarity Measures 3

– In semantic matching the key intuition is the mapping of meanings. There
are several semantic relations of two concepts: equivalence (≡), more general
(⊇), less general (⊆), mismatch (⊥) and overlapping (∩). Nevertheless, they
can be mapped into a relation with values between 0 and 1.

Among the areas closely related to service matching are:

Text document matching. These solutions rely on term frequency analy-
sis and ignore document structure. Among the most popular methods are
the Vector-Space Model (VSM), Laten Semantic Indexing and Probabilistic
Models [2]. However, such approaches solely are insufficient in a web service
context.

Semi-structured document matching. The major part of information on
the web today is represented in HTML/XML formats. This fact spawned
the research aiming to improve IR from semi-structured documents. Meth-
ods using plain text queries do not allow users to specify constrains on the
document structure. On the other hand, recall of exact matching algorithms
used XPath 3 or XQuery 4 is often too low. Kamps et al. [10] noted that
structure in XML retrieval is used only as a search hint, but not as a strict
requirement.

Software component matching. Software components can be compared with
various degrees of accuracy. Structural similarity reflects the degree to which
the software specifications look alike, i.e., have similar design structures.
Functional similarity reflects the degree to which the components act alike,
i.e., capture similar functional properties [9]. Functional similarity assess-
ment methods rely on matching of pre/post-conditions, which normally are
not available for web services. There is an ongoing research to support web
service discovery by checking behavioral compatibility (e.g. [8]).

Schema matching. Schema matching methods [12] can be based on linguistic
and structural analysis, domain knowledge and previous matching experi-
ence. However, the application of schema matching approaches is impeded
by the fact that the existing works have mostly been done in the context of
particular application domain. Then, service specifications have much plainer
structure than schemas.

In IR approaches to service discovery a query consists of keywords, which are
matched against the stored descriptions in a UDDI registry. Latent Semantic In-
dexing (LSI), the prevailing method for small document collections, was applied
to capture the semantic associations between service advertisements [13]. Bruno
et al. [3] experimented with automated classification of WSDL descriptions using
support vector machines. Stroulia at al. [16] developed a suite of algorithms for
similarity assessment of service specifications. WSDL format does not provide
any special semantic information but it contains the documentation tag with
service documentation and elements with natural language descriptions of op-
erations and data types. Identifiers of messages and operations are meaningful,
3 http://www.w3.org/TR/xpath
4 http://www.w3.org/TR/xquery

4 Natallia Kokash

XML syntax allows to capture the domain specific relations. The WordNet data-
base was applied for semantic analysis. According to those experimental results,
the methods are neither precise nor robust. The main drawback, in our opinion,
is that poor heuristics in assigning weights for term similarity were used. Dong et
al. [7] present a search engine Woogle focused on retrieval of WSDL operations.
Their method is based on term associations analysis. The underlying idea can
be expressed by the heuristic that parameters tend to reflect the same concept
if they often occur together. The above approaches do not consider data types
in a proper way. Carman and Serafini [15] designed an algorithm for semantic
matching of complex types. Structure information is used to infer equal, more
general or less general relations between type schemas. In [17] web service simi-
larity is defined using a WordNet-based distance metric. Zhuang et al. [19] apply
a similar approach. The future directions outlined in the papers include auto-
mated preprocessing of WSDL files with complex names handling and structural
information analysis, provided in our approach. We also propose a new method
to join structural, syntactic and semantic similarities of different elements in a
single-number measure. Further, we compare matching algorithms with three
different kernel functions.

3 Web Service Specification Formats

Table 1 shows an example of two compatible WSDL definitions. Both specifica-
tions represent web search services: GoogleSearch and WolframSearch. If a client
asks some service registry for service GoogleSearch which is not published there,
WolframSearch can be returned instead. Then, if both services are advertised in
the same registry they should be classified in the same group to simplify service
location. If one of the services fails, another one can be invoked instead to satisfy
the user request. These cases require establishment of exact correspondence be-
tween service operations, comparison of input/output parameters and checking
of data type compatibility. Message doGoogleSearchResponse of GoogleSearch
can be mapped to message WolframSearchResponse of WolframSearch, as we
can conclude from their names and the fact that parts GoogleSearchResult and
WolframSearchReturn of these messages seem to be similar. The actual similar-
ity between parts can be assessed based on the syntactic and semantic analysis of
their names and types. Matching of types is a tricky point since different atomic
elements can be organized in different ways. For example, in GoogleSearch type
GoogleSearchResult consisting of several elements is defined directly using tag
complexType while in WolframSearch an additional tag element is used. Then,
atomic elements within complex types can occur in different order. Moreover,
some of them may not have the corresponding element, which generally does not
impede to successfully use the found web service.

We examine five logical concepts of WSDL files that are supposed to contain
meaningful information: services, operations, messages, parts and data types. Se-
mantic information from WSDL file representation is shown in Figure 1. Each
element has a description, i.e., a vector that contains semantic information about

A Comparison of Web Service Interface Similarity Measures 5

Table 1. WSDL specifications of two web services

GoogleSearch:
<message name=”doGoogleSearchResponse”>

<part name=”return” type=”GoogleSearchResult”/ >
</message>
...
<complexType name=”GoogleSearchResult”>

<all>
<element name=”searchComments” type=”string”/ >
<element name=”estimatedTotalResultsCount” type=”int”/ >
<element name=”resultElements” type=”ResultElementArray”/ >
...

< /all>
< /complexType>

WolframSearch:
<message name=”WolframSearchResponse”>

<part element=”WolframSearchReturn”/ >
</message>
...
<element name=”WolframSearchReturn”>

<complexType>
<sequence>

<element name=”Result” type=”WolframSearchResult”/ >
< /sequence>

< /complexType>
< /element>
...
<complexType name=”WolframSearchResult”>

<sequence>
<element name=”TotalMatches” type=”int”/ >
<element name=”Comment” type=”string”/ >
<element name=”Matches” type=”WolframSearchMatchArray”/ >
...

< /sequence>
< /complexType>

this element extracted from the service specification. Data types can consist of
several subelements. We do not consider explicitly their internal organization.
However, names of the higher-level organizational tags (like data type category
(complexType, simpleType, group, element) or composers (all, sequence, choice,
restriction, extension)) are included into element descriptions. While matching
data types, we do not take into account parameter order constraints since parser
implementations often do not observe them. This does not harm well-behaved
clients and offers some margin for errors. We rely on ”relaxed” structural match-
ing since too strict comparison can significantly reduce recall. For example, for
the concepts of GoogleSearch web service in Table 1 the corresponding concepts
of service WolframSearch can be found despite of their rather different organi-
zation.

Striving for the automated web service discovery and composition has lead
to the idea of annotating services manually with semantic information. Recently
appeared WSDL-S [1] proposal provides a way to associate semantics with web
service specifications. It is assumed that there exist formal semantic models rele-
vant to web services. These models are maintained outside of WSDL documents
and are referenced from it via extensibility elements. The specified semantic data
include definitions of the preconditions, inputs, outputs and effects of service op-

6 Natallia Kokash

Fig. 1. WSDL data representation

erations. The main advantage over the similar approaches is that developers can
annotate web services with their own choice of ontology language. Ontologies, i.e.,
explicit and formal specifications of knowledge, are a key enabling technology for
the semantic web. They interweave human understanding of symbols with their
machine-processability. In respect to web service technology, ontologies can be
used for describing service domain-specific capabilities, inputs/outputs, service
resources, security parameters, platform characteristics, etc. The main difficulty
in practice arises from the fact that the requester and the provider are unlikely
to use the same ontology.

Inheritance is important in software development. A bridge between services
with and without semantic annotations should be constructed. IR-based service
matching algorithms can be extended to become uniform methods that allow
matching of WSDL and WSDL-S specifications. In this case some element de-
scriptions will contain references to the corresponding ontology concepts. The
latter ones can be compared using specialized matchmaking algorithms.

4 Similarity Assessment

In this section, we cover the rationale of the proposed service matching method.
The main idea of the algorithm is a combination of element level lexical similarity
matching and structure matching:

1. The goal of lexical matching is to calculate the linguistic similarity between
concept descriptions.

2. Under structural matching we understand the process of similarity assess-
ment between composite concepts (services, operations, messages, parts,
data types) that include several subelements.

4.1 Lexical Similarity

Three different linguistic similarity measures were used to compare textual con-
cept descriptions.

Given a set of documents we can measure their similarity using Term Fre-
quency - Inverse Document Frequency (TF-IDF) heuristic. Formally it is defined
as follows: Let D = {d1, ..., dn} be a document collection, and for each term wj

let nij denote the number of occurrences of wj in di. Let also nj be the number

A Comparison of Web Service Interface Similarity Measures 7

of documents that contain wj at least once. The TF-IDF weight of wj in di is
computed as

xij = TFij · IDFj =
nij

|di|
log(

n

nj
),

where |di| is the total number of words in document di. The similarity measure
between two documents is defined by the cosine coefficient :

cos(xi, xk) =
xi

T xk√
xi

T xi

√
xk

T xk

,

where xi = (xi1, ..., xim), xk = (xk1, ..., xkm) are vectors of TF-IDF weights
corresponding to the documents di and dk, m is the number of different words
in the collection. A more detailed description can be found in [2].

WordNet is a lexical database with words organized into synonym sets rep-
resenting an underlying lexical concept. To address the shortcoming of VSM
considering words at the syntactic level only, we expanded the query and WSDL
concept descriptions with synonyms from WordNet. After that we compared the
obtained word tuples using TF-IDF measure.

Finally, element descriptions were compared using an approach more con-
cerned with the meaning of words. Semantic similarity is a measure that reflects
the semantic relation between two terms or word senses. Thus, after tokeniza-
tion (splitting an input string into tokens, i.e. determining the word boundaries),
word stemming (removing common morphological and inflexional endings from
words) and stopwords removing (eliminating very frequently and very rarely
used words), which are common for all three methods, the following steps can
be performed to compute semantic similarity of two WSDL concept descriptions:

1. Part of speech tagging. Syntactic categories such as noun, verb, pronoun,
preposition, adverb, adjective should be assigned to words.

2. Word sense disambiguation. Each word may have different lexical meanings
that are fully understood only in a particular context. Disambiguation is a
process of enumerating the likely senses of a word in a ranked order.

3. Semantic matching of word pairs. Given input strings X and Y a relative
similarity matrix M can be constructed as follows: each element M [i][j]
denotes the semantic similarity between the word at position i of X and
the word at position j of Y. If a word does not exist in the dictionary the
edit-distance similarity and abbreviation dictionaries can be used.

4. Semantic matching of word tuples. The problem of capturing semantic sim-
ilarity between word tuples (sentences) can be modelled as the problem of
computing a total weight in a weighted bipartite graph described in the next
section. Other metrics can be used as well [6].

4.2 Structural Similarity

Each concept of a query should be confronted with one of the concepts in the
documents from the collection. This task can be formulated as Maximum Weight

8 Natallia Kokash

Bipartite Matching problem, where the input consists of undirected graph G =
(V,E), where V denotes the set of vertices and E is the set of edges. A matching
M is a subset of the edges such that no two edges in M share a vertex. The
vertices are partitioned into two parts, X and Y . An edge can only join vertices
from different parts. Each edge (i, j) has an associated weight wij . The goal is
to find a matching with the maximum total weight. The problem can be solved
in polynomial time, for example, using Kuhn’s Hungarian method [4].

We applied the above method on different levels of our matching algorithm:

1. To get semantic similarity of two descriptions. Weight wij of each edge is
defined as a lexical similarity between elements i and j.

2. To calculate similarity of complex WSDL concepts given similarity scores
for their subelements.

The total weight of the maximum weight assignment depends on the set sizes.
There are many strategies to acquire a single-number dimension-independent
measure in order to compare sets of matching pairs, the simplest of which is the
matching average (see Table 2). Here |X| is the number of entries in the first part,
|Y | is the number of entries in the second part, and |X ∩Y | denotes the number
of entries that are common to both sets. Finally, |X \ Y | defines the number of
entries in the first set that are not in the second, and |Y \X| is the number of
entries in the second set that are not in the first. Two elements i ∈ X, j ∈ Y are
considered to be similar if wij ≥ γ for some parameter γ ∈ [0, 1], i.e.,

sim(i, j) =
{

1, wij ≥ γ
0, wij < γ.

Threshold γ is used to filter scores of wrong or too weak semantic correlations,
that may significantly affect efficiency of the matching algorithm. Choice of the
similarity coefficient is also important and depends on the client goal. For ex-
ample, for plugin (when service interface entails a subset of a query interface)
and subsumption (when service interface specification is a superset of the query
wrapper) matches [18] a Simpson coefficient is likely to get the better result.

Table 2. Similarity coefficients

Coefficient name Formula
Matching average 2 ∗Match(X, Y)/(|X|+ |Y |)
Dice coefficient 2 ∗ |X ∩ Y |/(|X|+ |Y |)
Simpson coefficient |X ∩ Y |/(min(|X|, |Y |))
Jaccard coefficient |X∩Y |/(|X∩Y |+ |X \Y |+ |Y \X|)
First Kulczynski coefficient |X ∩ Y |/(|X \ Y |+ |Y \X|)
Second Kulczynski coefficient (|X ∩ Y |/|X|+ |X ∩ Y |/|Y |)/2

5 Web Service Matching Algorithm

To obtain WSDL concept descriptions from their names, documentations, namespaces,
data types, organizational tags, etc., we extracted:

A Comparison of Web Service Interface Similarity Measures 9

– sequences of an uppercase letter and following lowercase letters,
– sequences of more than one uppercase letters in a row,
– sequences between two non-word symbols.

Our experiments show that these simple heuristics work fairly well. For example,
from ”tns:GetDNSInfoByWebAddressResponse” we get the following word tuple:
{tns, get, dns, info, by, web, address, response}.

After extracting meaningful words from all WSDL specifications we built
word indices, where a relative TF-IDF coefficient is assigned to each word. We
must note that word stemming (accomplished by the classical Porter stemming
algorithm) neither reduced the index dimension nor improved performance on
our test bed (described in Section 6). Stopwords removing also brought no ef-
fect. Frequently used words in WSDL specifications like get/set, in/out, re-
quest/response may distinguish conceptually different elements (e.g., GetDNSIn-
foByWebAddressSoapIn and GetDNSInfoByWebAddressSoapOut). To reduce di-
mension of word vectors to be compared we used three separate word indices:
the first index for data types, the second one for operations, messages and parts
and the third one for service descriptions.

The information extracted from WSDL specifications is short and rather
different from natural language sentences. A clear semantic context is missing
in the concept descriptions collected from several technical XML tags. Due to
this reason, word sense disambiguation seems to be infeasible. To define a lexical
similarity of all possible senses of two terms we used a WordNet-based metric
designed by Seco et al. [14]:

sim(c1, c2) = 1− icwn(c1) + icwn(c2)− 2simres′(c1, c2)
2

,

where
simres′(c1, c2) = max

c∈S(c1,c2)
icws(c).

In this expression S(c1, c2) denotes the set of concepts that subsume c1 and c2.
Information context value of a WordNet concept is defined as

icwn(c) = 1− log(hypo(c) + 1)
log(maxwn)

,

where hypo is the number of hyponyms (words whose extension is included within
that of another word) of a given concept and maxwn is the maximum number of
existing concepts. Java implementation of the algorithm that defines the seman-
tic similarity of two terms is available on http://wordnet.princeton.edu/links.shtml.

Our matching algorithm is presented in Table 3. The overall process starts
by comparing service descriptions and the operations provided by the services,
combined after in a single-number measure. Operation similarity, in their turn,
is assessed based on operation descriptions and their input/output messages. To
compare message pairs we again evaluate similarity of message descriptions and
compare their parts. Since one part with a complex data type or several parts

10 Natallia Kokash

Table 3. WSDL matching algorithm

double compareTypes(type1, type2)
1 scoreList← compareDescriptions(type1.description, type2.description)
2 for (int i = 0; i < type1.elementList.length; i++)
3 for (int j = 0; j < type2.elementList.length; j++)
4 d1 = type1.elementList[i].description
5 d2 = type1.elementList[j].description
6 M [i][j] = compareDescriptions(d1, d2)
7 scoreList← getAssignment(M [i][j]))
8 return getScore(scoreList)

double compareElementLists(partList, elementList)
1 for (int i = 0; i < partList.length; i++)
2 for (int j = 0; j < elementList.length; j++)
3 M [i][j] = compareDescriptions(partList[i].description, elementList[j].description)
4 scoreList← getAssignment(M [i][j]))
5 return getScore(scoreList)

double compareParts(part1, part2)
1 scoreList← compareDescriptions(part1.description, part2.description)
2 scoreList← compareTypes(part1.type, part2.type)
3 return getScore(scoreList)

double compareMessages(msg1, msg2)
1 scoreList← compareDescriptions(msg1.description, msg2.description)
2 for (int i = 0; i < msg1.partList.length; i++)
3 elementList1 ← msg1.partList[i].type.elementList
4 for (int j = 0; j < msg2.partList.length; j++)
5 elementList2 ← msg2.partList[j].type.elementList
6 for (int i = 0; i < msg1.partList.length; i++)
7 for (int j = 0; j < msg2.partList.length; j++)
8 M [i][j] = compareParts(msg1.partList[i], msg1.partList[j])
9 score1 = getScore(getAssignment(M [i][j]))
10 score2 = compareElementLists(msg1.partList, elementList2)
11 score3 = compareElementLists(msg2.partList, elementList1)
12 return max(score1, score2, score3)

double compareOperations(op1, op2)
1 scoreList← compareDescriptions(op1.description, op2.description)
2 scoreList← compareMessages(op1.inputMessage, op2.inputMessage)
3 scoreList← compareMessages(op1.outputMessage, op2.outputMessage)
4 return getScore(scoreList)

double compareServices(service1, service2)
1 scoreList← compareDescriptions(service1.description, service2.description)
2 for (int i = 0; i < service1.operationList.length; i++)
3 for (int j = 0; j < service2.operationList.length; j++)
4 M [i][j] = compareOperations(service1.operationList[i], service1.operationList[j])
5 scoreList← getAssignment(M [i][j]))
6 return getScore(scoreList)

with primitive data types can describe the same concept, we must compare
message parts with subelements of complex data types as well.

Function compareDescriptions(d1, d2) compares two concept descriptions
d1 and d2 either using TF-IDF heuristic with or without WordNet synonyms or
by applying lexical semantic similarity measure. Function getAssignment(M)
finds the maximum weight assignment considering matrix M as a bipartite graph
where rows represent set X, columns represent set Y and edge weight wij is equal
to M [i][j]. The total similarity score can be measured by any of the coefficients
in Table 2. We considered the impact of each element within a complex concept
to be proportional to its length, i.e., given list scoreList of matching scores of

A Comparison of Web Service Interface Similarity Measures 11

different elements,

getScore(scoreList) =
n∑

i=1

scoreList[i]/n,

where n is the list length.

6 Experimental Results

To evaluate the effectiveness of different approaches we run the experiments
using a collection of web services described in [17]. It consists of forty XMethods
service descriptions from five categories: ZIP code finder, Weather information
finder, DNA information searcher, Currency rate converter and SMS sender. In
Table 4, the collection characteristics and preprocessing time performance are
shown.

Table 4. Preprocessing performance

Services Operations Messages Parts Types
40 628 837 1071 410

Parsing time (sec): 37 Indexing time (sec): 2

Since we did not use any additional information apart from those indicated
in WSDL specification (i.e., service documentation and quality parameters), our
method can be compared with the interface similarity defined in [17]. Their
precision varied from 42 to 62%. The effectiveness of our method was evaluated
by calculation of average precision, that combines precision, relevance ranking,
and overall recall. Formally, it is defined as a sum of the precision at each relevant
document in the extracted list divided by the total number of relevant documents
in the collection:

avgPrec =
n∑

j=1

(relevant[j]
j∑

k=1

relevant[k]/j)/r,

where n is the number of documents, r is the total number of relevant documents
for the query and relevant[i] is 1 if i-th document in the extracted list is relevant
and 0 otherwise. Results are shown in the Figure 2.

Methods using TF-IDF heuristic and synonyms from WordNet were quite
fast, while the usage of lexical semantic similarity required a significant time
even for such a small collection. In addition, semantic similarity does not bring
any gain in matching precision. Algorithm implementation can be found on
http://dit.unitn.it/∼kokash/sources.

An interesting observation is that the groups with better precision in [17] cor-
respond to the groups with worse average precision for our experiments. This may
have happened due to different proportions of structure vs. semantic similarity

12 Natallia Kokash

Fig. 2. Average precision Fig. 3. Processing time

impact on the final similarity score. Enriching element descriptions by synony-
mous from the WordNet ontology leads to significant increase in index size (see
Figure 5). As we can conclude from this statistics, data types are the most infor-
mative part of WSDL files. Exhaustive WordNet context essentially differs the
text corpus used in concise service descriptions. Yet, WordNet does not provide
multitude associations that are required for service matching. Thus, words ”cur-
rency” and ”country” are not recognized as related concepts. Nevertheless, it is
clear that given a country name we can get its currency and use a web service
accepting currency codes as input to exchange money. Consequently, operations
getRateRequest(country1, country2) and conversionRate(fromCurrency, toCur-
rency) had significantly lower similarity score than they are expected to have. A
repository of verified transformations should be created by clustering of lexically
similar terms, terms in complex data types and explicit user experiences.

Table 5. Index size

Type Operation Description Total
Terms 1634 1336 177 3147

Synonyms 3227 1460 703 5390
Total 4861 2796 880 8537

To verify the results we experimented with the collection described in [16].
We compared 447 services5 divided into 68 groups (see Figure 4). For several
groups average precision was very low (20-40%) which partially is explained by
too general categorization rules in this collection (”business”, ”communication”,
”games”, ”country information”, etc.)

5 Stroulia and Wang describe a collection of 814 services. However, we excluded group
”unlabelled” consisting of 366 WSDL specifications. One WSDL file was not parsed
correctly by Wsdl4j library (http://sourceforge.net/projects/wsdl4j).

A Comparison of Web Service Interface Similarity Measures 13

Fig. 4. Average precision

14 Natallia Kokash

7 Conclusions and Future Work

We proposed a consistent technique for lexical and structural similarity assess-
ment of web service descriptions, that can be useful in discovery, service version
comparison, estimation of efforts to adapt a new service, automated service cat-
egorization and blocking in service registries. Our approach can significantly
reduce manual operations in these areas provided that the advertised specifi-
cations contain feasible information. What we frequently observed in our test
collections was an absence of any documentation and/or meaningful identifier
names.

Three different functions to measure specification lexical similarity were ap-
plied. The classical vector-space model has shown the best performance. Surpris-
ingly, application of semantic similarity metric did not help to improve preci-
sion/recall of service interface matching. The reason for this can be in ambiguity
of the terms used in service specifications. For some service classes, comparison
of WordNet-empowered descriptions brought a slight improvement. However,
classical TF-IDF heuristic over-performed the other approaches in most cases.
Due to excessive generality of WordNet ontology many false correlations were
found.

Particularly lacking from the literature was a comparative analysis of the
existing IR techniques applied for web service matchmaking. Our experiments
enlighten this situation and pose some relevant issues for future research. The
matching algorithms based on semantic similarity metric should be optimized.
More careful study of different approaches is also desirable. We suppose that this
work can be improved by using state-of-the-art IR approaches like classification
learning or supervised service matching. Also, we are planning to investigate ser-
vice behavioral compatibility in combination with matching of their structural,
syntactic and semantic descriptions.

References

1. Akkiraju, R., et al.: ”Web Service Semantics - WSDL-S”, April 2005,
http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.pdf.

2. Baeza–Yates, R., Ribiero–Neto, B.: Modern Information Retrieval. Addison Wesley,
1999.

3. Bruno, M., Canfora, G. et al.: ”An Approach to support Web Service Classification
and Annotation”, IEEE International Conference on e-Technology, e-Commerce and
e-Service, 2005.

4. Galil, Z: ”Efficient Algorithms for Finding Maximum Matching in Graphs”, ACM
Computing Surveys, Vol. 18, No. 1, 1986, pp. 23-38.

5. Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.: ”Web Service Discovery
Mechanisms: Looking for a Needle in a Haystack?”, International Workshop on Web
Engineering, 2004.

6. Corley, C., Mihalcea, R., ”Measuring the Semantic Similarity of Texts”, Proceed-
ings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and
Entailment, pp. 13-18, 2005.

7. Dong, X.L. et al.: ”Similarity Search for Web Services”, Proceedings of VLDB, 2004.

A Comparison of Web Service Interface Similarity Measures 15

8. Hausmann, J.H., Heckel, R., Lohmann, M.: ”Model-based Discovery of Web Ser-
vices”, Proceedings of the IEEE International Conference on Web Services, 2004.

9. Jilani., L.L., Desharnais, J.: ”Defining and Applying Measures of Distance Between
Specifications”, IEEE Transactions on Software Engineering, Vol. 27, No. 8, 2001,
pp. 673–703.

10. Kamps, J., Marx, M., Rijke, M., Sigurbjornsson, B.: ”Structured Queries in XML
Retrieval”, Conference on Information and Knowledge Management, 2005.

11. Papazoglou, M. P., Georgakopoulos, D.: ”Service-oriented computing”, Communi-
cations of the ACM, Vol. 46, No. 10, 2003, pp. 25–28.

12. Rahm, E., Bernstein, P.: ”A Survey of Approaches to Automatic Schema Match-
ing”, VLDB Journal, Vol. 10, No. 4, 2001, pp. 334–350.

13. Sajjanhar, A., Hou, J., Zhang, Y.: ”Algorithm for Web Services Matching”, Pro-
ceedings of APWeb, 2004, pp. 665–670.

14. Seco, N., Veale, T., Hayes, J.: ”An Intrinsic Information Content Metric for Seman-
tic Similarity in WordNet”, European Conference on Artificial Intelligence, 2004.

15. Carman, M., Serafini, L., Traverso, P.: ”Web Service Composition as Planning”,
Workshop on Planning for Web Services, 2003.

16. Stroulia, E., Wang, Y.: ”Structural and Semantic Matching for Accessing Web
Service Similarity”, International Journal of Cooperative Information Systems, Vol.
14, No. 4, 2005, pp. 407-437.

17. Wu, J., Wu, Z.: ”Similarity-based Web Service Matchmaking”, IEEE International
Conference on Services Computing, 2005, pp. 287-294.

18. Zaremski, A.M., Wing, J.M.: ”Specification Matching of Software Components”,
ACM Transactions Software Engineering Methodology, Vol. 6, No. 4, 1997, pp. 333–
369.

19. Zhuang, Z., Mitra, Pr., Jaiswal, A.: ”Corpus-based Web Services Matchmaking”,
AAAI Conference, 2005.

