

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

A CLASSIFICATION OF SCHEMA-BASED MATCHING
APPROACHES

Pavel Shvaiko

August 2004

Technical Report # DIT-04-093

Also: in Proceedings of the Meaning Coordination and Negotiation
workshop at ISWC'04

.

A Classification of Schema-Based Matching

Approaches

Pavel Shvaiko

University of Trento, Povo, Trento, Italy
pavel@dit.unitn.it

Abstract. Schema/ontology matching is a critical problem in many ap-
plication domains, such as, semantic web, schema/ontology integration,
data warehouses, e-commerce, catalog matching, etc. Many diverse so-
lutions to the matching problem have been proposed so far. In this pa-
per we present a taxonomy of schema-based matching techniques that
builds on the previous work on classifying schema matching approaches.
Some innovations are in introducing new criteria which distinguish be-
tween matching techniques relying on diverse semantic clues. In partic-
ular, we distinguish between heuristic and formal techniques at schema-
level; and implicit and explicit techniques at element- and structure-level.
Based on the classification proposed we overview some of the recent
schema/ontology matching systems pointing which part of the solution
space they cover.

1 Introduction

Match is a critical operator in many well-known application domains, such as,
semantic web, schema/ontology integration, data warehouses, e-commerce, XML
message mapping, catalog matching, etc. Many solutions to the matching prob-
lem include identifying terms in one information source that ”match” terms in
another information source. The applications can be viewed as graph-like struc-
tures containing terms and their inter-relationships. These might be database
schemas, taxonomies, or ontologies, for example [14], etc. Match operator takes
two graph-like structures as input and produces a mapping between the nodes
of the graphs that correspond semantically to each other as output.

Many diverse solutions to the matching problem have been proposed so far,
for example [19, 15, 8, 21, 32, 1, 17, 23, 26, 20], etc. In this paper we focus only on
schema-based solutions, i.e., matching systems exploiting only intensional infor-
mation, not instance data. Although, there is a difference between schema and
ontology matching (alignment) problems (see next section for details), we believe
that techniques developed for each of them can be of a mutual benefit, therefore
we discuss schema and ontology matching referring as to the one problem.

With the emergence and proliferation of the semantic web, the semantics
captured in schemas/ontologies should be also handled at different levels of
details. Therefore, there is a need in distinguishing between schema/ontology
matching techniques relying on diverse semantic clues. In this paper we present

Fig. 1. Two XML schemas

a taxonomy of schema-based matching techniques that builds on the previous
work of E. Rahm and P. Bernstein on classifying schema matching approaches
[28]. Some innovations are in introducing new criteria which distinguish between
schema/ontology matching techniques relying on diverse semantic clues. In par-
ticular, we distinguish between heuristic and formal techniques at schema-level;
and implicit and explicit techniques at element- and structure-level.

The rest of the paper is organized as follows. Section 2 provides, via an exam-
ple, the basic motivations to the schema/ontology matching problem. Section 3
introduces the classification of schema-based approaches and discusses in details
possible alternatives. Section 4 overviews some of the recent schema/ontology
matching solutions in light of the classification proposed pointing which part of
the solution space they cover. Section 5 reports some conclusions.

2 The Matching Problem

2.1 Motivating Example

To motivate the matching problem, let us use two simple XML schemas that are
shown in Figure 1 and exemplify one of the possible situations which arise, for
example, when resolving a schema integration task.

Suppose an e-commerce company A1 needs to finalize a corporate acquisi-
tion of another company A2. To complete the acquisition we have to integrate
databases of the two companies. The documents of both companies are stored
according to XML schemas A1 and A2 respectively. Numbers in boxes are the
unique identifiers of the nodes (sometimes in the following we refer to nodes as
elements). A first step in integrating the schemas is to identify candidates to
be merged or to have taxonomic relationships under an integrated schema. This
step refers to a process of schema matching. For example, the nodes with labels
Office Products in A1 and in A2 are the candidates to be merged, while the
node with label Digital Cameras in A2 should be subsumed by the node with
label Photo and Cameras in A1.

2.2 Matching: Syntactic vs. Semantic

In this paper we discuss the problem of matching schemas and ontologies from
the generic perspective i.e., we analyze information which is exploited by match-
ing systems in order to produce mappings. In this respect, ontology matching
differs substantially from schema matching in the following two (among the oth-
ers, see [25]) areas:

• Database schemas often do not provide explicit semantics for their data. Se-
mantics is usually specified explicitly at design-time, and frequently is not
becoming a part of a database specification, therefore it is not available. On-
tologies are logical systems that themselves incorporate semantics (intuitive
or formal). For example, in the case of formal semantics we can interpret
ontology definitions as a set of logical axioms.

• Ontology data models are richer (the number of primitives is higher, and
they are more complex) then schema data models. For example, OWL [30]
allows defining inverse properties, transitive properties; disjoint classes, new
classes as unions or intersections of other classes, etc.

However, ontologies can be viewed as schemas for knowledge bases. Having
defined classes and slots in the ontology, we populate the knowledge base with
instance data [25]. Thus, techniques developed for each separate problem can
be of interest to each other. On the one side, schema matching is usually per-
formed with the help of heuristic techniques trying to guess semantics encoded
in the schemas. On the other side, ontology matching systems (primarily) try
to exploit knowledge explicitly encoded in the ontologies. In real-world appli-
cations, schemas/ontologies usually have both well defined and obscure labels
(terms), and contexts they occur, therefore, solutions from both problems would
be mutually beneficial.

Apart from the information that matching systems exploit, the other im-
portant dimension of schema/ontology matching is a form of the result they
produce. Based on these criteria, following the proposal first introduced in [11],
schema/ontology matching systems can be viewed as syntactic and semantic
matching systems. Syntactic matching approaches do not analyze term mean-
ing, and thus semantics, directly. In these approaches semantic correspondences
are determined using (i) syntactic similarity measures, usually in [0,1] range, for
example, with the help of similarity coefficients [19, 10] or confidence measures
[32]; and (ii) syntax driven techniques, for instance techniques, which consider
labels as strings, etc., see [21, 19, 15]. The first key distinction of the semantic
matching approaches is that mappings are calculated between schema/ontology
elements by computing semantic relations (for example, equivalent (=) or sub-
suming elements (�,�), etc., see for details [12]). The second key distinction is
that semantic relations are determined by analyzing meaning (concepts, not la-
bels as in syntactic matching) which is codified in the elements and the structure
of schemas/ontologies. These ideas are schematically represented in Figure 2.

Let us define the matching problem in terms of graphs [11]. A mapping el-
ement is a 4-tuple < IDij , n1i, n2j, R >, i=1,...,N1; j=1,...,N2; where IDij

Fig. 2. Matching: Syntactic vs. Semantic

is a unique identifier of the given mapping element; n1i is the i-th node of
the first graph, N1 is the number of nodes in the first graph; n2j is the j-
th node of the second graph, N2 is the number of nodes in the second graph;
and R specifies a similarity relation (a coefficient in [0,1] range or a semantic
relation) holding between the nodes n1i and n2j . For instance, based on linguis-
tic and structure analysis, the similarity coefficient between nodes with labels
Photo and Cameras in A1 and Cameras and Photo in A2 in Figure 1 could
be 0.67. Thus, the corresponding mapping element is < ID54, n15, n24, 0.67 >.
The matching operation determines a set of mapping elements.

3 Classification of schema-based matching approaches

At present, there exists a line of semi-automated schema/ontology matching sys-
tems, see for instance [19, 15, 8, 21, 32, 1, 17, 23, 26, 20], etc. Good surveys are pro-
vided in [28, 31, 16]. The classification of [28] distinguishes between individual im-
plementations of match and combinations of matchers. Individual matchers com-
prise instance-based and schema-based, element- and structure-level, linguistic-
and constrained-based matching techniques. Also cardinality and auxiliary in-
formation (e.g., dictionaries, global schemas, etc.) can be taken into account.
Individual matchers can be used in different ways: directly (hybrid matchers),
see [19, 1] or combining the results of independently executed matchers (compos-
ite matchers), see for instance [15, 8, 9].

We focus only on schema-based approaches, and therefore consider only
schema/ontology information, not instance data 1. There are two levels of gran-
ularity while performing schema-based matching: element-level and structure-
level. Element-level matching techniques compute mapping elements by ana-
lyzing individual labels/concepts at nodes; structure-level techniques compute
mapping elements by analyzing also subgraphs.

With the emergence and proliferation of the semantic web, the semantics cap-
tured in schemas/ontologies should be also handled at different levels of details.
Therefore, there is a need in distinguishing between schema/ontology match-
ing techniques relying on diverse semantic clues. We introduce for individual
matchers the following classification cretiria:
1 Prominent solutions of instance-based schema/ontology matching as well as possible

extensions of the instance-based part of the classification of [28] can be found in [8]
and [17] correspondingly.

Schema-Based Matching Approaches

Heuristic Techniques Formal Techniques

Element-level Element-levelStructure-level Structure-level

Implicit ImplicitExplicit Explicit Explicit Explicit

String-
based

Constraint-
based

Constraint-
based

Constraint-
based

Auxiliary
Information

Ontology-
based

Reasoner-
based

- Name similarity
- Description
 similarity
- Global

namespaces

- Type
 similarity
- Key
 properties

- Lexicons
- Precompiled
 thesaurus

- Graph
 matching

- Taxonomic
 structure

- OWL
 properties

- Propositional SAT
- Modal SAT

Fig. 3. A revised classification of schema-based matching approaches

• Heuristic vs formal. Matching techniques can have either heuristic or formal
ground. The key characteristic of the heuristic techniques is that they try to
guess relations which may hold between similar labels or graph structures.
The key characteristic of the formal techniques is that they have model-
theoretic semantics which is used to justify their results.

• Implicit vs explicit. These matching techniques rely either on implicitly or ex-
plicitly codified semantic information. Implicit techniques are syntax driven
techniques: examples are techniques, which consider labels as strings, or
analyze data types, or soundex of schema/ontology elements. Explicit tech-
niques exploit the semantics of labels. These techniques are based on the
use of tools, which explicitly codify semantic information, e.g., thesauruses,
ontologies, etc.

To make the distinctions between the categories proposed more clear, we
revised a schema-based part of the classification of matching techniques by E.
Rahm and P. Bernstein [28], see Figure 3. All the innovations are marked in
bold type. Let us discuss the main alternatives (also indicating in which match-
ing systems they were exploited) according to the above classification criteria in
more detail. We omit in our further discussions heuristic element-level implicit
techniques as well as heuristic structure-level implicit constrained-based tech-
niques because they appear in a revised classification without changes in respect
to the original publication. We also renamed linguistic techniques into string-
based techniques, to discard from this category thesaurus look-up methods (they
appear in the other category) and methods that perform morphological analysis
of strings, which we view only as a preprocessing part, for example, for matching
techniques based on lexicons.

3.1 Heuristic techniques

Element-level explicit techniques

• Precompiled thesaurus. A precompiled thesaurus usually stores domain knowl-
edge as entries with synonym, hypernym and other relations. For example,
in Figure 1 elements NKN in A1 and Nikon in A2 are treated by a matcher
as synonyms from the thesaurus look up: syn key - ”NKN:Nikon = syn”,
see, for instance [19].

• Lexicons. The approach is to use lexicons to obtain meaning of terms used
in schemas/ontologies. For example, WordNet [24] is an electronic lexical
database for English (and other languages), where various senses (possi-
ble meanings of a word or expression) of words are put together into sets
of synonyms. Relations between schema/ontology elements can be com-
puted in terms of bindings between WordNet senses, see, for instance [12,
4]. For example, in Figure 1 a matcher may learn from WordNet (with a
prior morphological preprocessing of labels performed) that ”Camera” in
A1 is a hypernym for ”Digital Camera” in A2, and, therefore conclude
that element Digital Cameras in A2 should be subsumed by the element
Photo and Cameras in A1.

Structure-level explicit techniques

• Taxonomic structure. These matchers analyze and compare positions of terms
(labels) within taxonomies. For example, they take two paths with links be-
tween classes defined by the hierarchical relations, compare terms and their
positions along these paths, and identify similar terms, see, for instance [26,
9]. The intuition behind taxonomic structure methods is that is-a links con-
nect terms that are already similar (being a subset or superset of each other),
therefore their neighbors may be also somehow similar. For example, in Fig-
ure 1 given that element Digital Cameras in A2 should be subsumed by
the element Photo and Cameras in A1, a matcher would suggest FJFLM
in A1 and FujiFilm in A2 as an appropriate match.

3.2 Formal techniques

Element-level explicit techniques

• OWL properties. OWL [30] is ontology web language with clear, model-
theoretic semantics, and hence methods exploiting its constructors are for-
mal element-level methods. For instance, sameClassAs constructor explicitly
states that one class is equivalent to the other, see for a particular imple-
mentation [9]. For example, in Figure 1 one of the possible OWL encodings
could specify semantics of the element Digital Cameras in A2 as follows:
Digital Cameras = Camera � DigitalPhoto Producer. An intuitive read-
ing of the above statement is that digital camera means the same thing as a
camera, which encodes and stores images digitally. Then, a matcher would

determine that the node 7 in A2 has to be subsumed by the node 5 in A1.
Possible extensions to the given category would also exploit other OWL con-
structors: class properties (e.g., enumeration, disjointness), object properties
(inverse-of, symmetric, transitive), etc.

Structure-level explicit techniques

• Propositional satisfiability (SAT). As from [11, 4] the approach is to translate
the matching problem, namely the two graphs (trees) and mapping queries
into a propositional formula and then to check it for its validity. By a map-
ping query we mean here the pair of nodes and a possible semantic relation
between them. Notice that SAT deciders are correct and complete decision
procedures for propositional satisfiability, and therefore they can be used for
an exhaustive check for all possible mapping elements.

• Modal SAT. As from [29] the approach is to delimit propositional SAT which
allows handling only unary predicates (e.g., classes) by admitting binary
predicates (e.g., attributes). The key idea is to enhance propositional log-
ics with modal logic (or ALC description logics) operators. Therefore, the
matching problem is translated into a modal logic formula which is further
checked for its validity using sound and complete satisfiability search proce-
dures.

4 Prototype Matchers

We now look at some recent schema-based state of the art matching systems
in light of the classification presented in Figure 3. We also indicate how sys-
tems combine individual matchers in their implementations, e.g., in a hybrid or
composite manner.

Similarity Flooding (SF). The SF [21] approach as implemented in Rondo
[22] utilizes a hybrid matching algorithm based on the ideas of similarity propa-
gation. Schemas are presented as directed labeled graphs; the algorithm manip-
ulates them in an iterative fix-point computation to produce mapping between
the nodes of the input graphs. The technique starts from string-based compar-
ison (common prefixes, suffixes tests) of the vertice’s labels to obtain an initial
mapping which is refined within the fix-point computation. The basic concept
behind the SF algorithm is the similarity spreading from similar nodes to the
adjacent neighbors through propagation coefficients. From iteration to iteration
the spreading depth and a similarity measure are increasing till the fix-point is
reached. The result of this step is a refined mapping which is further filtered to
finalize the matching process.

Artemis. Artemis (Analysis of Requirements: Tool Environment for Multiple
Information Systems) [5] was designed as a module of MOMIS mediator system
[1] for creating global views. It performs affinity-based analysis and hierarchi-
cal clustering of source schemas elements. Affinity-based analysis represents the
matching step: in a hybrid manner it calculates the name, structural and global

affinity coefficients exploiting a common thesaurus. The common thesaurus is
built with the help of ODB-Tools, WordNet or manual input. It represents a set
of intensional and extensional relationships which depict intra- and inter-schema
knowledge about classes and attributes of the input schemas. Based on global
affinity coefficients, a hierarchical clustering technique categorizes classes into
groups at different levels of affinity. For each cluster it creates a set of global at-
tributes - global class. Logical correspondence between the attributes of a global
class and source schema’s attributes is determined through a mapping table.

Cupid. Cupid [19] implements a hybrid matching algorithm comprising lin-
guistic and structural schema matching techniques, and computes similarity co-
efficients with the assistance of a precompiled thesaurus. Input schemas are en-
coded as graphs. Nodes represent schema elements and are traversed in a com-
bined bottom-up and top-down manner. Matching algorithm consists of three
phases and operates only with tree-structures to which no-tree cases are reduced.
The first phase (linguistic matching) computes linguistic similarity coefficients
between schema element names (labels) based on morphological normalization,
categorization, string-based techniques (common prefixes, suffixes tests) and a
thesaurus look-up. The second phase (structural matching) computes structural
similarity coefficients weighted by leaves which measure the similarity between
contexts in which individual schema elements occur. The third phase (mapping
generation) computes weighted similarity coefficients and generates final map-
pings by choosing pairs of schema elements with weighted similarity coefficients
which are higher than a threshold. Referring to [19], Cupid performs somewhat
better overall, then the other hybrid matchers: Dike [27] and Artemis [5].

COMA. COMA (COmbination of MAtching algorithms) [15] is a composite
schema matching tool. It provides an extensible library of matching algorithms;
a framework for combining obtained results, and a platform for the evaluation
of the effectiveness of the different matchers. Matching library is extensible,
and as from [15] it contains 6 individual matchers, 5 hybrid matches, and one
reuse-oriented matcher. Most of them implement string-based techniques (af-
fix, n-gram, edit distance, etc.) as a background idea; others share techniques
with Cupid (thesaurus look-up, etc.); and reuse-oriented is a completely novel
matcher, which tries to reuse previously obtained results for entire new schemas
or for its fragments. Schemas are internally encoded as DAGs, where elements
are the paths. This fact aims at capturing contexts in which the elements occur.
Distinct features of the COMA tool in respect to Cupid, are a more flexible
architecture and a possibility of performing iterations in the matching process.
Based on the comparative evaluations conducted in [6], COMA dominates Au-
toplex[2] and Automatch [3]; LSD [7] and GLUE [8]; SF [21], and SemInt [18]
matching tools.

NOM. NOM (Naive Ontology Mapping) [9] adopts the idea of composite
matching from COMA [15]. Some other innovations with respect to COMA, are
in the set of elementary matchers based on rules, exploiting explicitly codified
knowledge in ontologies, such as information about super- and sub-concepts,
super- and sub-properties, etc. At present the system supports 17 rules. For

example, rule#5 (R5) states that if super-concepts are the same, the actual
concepts are similar to each other, R15 states that two entities are the same
if they are binded by sameClassAs OWL property. NOM also exploits a set of
instance-based techniques, this topic is beyond scope of the paper.

Anchor-PROMPT. Anchor-PROMPT [26] (an extension of PROMPT, also
formerly known as SMART) is an ontology merging and alignment tool with
a sophisticated prompt mechanism for possible matching terms. The anchor-
PROMPT is a hybrid alignment algorithm which takes as input two ontologies,
(internally represented as graphs) and a set of anchors-pairs of related terms,
which are identified with the help of string-based techniques (edit-distance test),
or defined by a user, or another matcher computing linguistic similarity, for
example [20]. Then the algorithm refines them by analyzing the paths of the
input ontologies limited by the anchors in order to determine terms frequently
appearing in similar positions on similar paths. Finally, based on the frequencies
and a user feedback, the algorithm determines matching candidates.

S-Match. S-Match [11, 12] is a schema-based schema/ontology matching sys-
tem implementing semantic matching approach. It takes two graph-like struc-
tures (e.g., database schemas or ontologies) as input and returns semantic re-
lations between the nodes of the graphs that correspond semantically to each
other as output. Possible semantic relations are: equivalence (=), more general
(�), less general (�), mismatch (⊥), and overlapping (�). The current version of
S-Match is a rationalized re-implementation of the CTXmatch system [4] with a
few added functionalities. S-Match was designed and developed as a platform for
semantic matching, namely a highly modular system with the core of computing
semantic relations where single components can be plugged, unplugged or suit-
ably customized. It is a hybrid system performing composition of element level
techniques. At present, S-Match libraries contain 13 element-level matchers, see
[13], and 2 structure-level (JSAT and SAT4J) matchers.

Notice that from the discussed systems, only S-Match returns as output
semantic relations, while all the other systems return coefficients rating match
quality in [0,1] range. Although, almost all the matching systems analyze term
meaning, for example, with the help of a thesaurus, however when they produce
a mapping, they encode it in [0,1] range, therefore loosing some information.
For example, from a similarity coefficient with value of 0.7 we can not say if the
elements it binds are more or less general. We only may conclude that they are
similar, and the probability of their equality is 70%. Therefore, only the S-Match
system can be considered as a semantic matching system, all other systems, in
this sense, are syntactic systems.

Figure 4 briefly summarizes how the matching systems cover the solution
space in terms of the proposed classification. Numbers in brackets specify how
many matchers of a particular type a system supports. For example, S-Match
supports 5 string-based heuristic element-level implicit matchers (prefix, suffix,
edit distance, n-gram, and text corpus, see [13]). Figure 4 also testifies that
schema/ontology matching research was mainly focused on heuristic techniques

Fig. 4. Characteristics of state of the art matching approaches

so far. Formal element-level and structure-level techniques have been exploited
only by two systems: NOM [9] and S-Match [12] correspondingly.

5 Conclusions

This paper presents the taxonomy of schema-based matching approaches, which
builds on the previous work by E. Rahm and P. Bernstein on classifying schema
matching approaches. We have introduced new criteria which distinguish be-
tween schema/ontology matching techniques relying on diverse semantic clues.
In particular, we distinguish between heuristic and formal techniques at schema-
level; and implicit and explicit techniques at element- and structure-level. We
reviewed some of the recent schema/ontology matchers in light of the classifi-
cation proposed pointing which part of the solution space they cover. Analysis
of state of the art systems discussed has shown, that most of them exploit only
heuristic techniques, and only a few utilize formal techniques. However, the cat-
egory of formal techniques was identified only recently as a part of the solution
space; its methods provide sound and complete results, and, hence it represents
a wide area for the future investigations.

Acknowledgements: This work has been partly supported by the European
Knowledge Web network of excellence (IST-2004-507482). Thanks to Fausto
Giunchiglia, Paolo Bouquet, and Jérôme Euzenat for their insightful comments
and suggestions.

References

1. S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistruc-
tured and structured data sources. In SIGMOD Record, 28(1), pages 54–59, 1999.

2. J. Berlin and A. Motro. Autoplex: Automated discovery of content for virtual
databases. In Proceedings of CoopIS, pages 108–122, 2001.

3. J. Berlin and A. Motro. Database schema matching using machine learning with
feature selection. In Proceedings of CAiSE, pages 452–466, 2002.

4. P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: A new approach
and an application. In Proceedings of ISWC, pages 130–145, 2003.

5. S. Castano, V. De Antonellis, and S. De Capitani di Vimercati. Global viewing
of heterogeneous data sources. In IEEE Transactions on Knowledge and Data
Engineering, number 13(2), pages 277–297, 2001.

6. H.H. Do, S. Melnik, and E.Rahm. Comparison of schema matching evaluations.
In Proceedings of workshop on Web and Databases, 2002.

7. A. Doan, P. Domingos, and A. Halvey. Reconciling schemas of disparate data
sources: A machine-learning approach. In Proceedings of SIGMOD, pages 509–
520, 2001.

8. A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Halvey. Learning
to map ontologies on the semantic web. In Very Large Databases Journal, Special
Issue on the Semantic Web, 2003. (to appear).

9. M. Ehrig and Y. Sure. Ontology mapping - an integrated approach. In Proceedings
of ESWS, pages 76–91, 2004.

10. J. Euzenat and P. Valtchev. An integrative proximity measure for ontology align-
ment. In Proceedings of Semantic Integration workshop at ISWC, 2003.

11. F. Giunchiglia and P. Shvaiko. Semantic matching. In The Knowledge Engineering
Review Journal, number 18(3), pages 265–280, 2003.

12. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-match: an algorithm and an
implementation of semantic matching. In Proceedings of ESWS, pages 61–75, 2004.

13. F. Giunchiglia and M. Yatskevich. Element level semantic matching. In To appear
in Proceedings of Meaning Coordination and Negotiation workshop at ISWC, 2004.

14. F. Giunchiglia and I. Zaihrayeu. Making peer databases interact - a vision for an
architecture supporting data coordination. In Proceedings of international work-
shop on Cooperative Information Agents, pages 18–35, 2002.

15. H.H.Do and E. Rahm. Coma - a system for flexible combination of schema match-
ing approaches. In Proceedings of VLDB, pages 610–621, 2001.

16. Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. In The
Knowledge Engineering Review Journal, number 18(1), pages 1–31, 2003.

17. J. Kang and J.F. Naughton. On schema matching with opaque column names and
data values. In Proceedings of SIGMOD, pages 205–216, 2003.

18. W.S. Li and C. Clifton. Semantic integration in heterogeneous databases using
neural networks. In Proceedings of VLDB, pages 1–12, 1994.

19. J. Madhavan, P. Bernstein, and E. Rahm. Generic schema matching with cupid.
In Proceedings of VLDB, pages 49–58, 2001.

20. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging
and testing large ontologies. In Proceedings of KR, pages 483–493, 2000.

21. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph
matching algorithm. In Proceedings of ICDE, pages 117–128, 2002.

22. S. Melnik, E. Rahm, and P. Bernstein. Rondo: A programming platform for generic
model management. In Proceedings of SIGMOD, pages 193–204, 2003.

23. E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi. Observer: An approach for
query processing in global information systems based on interoperability between
pre-existing ontologies. In Proceedings of CoopIS, pages 14–25, 1996.

24. A.G. Miller. Wordnet: A lexical database for english. In Communications of the
ACM, number 38(11), pages 39–41, 1995.

25. N. Noy and M. Klein. Ontology evolution: Not the same as schema evolution. In
Knowledge and Information Systems, in press, 2002.

26. N. Noy and M. A. Musen. Anchor-prompt: Using non-local context for seman-
tic matching. In Proceedings of IJCAI workshop on Ontologies and Information
Sharing, pages 63–70, 2001.

27. L. Palopoli, G. Terracina, and D. Ursino. The system dike: Towards the semi-
automatic synthesis of cooperative information systems and data warehouses. In
ADBIS-DASFAA, Matfyzpress, pages 108–117, 2000.

28. E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching.
In Very Large Databases Journal, number 10(4), pages 334–350, 2001.

29. P. Shvaiko. Iterative schema-based semantic matching. Technical Report DIT-04-
020, University of Trento, 2004.

30. M.K. Smith, C. Welty, and D.L. McGuinness. Owl web ontology lan-
guage guide. Technical report, World Wide Web Consortium (W3C),
http://www.w3.org/TR/2004/REC-owl-guide-20040210/, February 10 2004.

31. H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann,
and S. Huebner. Ontology-based integration of information - a survey of existing
approaches. In Proceedings of IJCAI workshop on Ontologies and Information
Sharing, pages 108–117, 2001.

32. L. Xu and D.W. Embley. Using domain ontologies to discover direct and indirect
matches for schema elements. In Proceedings of Semantic Integration workshop at
ISWC, 2003.

