DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://lwww.dit.unitn.it

EFFICIENT SEMANTIC MATCHING
Fausto Giunchiglia, Mikalal Y atskevich
and Enrico Giunchiglia

December 2004

Technical Report# DI1T-04-112

Also: paper accepted to 2™ European Semantic Web Conference
(ESWC’05)

Efficient Semantic Matching

Fausto Giunchiglia®, Mikalai Yatskevich', Enrico Giunchiglia®

1 Dept. of Information and Communication Technology
University of Trento,
38050 Povo, Trento, Italy
{fausto, yatskevi} @dit.unitn.it
2DIST - Universitadi Genova
Viale Causa 13, 16165, Genova, Italy
enrico@dist.unige.it

Abstract. We think of Match as an operator which takes two graph-like
structures and produces a mapping between semantically related nodes. We
concentrate on classifications with tree structures. In semantic matching,
correspondences are discovered by trandating the natural language labels of
nodes into propositional formulas, and by codifying matching into a
propositional unsatisfiability problem. We distinguish between problems with
conjunctive formulas and problems with digunctive formulas, and present
various optimizations. For instance, we propose a linear time algorithm which
solves the first class of problems. According to the tests we have done so far,
the optimizations substantially improve the time performance of the system.

1. Introduction

We think of matching as the task of finding semantic correspondences between
elements of two graph-like structures (e.g., conceptual hierarchies, classifications,
database schemas or ontologies). Matching has been successfully applied in many
well-known application domains, such as schema/ontology integration, data
warehouses, and XML message mapping. In this paper we concentrate on
classifications with tree structures.

Semantic matching, as introduced in [1, 5], is based on the key intuition that |abels
at nodes, which are written in natural language, are trandlated into propositional
formulas which codify the intended meaning of the labels themselves. This allows us
to codify the matching problem into a propositional unsatisfiability problem, which
can then be efficiently implemented using state of the art propositional satisfiability
(SAT) solvers [8, 9]. We call concept of a label the propositional formula which
stands for the set of documents that one would classify under a label it encodes. We
call concept at a node the propositional formula which represents the set of
documents which one would classify under a node, given that it has a certain label
and that it is in a certain position in atree [5]. As from [5], all previous approaches,
though implicitly or explicitly exploiting the semantic information codified in graphs,
differ substantially from our approach in that they compute a syntactic “similarity”
coefficients between labelsin the [0,1] range (see for instance [3, 10]).

The system we have developed, called S-Match [6], takes two classifications and
computes the strongest semantic relation holding between any pair of nodes. The
matching problem is articulated into two macro steps, namely element and structure
level matching. Element level matchers consider only the information on the atomic
level [7] (the labels of nodes), while structure level matchers consider also the
structure of the trees. Our goal in this paper is to describe the structure level matching
algorithm, as it has been implemented within S-Match, and present a set of
optimizations. In particular, we distinguish between two main classes of problems. In
the first class all the concepts at nodes are atomic or conjunctive formulas. In the
second class the concepts at nodes may also contain digjunctive formulas. In the case
of conjunctive concepts at nodes we present a modification of the original agorithm
which solves the node matching problem in linear time. With disjunctive concepts we
present various techniques, which, among the other things, alow us to avoid the
exponential space explosion which arises when converting disunctive formulas into
Conjunctive Norma Form (CNF). This modification is required since al state of the
art SAT deciders take CNF formulasin input.

We have evaluated the time performance of the optimized algorithm against its
basic version and several state of the art matching systems. The optimizations seem to
improve substantially the time performance of SMatch. In all cases SMatch
performs better or much better than the unoptimized version and aways competes
well with the other matching systems. In particular, it outperforms them on trees with
hundreds or thousands of nodes.

The rest of the paper is organized as follows. Section 2 provides an overview of the
S-Match tree matching agorithm. Section 3 discusses the basic node matching
agorithm. The next two sections are dedicated to the two classes of hode matching
problems we have identified. Node matching problems with conjunctive concepts at
nodes (and their optimizations) are discussed in Section 4, while the node matching
problems with disjunctive concepts at nodes (and their optimizations) are described in
Section 5. We discuss the evaluation results in Section 6. Section 7 concludes the

paper.

2. Thetree matching algorithm

As from [6], the S-Match algorithm is organized according the following four macro

steps:

- Sep 1: for dl labelsin the two trees, compute concepts of labels;

- Sep 2: for al nodes in the two trees, compute concepts at nodes;

- Sep 3: for all pars of labels in the two trees, compute the semantic relations
between concepts of 1abels;

- Sep 4: for all pars of nodes in the two trees, compute the semantic relations
between concepts at nodes.

The first two steps represent the pre-processing phase, while the third and the
fourth steps correspond to the element-level and structure-level matching
respectively. The semantic relations we consider are: equivalence (=); more general

(E); less general (i); digjointness (*); overlapping (C). When none of the relations

holds, the special I1dk (I don’'t know or (?)) relation is returned.
The version of the algorithm defined in this paper assumes that:

- There are no negated atomic concepts of 1abels (one example of negated concept of
label is Cexcept app|e:®Capp|e)

- Theinformation we use, namely the labels of nodes and the knowledge residing in
WordNet (see below) is al globally consistent. Under this assumption the only
reason why we get an unsatisfiable formula is because we have found a match
between two nodes
In order to understand how the agorithm works, consider for instance the two trees

depicted in Figure 1a

lmages Eutore

adoma
||| saanjord
LM,
282010
539l
puB aulNy

adouangy

images

i Images
" Europe Picnwes (3) {3) Wine and Cheese py Wope =
i

I | saamang

c
¢ |Europe | <

Fig. 1. (a): Two trees. (b): The matrix of relations between concepts of labels. (c): The matrix
of relations between the concepts at nodes (matching result).

During Step 1 we first tokenize labels. For instance “Wine and Cheese” becomes
<Wine, and, Cheese>. Then we lemmatize tokens. Thus for instance “Images’
becomes “image”. Then, an Oracle (at the moment we use WordNet 2.0) is queried in
order to obtain the senses of the lemmatized tokens. Afterwards, these senses are
attached to atomic concepts. Finally, complex concepts are built suitably composing
atomic concepts. Thus, the concept of the label Wine and Cheese is computed as Ciyne
ad Chesse = <wine, {sensesy#4}>U<cheese, {sensesy#4}>, where <cheese,
{sensesy\#4}> is taken to be the union of the four WordNet senses, and similarly for
wine. Notice that natural language and is converted into logical disjunction rather than
conjunction.

Sep 2 takes into account the structural schema properties. The logical formula for
a concept at a node is constructed most often as the conjunction of the concept of a
label formulas in the concept path to the root [5]. For example, the concept C, for the
node Picturesin Figure lais computed as C,= Cgrope U Chicures:

Element level semantic matchers are applied during Step 3. They determine the
semantic relations holding between pairs of atomic concepts of labels. For example,
from WordNet we can derive that image and picture are synonyms, and therefore,
Cimages = Chricures: Notice that Image and Picture have 8 and 11 senses in WordNet,
respectively. In order to determine the senses which are relevant in the current
context, sense filtering techniques are applied (see [11] for more details). The
relations between the atomic concepts of labels for the trees depicted in Figure 1la are
reported in Figure 1b.

Element level semantic matchers provide the input to the structure level matcher,
which is applied in Sep 4. This matcher produces the set of semantic relations
between concepts at hodes (see Figure 1c for example). On this step the tree matching
problem is reformulated into the set of node matching problems, one for each pair of

nodes. Further, each node matching problem is reduced to a propositional validity
problem.

The pseudo code of the Steps 3 and 4 of the semantic matching algorithm is
reported in Figure 2. t r eeMat ch takes 2 trees of Nodes (sour ce, target)and
returns the matrix of semantic relations between concepts at nodes in both trees
(cNodesMatri x). First, fill CLabMatri x exploit element level semantic
matchers library in order to fill the matrix of relations between concepts of labels in
both trees (cLabsMat r i x) (line 11). This action corresponds to the third step of the
tree matching agorithm. Afterwards, two loops over al nodes of source and
target trees are executed (lines 12-20 and 15-20). Within these loops, the
propositional formulas corresponding to the concepts at nodes (cont ext a,
cont ext g) are computed by get CnodeFor mul a (lines 14, 17).

Node: struct of
int nodel d;
String | abel;
String clLabel;
String cNode;

agrwONE

6.String[][] treeMatch(Tree of Nodes source, target)
7. Node sourceNode, t ar get Node;

8. String[][] cLabsMatrix, cNodesMatrix, rel Matrix;
9. String axionms, context, contextyg;

10.int i,j;

11.cLabsMatrix=fill CLabMatri x(source,target);

12. For each sourceNode in source

13. i=get Nodel d(sour ceNode) ;

14. cont ext p=get CnodeFor nul a (sour ceNode) ;

15. For each targetNode in target

16. j =get Nodel d(t ar get Node) ;
17. cont ext g=get CnodeFor nul a (tar get Node) ;
18. rel Matri x=extract Rel Matri x(cLabsMatri x,
sour ceNode, target Node);
19. axi oms=nkAxi ons(rel Matri x) ;
20. cNodesMatri x[i][]]=nodeMat ch(axi ons, cont ext 4,
cont ext) ;

21. return cNodesMatri x;
Fig. 2. The pseudo code of the tree matching algorithm.

rel Matri x iscaculated in the inner loop by ext ract Rel Mat ri x (line 18). It
contains the part of the cLabsMatri x relevant to the particular node matching
problem. axi ons (line 19) contains the conjunction of the propositional formulas in
rel Mat ri x. For example, the semantic relations in Figure 1b, which are considered
when we match Europe and Pictures are Europex= Europes, Images,= Picturess. In
this case axi oms is (Europe, « Europeg)U (Images, « Picturess). Notice that,
subscripts designate the context (either A or B) to which a propositional variable (or
concept) belongs. The detailed description of nodeMat ch is provided in the next
section.

3. The node matching algorithm

nodeMat ch input formulas are combined to obtain the following formula:

(axioms) ® rel(context,, contextg), (1)

where axioms, context,, contexts are as defined in t r eeat ch (Figure 2), while
rel(context, , contextg) is the formula corresponding to the semantic relation being
checked, (namely eguivalence, less or more generality, or digointness). As from [5],
two nodes match if and only if Eq. 1 isvalid, namely if it is true for al possible truth
assignments to its propositional variables. Given that most of the available
propositional solvers are satisfiability checkers, the negation of the matching formula
is checked for unsatisfiability. Thisyields the following formula

axioms UQ rel (context, , contextg) 2

Table 1 reports the resulting matching formulas as a function of the semantic relation
being tested. Notice that the check for equality is omitted. In fact A=B holds iff Al B
and AEB hold.

Table 1. The relationship between semantic relations and propositional formulas.

rel(a,b) T_ransl aI'OF‘ .Of rel(a " b) CNF trandation of Eq. 2
in propositional logic
a=b ac b N/A
al b a®b axiomsUcontext,U @contexts
aEb b® a axiomsUcontextgU @context,
a‘b @(alb) axiomsUcontext,U contextg

Consider the pseudo code of the node matching algorithm, as described in Figure 3.

110. String nodeMatch(String axi ons, context, contextyg)

120. String forml a=And(axi ons, cont ext 5, Not (cont extg));
130. String formul al nCNF=convert TOCNF(f or nul a) ;

140. bool ean isLG=i sUnsati sfi abl e(formul al nCNF)

150. formul a=And(axi oms, Not (context,), contextsg);

160. formul al nCNF=convert ToCNF(f or nul a) ;

170. bool ean i sM&= isUnsati sfiabl e(fornul al nCNF) ;

180. if (isMG & isLQ

190. return “=";

200. if (isLQ

210. return “i”;

220. if (isMy

230 return “E”;

240. formul a= And(axi ons, context, contextg);

250. fornul al nCNF=convert ToOCNF(f or mul a) ;

260. bool ean i sOpposite= isUnsatisfiabl e(fornulal nCNF) ;
270. if (isCOpposite)

280. return “~";

290. return “1dk”;

Fig. 3. The pseudo code of the node matching algorithm.

nodeMat ch constructs the formulas needed for testing less generality (line 120) and
more generality (line 150), it converts them to CNF (lines 130, 160) and checks for
unsatisfiability (lines 140, 170). If both relations hold, then the equivalence relation is
returned (line 190). Afterwards, the same procedure is repeated for disjointness test. If
al thetests fail “1dk” isreturned (line 290).

Prior to the discussion of optimizations to our basic solution, let us classify the

concepts of labels and concepts at nodes. We distinguish between four categories of
concepts of labels:

- Atomic: the concept of alabel is an atomic proposition. For example, the concept

of the label Europe is Cgyrope = <EUrope, {senses#1}>, where sensesy#1 stands
for aWordNet sense.

- Conjunctive: the concept of alabel is a conjunction. For example, the concept of
the label transmission gearbox is Ctransmission gearbox = CtransﬂssionUCgearbox-

- Digunctive: the concept of alabel isadisunction. For example, the concept of the
label jet and trains and carsis Cig and trains and cars=Cjet UCkainUCcar-

- Full proposition at logic: the concept of a label contains both conjunctions and
digunctions. For example the concept of the label computers and electrical
eqUi pment is Ccomputers and electrical equi pment:Ccomputer(J (Cel ectrical UC equi pment)

This classification allows us to further distinguish between two classes of concepts
at nodes, which are at the basis of our optimizations:

- Conjunctive concepts at nodes: the concept at anode is a conjunction.

- Digunctive concepts at nodes: the concept at a node contains both conjunctions
and digjunctionsin any order.

4. Conjunctive concepts at nodes

4.1 Node matching problems

Consider the two trees depicted in Figure 4a. Notice that they have only atomic
concepts of labels. Let us consider the matching of gearbox and clutch.

oo
0e | o e | |5 | =

huge | = Huge = =2 =2 |2

transmission == transmission| = | = | = |2

clutch g & clutch| = | = | | L

- gearbo @ 3 -

Fig. 4. (a): Two trees. (b): The matrix of relations between concepts of labels. (c): The matrix
of relations between concepts at nodes (matching result).

The relevant semantic relations between concepts of 1abels are depicted in Figure
4b. Asfrom Table 1, axiomsis:
(biga« hugeg)U(cara« autog) U (transmissiona« transmissiong)U
(gearbox,® transmissiong) U(clutchg® transmission,)U @(clutchgUgearbox,)
which, translated in CNF, becomes:
(@i gaUhuges) U(bigaUZhuges) U(@car \Uautog) U(car \UZautog) U
(@transmission,U transmissiong) U (transmission,U transmissiong) U (4
(Dgear box,Utransmissi ong) U(@cl utchgUtr ansmi ssi on,) U(@cl utchg Udgear box,)
As from Step 2 in Section 2, context, and contextg are constructed by taking the

conjunction of the concepts of labels in the path to root. Therefore, context, and
contextg are:

3

bigaUcar oUtr ansmi ssionaUgear boxa (5)
hugegUautogUtransmissiongUclutchg (6)

while their negations are:
@bigaUBcar JUBtr ansmission,Udgear box (7
@hugesUdautogUditr ansmi ssiongUdcl utchg (8)

Let us consider the formula to be checked for unsatisfiability, as from Table 1. The
first observation is that axioms remains the same for all the tests, and it contains only
clauses with two variables, where a clause is a finite digunction of literals. In the
worst case it contains 2*na* ng clauses, where ny and ng are the number of atomic
concepts of labels in the paths to the root (in our example n, and ng are equa to 4).
The second observation is that the formulas for less and more generaity are very
similar and differ only in the context formula which is negated. Thus, for instance, in
the less generality test contextg is negated. This means that Eq. 1 contains one clause
with ng variables (Eg. 8) in addition to n, clauses with one variable derived from
contexta (Eq. 5). Finally, again from Table 1, in the case of disjointness test contexta
and contexty are not negated. Therefore, Eq. 1 contains na+ng clauses with one
variable (Eg. 5 and Eq. 6).

So far we have concentrated on atomic concepts of labels. The propositional
formulas remain the same if we move to conjunctive concepts at 1abels. Consider the
trees depicted in Figure 5a. Let us consider the matching between transmission
gearbox and transmission clutch.

=

o =

] =

Huge auto FAERE: 5— o |z &
e |of |5 |5 2 g E

b a o E.

uge | = #® |8 S

transmission == transmission clutch| < 1

clutch =Rl

a)] c)

Fig. 5. (a): Two trees. (b): The matrix of relations between concepts of labels in the trees. (c):
The matrix of relations between concepts at nodes (matching result).

Compare the matrices on the Figure 5b and Figure 4b. They are the same. The
matrix of the relations between concepts of labels unambiguously determines axioms
(see Eg. 3 and 4). Furthermore, as from Step 2 in Section 2, the propositional
formulas for context, and contextz are the same for atomic and for conjunctive
concepts of labels as long as they “globally” contain the same formulas. In fact,
concepts at nodes are constructed by taking the conjunction of concepts at labels.
Splitting a concept of a label with two conjuncts into two atomic concepts has no
effect on the resulting matching formula

4.2 Optimizations
Let us consider first more and less generality and then disjointness.

4.2.1 Lessand more generality tests
Asfrom Section 4.1, formula (Eg. 1) in this case is as follows:

Axioms Context —Context
A B
y "\ ~ /-A\ ,—/\
nkm n*m n*xm m (9)
N (mAsvBoA A (ApV=BpA /\ (mApV=By) A /\ A; NV -B;
q=0 w=0 =1 j=1

where n is the number of variables in context,, m is the number of variables in
contextg, A’'s belong to contexta, and B;’s belong to contexts. s, k, p are in the [0..n]
range, while t, I, r are in the [0..m] range. Axioms can be empty. Eq. 9 is composed of
clauses with 1 or 2 variables plus one clause with possibly more variables (the clause
corresponding to the negated context). The key observation is that the formulain Eq.
9 is Horn: each clause contains at most one positive literal. Therefore, the satis?ability
problem can be decided in linear time by the unit resolution rule [2]. Notice, that
DPLL-based SAT solvers require quadratic timein this case [15].

In order to understand how the linear time agorithm works, let us prove the
unsatisfiability of Eq. 9 in the case of gearbox and clutch. In this case, EQ. 9 becomes

((@bigaUnuges) U(bi gAUQhugeB) U(Dcar ,Uautog) U(car ,UZautog)U

(@transmissiongU transmission,) U (transmissiongU@ transmission,) U

(Dgearbox,Utransmissi i0Ng) U((ch utchgUtransmission,)U (10)
(BclutchgUBgear boxa))U bigaUcar ,Utransmission,Ugear box,U
(BhugesUdiautog Uditr ansmi ssionsUdcl utchg)
where the variables from context, are written in bold.

First, we assign true to al unit clauses occurring in Eq 10 positively. Notice that
these are all and only the clauses in contexta. This alows us to discard the clauses
where context, variables occur positively (in this case: bigaUZhugeg, car,Udautog,
@gear box,Utransmissiong and @clutchgUtransmission,). The resulting formulais

hugesUautogUtr ansmissiongUdiclutchgU
(BhugesUdiautog Uditr ansmi ssionsU @cl utchg)

Notice that this formula does not contain any variable derived from contexta.
Notice aso that, by assigning true to huges, autog and transmissiong and false to
clutchg we do not derive a contradiction. Therefore, (Eq. 10) is satisfiable. In fact, a

(11

(Horn) formula is unsatisfiable if and only if the empty clause is derived (and
satisfiable otherwise).

Consider again Eq. 11. For this formula to be unsatisfiable all the variables
occurring in the negation of contextg (@hugesUdautosUditransmissionsUdclutchg in
our example) should occur positively in the unit clauses obtained after resolving
Axioms with the unit clauses in context, (huges, autog and transmissiong in our
example). But for this to happen, for any B; in contextg there must be a clause of form
@AUB; in axioms, where A is aformulaof contexta. But formulas of the form @A UB;
occur in Eq. 9 if and only if we have the axioms of the form A =B, and Al B;. These
considerations suggest the following algorithm for testing satisfiability:

- Sep 1. Create an array of size m. Each entry in the array stands for one B; in Eq. 9.
- Step 2. For each axiom of type A=B; and Al B, mark the corresponding B;.
- Sep 3. If al the Bj's are marked, then the formula is unsatisfiable.

nodeMat ch can be modified as in Figure 6 (the numbers on the left indicate

where the new code must be positioned):

111. if (contextA and contextB are conjunctive)

112. i sSLG=f ast Hor nUnsat Check (contextA, axions,“l”);
113. i sSM&=f ast Hor nUnsat Check (contextB, axions, “E");
114. el se

301. bool ean fast HornUnsat Check(String context, axions,
rel);

302. int nrget NunOf Var (String context);

303. bool ean array[m;

304. for each axiomin axi ons

305. if((getAType(axiom="=")|]| (get AType(axi on)=rel))

306. i nt j =get Nunmber O SecondVari abl e(axi om;

307. array[j]=true;

308. for (i=0; i<ny i++)

309. if (larray[i])

310. return fal se;

311. return true;

Fig. 6. Less and more generality tests optimization pseudo code.

f ast Hor nUnsat Check implements the three steps above. Step 1 is performed in
lines (302-303). Then, a loop on axi ons (lines 304-307) implements Step 2. The
final loop (lines 308-310) implements Step 3.

4.2.2 Digointness test
Using the same notation asin Section 4.2.1, formula (Eq. 1) is asfollows:

Axioms Context , Contexrtp
. A~ ~ - ——
n*xm n*xm nxm n m (12)
A (=asvBoOAn N\ (Apv-Bpn N\ (mApV=Br)a A A; A A\ Bj
q=0 w=0 v=0 =1 Jj=1

For example, the formula for testing disjointness between gearbox and clutch is

(@i ga Unuges) U(bi g UBhuges) U(@car , Uautog) U(car , Udautog) U
(@transmissiongU transmission,) U (transmissiongUd transmission,) U
(Dgear box Utransmissiong) U(@clutchgUtransmissiona)U (13)
(BclutchgUBgear box)U bigaUcar ,UtransmissionaUgear box,U
hugesUautogUtransmissiongUcl utchg

Here again, the formula in Eqg. 12 is Horn and thus, similarly to Section 4.2.1, the
satisfiability of the formula can be decided by unit propagation. After assigning true
to all the variables in context, and propagating the results we obtain the following
formula
hugesUautogU transmissiong UdiclutchgUnugegUautogUtransmissiong Uclutchg — (14)
If we further unit propagate hugeg, autog and transmissiong (this means that we assign
true to them), then get the contradiction clutchgU @clutchg. Therefore, the formulais
unsatisfiable. This contradiction arises because (@clutchgUBgearbox,) occurs in Eq.
13, which, in turn, is derived (as from Table 1) from the digointness axiom
(clutchg” gearbox,). In fact, all the clauses in Eq. 12 contain one positive literal
except for the clauses in axioms corresponding to digjointness relations. Thus, the key
intuition here is that if there are no digointness axioms, then Eq. 12 is satisfiable. On
the other hand, if there is a digjointness axiom, atoms occurring there are also ensured
to be either in context, or in contextg and thus Eq. 12 is unsatisfiable. Therefore, the
optimization consists of just checking the presence/absence of disjointness axiomsin
axioms.

The pseudo code of nodeMat h can therefore be modified as follows:

231. If (contextA and contextB are conjunctive)

232. If (there is disjointness axiomin the axi ons)
233. i sOpposi te=true;

234. el se

235. i sOpposi te=fal se;

236. el se

Fig. 7. Digointness test optimization pseudo code.

5. Digunctive concepts at nodes

5.1 The node matching problem

Consider the trees depicted in Figure 8a. Notice that the concepts at nodes contain
disiunctive concepts of labels. Let us consider matching fifties or sixties or seventies
with twenties or thirties or forties.

ofma
o

NS

et or cargo or auto Jetor trains or cars

fitties or sixties or Seventies twenties or thirties or forties

a b forties 5

jet

trains

ome

cars.

: jet or trains or cars
twenties I

= twenties or thirties or forties
thirties

Fig. 8. (a): Two trees. (b): The matrix of relations between concepts of labels in the trees. (c):
The matrix of relations between concepts at nodes (matching result).

The relations between atomic concepts of labels in both trees are depicted in Figure
8b. Asfrom the second column of Table 1 axiomsis:

(carsg « auton) U (jeta« jetg) (15)
which can be rewritten as:
(Dcarss U auto,) U (carssU @auton) U (DjetaU jets) U (jetaU Dets) (16)
Asfrom Step 2 in Section 2 context, and contextg are:
(jetaUcar goaUauto,) Ufifties,Usixties, Useventies,) (17)
(jetgU traingUcarsg) U(twentiesg UthirtiessU fortiess) (18)
The negations of context, and contexty are:
(DjetsUBcar go,Udauto,) U (fifti es,Udisi xti esyUDseventies,) (19)
(DjetsUBtraingUdcarss) U (Btwenti essUBithirtiessU Sfortiesg) (20)

Let us consider the formulato be tested for unsatisfiability, asfrom Table 1. Again,
axioms is the same for al the tests. As from Section 4.1, it consists up to 2*ny*ng
clauses with two variables, where ny and ng are the number of atomic concepts of
labels in the paths to root. In our example n, and ng are both equal to 6. The key
observation hereis that context, and contextz may contain any number of disunctions.
Some exist because derived from the labels, while others may be obtained by negating
context, or contextg (as from the above example, in the case of less and more
generality tests). Thus, for instance, as from Table 1 in case of less generality test we
obtain the formula.

(@carss U auto,) U (carssU @auto,) U (DjetaUjets) U (jetaU Djets) U
(jetaUcar goaUauto,) U(fiftiesyUsixties, Useventies,) U (21)
((Djetg UBtraingUdcarss) U (Btwenti essUBthirtiessU Bfortiess))

5.2 Optimizations

With disjunctive concepts at nodes, Eqg. 1 is a full propositional formula and no
hypothesis can be made on its structure. As a consegquence its satisfiability must be
tested using a standard DPLL SAT solver. Thus for instance CNF conversion of Eq.
21is

(Dearss Uauto,) U (carssU @auton) U (DjetaUjets) U (jetaU Djetg) U
(jetaUcar goaUauto,) U(fiftiesyUsixties, Useventies,) U
(DjetsUdtwentiess)U (@jetsUBthirtiess) U (D etsUfor tiess)U (22)
(@traingUditwentiesg)U (BtraingUdthirtiess)U (BtraingUdfortiess)U
(Dcar ssUBtwenti esz) U (Bcar ssUBthirtiess)U (Bcar ssUdfortiess))

In order to avoid the space explosion, which may arise when converting a formula
to CNF (see for instance Eq. 22), we apply a set of structure preserving
transformations [14, 4]. The main idea is to replace digunctions occurring in the
origina formula with newly introduced variables and explicitly state that these
variables imply the subformulas they substitute. Consider for instance Eqg. 21. We
obtain:

(Dearss Uauto,) U (carssU @auton) U (DjetaUjets) U (jetaU Djetg) U
(jetaUcargoUauto,) U(fifties,Usixties, Useventies,) U (new;Unew,)U (23)
(@new,U @ ety Uit aingUBcar g) U(@new,Udtwenti essUBthirtiessU @fortiess)
Notice that the size of the propositional formula in CNF grows linearly with
respect to number of disunctionsin original formula.
To account for this optimization in nodeMat ch all calsto convert TOCNF are
replaced with callsto opt i mi zedConvert TOCNF, (see Figure 9):

130. formul al nCNF=opt i m zedConvert TOCNF(f or nul a) ;
160 f ormul al NCNF=opt i mi zedConvert TOCNF(f or ul a) ;

250 formul al NnCNF=opt i mi zedConvert TOCNF(f orul a) ;

Fig. 9. The CNF conversion optimization pseudo code.

6. Evaluation results

We have implemented the optimizations described above and evaluated the resulting
system S-Match against the original system and two state of the art matching systems,
namely COMA [3] and Similarity Flooding (SF) [12] as implemented in Rondo
system [13]. Let us call SMatchg the original version without optimizations. Notice
that S-Match, COMA, and SF exploit different matching techniques and differ
substantially in the quality of matching results. See [6] for a detailed comparison
among these systems. In this evaluation we have concentrated only on the time
performance of the systems. The tests have been performed on a P4 computer with
512 MB of RAM installed. The systems were limited to alocate no more than 512
MB of memory.

The systems have been tested on the six matching problems which can be found at
http://dit.unitn.it/~accord/. Table 3 reports the properties of these problems.

Table 2. The structural properties of the trees in the matching problems.

Trees #of nodes | # of labels Average f of Concepts at
max. er tree er tree labels per nodes
depth P P node
Cornell-Washington
with atomic concepts 10/8 253/220 253/220 1 Conjunctive
of labels
Handmade trees with
digunctive concepts | 10/10 10/10 30/30 3/3 Digjunctive
of labels
Looksmart-Yahoo | 10/8 | 140/74 222/101 1,58/1,36 %9”.1 unctive
igunctive
Y ahoo-Standard 3/3 | 333115 | 965/242 2,9/2,1 Conjunctive
Digunctive
Google-Yahoo 1111 | 561665 | 722/945 1,28/1,42 CD‘."TJ unctive
igunctive
Google-Looksmart | 11/16 | 706/1081 | 1048/1715 | 1,48/1,63 %9”.1 unctive
igunctive

6.1 Conjunctive concepts at nodes

On this problem S-Matchg works two times faster than COMA. In fact, in this case
the DPLL SAT solver of SMatch runs in polynomia time. S-Match instead works
more than 5 times faster than COMA. However it still runs about 17% slower than
SF. This can be explained by noticing that in SF the similarities between the 1abels of
nodes obtained by a simple and fast string matcher, and propagated through a graph
structure using a fix point algorithm. This algorithm is very fast and, on these
examples, it converges after a few iterations. The drawback of SF, as the last test
below shows, isthat it requires a much larger amount of memory.

Cornell\Washington with atomic concepts at Handmade trees with disjunctive concepts at
labels labels
120 10000
oy 1000
80
L) " 100
g a0 g
S E 10
20 1 ﬂ ‘
0 T T T 01 T T T
a) COMA S-Match S-Matchs SF by COMA S-Match S-Matchs SF

Fig. 10. Execution time of the matching systems.

6.2 Disjunctive concepts at nodes

Let us consider the test with handmade trees. As from Figure 10b, SMatch works
about 4 orders of magnitude faster than S-Matchg, about 4 times faster than COMA,
and as fast as SF. The significant improvement of the optimized algorithm can be
explained by considering that S-Matchg does not control the exponential space
explosion on such trees. In fact, the biggest formula in this case consists of about

118000 clauses. The optimization introduced in the Section 5.2 reduces this number
to about 20-30 clauses.

We have then considered 4 matching problemsinvolving real world classifications.
Three of them, Looksmart-Yahoo, Google-Yahoo, and Google-Looksmart, involve
web directories. The forth involves parts of the Yahoo and the Standard catal ogues
which describe business activities. The results obtained for the Looksmart-Yahoo
matching problem are depicted in Figure 11a. In this case the trees contain about 100
nodes each. S-Match works about 18% faster than S-Matchg and about 2 % slower
than COMA. SF works about 3 times faster. The relatively poor improvement (18%)
can be explained by the fact that our optimizations are implemented in a
straightforward way. The higher implementational constants on small trees (like
Looksmart-Y ahoo) can overcome the order of growth the complexity function.

Looksmart-Yahoo Yahoo-Standart
12 70
10 &0 —
50
8-
Ll Ll
& 6 & 40
£ E w0
4
20
] m -
0 ; ; ; 0 ; ; ;
3 COMA S-Match S-Matchs SF) COMA S-Match S-Matchs SF

Fig. 11. Execution time of the matching systems.

Figure 11b reports the results obtained for the Y ahoo-Standard matching problem.
S-Match works about 40% faster than S-Matchg. It performs 1% faster than COMA
and about 5 times dlower than SF. The relatively small improvement in this case can
be explained by noticing that the maximum depth in both trees is 3 and that the
average number of labels at node is about 2. The optimizations can not significantly
influence on the system performance.

Google-Yahoo Google-Looksmart

1400 6000

1200 5000 +——oJ

1000 — 4000]
»)
g g 3000 — —
E G0 +— — E
= =

400 2000 +— —

200 —1 ‘ | —_— 1000 ——

0 0

3 COMA S-Match S-Matche &) COMA S-Match S-Matchs

Fig. 12. Execution time of the matching systems.

The next two matching problems are much bigger than the previous ones. They
contain hundreds and thousands of nodes. On these trees SF went out of memory.
Therefore, we provide the results only for the other systems. The results are reported
in Figure 12a. S-Match is more than 6 times faster than S-Matchg. COMA performs
about 5 times slower than the optimized version. These results suggest that the
optimizations described in this paper are better suited for big schemas. The results of
the biggest matching problem, involving Google-Looksmart, are presented in Figure
12b. In this case SMatch performs about 9 times faster than COMA, and about 7
times faster than S-Matchg.

8. Conclusion

We have presented a structure level semantic matching algorithm and proposed
several optimizations to its original version. In particular we have distinguished
between two main classes of problems, namely the problems with conjunctive and
with disjunctive concepts at nodes. For the first class of problems we have presented a
modification to the original agorithm which solves the node matching problem in
linear time. With digjunctive concepts we have presented various techniques, which
allow us to avoid the exponentia space explosion which arises when converting
disunctive formulas into CNF. We have evaluated S-Match against severa state of
the art matching systems and against the original unoptimized version, S-Matchg. The
results thorough preliminary are promising. S Match aways performs better than S
Matchg. Furthermore, in most cases SMatch competes well, in terms of time
performance, with various state of the art matching systems. Optimizations are most
effective on big trees with hundreds and thousands of nodes.

Acknowledgements. This work has been partialy supported by the European
Knowledge Web network of excellence (1ST-2004-507482) and by the research grant
COFIN 2003 Giunchiglia 40100657.

References

[1] P. Bouquet, L. Serafini, S. Zanobini. Semantic Coordination: A new approach and an
application. In Proceedings of ISWC 2003.

[2] M. Davis and H. Putnam. A computing procedure for quantification theory. In Journal of
the ACM, number 7, pages 201215, 1960.

[3] H. Do, E. Rahm. COMA - A system for Flexible Combination of Schema Matching
Approaches, In Proceedings of VLDB 2002

[4] E. Giunchiglia, R. Sebastiani. Applying the Davis-Putnam procedure to non-clausal
formulas. In AIIA'99.

[5] F. Giunchiglia, P. Shvaiko. Semantic Matching. In The Knowledge Engineering Review
Journa, 18(3) 2003.

[6]. F. Giunchiglia, P. Shvaiko, M. Y atskevich. S-Match: An agorithm and an implementation
of semantic matching. In Proceedings of ESWS04.

[7] F. Giunchiglia and M. Yatskevich. Element level semantic matching. In Proceedings of
Meaning Coordination and Negotiation workshop at ISWC, 2004.

[8] D. Le Berre JSAT: Thejava satisfiability library. http://cafe.newcastle.edu.au/daniel/JSAT/.

[9] D. LeBerre SATAJ: A satisfiability library for Java. http://www.sat4j.org/.

[10] J. Madhavan, P. Bernstein, E. Rahm. Generic Schema Matching with Cupid. VLDB 2001

[11] B. Magnini, M. Speranza, C. Girardi. A Semantic-based Approach to Interoperability of
Classification Hierarchies: Evaluation of Linguistic Techniques. In: Proceedings of
COLING-2004, Geneva, Switzerland, August 23 - 27, 2004.

[12] S. Mélnik,, H. Garcia-Molina, E. Rahm: Similarity Flooding: A Versatile Graph Matching
Algorithm. Proceedings of ICDE, (2002) 117-128.

[13] S. Melnik, E. Rahm, P. Bernstein: Rondo: A programming platform for generic model
management. Proceedings of SIGMOD’ 03, (2003) 193-204.

[14] D. Plaisted and S. Greenbaum. A Structure-preserving Clause Form Translation. Journal of
Symbolic Computation, 2:293-304, 1986

[15] G. Tsetin. On the complexity proofs in propositional logics. Seminars in Mathematics, 8,
1970

Appendix A. The pseudo code of the optimized S-Match algorithm

OrwWNE

21.

110

111.
112.

113.
114.
120.
130.
140.
150.
160.
170.
180.
190.

200

210.

220
230

Node: struct of
i nt nodel d;
String | abel;
String clLabel;
String cNode;

.String[][] treematch(Tree of Nodes source, target)

Node sourceNode, t ar get Node;
String[][] cLabsMatrix, cNodesMatrix, rel Matrix;
String axions, context, contextg;

int i,
.cLabsMatrix=fill CLabMatri x(source,target);
. For each sourceNode in source

i =get Nodel d(sour ceNode) ;
cont ext ,=get CnodeFor nul a (sourceNode);
For each targetNode in target
j =get Nodel d(t ar get Node) ;
cont ext g=get CnodeFor nul a (tar get Node) ;
rel Matri x=extract Rel Matri x(cLabMatri x,
sour ceNode, target Node);
axi oms=nkAxi oms(rel Matri x);
cNodesMatri x[i][]]=nodeMat ch(axi ons,
cont ext,, contextpg);
return cNodesMatri x;

.String nodeMatch(String axi ons, context, contextpg)
if (contextA and contextB are conjunctive)
i sSLG= fast Hor nUnsat Check (context, axioms, “I”)
i SMG= fast Hor nUnsat Check (contextg, axions,“E”)
el se
String fornmul a=And(axi ons, cont ext 5, Not (cont ext g))
String formul al nCNF=opti m zedConvert TOCNF(f or mul a)
bool ean i sLG=i sUnsati sfi abl e(formnul a)
f or mul a=And(axi ons, Not (context,), contextyg);
formul al nCNF= opti m zedConvert ToCNF (fornul a);
bool ean i sM&= isUnsati sfiable(formula);
if (isMG && isLG
return “=";
.if (isLG
return “i”;
Jf (i sMy
return “E”;

231. If (context, and contextg are conjunctive)

232. If (there is disjointness axiomin the axions)
233. i sOpposi te=true;

234. el se

235. i sOpposi t e=fal se;

236. el se

240. fornmul a= And(axi ons, context, contextg);

250. fornmul al nCNF= opti ni zedConvert ToCNF (fornul a);
260. bool ean i sQpposite= isUnsatisfiable(formula);
270.if (isOpposite)

280. return “M7;

290.return “1dk”;

301. bool ean fast Hor nUnsat Check(String context, axions,
rel)

302. int meget NunmOf Var (String context);

303. bool ean array[m;

304. for each axi omin axiomns

305. if((getAType(axiom="=")|]|(get AType(axion)= rel))

306. i nt j =get Nunber O SecondVar i abl e(axi onm

307. array[j]=true;

308. for (i=0; i<m i++)

309. if (larray[i])

310. return fal se;

311. return true;

