
UNIVERSITY
OF TRENTO
DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

A SURVEY OF WEB SERVICE TECHNOLOGIES

Michael P. Papazoglou and Jean-jacques Dubray

June 2004

Technical Report # DIT-04-058

.

A Survey of Web Service Technologies
Michael P. Papazoglou1, Jean-jacques Dubray2
1INFOLAB, Tilburg University, PO Box 90153,

Tilburg 5000 LE, The Netherlands
mikep@uvt.nl

2Attachmate, 3617 131st Ave NE

Bellevue WA 98006, USA
jeanjadu@attachmate.com

Abstract

The Web has become the means for organizations to deliver goods and services and for customers to search
and retrieve services that match their needs. Web services are self-contained, Internet-enabled
applications capable not only of performing business activities on their own, but also possessing the ability
to engage other web services in order to complete higher-order business transactions. Simple web services
may provide simple functions such as credit checking and authorization, inventory status checking, or
weather reporting, while complex services may appropriately unify disparate business functionality to
provide a whole range of automated processes such as insurance brokering, travel planning, insurance
liability services or package tracking. The act of building applications and processes as sets of
interoperating services is enabled by means of unified service-oriented architecture (SOA). SOA introduces
a new philosophy for building distributed applications where elementary services can be published,
discovered and bound together to create more complex valued-added services. This article aims at
providing a comprehensive survey of web service technologies, examining it usage, its relation with other
technologies, the newest developments in the field, architectural models and standards. The article
presents an extended architecture on the basis of whose functional layers we taxonomize research
activities.

Categories and subject descriptors: H [Information Systems]: distributed information systems, H1 [Models
and Principles]: Application modeling and integration
General terms: Design, Languages, Standards, Management.
Additional keywords and phrases: Service Oriented Computing, web services, process modeling and
management, workflow systems, coordination and collaboration.

1 Introduction

Service-Oriented Computing (SOC) utilizes services as the constructs to support the development of rapid,
low-cost and easy composition of distributed applications. Services are self-contained processes - deployed
over standard middleware platforms, e.g., J2EE - that can be described, published, located, and invoked
over a network. Any piece of code and any application component deployed on a system can be
transformed into a network-available service. Services reflect a new "service-oriented" approach to
programming, based on the idea of composing applications by discovering and invoking network-available
services rather than building new applications or by invoking available applications to accomplish some task
[Papa03a]. Services perform functions that can range from answering simple requests to executing
sophisticated business processes requiring peer-to-peer relationships between service consumers and
providers. However, services are most often built in a way that is independent of the context in which they
are used, i.e. service provider and consumers are loosely coupled. At the middleware level, loose coupling
requires that the "service-oriented" approach be independent of specific technologies or operating systems.
In particular, services and service composition does not rely on existing programming languages. It allows
systems and organisations alike to expose their core competencies declaratively over the Internet or a
variety of networks, e.g., cable, UMTS, XDSL, Bluetooth, etc., using standard (XML-based) languages and
protocols, via self-describing interfaces based on open standards. By building upon such standards,
developers are given the opportunity to access systems and applications deployed over the network based
on what they do, rather than on how they do it, or how they have been implemented. The visionary

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 1

promise of SOC is a world of cooperating services where applications are assembled with little effort as a
network of loosely coupled services. These agile applications can support dynamic business processes that
span organisations and computing platforms.

SOC is expected to have an impact on all aspect of software construction as wide as that of object-oriented
programming. The premise of its foundation is that an application can no longer be thought of as a single
process running within a single organization. The value of an application is actually no longer measured by
its functionality but by its ability to integrate with its surrounding environment. For instance, services can
help integrate applications that were not written with the intent to be easily integrated with other
applications and define architectures and techniques to build new functionality leveraging existing
application functionality. A new type of applications can be based solely on sets of interacting services
offering well-defined interfaces to their potential users. These applications are often referred as:
composite applications. In the business-to-business (e-business) world, service orientation enables loosely
coupled relationships between applications of transacting partners, the model does not even mandate any
kind of pre-determined agreements before the use of an offered service is allowed. The service model
allows for a clear distinction to be made between service providers (organizations that provide the service
implementations, supply their service descriptions, and provide related technical and business support);
service clients (end-user organizations that use some service); and service aggregators (organizations that
consolidate multiple services into a new, single service offering).

Services are offered by service providers: organizations that procure the service implementations, supply
their service descriptions, and provide related technical and business support. Since services may be
offered by different enterprises and communicate over the Internet, they provide a distributed computing
infrastructure for both intra and cross-enterprise application integration and collaboration. Clients of
services can be other solutions or applications within an enterprise or clients outside the enterprise,
whether these are external applications, processes or customers/users. This distinction between service
providers and consumers is independent of the relationship between consumer and provider which can be
either client / server or peer to peer. For the service oriented paradigm to exist, we must find ways for the
services to be:

• Technology neutral: they must be invoked through standardized lowest common denominator
technologies that are available to almost all IT environments. This implies that the invocation
mechanisms (protocols, descriptions and discovery mechanisms) should comply with widely
accepted standards.

• Loosely coupled: they must not require knowledge or any internal structures or conventions
(context) at the client or service side.

• Support location transparency: services should have their definitions and location information
stored in a repository such as UDDI (see section-8.3) and be accessible by a variety of clients that
can locate and invoke the services irrespective of their location.

Services may be implemented on a single machine or on a large number and variety of devices, and be
distributed on a local area network or more widely across several wide area networks (including mobile and
ad hoc networks). A particularly interesting case is when the services use the Internet (as the
communication medium) and open Internet-based standards. The resulting web services share the
characteristics of more general services, but they require special consideration as a result of using a public,
insecure, low-fidelity mechanism for inter-service interactions.

Web services constitute a distributed computer infrastructure made up of many different modules trying to
communicate over the network to virtually form a single logical system. Web services are modular, self-
describing, self-contained applications that are accessible over the Internet. They are the answer to the
problems of rigid implementations of predefined relationships and isolated services scattered across the
Internet. A web service is a service available via a network such as the Internet that completes tasks, solves
problems or conducts transactions.

Web services can vary in function from simple requests (for example, currency conversion, credit checking
and authorization, inventory status checking, or a weather report) to complete business applications that
access and combine information from multiple sources, such as an insurance brokering system, a travel
planner, an insurance liability computation or a package tracking system. Enterprises can use a single web

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 2

service to accomplish a specific business task, such as billing or inventory control or they may compose
several web services together to create a distributed e-business application such as customised ordering,
customer support, procurement, and logistical support.

Credit check

Credit response

PO submission

Invoice

Reserve inventory

Inventory response
Billing notificationBilling statementBuyer

Purchase Order

Credit
Service

Inventory
Service

Billing
Service

Shipment
Service

Shipping notification
Shipment acknowledgement

Credit check

Credit response

PO submission

Invoice

PO submission

Invoice

Reserve inventory

Inventory response
Billing notificationBilling statementBuyerBuyer

Purchase OrderPurchase Order

Credit
Service

Inventory
Service

Billing
Service

Shipment
Service

Credit
Service

Inventory
Service

Billing
Service

Shipment
Service

Shipping notification
Shipment acknowledgement

Figure 1 A purchase order application involving interacting web services.

Consider the example of a purchasing protocol. A buyer or buying organization initially creates a purchase
order and sends the request to fulfil the order to a seller. The seller has a service that receives a purchase
order and responds with either acceptance or rejection based on a number of criteria, including availability
of the goods and the credit of the buyer. Figure 1 shows how such a purchase order process can be
developed in terms of interacting web services involving purchase orders, credit checks, automated billing,
stock updates and shipping originating from various service providers who can gradually package their
offerings to create turnkey products. Submitting a purchase order using the Web can be represented as a
complex set of interacting web services. The product order example herein has been adapted from a similar
example used for orchestrating web services [Andrews03]. On receiving the purchase order from a buyer,
the purchase order process initiates five tasks concurrently: checking the credit worthiness of the user,
determining whether or not an ordered part is available in the product inventory, calculating the final price
for the order and billing the customer, selecting a shipper, and scheduling the production and shipment for
the order. While some of the processing can proceed concurrently, there are control and data
dependencies between these tasks. For instance, the customer’s creditworthiness must be ascertained
before accepting the order, the shipping price is required to finalize the price calculation, and the shipping
date is required for the complete fulfilment schedule. When these tasks are completed successfully, invoice
processing can proceed and the invoice is sent to the customer.

 Tracking and adjusting purchase orders due to unexpected events such as the buyer initiating a purchase
order change or cancellation involves a lot of coordination work. This calls for the use of reactive services.
For instance, if a single event in the purchase order needs to change or is cancelled, the entire process can
unravel instantly. Employing a collection of web services that work together to adjust purchase orders for
such situations creates an automated solution to this problem. In the case of a purchase order cancellation
the purchase service can automatically reserve a suitable replacement product and notify the billing and
inventory services of the changes. When all of these web service interactions have been completed and the
new adjusted schedule is available, the purchase order web service notifies the customer sending her an
updated invoice.

In another example, an insurance company may decide to offer an on-line quoting web service to its
customers. Rather than developing the entire application from scratch, this enterprise looks to supplement
its home grown applications with modules that perform industry standard functions. Therefore, it may
seamlessly link up with the web service of another enterprise that specialises in insurance liability
computations. The insurance liability web service may present a quote form to the customer to collect

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 3

customer information based on the type of the desired insurance. Subsequently, the web service would
present the customer with a quote including a premium estimate. If the customer selected to buy that
particular insurance policy, the system will take the customer’s payment information and run it through a
payment system offered by yet another company (service provider) web service. This payment web service
will ultimately return billing information to the customer and to the originating company.

In summary, web services enable developers to construct distributed applications using Internet standards
and any platform and programming language that is required. Once a web service is deployed, other
applications and web services can discover and invoke that service. The eventual goal of web services
technology is to enable distributed applications that can be dynamically assembled according to changing
business needs, and customised based on device and user access while enabling wide utilization of any
given piece of business logic wherever it is needed.

The aim of this paper is fourfold. First is to introduce the concept of software as a service and describe the
broad characteristics and types of web services. Second is to describe the notion of the service-oriented
architecture and explain how web services standards help develop distributed applications under this
architectural scheme. Third is to introduce more advanced web service features such as coordination and
orchestration principles, transactions and security, quality of service issues and web service
interoperability problems. Finally is to introduce an extended service-oriented architecture which stratifies
services by means of their functional characteristics in three broad layers: service description and basic
operations, service composition, and service management. Web service research activities are also
classified and discussed according to the layers of this extended architecture.

2 The Concept of software as a service

Web services are very different from web pages that also provide access to applications across the Internet
and across organisational boundaries. Web pages are targeted at human users, whereas web services are
developed for access by other applications. Web services are about machine-to-machine communication,
whereas web pages are about human to machine communication. As terminology is often used very loosely
it is easy to confuse someone by describing a ‘service’ as a web service when it is in fact not.
Consequently, it is useful to examine first the concept of software as-a-service on which web services
technology builds upon and then compare web services with web pages and web server functionality.

The concept of software-as-a-service is revolutionary and appeared first with the ASP (Applications Service
Provider) software model. Application Service Providers (ASP) are companies that package software and
infrastructure elements together with business and professional services to create a complete solution that
they present to the end customer as a service on a subscription basis. An ASP is a third party entity that
deploys, hosts and manages access to a packaged application and delivers software-based services and
solutions across a network to multiple customers across a wide area network from a central data center.
Applications are delivered over networks on a subscription or rental basis. In essence, ASPs were a way for
companies to outsource some or even all aspects of their information technology needs. The ASP industry
Consortium [ASP00] defined that application service providers are service organizations that deploy, host,
manage, and enhance software applications for customers at a centrally managed facility, offering
application availability, performance and security. End-uses access these applications remotely using
Internet or leased lines.

The basic idea behind an ASP is to “rent” applications to subscribers. The whole application is developed in
terms of the user interface, workflow, business and data components that are all bound together to provide
a working solution. An ASP hosts the entire application and the customer has little opportunity to customize
it beyond set up tables, or perhaps the final appearance of the user interface (such as, for example, adding
company logos). Access to the application for the customer is provided simply via browsing and manually
initiated purchases and transactions occur by downloading reports. This activity can take place by means of
a browser. This is not a very flexible solution – but offers considerable benefits in terms of deployment
providing the customer is willing to accept it ‘as is’.

By providing a centrally hosted Intent application, the ASP takes primary responsibility for managing the
software application on its infrastructure, using the Internet as the conduit between each customer and the

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 4

primary software application. What this means for an enterprise is that the ASP maintains the application,
the associated infrastructure, and the customer's data and ensures that the systems and data are available
whenever needed.

An alternative of this is where the ASP is providing a software module that is downloaded to the customer’s
site on demand – this is for situations where the software does not work in a client/server fashion, or can
be operated remotely via a browser. This software module might be deleted at the end of the session, or
may remain on the customer’s machine until replaced by a new version, or the contract for using it expires.
In many respects this is no different to ‘traditional’ methods of installing a piece of software from say a CD-
ROM. However, this form of deployment from the ASP can be automated, reducing software deployment
costs, though not saving the customer any hardware costs.

Although the ASP model introduced the concept of software-as-a-service first, it suffered from several
inherent limitations such as the inability to develop highly interactive applications, inability to provide
complete customisable applications and inability to integrate applications [Goepfert02]. This resulted in
monolithic architectures, highly fragile, customer-specific, non-reusable integration of applications based
on tight coupling principles.

Today we are in the midst of another significant development in the evolution of software-as-a-service.
The new architecture allows for loosely-coupled asynchronous interactions on the basis of XML standards
with the intention of making access to, and communications between, applications over the Internet easier.
The SOC paradigm allows the software-as-a-service concept to expand to include the delivery of complex
business processes and transactions as a service, while permitting applications to be constructed on the fly
and services to be reused everywhere and by anybody. Perceiving the relative benefits of service-oriented
technology many ASPs are modifying their technical infrastructures and business models to be more akin to
those of web service providers.

The web services paradigm allows the software-as-a-service concept to expand to include the delivery of
complex business processes and transactions as a service, while permitting that applications are
constructed on the fly and services to be reused everywhere and by anybody. Perceiving the relative
benefits of web service technology many ASPs are modifying their technical infrastructures and business
models to be more akin to those of web service providers.

The use of web services provides a more flexible solution. The core of the application – the business and
data components remain on the ASP’s machines, but are now accessed programmatically via web service
interfaces. The customers can now build their own custom business processes and user interfaces, and are
also free to select from a variety of web services that are available over the network and satisfy their
needs.

When comparing web services with web-based applications we may distinguish four key differences
[Aldrich02]:

• Web services act as resources to other applications that can request and initiate those web
services, with or without human intervention. This means that web services can call on other web
services to outsource parts of a complex transaction to those other web services. This provides a
high degree of flexibility and adaptability not available in today’s Web-based applications.

• Web services are modular, self-aware and self-describing applications; a web service knows what
functions it can perform and what inputs it requires to produce its outputs and can describe this to
potential users and to other web services. A web service can also describe its non-functional
properties: for instance the cost of invoking the service, the geographical areas the web service
covers, security measures involved in using the web service, contact information and more.

• Web services are more visible and manageable than Web-based applications; the state of a web
service can be monitored and managed at any time by using external application management and
workflow systems. Despite the fact that a web service may not run on an in-house (local) system or
may be written in an unfamiliar programming language it still can be used by local applications,
which may detect its state (active or available) and manage the status of its outcome.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 5

• Web services may be brokered or auctioned. If several web services perform the same task, then
several applications may place bids for the opportunity to use the requested service. A broker can
base its choice on the attributes of the “competing” web services (cost, speed, degree of security).

3 What are web services?

Web services that can be published to and accessed over the Internet and corporate intranets form the
building blocks for creating distributed applications. They rely on a set of open Internet standards that
allow developers to implement distributed applications – using different tools provided by many different
vendors – to create corporate applications that join together software modules from systems in diverse
organisational departments or from different enterprises. For example, an application that tracks the
inventory level of parts within an enterprise can provide a useful service that answers queries about the
inventory level. But more importantly, web services can also be combined and/or configured by these
distributed applications, behind the scenes and even on the fly, to perform virtually any kind of (business-
related) task or transaction. These applications usually already exist within an enterprise or may be
developed from scratch using a Web services toolkit.

Web services can discover and communicate with other web services and trigger them to fulfil or outsource
part of a higher-level transaction by using a common vocabulary (business terminology) and a published
directory of their capabilities according to a reference architecture called the Service Oriented
Architecture (see section-5). A web service can be a specific service, such as an online car rental service; a
business process, such as the automated purchasing of office supplies; an application, such as a language
translator program; or an IT resource, such as access to a particular database.

A web services toolkit exposes the useful business service in an Internet- accessible format. For instance,
an IBM Web services development environment or Microsoft Visual Studio .NET toolkit may be used to
expose the inventory level query application (being originally coded in say, C or Visual Basic) as a web
service that can be accessed over the Internet by any other module as part of a distributed application.
Consequently, the modularity and flexibility of web services make them ideal for e-business application
integration. For example, an inventory web service referenced above can be accessed together with other
related web services by a business partner’s warehouse management application or can be part of a new
distributed application that is developed from scratch and implements an extended value chain supply
planning solution.

At this stage a more complete definition of a web service can be given. A web service is a platform-
independent, loosely coupled, self-contained programmable web-enabled application that can be
described, published, discovered, coordinated and configured using XML artefacts for the purpose of
developing distributed interoperable applications. Web services possess the ability to engage other services
in a common computation in order to:

• complete a task,
• conduct a business transaction, or
• solve a complex problem, and
• expose their features programmatically over the Internet (or intra-net) using standard Internet

languages and protocols like XML, and
• can be implemented via a self-describing interface based on open Internet standards.

In the following we shall examine this definition more closely and deconstruct its meaning.

• Web services are loosely coupled software modules. Web services interact with one another
dynamically and use Internet standard technologies, making it possible to build bridges between
systems that otherwise would require extensive development efforts. Traditional application design
depends upon a tight interconnection of all subsidiary elements, often running in the same process.
The complexity of these connections requires that developers thoroughly understand and have
control over both ends of the connection; moreover, once established, it is exceedingly difficult to
extract one element and replace it with another. Loosely coupled systems, on the other hand,
require a much simpler level of coordination and allow for more flexible reconfiguration. As

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 6

opposed to tight coupling principles that require agreement and shared context between
communicating systems as well as sensitivity to change, loose coupling allows systems to connect
and interact more freely (possibly across the Internet). Loose coupling also implies that a change in
the implementation of the web service functionality does not require a subsequent change in the
client program that invokes it, the conditions and cost of using the service and so on.

• Web services semantically encapsulate discrete functionality. A web service is a self-contained
software module that performs a single task. The module describes its own interface
characteristics, i.e., the operations available, the parameters, data-typing and the access
protocols, in a way that other software modules can determine what it does, how to invoke its
functionality, and what result to expect in return. In this regard, web services are contracted
software modules as they provide publicly available descriptions of the interface characteristics
used to access the service so that potential clients can bind to it. The service client uses a web
service’s interface description to bind to the service provider and invoke its services.

• Web services can be accessed programmatically. A web service provides programmable access – this
allows to embed web services into remotely located applications. This enables information to be
queried and updated in real-time, thus, improving efficiency, responsiveness and accuracy –
ultimately leading to provide high added value to the web service clients. Unlike web sites, web
services are not targeted at human users, and they do not have a graphical user interface. Rather,
web services operate at the code level; they are called by and exchange data with other software
modules and applications. However, web services can certainly be incorporated into software
applications designed for human interaction.

• Web service can be dynamically found and included in applications. Unlike existing interface
mechanisms. Web services can be assembled, even on the fly, to serve a particular function, solve
a specific problem, or deliver a particular solution to a customer.

• Web services are distributed over the Internet. Web services make use of existing, ubiquitous
transport Internet protocols like HTTP. By relying on the same, well-understood transport
mechanism as Web content, web services leverage existing infrastructure and can comply with
current corporate firewall policies.

• Web services are described in terms of a description language that provides functional as well as
non-functional characteristics. Functional characteristics include operational characteristics that
define the overall behaviour of the service while non-functional characteristics include service
availability, reliability, security, authorisation, authentication, performance characteristics, e.g.,
speed or accuracy, timeliness information as well as payment schemes on a “Finance it”, “Lease
it”, “Pay for it” or “Pay per use” basis.

By employing a web service architecture, distributed applications which are dynamic and loosely coupled
can be created based on different web services accessible for different purposes from any kind of internet
ready devices such as personal computers, workstations, laptops, WAP-enabled cellular phones, personal
digital assistants (PDAs), and with WI-FI or UMTS capabilities even household appliances fitted with
computer chips.

The web services technologies and architecture also allow for a new kind of business logic to emerge:
“global business logic”, i.e. software components that can be used by thousands of consumers. If we take
the example of “sales tax calculation”, this operation is used typically on quotes, orders and invoices. One
could imagine in the US alone, with 50 states, with all the possible combinations of geography, goods and
ways of doing business (internet, mail order, retail stores, …), this component quickly becomes almost
impossible to manage. If we now expand this problem to the world one can start asking why should every
company in the world “own” a component capable of calculating sales tax. With the current bandwidth and
computing power, regardless of the volumes of orders, it would be very easy to outfit existing applications
with using a web services hosted and maintained by specialized companies that track all the possible
changes in this type of calculation.

The same technologies can address one of the major challenges in e-business namely providing seamless
connectivity between business processes and applications external to an enterprise and the enterprise’s
back office applications, such as billing, order processing, accounting, inventory, receivables, and services
focused on total supply chain management and partnership including product development, fulfilment, and
distribution. In addition, web services technologies address security concerns.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 7

For security reasons the firewall, which is essential for the survival of a business site, prevents access to
back office systems in order to maintain the integrity of business data stored in business databases and
guarantee privacy. The approach with the firewall is that it disallows any kind of binary method invocation,
except on predesignated guarded, i.e., secure, ports. As a result even if all the Web sites come equipped
with the same component technology such as, for instance, CORBA, firewalls prevent calls from going
through. Web services address the problems of firewall blocking and singular solutions simply. The only
thing that is common to business Web sites and is firewall “friendly” is HTTP. Web services use the Simple
Object Access Protocol (SOAP) as a transport protocol to transport the call from one Web site to the next,
see section-8.1. SOAP combines the proven Web technology of the HTTP with the flexibility and
extensibility of XML. It facilitates interoperability among a wide range of programs and platforms, making
existing applications accessible to a broader range of users. Web services exploit this technology by
allowing service providers to provide their clients with secure, personalised access to their back-office
information and processes. This allows the service provider can monitor Web access using its Web server,
control database permissions, monitor the database log files and retain control of its corporate business
data and processes.

4 Web services: types and characteristics

Web services can be classified in accordance with three models on basis of the business functionality they
provide and exhibit several important characteristics all of which are examined in this section.

4.1 Types of web services

Topologically, web services can come in two flavours. Informational, or type I, web services support only
inbound operations. As such they always wait for a request, process it and respond. This type is very
common and is generally stateless. Complex, or type II web services implement some form of coordination
between inbound and outbound operations and are almost always statefull, see Figure 2.

Figure 2 High-level view of informational and complex services.

1. Informational services

Informational services are services of relatively simple nature, they either involve simple request/response
sequences between interacting services thus providing access to content (content services) or they expose
back-end business applications to other applications located outside the firewall (business process
services). Simple services are programmatic services as they encapsulate a programmatic process and
expose the logic of the applications and components that underlie them, e.g., currency conversion. The

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 8

exposed programmatic services perform a request-response type of business task and return a concrete
result, in this sense they can be viewed as “atomic” (or singular) operations. The clients of these services
can assemble them to build new applications. Informational services can be further subdivided into:

• Pure content services give programmatic access to content such as weather report information,
simple financial information, stock quote information, design information, news items and so on.

• More complicated forms of information services that can also provide a seamless aggregation of
information across disparate systems and information sources, including back-end systems, giving
programmatic access to a business service so that the requester can make the best decisions.
Typical examples of such simple trading services include services such as reserving a rental car or
submitting a purchase order.

• Information syndication services. Information syndication services are value-added information web
services that purport to "plug into" commerce sites of various types, such as e-Marketplaces, or sell-
sites. Generally, these services are offered by a third-party and run the whole range from
commerce-enabling services, such as logistics, payment, fulfilment, and tracking services, to other
value-added commerce services, such as rating services. Typical examples of syndicated services
might include reservation services on a travel site or rate quote services on an insurance site.

Informational services (including information syndication services) are singular in that they perform a
complete unit of work that leaves its underlying data stores in a consistent state. However, they are not
transactional in nature (although their back-end realizations may be). Informational and simple trading
services require support by the three evolving standards: (i) Service description (WSDL), (ii) Service
Publication and Discovery (UDDI) and (iii) Communication Protocol (SOAP), all described in section-8. The
key limitations of informational services (including simple trading services) are that they do not define any
standards for business collaboration, process definition or security over the Web. Today, most of the
software vendors who support web services provide either information syndication or simple trading
functionality.

2. Complex services

For enterprises to obtain the full benefit of web services, transactional-like web service functionality is
required. True business-to-business collaboration requires functionality that is well beyond that found in
informational web services and involves choreographies of service invocations between businesses to
complete a multi-step business interaction. Business-to-business collaboration relies on numerous document
exchanges, multi-party, long running transactions (or “business conversations”) that involve sophisticated
security techniques, such as non-repudiation and digital signatures, as well as business process
management. Business-to-business collaboration usually involves business agreement descriptions, which
define roles such as buyer and seller and a purchasing protocol between them. The agreement definition
outlines the requirements that each role must fulfil. For example, the seller must have web services that
receive request for quote (RFQ) messages, purchase order (PO) messages and payment messages. The buyer
role must have web services that receive (RFQ response messages), invoice messages and account summary
messages. This choreography of web services into business roles is critical for establishing multi-step,
service-oriented interactions between business partners and modelling business agreements.

By explicitly modelling business agreements and each business participant’s ability to play roles in the
business agreement, the requester can choose which business agreement to embark on with potential
service providers. Consider for instance a secure supply-chain marketplace application where buyers and
suppliers collaborate and compete for orders and the fulfilment of those orders. Numerous document
exchanges will occur in this process including requests for quotes, returned quotes, purchase order
requests, purchase order confirmations, delivery information and so on. Long running transactions and
asynchronous messaging will occur, and business “conversation” and even negotiations may occur before
the final agreements are reached. This type of functionality is exhibited by complex web services. Complex
web services, just like informational services, require the support of standards such as SOAP, WSDL and
UDDI, however, they also require emergent standards for the following:

• Business processes and associated XML messages and content;
• A registry for publishing and discovering business processes and collaboration protocol profiles;
• Collaboration partner agreements;

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 9

• Standard business terminology;
• A uniform message transport infrastructure.

Two key emerging business protocols that are widely accepted by industry on which complex web services
can rely are ebXML (electronic-business XML) [Chappel01], [Grangard01] and RosettaNet [Masud03]. The
complex web services standards are still evolving and are converging on SOAP, WSDL, UDDI and the web
services Business Process Execution Language (BPEL) currently under standardisation at OASIS [Andrews03].

Web services can also be categorised according to the way they are programmed in applications. Some web
services exhibit programmatic behaviour whereas others exhibit mainly interactive behaviour where input
has to be supplied by the user. This makes it natural to distinguish between the following two types of web
services:

1. Programmatic web services: Programmatic web services encapsulate a programmatic business processes

and expose the business logic functionality of the applications and components that underlie them.
Programmatic business services expose function calls, typically written in programming languages such
as Java/EJB, Visual Basic or C++. Applications access these function calls by executing a web service
through standard WSDL programmatic interface. The exposed programmatic services perform a request-
response type of business task and return a concrete result, in this sense they can be viewed as
“atomic” operations. The clients of these web services can assemble them to build new applications.
An example typical of programmatic behaviour could be an inventory checking function of an inventory
management system, which is exposed as a web service accessible to applications via the Internet. The
inventory checking web service can then be invoked by a create order service that also uses a
create purchase order web service from an order entry system to create orders, if the inventory
is available.

2. Interactive web services: these expose the functionality of a Web application’s presentation (browser)

layer. They expose a multi-step web application behaviour that combines a web server, an application
server and underlying database systems and typically deliver the application directly to a browser.
Clients of these web services can incorporate interactive business processes into their web applications,
presenting integrated (aggregated) applications from external service providers. As interactive web
services may involve multiple web pages interacting with an end user, in many cases both the service
provider and the service aggregator are unable to take full advantage of the potential synergies that
result from combining their applications and integrating their business models. The problem being that
the aggregator’s application is often unaware of the page content that is delivered to end user, and is
typically unable to alter this content or its behaviour.

Obviously the two types of web services, namely programmatic and interactive, can be combined
delivering, thus, business processes that combine typical business logic functionality with web browser
interactivity.

4.2 Service characteristics

Services exhibit the following characteristics, which we will describe in the following.

• Functional and non-functional properties
• State properties
• Granularity
• Complexity
• Synchronicity
• Extensibility

4.2.1 Functional and non-functional properties
Services are described in terms of a description language that provides functional as well as non-functional
characteristics. Functional characteristics include operational characteristics that define the overall
behaviour of the service while non-functional characteristics include non-functional service quality
attributes, such as service metering and cost, performance metrics, e.g., response time or accuracy,

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 10

security attributes, authorisation, authentication, (transactional) integrity, reliability, scalability, and
availability.

Functional properties of services are examined in sections 6.2 and 6.3 while non-functional are examined in
section-12.

4.2.2 State properties

Services could be stateless or stateful. If services can be invoked repeatedly without having to maintain
context or state they are called stateless, while services that may require their context to be preserved
from one invocation to the next are called stateful. The services access protocol is always connectionless.

• Stateless Web Service: A web service in its simplest form, e.g., an informational weather report
service, does not keep any memory of what happens to it between requests. Here, stateless means
that each time a consumer interacts with a web service, an action is performed. After the results of
the service invocation have been returned, the action is finished. There is no assumption that
subsequent invocations are associated with prior ones. Consequently, all the information required
to perform the service is either passed with the request message or can be retrieved from a data
repository based on some information provided with the request.

• Stateful Web Service: In contrast to a stateless web service, a stateful web service maintains some
state between different operation invocations issued by the same or different web service clients.
If a particular “session” or “conversation” involves web services then transient information
between operation invocations is stateful. A message sent to a web service stateful instance, would
be interpreted in relation to that instance specific state, while the state of the instance would be
the context for interpreting the message. Typically, business processes specify stateful interactions
involving the exchange of messages between partners, where the state of a business process
includes the messages that are exchanged as well as intermediate data used in business logic and in
composing messages sent to partners. Consider for instance, a supply chain, where a seller's
business process might offer a service that begins an interaction by accepting a purchase order
through an input message, and then returns an acknowledgement to the buyer if the order can be
fulfilled. It might later send further messages to the buyer, such as shipping notices and invoices.
The seller's business process must “remember” the state of each such purchase order interaction
separately from other similar interactions. This is necessary when a buyer has many purchase
processes with the same seller that are executed simultaneously.

4.2.3 Complexity and granularity
Services can vary in function from simple requests (for example, currency conversion, credit checking and
authorization, inventory status checking, or a weather report) to complex systems that access and combine
information from multiple sources, such as an insurance brokering system, a travel planner, an insurance
liability computation, or a package tracking system. Simple service requests may have complicated
realizations. Consider for example, “pure” business services, such as logistic services, where automated
services are the actual front-ends to fairly complex physical organisational business processes.
Informational services are discrete in nature, exhibit normally a request/reply mode of operation and are
of fine granularity, viz. atomic in nature.

Complex services are coarse-grained and involve interactions with other services and possibly end-users in a
single or multiple sessions. Enterprises can use a single (discrete) service to accomplish a specific business
task, such as billing or inventory control or they may compose several services together to create a
distributed e-business application such as customised ordering, customer support, procurement, and
logistical support. These services are collaborative in nature and some of them may require transactional
functionality.

4.2.4 Synchronicity
We may distinguish between two programming styles for services: synchronous or remote procedure call
(RPC)-style versus asynchronous or message (document)-style.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 11

Synchronous services: Clients of synchronous services express their request as a method call with a set of
arguments, which returns a response containing a return value. This implies that when a client sends a
request message, it expects a response message before continuing with its computation. Because of this
type of bilateral communication between the client and service, RPC-style services require a tightly
coupled model of communication between the client and service provider. RPC-style web services are
normally used when an application exhibits the following characteristics:

• The client invoking the service requires an immediate response.
• The client and service work in a back-and-forth conversational way.
• The service is process-oriented (part of a process to be precise) rather than data-oriented.
• Examples of typical simple information services with an RPC-style include returning the current

price for a given stock; providing the current weather conditions in a particular location; or
checking the credit rating of a potential trading partner prior to the completion of a business
transaction.

Asynchronous services: Asynchronous services are document-style or message driven services. When a client
invokes a message-style service, the client typically sends it an entire document, such as a purchase order,
rather than a discrete set of parameters. The service accepts the entire document it processes it and may
or may not return a result message. A client that invokes an asynchronous service does not need to wait for
a response before it continues with the remainder of its application. The response from the service, if any,
can appear hours or even days later. Asynchronous services promote a looser coupling between the client
and service provider, as there is no requirement for a tightly coupled request-response model between the
client and the web service. Document-style web services are normally used when an application exhibits
the following characteristics:

• The client does not require (or expect) an immediate response.
• The service is process-oriented.

Examples of document-style web services include processing a purchase order; responding to a request for
quote order from a customer; or responding to an order placement by a particular customer. In all these
cases, the client sends an entire document, such as a purchase order, to the web service and assumes that
the web service is processing it in some way, but the client does not require an immediate answer.

4.2.5 Service usage context
In addition to the types and characteristics of web services mentioned above it also useful to divide
information services into different categories based on the web service requester’s perspective. We base
the following classification and discussion on a revision of the findings reported in [Pér00]. Here we may
distinguish between the following service categories:

• Commodity service: this kind of service is provided by a large number of different providers.
Replacing one service provider by another will not compromise system functionality and
unavailability of the web service does not affect productivity. Each access to a service is preceded
by discovery phase until an appropriate provider (in terms of price and service quality) is located.
Using such a service does not require an data or process integration. An example of this kind of web
service is a weather report as part of a travel application.

• Replaceable service: a replaceable web service is a service provided by several providers and

replacing one provider with another does not affect application functionality. The productivity is
not reduced severely if the service is unavailable for a short period of time. A discrete
(enumerated) discovery process involving several alternative possibilities may be pursued here. An
example of this kind of service is a car rental service. Here we may pursue different car rental
agencies, e.g., Avis, Hertz, Budget, and choose the first service response that arrives and satisfies
our needs. This type of service is usually well integrated with the consumer processes (e.g. rent-a-
car activity) but not tightly integrated at the data level.

• Mission-critical service: a specific provider always provides the service, replacing this provider

severely compromises the functionality of the application. If the service is unavailable for a period

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 12

of time it would drastically reduce the productivity of the application. This type of service would
typically hold some critical enterprise data and be integrated at the process level.

5 Services, interfaces and components

One important aspect of services is that they distinguish between an interface and implementation part.
The interface part defines the functionality visible to the external world and the means to access this
functionality. The service describes its own interface characteristics, i.e., the operations available, the
parameters, data-typing and the access protocols, in a way that other software modules can determine
what it does, how to invoke its functionality, and what result to expect in return. In this regard, services
are contractible software modules as they provide publicly available descriptions of the interface
characteristics used to access the service so that potential clients can bind to it. The service client uses the
service’s interface description to bind to the service provider and invoke its functionality.

The implementation realizes the interface and the implementation details are hidden from the users of the
service. Different service providers using any programming language of their choice may implement the
same interface. One service implementation might provide the functionality itself directly, while another
service implementation might use a combination of other services to provide the same functionality.

The eventual goal of service-oriented computing is to enable distributed applications that can be
dynamically assembled according to changing business needs, and customised based on device and user
access.

To better understand how to design and develop services, it is important to understand the relationship
between services, interfaces and components. When designing an application developers develop a logical
model of what an enterprise does in terms of business objects (such as product, customer, order, bill, etc)
and the services the business requires from these business objects (what is the stock level, what is the
delivery schedule and so on). The developer may implement these concepts as a blend of interface
specifications in terms of services and component implementations (the business objects). Components are
normally used to implement (realize) the service functionality. The services need to be designed and
implemented in ways that make them re-useable in various contexts as defined by service consumer but
often unknown to the service designer. This is very similar to “human services” where, for instance, we do
not pay a different price for posting an envelope depending whether it contains a letter, an invoice, an
order, a patent, a check, etc, while at the same time the post office is unaware of the content of the
envelope.

From an enterprise point of view it is much more desirable to deal with service interfaces than with
component implementations. Frequently, the interfaces that the components realize are too low level and
not representative of, or even relevant to, the actual business services provided. This implies that we are
dealing with two largely complementary elements: the service interface and its corresponding
implementation component (service realization). It is important to distinguish between these two elements
because in many cases the organisations that provide service interfaces are not the same as the
organisations that implement the services. A service is a business concept that should be specified with an
application or the user of the service in mind, while the service realization may be provided by a software
package, e.g., an ERP package, a special purpose built component, a commercial off the shelf application
(COTS), or a legacy application.

A service is usually a business function implemented in software, wrapped with a formal documented
interface that is well known and known where to be found not only by agents who designed the service but
also by agents who do not know about how the service has been designed and yet want to access and use it.
Black box encapsulation inherits this feature from the principles of modularity in software engineering,
e.g., modules, objects and components. Services are different from all of these forms of modularity in that
they represent complete business functions, they are intend to be reused and combined in new transactions
not at the level of an individual program or even application but at the level of the enterprise or even
across enterprises. They are intended to represent meaningful business functionality that can be assembled
into a larger and new configurations depending on the need of particular kinds of users particular client
channels.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 13

Service-realization

Web-service
Implementation

(outsourced)

Web-service
specification

Imported
web-service

interfaces

Web-service
usage

interface

Web-service
client

reuse/buy
build/buy

build

Web-service
Implementation

(in-house)

Web-service
Implementation

(outsourced)

Service-deployment

Service-realization

Web-service
Implementation

(outsourced)

Web-service
specification

Imported
web-service

interfaces

Web-service
usage

interface

Web-service
client

reuse/buy
build/buy

build

Web-service
Implementation

(in-house)

Web-service
Implementation

(outsourced)

Service-deployment

Figure 3 Services, interfaces and service realizations.

To a service client is irrelevant whether the services are provided by a fine-grained suite of components, or
a single monolithic ERP. However, it is important that the developer who implements the service still thinks
about granularity so they can change parts of the implementation with the minimum of disruption to other
components, applications and services. The granularity of components should be the prime concern of the
developer responsible for providing component implementations for services, whereas service designers
should be more interested in the process operations and assembly potential of the provided services.

The only way one service can interact with another is via its interface. To cater for this requirement for
service-based development we need to introduce the concept of service specification in addition to the
concept of an interface. Recall that the purpose of the service interface is to define which interfaces the
service offers to the outside world. The interface simply provides the mechanism by which services
communicate with applications and other services. Technically, the service interface is the description of
the signatures of a set of operations that are available to the service client for invocation. The service
specification must explicitly describe all the interfaces that a client of this service expects as well as the
service interfaces that must be provided by the environment into which the service is
assembled/composed. As service interfaces of composed services are provided by other (possibly singular)
services, the service specification serves as a means to define how a composite service interface can be
related to the interfaces of the imported services and how it can be implemented out of imported service
interfaces. This is shown in Figure 3. In this sense the service specification has a mission identical to a
composition meta-model that provides a description of how the web service interfaces interact with each
other and how to define a new web service interface (<PortType>, see section-8.2) as a collection
(assembly) of existing ones (imported <PortType>s), see Figure 3. A service specification, thus, defines the
encapsulation boundary of a service, and consequently determines the granularity of replaceability of web
service interface compositions. This is the only way to design services reliably using imported services
without knowledge of their implementations. As service development requires that we deal with multiple
imported service interfaces it is useful to introduce this stage the concept of service usage interface. A
service usage interface is simply the interface that the service exposes to its clients. This means that the
service usage interface is not different from the imported service interfaces in Figure 3, it is, however, the
only interface viewed by a client application.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 14

Figure 3 distinguishes between two broad aspects of services: service deployment, which we examined
already, versus service realization. The service realization strategy involves choosing from an increasing
diversity of different options for services, which may be mixed in various combinations including [Papa02]:

• In house service design and implementation. Once a service is specified, the design of its interfaces
or sets of interfaces and the coding of its actual implementation happens in-house.

• Purchasing/leasing/paying for services. Complex web services that are used to develop trading
applications are commercialisable software commodities that may be acquired from a service
provider, rather than implemented internally. These types of services are very different from the
selling of shrink-wrapped software components, in that payment should be on an execution basis
for the delivery of the service, rather than on a one-off payment for an implementation of the
software. For complex trading web services, the service provider may have different charging
policies such as payment per usage, payment on a subscription basis, lifetime services and so on.

• Outsourcing service design and implementation. Once a service is specified, the design of its
interfaces or sets of interfaces and the coding of its actual implementation may be outsourced.
Software outsourcings are advantageous in the case of organisations that have become frustrated
with the shortcomings of their internal IT departments.

• Using wrappers and/or adapters. Non-component implementations for services may include
database functionality or legacy software accessed by means of adapters or wrappers. Wrappers
reuse legacy code by converting the legacy functionality and encapsulating it inside components.
Adapters use legacy code in combination with newly developed component code. This newly
developed that may contain new business logic and rules that supplement the converted legacy
functionality.

6 The service-oriented architecture

Web services hold the promise of moving beyond the simple exchange of information – the dominating
mechanism for application integration today – to the concept of accessing, programming and integrating
application services that are encapsulated within old and new applications. This would mean organisations
will be able not only to move information from application to application, but also to create complex
customisable composite applications, leveraging any number of back-end and older technology systems
found in local or remote applications.

Key to this concept is the service-oriented architecture (SOA). SOA is a logical way of designing a software
system to provide services to either end-user applications or to other services distributed in a network, via
published and discoverable interfaces. To achieve this SOA reorganises a portfolio of previously siloed
software applications and support infrastructure into an interconnected set of services, each accessible
through standard interfaces and messaging protocols. Once all the elements of enterprise architecture are
in place, existing and future applications can access these services as necessary without the need of
convoluted point-to-point solutions based on inscrutable proprietary protocols.

The term service-oriented architecture signifies the way web services are described and organised so that
dynamic, automated discovery and use of network-available services can take place. This architectural
approach is particularly applicable when multiple applications running on varied technologies and platforms
need to communicate with each other. In this way, enterprises can mix and match services to perform
business transactions with minimal programming effort.

SOA is a logical way of designing a software system to provide services to either end-user applications or
other services distributed in a network through published and discoverable interfaces. The basic SOA
defines an interaction between software agents as an exchange of messages between service requesters
(clients) and service providers. Clients are software agents that request the execution of a service.
Providers are software agents that provide the service. Agents can be simultaneously both service clients
and providers. Providers are responsible for publishing a description of the service(s) they provide. Clients
must able to find the description(s) of the services they require and must be able to bind to them.

The service-oriented architecture builds on today’s web services baseline specifications of SOAP, WSDL, and
UDDI that are going to be examined in section-8. The main building blocks of the web services architecture

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 15

are three-fold and they are determined on the basis of three primary roles that can be undertaken by these
architectural modules. These are the service provider, the service registry and the service requester.

6.1 Roles of interaction in the service-oriented architecture

Web service provider

The first important role that can be discerned in the web service architecture is that of the web service
provider. The web service provider is the organization that owns the web service and implements the
business logic that underlies the service. From an architectural perspective this is the platform that hosts
and controls access to the service.

The web service provider is responsible for publishing the web services it provides in a service registry
hosted by a service broker. This involves describing the business, service and technical information of the
web service and registering that information with the web service registry in the format prescribed by the
discovery agency.

Web service requester (client)

The next major role in the web service architecture is that of the web service requester (or client). From a
business perspective this is the enterprise that requires certain functions to be satisfied. From an
architectural perspective, this is the application that is looking for, and subsequently invoking, the service.
The web service requester searches the service registry for the desired web services. This effectively
means discovering the web service description in a registry provided by a discovery agency and using the
information in the description to bind to the service. Two different kinds of web service requesters exist.
The requester role can be played either by a browser driven by an end user or by another web service as
part of an application without a user interface.

Service Registry

The last important role that can be distinguished in the web services architecture is that of the web-
registry which is a searchable directory where service descriptions can be published and searched. Service
requestors find service descriptions in the registry and obtain binding information for services. This
information is sufficient for the service requester to contact, or bind to, the service provider and thus make
use of the services it provides.

It is unreasonable to assume that there would be a single global registry containing all of the information
required to find and interact with businesses throughout the world. What we will see are local communities
of service providers and requesters organised in vertical markets and gathering around portals. These
marketplaces will consist of UDDI registries containing business data for that specific vertical market. This
gives raise to the idea of a web service discovery agency that is the organisation (acting as a third trusted
party) whose primary activities focus on hosting the registry, publishing and promoting web services. The
service discovery agency can further improve the searching functionality for web service requesters by
adding advertising capabilities to this infrastructure and by supporting facilities for web service
matchmaking between providers and requesters.

The web service discovery agency is responsible for providing the infrastructure required to enable the
three operations in the web service architecture as described in the previous section: publishing the web
services by the web service provider, searching for web services by web service requesters and invoking the
web services.

6.2 Operations in the service-oriented architecture

For an application to take advantage of the web service interactions between the three roles in the SOA
three primary operations must take place. These are publication of the service descriptions, finding the
service descriptions and binding or invocation of services based on their service description. These three
basic operations can occur singly or iteratively.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 16

6.2.1 Publish
Publishing a web service so that other users can find it actually consists of two equally important
operations. The first operation is describing the web service itself; the other is the actual registration of
the web service.

If a service provider wishes to publish its web services with the registry then the first requirement is to
properly describe these web services in WSDL. To achieve this goal it is necessary to decide what
information is relevant, not only from the viewpoint of the web service provider but also from the
viewpoint of the web discovery agency and the web service requester. We may distinguish between three
basic categories of information necessary for proper description:

• business information; information on the web service provider, the owner of the web service;
• service information; information about the nature of the web service; and
• technical information; information about the invocation methods of the web service.

The next step in publishing a web service is registration. Registration deals with storing the web service
descriptions in the web services registry provided by the discovery agency. For web service requesters to be
able to find a web service this needs to be published with at least one discovery agency.

6.2.2 Find
In a similar fashion to publishing, finding web services is also a twofold operation. Finding the desired web
services consists of first discovering the services in the registry of the discovery agency and then selecting
the desired web service(s) from the search results.

Discovering web services involves querying the registry of the discovery agency for web services matching
the needs of a web service requester. A query consists of search criteria such as type of service, preferred
price range, what products are associated with this service, with which categories in company and product
taxonomies is this web service associated as well as other technical characteristics (see section-8.3.1) and
is executed against the web service information in the registry entered by the web service provider. The
find operation can be involved in two different instances by the requester. Statically at design time to
retrieve a service’s interface description for program development. Dynamically (at run-time) to retrieve a
service’s binding and location description for invocation.

Selection deals with deciding about which web service to invoke from the set of web services the discovery
process returned. Two possible methods of selection exist: manual and automatic selection. Manual
selection implies that the web service requester selects the desired web service directly from the returned
set of web services after manual inspection. The other possibility is automatic selection of the best
candidate between potentially matching web services. A special client application program provided by the
web service registry (broker) can achieve this. In this case the web service requester has to specify
preferences to enable the application to infer which web service the web service requester is most likely to
wish to invoke.

Figure 4 Web service roles and operations.

Publish

Service
Provider

Service
Registry

Service
ClientFind

BindPublish

Service
Provider

Service
Registry

Service
Client

Service
Registry

Service
ClientFind

Bind

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 17

6.2.3 Bind
cture and perhaps the most important one is the actual

service. During the binding operation the service requester invokes or initiates an

-oriented architecture is given in Figure 4. This figure illustrates the
lationship between the three roles and the three operations mentioned in the previous. First, the web

 to realizing an effective service oriented architecture.
hey will be revisited and briefly discussed in the next sections where we shall examine the different

 consider the example of a travel planning service. This application
mploys an aggregate service that makes use of other services. The SOA representation of this type of

7 The web services techno

low applications to work together over standard Internet
rotocols, without direct human intervention. By doing so, we can automate many business operations,

The final operation in the web service archite
invocation of the web
interaction at run-time using the binding details in the service description to locate and contract to the
service. The technical information entered in the registry by the web service provider is used here. Two
different possibilities exist for this invocation. The first possibility is direct invocation of the web service by
the web service requester using the technical information included in the description of the service. The
second possibility is mediation by the discovery agency when invoking the web service. In this case all
communication between the web service requester and the web service provider goes through the web
service registry of the broker.

A logical view of the service
re
service provider publishes its web service(s) with the discovery agency. Next, the web service requester
searches for desired web services using the registry of the discovery agency. Finally, the web service
requester, using the information obtained from the discovery agency, invokes (binds to) the web service
provided by the web service provider [Boubez00].

The three operations discussed above are central
T
standards used in conjunction with web services.

6.3 Aggregated services

Moving up in the complexity scale, let us
e
aggregate service is illustrated in Figure 5. This figure illustrates that the requester may be a corporate
portal site that supports business-travel reservations for the employees of a particular company. This figure
involves a hierarchical service provision scheme whereby a requester (client) sends a request to the
aggregator, a system that offers a web service for complex travel reservations (step-1). The aggregator who
is just another service provider receives the initial request and decomposes it into two parts one involving
an airline reservation service for the air-travel portion of the trip and a hotel booking service request. The
portal subsequently acts as a web service requester and forwards these two requests to airline (step-2) and
hotel (step-4) service providers. These check the availability of airline seats and hotel rooms and reply to
the aggregator (steps 3 and 5). Finally, reverts to its role as service provider and relays the ultimate
response to the initial client (portal).

Corporate
Portal

(requester)

Airline
(Provider)
Airline

(Provider)

Hotel
(Provider)

Hotel
(Provider)

Provider RequesterProvider Requester

1

6

2

5

3

4

Aggregator

Corporate
Portal

(requester)

Airline
(Provider)
Airline

(Provider)

Hotel
(Provider)

Hotel
(Provider)

Provider RequesterProvider Requester

1

6

2

5

3

4

Corporate
Portal

(requester)

Corporate
Portal

(requester)

Airline
(Provider)
Airline

(Provider)

Hotel
(Provider)

Hotel
(Provider)

Airline
(Provider)
Airline

(Provider)

Hotel
(Provider)

Hotel
(Provider)

Provider RequesterProvider RequesterProvider RequesterProvider Requester

1

6

2

5

3

4

AggregatorAggregator

Figure 5 Aggregated SOA example.

logy stack

The goal of the web service technology is to al
p

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 18

creating new functional efficiencies and new more effective ways of doing business. The minimum
infrastructure required by the web services paradigm is purposefully low to help ensure that web services
can be implemented on and accessed from any platform using any technology and programming language.
By intent, web services are not implemented in a monolithic manner, but rather represent a collection of
several related technologies. The more generally accepted definition for web services leans on a stack of
specific, complementary standards, see Figure 6.

 The core layers that define basic web services communication have been widely accepted and are

plemented quite uniformly. Higher-level layers that define strategic aspects of business processes still

cifically tied to any specific transport protocol, web services build on ubiquitous Internet
nnectivity and infrastructure to ensure nearly universal reach and support. In particular, web services

data and its
corresponding semantics. It is a fundamental building block for nearly every other layer in the web
s

•
ly to exchange information among themselves. It is based on XML and uses common

I

Figure 6 The web services technology stack.

im
remain an open problem and it is quite likely that different vendors will propose divergent approaches. The
development of open and accepted standards is a key strength of the coalitions that have been building
web services infrastructure. At the same time, these efforts have resulted in the proliferation of a dizzying
number of emerging standards and acronyms. We provide high-level descriptions of the most important
ones below.

Core layers

Although not spe
co
will take advantage of HTTP, the same connection protocol used by Web servers and browsers.

• Extensible Markup Language (XML): XML is a widely accepted format for exchanging

ervices stack.
Simple Object Access Protocol (SOAP): SOAP is a simple XML-based messaging protocol on which

web services re
nternet transport protocols like HTTP to carry its data. SOAP implements a request-response model
for communication between interacting web services. It consists of three parts: an envelope (which
describes what is in the message and how to process it); a set of coding rules, and a convention for
representing RPCs and responses. SOAP uses HTTP to penetrate firewalls, which are usually
configured to accept HTTP and FTP service requests. It relies on XML to define the format of the
information and then adds the necessary HTTP headers to send it.

Coordination & Transaction

Value-added service
Layer

S
e
c
u
r
i
t
y

C
e
r
t
i
f
i
c
a
t
i
o
n

B
i
l
l
i
n
g

High-level
Layers

Packaging protocol
for information exchange

Extensible Markup
Language

Common Internet
Protocols

WSDL

UDDI

BPEL

SOAP

XML

TCP/IP,
HTTP

Core
Layers

Service Publication

Service Description

Service Flow

Layer

W
S

T
r
a
n
s
a
c
t
i
o
n

W
S

C
o
o
r
d
I
n
a
t
i
o
n

Value-added service
Layer

Value-added service
Layer

S
e
c
u
r
i
t
y

C
e
r
t
i
f
i
c
a
t
i
o
n

B
i
l
l
i
n
g

S
e
c
u
r
i
t
y

C
e
r
t
i
f
i
c
a
t
i
o
n

B
i
l
l
i
n
g

High-level
Layers

Packaging protocol
for information exchange

Extensible Markup
Language

Common Internet
Protocols

WSDL

UDDI

BPEL

SOAP

XML

TCP/IP,
HTTP

Core
Layers

Service Publication

Service Description

Service Flow
High-level
Layers

Packaging protocol
for information exchange

Extensible Markup
Language

Common Internet
Protocols

Packaging protocol
for information exchange

Packaging protocol
for information exchange

Extensible Markup
Language

Extensible Markup
Language

Common Internet
Protocols

Common Internet
Protocols

WSDL

UDDI

BPEL

WSDL

UDDI

BPEL

SOAP

XML

TCP/IP,
HTTP

Core
Layers

Service Publication

Service Description

Service Flow

Service Publication

Service DescriptionService Description

Service FlowService Flow

Coordination & Transaction
Layer

Coordination & Transaction
Layer

W
S

T
r
a
n
s
a
c
t
i
o
n

W
S

C
o
o
r
d
I
n
a
t
i
o
n

W
S

T
r
a
n
s
a
c
t
i
o
n

W
S

C
o
o
r
d
I
n
a
t
i
o
n

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 19

Higher-Level layers

The key to web service interoperability is reliance solely on the following standards that are found in the
higher levels of the web services technology stack.

1. Service Description layer: Web services become easy to use when a web service and its client rely
on standard ways to specify data and operations, to represent web service contracts, and to
understand the capabilities that a web service provides. To achieve this, the functionality of web
services is first described by means of a Web services Description Language (WSDL) and
subsequently is published in a Universal Description and Discovery and Integration (UDDI) service
repository for discovery. WSDL defines the XML grammar for describing services as collections of
communicating end-points capable of exchanging messages. Companies can publish WSDL
specifications for services they provide and other enterprises can access those services using the
description in WSDL. In this way, independent applications can advertise the presence of business
processes or tasks that can be utilised by other remote applications and systems. Links to WSDL
specifications are usually offered in an enterprise’s profile in the UDDI registry.

2. Service Publication layer: Web service publication is achieved by UDDI, which is a public directory
that provides publication of on-line services and facilitates eventual discovery of web services. It
stores and publishes the WSDL specifications of available web services. Searches can be performed
on the basis of company name, specific service, or types of service. This allows enterprises
providing or needing web services to discover each other, define how they interact over the
Internet, and share such information in a truly global and standardized manner in order to create
value added applications.

3. Service Flow layer: de ased applications by defining
their control flows (such as conditional, sequential, parallel and exceptional execution) and

e rules for consistently managing their unobservable business data. In this way
n describe complex processes that include multiple organisations— such as order

 and executable processes that address all aspects of

4.

scribes the execution logic of web services b

prescribing th
enterprises ca
processing, lead management, and claims handling—and execute the same business processes in
systems from other vendors. This layer is representative of a family of XML-based process definition
languages intended for expressing abstract
enterprise business processes, including in particular those areas important for web-based services.
Such languages include the Business Process Modelling Language (BPML) [Arkin01], the XML Process
Definition Language [Wfmc02], and the Business Process Execution Language for Web Services
(BPEL4WS) [Andrews03]. BPML is a block-structured programming language, which provides an
abstract model and XML syntax for expressing business processes and supporting entities. Flow
control (routing) is handled entirely by block structure concepts, e.g. execute all the activities in
the block sequentially). BPML itself does not define any application semantics such as particular
processes or application of processes in a specific domain; rather it defines an abstract model and
grammar for expressing generic processes. XPDL is conceived of as a graph-structured language to
handle blocks where process definitions cannot be nested. The activities in a process can be
thought of as the nodes of a directed graph, with the transitions being the edges. Conditions
associated with the transitions determine at execution time which activity or activities should be
executed next. BPEL is a block-structured workflow-like language that describes business processes
that can orchestrate web services. BPEL allows recursive blocks but restricts their definitions and
declarations to the top level. This XML-based flow language defines how business processes
interact. BPEL combines the former IBM WSFL and Microsoft XLANG efforts.
Service Collaboration layer: describes cross-enterprise collaborations of web service participants by
defining their common observable behaviour, where synchronized information exchanges occur
through their shared contact-points, when commonly defined ordering rules are satisfied. This layer
is materialized by Web Services Choreography Description Language (WS-CDL) [Kavantzas04], which
specifies the common observable behaviour of all participants engaged in business collaboration.
Each participant could be implemented by completely different languages such as web services
applications, whose implementation is based on executable business process languages like BPEL,
XPDL and BPML. As WS-CDL does not depend on a specific business process execution language it
can be used to specify truly interoperable collaborations between any type of web service
participant regardless of the supporting platform or programming model used by the
implementation of the hosting environment.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 20

Coordin

Solving
success
among
mechan
systems
work in
of web

Value-a

Additio
services e value-added services
laye
and mo
vendors

In the f
stack.

8 W

For the

andar ss the industry on a set of standards to support web
rged as the basis for standards in web services.

s
frastructures. However, the tools and common conventions required to interconnect these systems were

ations protocols have a symmetrical requirement. Both ends of the communication link would
eed to be implemented under the same distributed object model and would require the deployment of

d, for all practical purposes, the client application as well. Moreover, both DCOM and CORBA/IIOP
rely on single-vendor solutions to use the protocol to maximum advantage. Though both protocols have

 platforms and products, the reality is that a given deployment needs to
tion. In the case of DCOM, this means every machine runs Windows NT. In

plications are built
the difficulty of getting these

ols

ation/Transaction layer

the problems associated with service discovery and service description retrieval is the key to
of web services. Currently there are attempts underway towards defining transactional interaction

web services. The WS-Coordination and WS-Transaction initiatives complement BPEL4WS to provide
isms for defining specific standard protocols for use by transaction processing systems, workflow
, or other applications that wish to coordinate multiple web services. These three specifications
 tandem to address the business workflow issues implicated in connecting and executing a number
services that may run on disparate platforms across organisations involved in e-business scenarios.

dded services layer

nal elements that support complex business interactions must still be implemented before web
 can automate truly critical business processes. These are defined in th

r, see Figure 6. Mechanisms for security and authentication, contract management, quality of service,
re will soon follow, some as standards, others as value-added solutions from independent software
.

ollowing we concentrate mainly on describing the core and higher-level layers of the web services

eb service standards

re to be wide spread acceptance of web services there needs to be a set of clear, widely adopted
ds Fortunately, there is wide agreement acrost

services. Four sets of services have eme

8.1 SOAP: Simple Object Access Protocol

In the emerging world of web services, it will be possible for enterprises to leverage mainstream
application development tools and Internet application servers to bring about inter-applications
communication, which has been historically associated with EDI technology. This will enable enterprises to
conduct business electronically by making a broader range of services available faster and cheaper. For this
paradigm to become a reality we need to overcome proprietary systems running on heterogeneou
in
lacking until recently.

The conventional approach is to use distributed communication technologies such as CORBA/IIOP, DCOM,
Java/RMI, or any other application-to-application communication protocols for server-to-server
communications. However, both DCOM and CORBA/IIOP have severe weaknesses for client-to-server
communications, especially when the client machines are scattered across the Internet. These distributed
communic
n
libraries developed in common. Using Java/RMI also requires that the server application to be written in
Java an

been implemented on a variety of
single-vendor’s implementause a

the case of CORBA, this means that every machine runs the same ORB product. It is possible to get two
CORBA products to call one another using IIOP. However, many of the higher-level services (such as security
and transactions) are not generally interoperable at this time. Additionally, any vendor-specific
optimisations for same-machine communications are very unlikely to work unless all ap
against the same ORB product (symmetricity). An even more limiting issue is
protoc to work over firewalls or proxy servers.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 21

zoglou & Jean -Jacques Dubray 22

he goal of SOAP is to diffuse the barriers of heterogeneity that separate distributed computing platforms.

essaging using SOAP.

lth g messages and locate the
rem s HTTP. Layering SOAP over
HTT is sent as part of an HTTP request or response, which makes it easy to
communicate over any network that permits HTTP traffic. SOAP uses the HTTP protocol to transport XML-
encoded serialised method argument data from system to system. Serialisation is the process of converting
application data to XML. XML is then a serialised representation of the application data. The process of
generating application data from XML is called deserialisation. SOAP’s serialisation mechanism converts
method calls to a form suitable for transportation over the network, using special XML tags and semantics.
The serialised argument data is used on the remote end to execute the client’s method call on that
system’s, rather than on the client’s local system. Because SOAP can reside on HTTP, its request/response
method operates in a very similar way to HTTP. When a client makes an HTTP request, the server attempts
to service the request and can respond in one of two ways. It can either respond that communication was
successful by returning the requested information. Alternatively, it can respond with a fault message
notifying the client of the particular reason why the request could not be serviced.

To address the problem of overcoming proprietary systems running on heterogeneous infrastructures, web
services rely on SOAP, an XML-based communication protocol for exchanging information between
computers regardless of their operating systems, programming environment, or object model framework.
SOAP is defined as lightweight protocol for exchange of structured and typed information between
computers and systems in decentralised and distributed environment such as the Internet or even a LAN
(Local Area Network) [Cauldwell01].

T
SOAP achieves this by following the same recipe as other successful Web protocols: simplicity, flexibility,
firewall friendliness, platform neutrality and XML messaging-based (text-based). SOAP is simply an attempt
to codify the usage of existing Internet technologies to standardise distributed communications over the
Web, rather than being a new technological advancement. SOAP provides a wire protocol that specifies
how service-related messages are structured when exchanged across the Internet. SOAP is a lightweight
protocol that allows applications to pass messages and data back and forth between disparate systems in a
distributed environment enabling remote method invocation. By lightweight we mean that the SOAP
protocol possesses only two fundamental properties:

1. sending and receiving HTTP (or other) transport protocol packets, and
2. processing XML messages.

Figure 7 Distributed m

A ou h SOAP may use different protocols such as HTTP, FTP or RMI to transport
ote system and initiate communications, its natural transport protocol i
P means that a SOAP message

Web-service
implementation
infrastructure

Web-service
provider

3

4

Web-service
requester

1 6

Client
Application

5

Web-service
Application

SOAP message
XML document

Network Transport
Protocol
(HTTP)

SOAPserver

Network Transport
Protocol
(HTTP)

2

firewall

Web-service
implementation
infrastructure

Web-service
provider

3

4

Web-service
requester

1 6

Client
Application

5

Web-service
Application

SOAP message
XML document

Network Transport
Protocol
(HTTP)

SOAPserver

Network Transport
Protocol
(HTTP)

2

firewall

© Copyright Michael P. Papa

Even though SOAP is an “object” access protocol, it does not mandate any object-orientated approach like
CORBA does. SOAP rather defin se messages written in XML as
the basic protocol for electroni ding mechanism between two

age together with the
rovider’s URI (typically over HTTP) to the network infrastructure.

er’s web service implementation code (3). The SOAP server ensures that documents received
ver an HTTP SOAP connection are converted from XML to programming language-specific objects required

he web service is responsible for processing the request and formulating a response as a SOAP message.

nverting the XML response into objects
nderstood by the source (service requester’s) application (6).

OAP envelope: The purpose of SOAP is to provide a uniform container for XML messages. Prior to SOAP

nal information that is required to route it to its ultimate destination. The

e SOAP envelope namespace:
“http://schema.xmlsoap.org/soap/envelope”.
SOAP header: The header contains processing or control information, such as for example, information
about where the document shall be sent, where it originated and may even carry digital signatures. This

es a model for using simple request and respon
c communication. SOAP plays the role of a bin

conversing endpoints. A SOAP endpoint is simply an HTTP-based URL that identifies a target for a method
invocation.

The basic requirement for an Internet node to play the role of requester or provider in XML massaging-
based distributed computing is the ability to construct and parse a SOAP message and the ability to
communicate over the network by sending and receiving messages [Kreger01]. Any SOAP runtime system
executing in a Web application server performs these functions. Distributed application processing with
SOAP can be achieved in terms of the basic steps illustrated in Figure 7 and outlined in the following.

A service requester’s application creates a SOAP message as a result of a request to invoke a desired web
service operation hosted by a remote service provider (1). The request is formed by the SOAP client, which
is a program that creates an XML document containing the information needed to invoke remotely a method
in a distributed system. The XML code in body of the SOAP request is the place where the method request
and its arguments are placed. The service requester forwards the SOAP mess
p

The network infrastructure delivers the message to the message provider’s SOAP runtime system (for
example a SOAP server) (2). The SOAP server is simply special code that listens for SOAP messages and acts
as a distributor and interpreter of SOAP documents. The SOAP server routes the request message to the
service provid
o
by the application implementing the web services at the provider’s site. This conversion is governed by the
encoding scheme found within the SOAP message envelope. In doing so the SOAP server also ensures that
the parameters included in the SOAP document are passed to the appropriate methods in the web service
implementation infrastructure.

T
The response SOAP message is presented to the SOAP runtime system at the provider’s site with the service
requester’s URI as its destination (4). The SOAP server forwards the SOAP message response to the service
requester over the network (5).

The response message is received by the network infrastructure on the service requester’s node. The
message is routed through the SOAP infrastructure, potentially co
u

8.1.1 Structure of a SOAP message
The current SOAP specification 1.1 describes how the data types defined in associated XML schemas are
serialised over HTTP or other transport protocols. Both the provider and requester of SOAP messages must
have access to the same XML schemas in order to exchange information correctly. The schemas are
normally posted on the Internet, and may be downloaded by any party in an exchange of messages. A SOAP
message contains a payload, the application specific information it delivers. Every SOAP message is
essentially an XML document. SOAP messages can be broken down to three basic parts:

S
and its predecessor XML-RPC, the quality of XML being a universal document interchange standard were
somewhat undermined by the fact that there was no uniform way to transport messages between two
endpoints. The SOAP envelope serves to wrap any XML document interchange and provide a mechanism to
augment the payload with additio
SOAP envelope is the single root of every SOAP message and must present for the message to be SOAP
compliant. The <envelope> defines a framework for describing what is in a message and how to process it.
All elements of the SOAP envelope are defined by a W3C XML Schema (XSD). The URI where this schema is
located is also the identifier for th

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 23

type o ormation must be separated frf inf om the SOAP body. XML documents are typically application-

 specific XML data
 and must be an

bes how to invoke web services and relies on SOAP. SOAP

A remote procedure application. The
interaction be ic interface.
Clients expre onse containing
a return va es, permitting
developers to rns a response
containing a ret eb
service, RPC-styl between the client and
service provider. M a client sends a request
message, it expect ion. This style
resembles tr

RPC-style web s ng characteristics
[BEA01]:

1. The client in
2. The client an
3. The web service is process-oriented rather than data-oriented.

specific and at the same time transport agnostic. This means that an XML document can express meaningful
information about a service, such as authentication or transaction control-related information, as well as
quality of service, billing or accounting information regarding an application and at the same time does not
care about how it arrived at that particular application in the first place or how it can move from one
application to the other.
SOAP body: The SOAP body is the area of the SOAP message where the application

ayload) being exchanged in the message is placed. The <body> element must be present(p
immediate child of the envelope. It may contain an arbitrary number of child elements, called body
entries, but it may also be empty. All body entries that are immediate children of the <body> element must
be namespace qualified. By default, the body content may be an arbitrary XML and is not subject to any
special encoding rules. The body must be contained within the envelope, and must follow any headers that
might be defined for the message. The SOAP <body> is where the method call in formation and its related
arguments are encoded. It is where the response to a method call is placed, and where error information
can be stored.

8.1.2 The SOAP communication model
The web services communication model descri
supports two possible communication styles: remote procedure call (RPC) and document (or message).

Figure 8 RPC-style web service for calculating the price of a given stock.

PRC-style web services

call (RPC)-style web service appears as a remote object to the client
tween a client and an RPC-style web service centres around a service-specif

ss their request as a method call with a set of arguments, which returns a resp
lue. RPC style supports automatic serialisation/deserialisation of messag
 express a request as a method call with a set of parameters, which retu

urn value. Because of this type of bilateral communication between the client and w
e web services require a tightly coupled model of communication

oreover, this communication is synchronous, meaning that when
s a response message before continuing with the remainder of its applicat

aditional distributed object paradigms, such as RMI, CORBA or DCOM.

ervices are normally used when an application exhibits the followi

voking the web service needs an immediate response.
d web service work in a back-and-forth conversational way.

Price for given
stock

Price for given
stock

Online
price

response

Online
price

response

Application
programs Database

Price for given
stock

Web-services
definition

Price for gi

Web-services
definition

ven
stock

Online
price

response

Online
price

response

Application
programs Database

Price for given
stock

Price for given
stock

Online
price

response

Online
price

response

Application
programs Database

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 24

le information services with an RPC-style include returning the current price for a
 current weather conditions in a particular location; or checking the credit rating

Document-sty e web service, the
client typically s discrete set of
parameters. The s, however, it may or may not
return a response web service can
continue with its service does not
need to wait for e response from
the web service, oes not support
automatic seriali s of the SOAP
message are

Document-style web s as there is
no requirement for a t the web service.
Document-sty ng characteristics
[BEA01]:

1.
2. The web service is data-

 include processing a purchase order; responding to a request for
ng to an order placement by a particular customer. In all cases,

Examples of typical simp
iven stock; providing theg

of a potential trading partner prior to the completion of a business transaction.

Request
for

quote

Request
for

quote

Web ServiceDefinition

Figure 9 Processing a request for a quote.

Document (Message)-style web services

le web services are message driven. When a client invokes a message-styl
ends it an entire document, such as a purchase order, rather than a

 web service is sent an entire document, which it processe
message. This style is thus asynchronous in that the client invoking the

computation without waiting for a response. A client that invokes a web
a response before it continues with the remainder of its application. Th
if any, can appear hours or even days later. The document style d

sation/deserialisation of messages. Rather it assumes that the content
well-formed XML documents, e.g., a purchase order.

ervices promote a looser coupling between the client and service provider,
ightly coupled request-response model between the client and

le web services are normally used when an application exhibits the followi

The client does not require (or expect) an immediate response.
oriented rather than process-oriented.

Examples of document-style web services
quote order from a customer; or respondi
the client sends an entire document, such as a purchase order, to the web service and assumes that the
web service is processing it in some way, but the client does not require an immediate answer.

While it is important to understand the SOAP foundation for services, most web service developers will not
have to deal with this infrastructure directly. Most web services use optimised SOAP bindings generated
from WSDL. Thanks to WSDL, SOAP implementations can self-configure exchanges between web services
while masking most of the technical details.

8.2 WSDL: Web Services Description Language

A SOAP service would require some documentation explaining the operations exposed along with their
parameters in a machine-understandable standard format. In the Web services context, the analogous file

QuoteQuote
Business Process Flow

Receive

Check

Send

Database

Request
for

quote

Request
for

quote

Web ServiceDefinition

QuoteQuote

Receive

Check

SendSend

Database

Business Process Flow

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 25

is a Web Services Description Language (WSDL) document. WSDL is the service representation language used
to describe the details of the complete interfaces exposed by web services and thus is the means to
ccessing a web service. It is through this service description that the service provider can communicate all

the spe equester. For instance, neither the
serv hnical infrastructure, programming

nguage or distributed object framework (if any).

ice. It is a
achine understandable standard describing the operations of a web service. It also specifies the wire

uester’s application and the service provider’s web service. In
particular, it does not mandate any specific implementation on the service requester side provided that the

act s

ce in question.

o the service provider’s WSDL definitions and
omatically. This simplifies the invocation of

a
cifications for invoking a particular web service to the service r

ice requester nor the provider should be aware of each other’s tec
la

The service description is a key to making the service oriented architecture loosely coupled and reducing
the amount of required common understanding and custom programming and integration between the
service provider and the service requester’s applications. It is the header file for a web serv
m
format and transport protocol that the web service uses to expose this functionality. It can also describe
the payload data using a type system. The service description combined with the underlying SOAP
infrastructure sufficiently isolates all technical details, e.g., machine- and implementation language-
specific elements, away from the service req

contr pecified in a WSDL definition is abided by.

The Web services Description Language (WSDL) provides a mechanism by which service providers can
describe the basic format of web requests over different protocols (e.g., SOAP) or encoding (e.g.,
Multipurpose Internet Messaging Extensions or MIME). WSDL is an XML based specification schema for
describing the public interface of a web service. This public interface can include operational information
relating to a web service such as all publicly available operations, the XML message protocols supported by
the web service, data type information for messages, binding information about the specific transport
protocol to be used, and address information for locating the web service. WSDL allows the specification of
services in terms of XML documents for transmission under SOAP. We can think of web services as software

odules that are accessed via SOAP. m

A WSDL document describes how to invoke a service and provides information on the data being exchanged,
the sequence of messages for an operation, protocol bindings, and the location of the service. WSDL
represents a contract between the service requester and the service provider, in much the same way that
an interface in an object-oriented programming language, e.g., Java, represents a contract between client
code and the actual object itself. The prime difference is that WSDL is platform and language-independent
and is used primarily (but not exclusively) to describe SOAP-enabled services. Essentially, WSDL is used to
describe precisely what a service does, i.e., the operations the service provides, where it resides, i.e.,
details of the protocol-specific address, e.g., a URL, and how to invoke it, i.e., details of the data formats
and protocols necessary to access the service’s operations.

The WSDL specification can be conveniently divided into two parts: the service interface definition
(abstract interface) and the service implementation (concrete endpoint) [Kreger01]. This enables each part
to be defined separately and independently, and reused by other parts.

• The service-interface definition describes the general web service interface structure. This
contains all the operations supported by the service, the operation parameters and abstract data
types.

• The service implementation part binds the abstract interface to a concrete network address, to a
specific protocol and to concrete data structures. A web service client may bind to such an
implementation and invoke the servi

The service interface definition together with the service implementation definition makes up a complete
WSDL specification of the service. The combination of these two parts contains sufficient information to
describe to the service requester how to invoke and interact with the web service at a provider’s site.
Using WSDL, a requester can locate a web service and invoke any of the publicly available operations. With
WSDL-aware tools, e.g., IBM’s Web services Invocation Framework (WSIF), this process can be entirely
automated, enabling applications to easily integrate new services with little or no manual coding. If a
service requester’s environment supports automated discovery of web services, e.g., uses Visual Studio
.NET, the service requester’s application can then point t
enerate proxies for the discovered web service definitions autg

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 26

web services by the service requester’s applications as it eliminates the need for constructing complex calls
and thus saves many hours of coding.

8.2.1 Web service interface definition
The e
indepen
Internet standard messaging protocols and encoding schemes can be employed in order to format the
mes g
an abst
implem ice types to be defined and implemented by

ultiple service implementers. The service interface contains the WSDL elements that comprise the

act collections of typed information cast upon one or more logical
ems. A <message> element corresponds to a single

of inf oker and the service. A regular round trip method call is

Figure 10 Simple WSDL interface definition.

 w b service interface definition describes messages and operations in a platform and language
dent manner. It describes exactly what types of messages need to be sent and how the various

sa e in a manner compatible with the service provider’s specifications. A service interface definition is
ract service description that can be instantiated and referenced by multiple concrete service
entations. This allows common industry-standard serv

m
reusable portion of the service description, these include: the <portType>, <operation>, <message>
<part> and <types> elements. These are briefly summarised in the following.

A type attribute in WSDL is comparable to a data type in Java or C++. The WSDL <types> element is used to
contain XML schemas or external references to XML schemas that describe the data type definitions used
within the WSDL document. WSDL uses a few primitive data types that XML Schema Definition (XSD)
defines, such as int, float, long, short, string, boolean and so on, and allows developers to either use them
directly or build complex data types based on those primitive ones before using them in messages. This is
why developers need to define their own namespace when referring to complex data types. Any complex
data type that the service uses must be defined in an optional <types> section immediately before the
<message> section. Messages are abstr
units, used to communicate information between syst
piece ormation moving between the inv
modelled as two messages, one for the request and one for the response.

Abstract data type
definitions

<definitions name="PurchaseOrderService"
targetNamespace="http://supply.com/ PurchaseService/wsdl"
xmlns:tns="http://supply.com/ PurchaseService/wsdl "

<! –WSDL SOAP binding & WSDL namespace follow -->
xmlns:soap=http://schemas.xmlsoap.org/wsdl/soap/
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:types>
<xsd:schema

targetNamespace="http://supply.com/PurchaseService/wsdl "
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:complexType name=“POType">

<xsd:sequence>
<xsd:element name=“PONumber" type="integer"/>
<xsd:element name=“PODate" type="string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:<complexType name=“InvoiceType">

<xsd:all>
<xsd:element name=“InvPrice" type="float"/>
<xsd:element name=“InvDate" type=" string"/>

</xsd:all>
</xsd:complexType>

</xsd:schema>
</wsdl:types>
<wsdl:message name="POMessage">

<wsdl:part name="PurchaseOrder" type=“tns:POType"/>
< wsdl:part name=“CustomerInfo” type=“tns:CustomerInfoType”/>

</wsdl:message>
<wsdl:message name="InvMessage">

<wsdl:part name=“Invoice" type=“tns:InvoiceType"/>
</wsdl:message>

<wsdl:portType name=“PurchaseOrderPortType">
<wsdl:operation name=“SendPurchase">

<wsdl:input message="tns:POMessage"/>
<wsdl:output message="tns:InvMessage"/>

</wsdl:operation>
</wsdl:portType>

Port type with
one operation An operation with

request (input) &
response (output)
message

Data that is returned

Data that is sent

Abstract data type
definitions

<definitions name="PurchaseOrderService"
targetNamespace="http://supply.com/ PurchaseService/wsdl"
xmlns:tns="http://supply.com/ PurchaseService/wsdl "

<! –WSDL SOAP binding & WSDL namespace follow -->
xmlns:soap=http://schemas.xmlsoap.org/wsdl/soap/
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:types>
<xsd:schema

targetNamespace="http://supply.com/PurchaseService/wsdl "
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:complexType name=“POType">

<xsd:sequence>
<xsd:element name=“PONumber" type="integer"/>
<xsd:element name=“PODate" type="string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:<complexType name=“InvoiceType">

<xsd:all>
<xsd:element name=“InvPrice" type="float"/>
<xsd:element name=“InvDate" type=" string"/>

</xsd:all>
</xsd:complexType>

</xsd:schema>
</wsdl:types>
<wsdl:message name="POMessage">

<wsdl:part name="PurchaseOrder" type=“tns:POType"/>
< wsdl:part name=“CustomerInfo” type=“tns:CustomerInfoType”/>

</wsdl:message>
<wsdl:message name="InvMessage">

<wsdl:part name=“Invoice" type=“tns:InvoiceType"/>
</wsdl:message>

<wsdl:portType name=“PurchaseOrderPortType">
<wsdl:operation name=“SendPurchase">

<wsdl:input message="tns:POMessage"/>
<wsdl:output message="tns:InvMessage"/>

</wsdl:operation>
</wsdl:portType>

Port type with
one operation

Port type with
one operation An operation with

request (input) &
response (output)
message

An operation with
request (input) &
response (output)
message

Data that is returned

Data that is sent

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 27

A message can consist of one or more <part> elements with each part representing an instance of a
particular type (typed parameter). When WSDL describes a software module, each part maps to an
argument of a method call. If the method returns void, the response is an empty message.

The WSDL <portType> element describes the interface of a web service. It is simply a logical grouping of
operations. The <portType> element is central to a WSDL description; the rest of the elements in the
definition are essentially details that the <portType> element depends upon. The <portType> is used to
bind the collection of logical operations to an actual transport protocol such as SOAP, providing thus the
linkage between the abstract and concrete portions of a WSDL document. A WSDL definition can contain
zero or more <portType> definitions. Typically, most WSDL documents contain a single <portType>. This
convention separates out different web service interface definitions into different documents. This
granularity allows each business process to have separate binding definitions, providing for reuse,
significant implementation flexibility for different security, reliability, transport mechanism and so on
[Cauldwell01].

Figure 10 shows an excerpt of a WSDL interface definition describing a purchase order service. This service
takes a purchase order number, a date and customer details as input and returns an associated invoice. The
root element in Figure 10 (and every WSDL specification) is the <definitions> element, in which a
complete description of the web services is provided. The <definitions> element consists of attributes,
which define the name of the service, the target namespace of the service, and other standard namespace
definitions (such as SOAP) used in the service specification. When creating a WSDL document, we need to
specify an XML namespace to which the service and related types will belong. In Figure 10 the
<definitions> element contains an attribute called targetNamespace, which defines the logical
namespace for information about the service, and is usually chosen to be unique to the individual service (a
URL set to the name of the original WSDL file). This helps clients differentiate between web services and
prevents name clashes when importing other WSDL files. These namespaces are simply unique strings – they
usually do not point to a page on the Web. The xmlns:tns (sometimes referred to as this namespace)
attribute is set to the value of targetNamespace and is used to qualify (scope) properties of this service
defintion. The namespace definitions xmlns:soap and xmlns:xsdl are used for specifying SOAP-specific
information as well as data types, respectively. The final statement defines xmlns: as the default
namespace for all WSDL elem s messages, operations, and

es a web service

he <operation> element SendPurchase in the listing above will be called using the message

ents defined in a WSDL specification such a
portTypes. The wsdl:types definition encapsulates schema definitions of all types using xsd.

The central element externalising a service interface description is the <portType> element. This element

ntains all named operations supported by a service. The WSDL example in Figure 10 definco
that contains a <portType> named PurchaseOrderPortType that supports a single <operation>,
which is called SendPurchase. If there are multiple <portType> elements in a WSDL document then
each <portType> element must have a different name. The example assumes that the service is deployed
using the SOAP 1.1 protocol as its encoding style, and is bound to HTTP.

Operations in WSDL are the equivalent of method signatures in programming languages. Operations in WSDL
represent the various methods being exposed by the service. An operation defines a method on a web
service, including the name of the method and the input and output parameters. A typical operation
defines the input and output parameters or exceptions (faults) of an operation.

T
POMessage and will return its results using the message Inv(oice)Message. Operations can be used in a
web service in four fundamentals patterns: request/response, solicit/response, one-way and notification.
The operation SendPurchase is a typical example of a request/response style of operation as it contains
an input and an output message. The operation patterns are described in section- 8.2.3.

An operation potentially holds all messages potentially exchanged between a web service consumer and a
web service provider. If fault messages had been defined, these would also be part of the <operation>
element. As shown in Figure 10 message POMessage is linked by name to the input message element of
the SendPurchase operation. This message represents the data that is sent from a service requester to a
service provider. Similarly, the message InvMessage is linked by name to the output message element of
the SendPurchase operation. This message encapsulates the data of the return value. The input and

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 28

output message elements of an operation link the services method, SendPurchase in the case of Figure
10, to SOAP messages that will provide the transport for input parameters and output results.

A message consists of <part> elements, which are linked to <types> elements. While a message
represents the overall data type formation of an operation, parts may further structure this formation. In
Figure 10 the input message called POMessage contains two <part> elements that refer to the complex

pes POType and CustomerType, respectively. POType consists of PONumber and PODate elements.

ned in a <types> element. The
osen type definition is directly attached to <part> element. Figure 10 illustrates two complex types that

so used to create the type

vices. The service

a particular

ue among all services in a WSDL document.

The structure of the <binding> element resembles that of the <portType> element. This is no
bstract port type description to a concrete implementation. The

ty
The dotted arrow at the right hand side of the WSL definition in Figure 10 links the POType definition to
the input message. The same applies to the output message InvMessage and the InvoiceType
definition.

The <types> element is a container that contains all abstract data types that define a web service
interface. Part elements may select individual type definitions contai
ch
have been defined in its <types> section: POType and InvoiceType. The elements <sequence> and
<all> is a standard XSD element. The construct <sequence> requires that the content model follows the
element sequence defined, while the construct <all> denotes that all the elements that are declared in
the <complexType> statement must appear in an instance document. XSD is al
namespace and the alias xsd1 is used to reference these two complex types in order to define messages.

8.2.2 WSDL implementation
In the previous WSDL operations and messages have been defined in an abstract manner without worrying
about the details of implementation. In fact, the purpose of WSDL is to specify a web service abstractly and
hen to define how the WSDL developer will reach the implementation of these sert

implementation part of WSDL contains the elements <binding> (although sometimes this element is
considered as part of the service definition) <port> and <service> and describes how a particular service
interface is implemented by a given service provider. The service implementation describes where the
service is located, or more precisely, to which network address the message must be sent in order to invoke
the web service. A web service is modelled as a WSDL service element. The web service implementation
elements are summarised below.

1. In WSDL a <binding> element contains information of how the elements in an abstract service
interface (<portType> element) are converted into concrete representation in
combination of data formats and concrete protocols. The WSDL <binding> element defines how a
given operation is formatted and bound to a specific protocol.

2. A <port> defines the location of a service and we can think of it as the URL where the service can
be found.

3. A <service> element contains a collection (usually one) of WSDL <port> elements. A <port>
associates an endpoint, for instance, a network address location or URL, with a WSDL binding
element from a service definition. Each <service> element is named, and each name must be
uniq

The WSDL example in Figure 11 is an implementation description for the abstract service interface listed in
Figure 10. The central element of the implementation description is the <binding> element. The
<binding> element specifies how the client and web service should exchange messages. The client uses
this information to access the web service. This element binds the port type, i.e., the service interface
description, to an existing service implementation. It provides information about the protocol and the
concrete data formats expected by a service offered from a distinct network address [Zimmermann03]. The
binding name must be unique among all the <binding> elements in a WSDL document.

concidence as the binding must map an a
<type> attribute identifies which <portType> element this binding describes. As illustrated in Figure 11
the <binding> element POMessageSOAPBinding links the <portType> element named
PurchaseOrderPortType (refer to Figure 10) to the <port> element named POMessagePort.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 29

This is affected through the binding name POMessageSOAPBinding as can be seen from the dotted
arrow in Figure 11. Several bindings may represent various implementations of the same <portType>
element. If a service supports more than one protocol, then the WSDL <portType> element should include
a <binding> for each protocol it supports. For a given <portType> element, a <binding> element can
describe how to invoke operations using a single messaging/transport protocol, e.g., e.g., SOAP over HTTP,
SOAP over SMTP or a simple HTTP POST operation, or any other valid combination of networking and

essaging protocol standards. Currently, the most popular binding technique is to use SOAP over HTTP.

It must
specific

In F
<soap: that specifies the protocol by which clients access the web service. More specifically,
the
going t
signifie
messag o take the client from the abstract WSDL

ecification to its implementation. Since SOAP is used for this purpose, SOAP’s namespace must also be

Figure 11 WSDL implementation description.

Figure 11 indicates that the transport attribute specifies HTTP as the lower-level transport service that
this binding will use. The style attribute defines the type of default operations within this binding, which

m

 be noted that a binding does not contain any programming language or service implementation-
 details. How a service is implemented is an issue completely external to WSDL.

igure 11 the <binding> element is shown to contain a second <binding> element (in this case
binding>)

 purpose of the SOAP binding element <soap:binding> is to signify that the SOAP protocol format is
o be used as a binding and transport service. This declaration applies to the entire binding. It
s that all operations of the PurchaseOrderPortType are defined in this binding as SOAP
es. It then becomes the responsibility of SOAP t

sp
used. A WSDL implementation allows the use of other protocols, such as HTTP without using SOAP and
MIME. If either of these protocols needs to used, the second <binding> element must be declared using
the namespace prefixes associated with it, i.e., HTTP or MIME.

<!-- wsdl:binding states a serialisation protocol for this service -->
<!-- type attribute must match name of portType element in Figure-10 -->
<wsdl:binding name="POMessageSOAPBinding"

type="tns: PurchaseOrderPortType">

<!-- leverage off soap:binding asynchronous style -->
<soap:binding style=“document“

transport="http://schemas.xmlsoap.org/soap/http/"/>

<!-- semi-opaque container of network transport details classed by soap:binding above -->
<wsdl:operation name=“SendPurchase">

<!-- again bind to SOAP -->
<soap:operation soapAction=" "/>

<!-- furthur specify that the messages in the wsdl:operation " " use SOAP -->
<wsdl:input>

<soap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://supply.com/PurchaseOrderService/wsdl"/>

</wsdl:input>

namespace="http://supply.com/ PurchaseOrderService/wsdl"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>
<wsdl:service name=“PurchaseOrderService">

<wsdl:port name=“PurchasePort" binding="tns: POMessageSOAPBinding">
<!-- give the binding a network endpoint address or URI of service -->
<soap:address location="http://supply.com:8080/PurchaseOrderService/"/>
</wsdl:port>

</wsdl:service>
</definitions>

<wsdl:output>
<soap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

Bind an abstract operation
to this implementation &

map the abstract
input & output messages

to these concrete messages

Service name

Network address of service

<!-- wsdl:binding states a serialisation protocol for this service -->
<!-- type attribute must match name of portType element in Figure-10 -->
<wsdl:binding name="POMessageSOAPBinding"

type="tns: PurchaseOrderPortType">

<!-- leverage off soap:binding asynchronous style -->
<soap:binding style=“document“

transport="http://schemas.xmlsoap.org/soap/http/"/>

<!-- semi-opaque container of network transport details classed by soap:binding above -->
<wsdl:operation name=“SendPurchase">

<!-- again bind to SOAP -->
<soap:operation soapAction=" "/>

<!-- furthur specify that the messages in the wsdl:operation " " use SOAP -->
<wsdl:input>

<soap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://supply.com/PurchaseOrderService/wsdl"/>

</wsdl:input>

namespace="http://supply.com/ PurchaseOrderService/wsdl"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>
<wsdl:service name=“PurchaseOrderService">

<wsdl:port name=“PurchasePort" binding="tns: POMessageSOAPBinding">
<!-- give the binding a network endpoint address or URI of service -->
<soap:address location="http://supply.com:8080/PurchaseOrderService/"/>
</wsdl:port>

</wsdl:service>
</definitions>

<wsdl:output>
<soap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

Bind an abstract operation
to this implementation &

map the abstract
input & output messages

to these concrete messages

Service name

Network address of service

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 30

is “document”; with the other type being “rpc” (see section-8.1.2). The transport and style attributes
are part of the SOAP binding element <soap:binding> (not to be confused with the WSL <binding>
element). The abstract operation SendPurchase together with its input and output messages from the
abstract service interface description (see Figure 10) is mapped to SOAP messages. The data types of
these messages that are abstractly described by means of XSD in the service interface description should be
SOAP encoded for the transfer [Zimmermann03].

The <operation> element contains instructions on how to access the PurchaseOrderService. The
<operation> element provides the actual details for accessing the web service. Here, the
<soap:operation> element is used to indicate the binding of a specific operation, e.g.,
SendPurchase, to a specific SOAP implementation. The SOAPAction attribute in the
<soap:operation> element is an attribute that a SOAP client will use to make a SOAP request The
SOAPAction attribute is a server specific URI used to indicate the intent of request. It can contain a
message routing parameter or value that helps the SOAP runtime system dispatch the message to the
appropriate service. The value specified in this attribute must also be specified in the SOAPAction
attribute in the HTTP header of the SOAP request. The purpose of this is to achieve interoperability
between client and service provider applications. The SOAP client will read the SOAP structure from the
WSDL file and coordinate with a SOAP server on the other end.

The <soap:body> element enables applications to specify the details of the input and output messages
and enable the mapping from the abstract WSDL description to the concrete protocol description. In the
case of PurchaseOrderService, the <soap:body> element specifies the SOAP encoding style and the
namespace URN associated with the specific service. The <input> and <output> elements for the
<operation> SendPurchase specify exactly how the input and output messages of this operation should
appear in the SOAP message. Both input and output contain a <soap:body> element with the value of its
namespace corresponding to the name of the service that is deployed on the SOAP server. Consider for
example, the <input> elements for the SendPurchase operation. The entire POMessage message from
the <portType> declaration for the SendPurchase operation is declared to be abstract. This is indicated
by the use=”encoded” attribute. This means that the XML defining the input message and its parts are in
fact abstract, and the real, concrete representation of the data is to be derived by applying the encoding
scheme indicated in the encodingStyle attribute [Graham02]. This implies that the message should
appear as part of the <soap:body> element and that the SOAP runtime system on the service provider’s
network should deserialise the data from XML to another format, e.g., Java data types, according the
encoding rules defined in the SOAP specification.

ndividual binding element. Here, a mandatory location
RI must be provided to denote the physical endpoint that requesters must use to connect to the service.

ServiceService

PortPort BindingBinding

Figure 12 Connecting the service interface withy the service implementation.

The <port> element represents the actual network endpoint(s) on which the service communicates. A web
service exchanges messages in a defined format through a <port> element. More precisely, the <port>
element a single protocol-specific address to an i
U
The <soap:binding> attribute is a SOAP extension to WSDL used to connect the port (URI) with the
protocol in the <binding> element. The <soap:address> attribute is another SOAP extension to WSDL

PortPort BindingBinding
binding

binding
type

ype

portTypeportType
ServiceService

PortPort BindingBinding

t
PortPort BindingBinding

binding

binding

ServiceService

PortPort BindingBinding

PortPort BindingBinding

binding
PortPort BindingBindingPortPort BindingBinding

binding
PortPort BindingBindingPortPort BindingBinding

binding

binding
type

ype

portTypeportType

t

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 31

and is used to signify the URI of the service or the network endpoint. A web service client is expected to
bind to a port and interact with the service, provided that it understands and respects the concrete
message expected by the service. The same service may be offered with various data formats over multiple
ports. A client that wishes to interact with the service can then choose one of these ports.

A service may be exposed via multiple ports each with a different binding, e.g., one for SOAP and one for
HTTP GET. WSDL is extensible to allow description of endpoints and their messages, regardless of what
message formats or network protocols are used to communicate. The currently described bindings are for

AP 1.1, HTTP POST and MIME. SO

A <service> is modelled as a collection of related ports - where a <port> element is a single end point
defined as a combination of binding and a network address - at which a service is made available. The
<service> element may be the starting point for a client exploring a service description. A single service
can contain multiple ports that all use the same <portType>, i.e., there could be multiple service
implementations for the same service interface provided by different service providers, see Figure 12. This
figure shows that a service may contain more than one ports, which are bound to binding elements, and
that binding elements are associated with a <portType > by means of a type relationship. Service
providers all have different bindings and/or addresses. Port addresses are specified by the
<saop:address> element of <port>, as already explained. In the case of multiple ports, these ports are
alternatives, so that the client of the service can choose which protocol they want to use to communicate
with the service (possibly programmatically by using the namespaces in the bindings), or which address is
closest [Cauldwell01].

The previous example contains only one web service, viz. the PurchaseOrderService, thus only the
port> element named PurchasePort (refer <

However, th
to Figure 11) is used to reveal the service location.

e service PurchaseOrderService could, for instance, contain three ports all of which use
the PurchaseOrderPortType but are bound to SOAP over HTTP, SOAP over SMTP, and HTTP GET/POST,
respectively. This would give the client of the POMessage service a choice of protocols over which to use
the service. For instance, a PC-desktop application may use SOAP over HTTP, while a WAP application
designed to run on a cellular phone may use HTTP GET/POST, since an XML parser is typically not available
in a WAP application. All three services are semantically equivalent in that they all take a purchase order
number, a date and customer details as input and return an associated invoice. By employing different
bindings, the service is more readily accessible on a wider range of platforms [Cauldwell01].

A <service> is modelled as a collection of related ports - where a <port> element is a single end point
defined as a combination of binding and a network address - at which a service is made available. The
<service> element may be the starting point for a client exploring a service description. A single service can

ntain multiple ports that all use the same <portType>, i.e., there could be multiple service
implementat se all have
different bin element of

hese operations
present the most common interaction patterns for web services. Since each operation defined by WSDL

 and “notification” operations), and the incoming and outgoing versions of
 synchronous two-way message exchange (“request-response” and “solicit response”).

co
ions for the same service interface provided by different service providers. The
dings and/or addresses. Port addresses are specified by the <saop:address>

<port>, as already explained. In the case of multiple ports, these ports are alternatives, so that the client
of the service can choose which protocol they want to use to communicate with the service (possibly
programmatically by using the namespaces in the bindings), or which address is closest [Cauldwell01].

Figure 13 summarises several of the constructs explained in the previous by illustrating the various WSDL
elements involved in a client-service interaction. This figure shows one client invoking a web service by
means of SOAP over HTTP and another client invoking the same service by means of HTTP.

8.2.3 WSDL interaction patterns
WSDL interfaces (port types in the WSDL terminology) support four types of operations. T
re
can have an input and/or an output, the four WSDL interaction patterns represent possible combinations of
input and output messages [Cauldwell01]. Thus the WSDL operations correspond to the incoming and
outgoing versions of two basic operation types: an incoming single message passing operation and its
outgoing counterpart (“one-way”
a

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 32

Figure 13 Elements of the WSDL as part of requester-service interaction.

1. One way operation: A one-way operation is an operation in which the service end point receives a

message, but does not send a response. An example of a one-way operation might be an operation
representing the submission of an order to a purchasing system. Once the order is sent, no
immediate response is expected. In an RPC environment, a one-way operation represents a
procedure call to which no return value is assigned. A one-way message defines only an input
message. It requires no output message and no fault.

2. Request/response operation: A request/response operation is an operation in which the service
end point receives a message and returns a message in response. In the request/response message
pattern a client requests that some action is taken from the service provider. An example of this is
the SendPurchase operation, which receives as input message a containing a flight number and
date age containing its current price. In an RPC environment this is

rvices that need to
notify clients of events. An example of this could be a service model in which events are reported
to the service and where the endpoint periodically reports its status. No response is required in this
case, as most likely the status data is assembled and logged and not acted upon immediately.

Any combination of incoming and outgoing operations can be included in a single WSDL interface. As a
result, the four types of operations presented above provide support for both push and pull interaction
models at the interface level. The inclusion of outgoing operations in WSDL is motivated by the need to
support loosely coupled peer-to-peer interactions between services.

 and responds with a mess
equivalent to a procedure call, which takes a list of input arguments and returns a value.

3. Solicit/response operation: A solicit/response operation is an operation in which the service end
point sends a message and expects to receive an answering message in response. This is the
opposite of the request/response operation since the service endpoint is initiating the operation
(soliciting the client), rather than responding to a request. An example of this operation might be a
service that sends out order status to a client and receives back a receipt.

4. Notification operation: A notification operation is an operation in which the service end point
sends a message and receives no response. This type of messaging is used by se

part

part
Message

port#1

Type-a
custom defined

int
XSD built-in

Client #A

Client #B

service

port#2

Java SOAP/HTTP request message

implementation

HTTP GET request message

SOAP/HTTP response message

HTTP response message

A port exposes the service
using a specific binding

A binding specifies how the
operations are invoked using a
specific protocol, e.g., SOAP.

Input & output messages form an
operation. A set of operations forms
a port-type.

Each message part is defined
by some type, either custom
defined or XSD provided.

A service is a collection of
related endpoints (ports)
that the client wishes to invoke.

part

part
Message

part

part
Message

port#1

Type-a
custom defined

int
XSD built-in

Type-a
custom defined

int
XSD built-in

Type-a
custom defined

int
XSD built-in

Client #A

Client #B

service

port#2

Java SOAP/HTTP request message

implementation

HTTP GET request message

SOAP/HTTP response message

HTTP response message

A port exposes the service
using a specific binding

A binding specifies how the
operations are invoked using a

Input & output messages form an
operation. A set of operations forms
a port-type.

Each message part is defined
by some type, either custom
defined or XSD provided.

specific protocol, e.g., SOAP.

A service is a collection of
related endpoints (ports)
that the client wishes to invoke.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 33

8.3 UDDI: Universal Description, Discovery, and Integration

One of the main reasons for enterprises engaging in electronic business is to open new markets and find
new sources of supply more easily than with conventional means. To achieve this desired state, however,
enterprises need a common way of identifying potential trading partners and cataloguing their business
functions and characteristics. The solution is the creation of a service registry architecture that presents a
standard way for enterprises to build a registry to describe and identify e-business services, query other
service providers and enterprises, and enable those registered enterprises to share business and technical
information globally in a distributed manner. To address this challenge, the Universal Description,
Discovery and Integration (UDDI) specification was created. UDDI is a cross industry initiative to create a
registry standard for web service description and discovery together with a registry facility that facilitates
the publishing and discovery processes. UDDI provides a global, platform-independent, open framework to
enable service clients to:

• discover information about enterprises offering web services,
• find descriptions of the web services these enterprises provide,
• find technical information about web service interfaces and definitions how the enterprises may

interact over the Internet.

A business may set up multiple UDDI registries in-house to support intranet and e-business operations, and a
business may use UDDI registries set up by its customers and business partners. The UDDI Business Registry
(UBR) is a free, public registry operated by IBM, Microsoft, SAP, and NTT. The UBR provides a global
directory about accessing publicly available web services. UBR has a role analogous to the role that DNS
(Domain Name Service) has in the Internet infrastructure. It enables users to locate businesses, services and
service specifications.

UDDI is designe dards such as

AP/XML and WSDL. UDDI is a group of web-based registries designed to house information about
bus
and oth
using ta
a speci
taxonom
web ser that it is published in a registry, such as UDDI,
so t
process
web ser
what its

The cor describe
a b
registra
other k
based o
about s ns for web services and
pointer
discove
pages),
web ser

DDI has been designed in a highly normalised fashion, not bound to any technology. In other words, an

he data it stores, it allows for other
kinds of technology to be registered.

d for use by developer tools and applications that use web services stan
SO

inesses and web services they provide in a structured way. One key difference between a UDDI registry
er registries and directories is that UDDI provides a mechanism to categorize businesses and services
xonomies. For example, service providers can use a taxonomy to indicate that a service implements
fic domain standard, or that it provides services to a specific geographic area [Manes03]. Such
ies make it easier for consumers to find services that match their specific requirements. Once a

vice has been developed and deployed it is important
hat potential clients and service developers can discover it, see Figure 4. Web service discovery is the

 of locating and interrogating web service definitions, which is a preliminary step for accessing a
vice. It is through this discovery process that web service clients learn that the web service exists,
 capabilities are, and how to properly interact with it.

e concept of the UDDI initiative is the UDDI business registration, an XML document used to
usiness entity and its web services. Conceptually, the information provided in a UDDI business

tion consists of three inter-related components: “white pages” including address, contact, and
ey points of contact; “yellow pages” classification information according to industrial classifications
n standard industry taxonomies; and “green pages”, the technical capabilities and information

ervices that are exposed by the business including references to specificatio
s to various file and URL based discovery mechanisms. Using a UDDI registry, enterprises can
r the existence of potential trading partners and basic information about them (through white
find companies in specific industry classifications (through yellow pages), and uncover the kind of
vices offered to interact with the enterprises (through green pages).

U
entry in the UDDI registry can contain any type of resource, independently of whether the resource is XML-
based or not. For instance, the UDDI registry could contain information about an enterprise’s EDI system,
DCOM or CORBA interface, or even a service that uses the fax machine as its primary communication
channel. The point is that while UDDI itself uses XML to represent t

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 34

8.3.1 UDDI data structures
lthough UDDI is often thought simply as a directory mechanism, it also defines a data structure standard

s, e.g., schemas, interface definitions, or endpoints, in locations across the
etwork. The UDDI specification provides a platform-independent way of describing services, discovering

busines he UDDI data structures provide a
fram ion, and architects an extensible
mec n
mech n

d captures the binding information (<bindingTemplate>) required to use the service.
captures the service endpoint address, and associates the service with the

nformation (white pages). The core XML
ion about a business – the UDDI Business

or categorisation details.

formation required to actually invoke a service is described in the
information element named <bindingTemplate>. The <binding Template> (the structure that models

A
for representing company and service description information. Through UDDI, enterprises can publish and
discover information about other businesses and the services they provide. This information can be
classified using standard taxonomies so that information can be discovered on the basis of categorisation.
UDDI contains also information about the technical interfaces of an enterprise’s services.

The data model used by the UDDI registries is defined in an XML schema. XML was chosen because it offers
a platform-neutral view of data and because it allows hierarchical relationships to be described in a natural
way. The XML schema standard was chosen because of its support for rich data types as well as its ability to
easily describe and validate information based on information models represented in schemas. The data
UDDI contains is relatively lightweight; as a registry its prime purpose is to provide network addresses to
the resources it describe
n

ses, and integrating business services using the Internet. T
ework for the description of basic business and service informat
ha ism to provide detailed service access information using any standard service description
a ism.

The UDDI XML schema defines four core types of information that provide the white/yellow/green page
functions. These are: business entities; business services, binding templates; and information about
specifications for services (technical or tModels). A service implementation registration represents a service
offered by a specific service provider. The UDDI XML schema specifies information about the business entity
e.g., a company, that offers the service (<businessEntity>), describes the services exposed by the business
(<businessService>), an
he <bindingTemplate> T

<tModel>s that represent its technical specifications. Each business service can be accessed in one or more
ways. For example, a retailer might expose an order entry service accessible as a SOAP-based web service,
a regular web form or even a fax number. To convey all the ways a service is exposed each service is bound
to one or more <tModels> via a binding template.

 The data model hierarchy and the key XML element names that are used to describe and discover
information about Web services are shown in Figure 14. These are outlined briefly in the following.

Business information: Partners and potential clients of an enterprise’s services that need to be able to
locate information about the services provided would normally have as starting point a small set of facts
about this service provider. They will know, for example, either its business name or perhaps some key
identifiers, as well as optional categorisation and contact i
lements for supporting publishing and discovering informate

Registration -- are contained in an element named <businessEntity>. This element serves as the top-level
structure and contains information about a particular business unit itself. The XML element
<businessEntity> contains information such as the company name and contacts (white page listing). The
<businessEntity> construct is a top-level structure that corresponds to “white page”.

Business service information: The <businessService> structures represent logical service classification
about a family of web services offered by the company. The top-level entity <businessEntity> described
above can contain one or more <businessService> elements for each of these service families. The
<businessService> structure is a descriptive container that is used to group a series of related web services
related to either a business process or category of services. It is used to reveal service related information

ch as the name of a web service aggregate, a description of the web service su
Examples of business processes that would include related web service information include purchasing
services, shipping services, and other high-level business processes. <businessService> information sets,
such as these, can each be further categorised – allowing web service descriptions to be segmented along
combinations of industry, product and service or geographic category boundaries. The kind of information
contained in a <businessService> element maps to the “yellow pages” information about a company.

Binding information: The access in

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 35

binding information) data structure exposes a service endpoint address required for accessing a service

 parameters and
ttings are also supported. This information is relevant for application programs and clients that need to

rvice specifications to make sure that the right web services are invoked. For this reason, each

pecification, including its name, publishing organization,
selves.

crete
plementation of one or more <tModel>s. Inside a binding template, businesses can register the access

from a technical point of view. Technical descriptions of web services – the “green pages” data -- reside
within sub-structures of the <businessService> element. Within each <businessService> reside one or more
technical web- service descriptions. These structures provide support for determining a technical end point
or optionally support remotely hosted services, as well as a lightweight facility for describing unique
characteristics of a given implementation. Support for technology and application specific
se
connect to and then communicate and invoke a remote web service. Each <businessService> may
potentially contain multiple <binding Template> structures, each of which describes a web service (see
Figure 14).

Specification pointers and technical fingerprints: It is not always enough to simply know where to contact
a particular web service through its endpoint address revealed by a <bindingTemplate> data type. For
instance, if we know that a business partner provides a web service that accepts purchase orders, knowing
the URL for that service is not very useful unless technical details such as what format the purchase order
should be sent in, what protocols are appropriate, what security is required, and what form of a response
will result after sending the purchase order, are also provided. Integrating all parts of two systems that
interact via web services can become quite complex and thus requires information about compatibility of
se
<bindingTemplate> data type contains a special <tModel> data structure (short for “Technology Model”)
that provides information about a web service interface specification. This data structure forms a
technical fingerprint that represents technical fingerprints, abstract types of metadata and interfaces,
which can be used to recognize a web service that implements a particular behaviour or programming
interface. For instance, in the case of a purchase order, the web service that accepts the purchase order
exhibits a set of well-defined behaviours if the proper document format is sent to the proper address in the
right way. A UDDI registration for this service would consist of an entry for the business partner
<businessEntity>, a logical service entry that describes the purchasing service <businessService>, and a
<bindingTemplate> entry that describes the purchase order service by listing its URL and a reference to a
<tModel> that is used to provide information about the service’s interface and its technical specification.
The <tModel> contains metadata about a service s
nd URL pointers to the actual specifications thema

Figure 14 Overview of UDDI data structures.

The UDDI, just like WSDL, draws a sharp distinction between abstraction and implementation. In fact, the
primary role that a <tModel> plays is to represent technical information about an abstract interface
specification. An example might be a specification that outlines wire protocols and interchange formats
[Ehnebuske 01]. These can, for instance be found, in the RossettaNet Partner Interface Processes, the Open
Applications Group Integration Specification and various Electronic Document Interchange (EDI) efforts and
so on. A corollary of the <tModel> structure is the <bindingTemplate>, which is the con
im
point for a particular implementation of a <tModel>. <tModel>s can be published separately from
<bindingTemplate>s that reference them. For instance, a standard’s body or industry group might publish

businessEntity: Information about the
party who publishes information about a
family of services.

businessEntity: Information about the
party who publishes information about a
family of services.

businessService: Descriptive
information about a particular
service.

businessService: Descriptive
information about a particular
service.

bindingTemplate: Technical
information about a service entry
point and construction
specifications.

bindingTemplate: Technical
information about a service entry
point and construction
specifications.

tModel: Descriptions of specifications
for services or taxonomies. Basis for
technical fingerprints.

tModel: Descriptions of specifications
for services or taxonomies. Basis for
technical fingerprints.

bindingTemplate data contains
references to tModels. These
references designate the interface
specifications for a service.

PublisherInsertion: Information
about a relationship between two
parties, asserted by one or both.

PublisherInsertion: Information
about a relationship between two
parties, asserted by one or both.

businessEntity: Information about the
party who publishes information about a
family of services.

businessEntity: Information about the
party who publishes information about a
family of services.

businessService: Descriptive
information about a particular
service.

businessService: Descriptive
information about a particular
service.

bindingTemplate: Technical
information about a service entry
point and construction
specifications.

bindingTemplate: Technical
information about a service entry
point and construction
specifications.

bindingTemplate: Technical
information about a service entry
point and construction
specifications.

bindingTemplate: Technical
information about a service entry
point and construction
specifications.

tModel: Descriptions of specifications
for services or taxonomies. Basis for
technical fingerprints.

tModel: Descriptions of specifications

PublisherInsertion: Information
about a relationship between two
parties, asserted by one or both.

PublisherInsertion: Information
about a relationship between two
parties, asserted by one or both.

for services or taxonomies. Basis for
technical fingerprints.

bindingTemplate data contains
references to tModels. These
references designate the interface
specifications for a service.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 36

the canonical interface for a particular use case or vertical industry sector, and then multiple enterprises
could code implementations to this interface. Accordingly, each of those business’s implementations would
refer to the same <tModel>. A set of canonical <tModel>s has been defined that standardize commonly used
classification mechanisms. The UDDI operator sites have registered a number of canonical <tModels> for
NAICS (an industry code taxonomy), UNSPC (a product and service code taxonomy) and ISO 3166 (a
geographical region code taxonomy), identification taxonomies like Dun and Bradstreet’s D-U-N-S and
Thomas Register supplier identification codes.

Due to the fact that both the UDDI and WSDL schema have been architected to delineate clearly between
interface and implementation, these two constructs are quite complementary work together naturally. The

SDL-to-UDDI mapping model is designed to help users find services that implement standard definitions.

rmation and other directory related functions.
These operators provide a Web interface to the UDDI registry for browsing, publishing and un-
publishing business information. The UDDI operator nodes allow businesses to publish their
information and services they offer and they follow a well-defined replication scheme. An
enterprise does not need to register with each of these operators separately it can register at any
one of the operator companies. The registry works on a ”register once, published everywhere”
principle.

• Standard bodies and industry consortia: these publish descriptions in the form of service type
definitions (<tModel>s). These <tModel>s do not contain the actual service definitions, instead they
have a URL that points to the location where the service descriptions are stored (definitions can be
in any form, however UDDI, recommends using WSDL).

• Service providers: commonly implement web services conforming to service type definitions
supported by UDDI. They publish information about their business and services in the UDDI. The
published data also contains the end point of the web services offered by these enterprises.

The term UDDI in this paper is often used to mean both the protocol with its data structures and
Application Program Interface (API), that is publish and find operations, as well as the global UDDI Business
Registry described in the previ DDI registry can be deployed,
there are other deployment poss s.

W
The WSDL-to-UDDI mapping model describes how WSDL <portType> and <binding> element specifications
can become <tModel>s; how the <port>s of WSDL become UDDI <bindingTemplate>s; and how each WSDL
service is registered as a <businessService> [Manes03].

By decoupling a WSDL specification and registering it in UDDI, we can populate UDDI with standard
interfaces that have multiple implementations, providing a landscape of business applications that share
interfaces.

8.3.2 UDDI usage model and deployment variants
Figure 15 shows the basic UDDI usage model. The UDDI usage model involves standard bodies and industry
consortia publishing the descriptions of available services. Subsequently, the service providers implement
and deploy web services conforming to these type definitions. Prospective clients can then query the UDDI
registry based on various criteria such as the name of the business, product classification categories, or
even services that implement a given service type definition. These clients can then get the details of the
service type definition from the location specified. Finally, the clients can invoke the web service as they
have the service end point, and also the details on how to exchange messages with it. The UDDI usage
model envisages different business information provider roles such as:

• Registry operators: these refer to the organisations (referred to as operator nodes) that host and
operate the UDDI Business Registry. The operator nodes manage and maintain the directory
information, cater for replication of business info

ous. This is not, however, the only way that U
ibilities, which we will briefly cover in what follow

The structure of the UDDI allows the possibility of private UDDI nodes. A private (non-operator) UDDI node
can implement all the UDDI functionality, but it does not participate in the replication scheme defined by
the UDDI operator’s agreement. Because of the data volumes, the breadth of industry, geography, products
covered, and the requirement of adherance to the operator agreement, operator nodes are limited to the
degree of additional or variant behaviour they can provide. Private nodes are not under the same
restrictions. Currently, we can discern between the following UDDI deployment possibilities [Graham 01]:

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 37

• The e-marketplace UDDI: an e-marketplace, a standards body, or a consortium of organisations
that participate and compete in the industry can host this private UDDI node. The e-marketplace
could run a local version of a UDDI registry with its data shielded from the global UDDI registry. The
entries in this private UDDI relate to a particular industry or narrow range of related industries. The
e-marketplace node can then provide value added services such as quality of service monitoring,
validation of content published by companies, ensure that participants in the UDDI registry have
been vetted by a rigorous selection procedure, and also ensure that all entries pertain to the
market segment of interest. In such an environment publish and find operations provided by an API

Figure 15 The UDDI usage model.

•

• node

 against its data and

d
<bindingTemplate> to accept only entries associated with a fixed set of tModels [Graham 01].

could be restricted to the legitimate businesses registered with the marketplace. Such a
deployment might be not free of charge like the global registry and may charge a fee, either from
the service providers or from the clients for providing such value added services [Wahli04].

UDDI UDDI

The business partner UDDI registry: this variant of the above scheme is a private UDDI node
hosted behind one of the business partner’s firewall and only trusted or vetted partners can access
the registry. It also contains web service description meta-data published by trusted business
parties (that is, those organisations with which the hosting organisation has formal
agreements/relationships).
The portal UDDI: this type of deployment is on an enterprise’s firewall and is a private UDDI
that contains only meta-data related to the enterprise’s web services. External users of the portal
would be allowed to invoke find operations on the registry, however, a publish operation would be
restricted to services internal to the portal. The portal UDDI gives a company ultimate control over
how the meta-data describing its web services is used. For example, an enterprise can restrict
access. It can also monitor and manage the number of lookups being made
potentially get information about who the interested parties are.

• The internal UDDI: this allows applications in different departments of the organisation to publish
and find services, and is useful for large organisations. The major distinction of this UDDI variant is
the potential for a common administrative domain that can dictate standards (for example a fixed
set of tModels can be used). This allows the UDDI node to operate with different publish
restrictions than those suggested for the business partner UDDI. For example, the node could
restrict the publication of new tModels and thereby restrict publishing of <businessService>s an

RegistryRegistry

1. publish
service type
definitions 2. build & publish

services conforming
to a service type

definition

3. find service type definitions
& services based on various

criteria

5. invoke found
services

4. get service type
definition details

service clientsservice clients

UDDI UDDI

service providersservice providersindustry consortia,industry consortia,
standard bodies, standard bodies,
service providersservice providers

RegistryRegistry
UDDI UDDI 3. find service type definitions

RegistryRegistry
& services based on various

criteria

1. publish
service type
definitions 2. build & publish

services conforming
to a service type

definition

4. get service type
definition details

service clientsservice clients

5. invoke found
services

service providersservice providersindustry consortia,industry consortia,
standard bodies, standard bodies,
service providersservice providers

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 38

These kinds of UDDI deployments are called EAI UDDI, as they allow corporations to deploy and
advertise Intranet web services.

sed registries covered above offer some advantages over the global UDDI Business Registry. The
usiness registry does not restrict how the service is described; hence an enterprise could describe
ices by a variety of means. It could use a URL pointing to a text description of the service, a
ion in WSDL, or whatever means the company chooses to use. While this allows for flexibility, it

y restricts the ability of applications to interoperate as an application can really do anything
gful with the results of a find operation. Instead, if the description (meta-data) were modelled using
his is recommended as best practice), an application could use dynamic find and bind operations on
ice [Wahli04].

The clo
global B
its serv
descript
severel
meanin
WSDL (t
the serv

8.3.3 UDDI application programming interface
UDDI uses SOAP as its transport layer, thus enterprises can interact with UDDI registries through SOAP-based
XML API calls in order to discover technical data about an enterprise’s services. In this way enterprises can
link up with service providers and invoke and use their services.

The UDDI API is an interface that accepts XML messages wrapped in SOAP envelopes [McKee01]. All UDDI
interactions use a request-response model, in which each message requesting service from the site
generates some kind of response. A developer would not be creating messages in this format – there are
toolkits available that shield developers from the task of manipulating XML documents. These toolkits (or
the APIs they provide) internally “talk” to the UDDI registry using the XML message formats defined by the
UDDI protocol. Developers can build applications in Java, VisualBasic or any other language of their choice
to access UDDI registries and either publish their services, find services provided by other companies or
unpublish their service listings. Currently, UDDI client side libraries/toolkits exist for Java, VisualBasic and
Perl [Cauldwell01].

The UDDI specifications allow the following types of exchanges with UDDI registered sites: enquiries and
publishing.

• Enquiries enable parties to find business businesses, services, or bindings (technical characteristics)
meeting certain criteria. The party can then get the corresponding <businessEntity>,
<businessService>, or <bindingTemplate> information matching the search criteria. The UDDI
enquiry API has two usage patterns: browse and drill down. A developer would, for instance, use a
browse pattern (find() API calls) to get a list of all entries satisfying broad criteria to find the
entries, services or technical characteristics and then use the drill down pattern (get() API calls) to
get the more specific featur) call could be first issued to locate
all businesses in a specific category area, and then a get_BusinessDetail() call could be used to

es. For example, a find_business(

get additional information about a specific business.

1. The browse pattern uses the following five methods: find_binding(), find_business(),
find_relatedBusinesses(), find_service (), and find_tModel(). The find_binding() method is
used to locate specific bindings within a registered business service and returns the binding
template(s) that match the search criteria. The binding templates have information on invoking
services. The method find_business() helps to locate one or more business entries that match
the search criteria. The search can be performed on the partial name of the business, the
business identifiers, the category/classification identifiers or the technical fingerprints of the
services. The method find_relatedBusinesses() is used to locate information about business
entity registrations that are related to the business entity. The find_service() method returns
a list of business services that match the search criteria. The find_tModel() method returns a
list of <tModels>.

2. The drill down pattern uses the following five methods: get_bindingDetail(),

get_BusinessDetail(), get_BusinessDetailExt(), get_serviceDetail(), and get_tModelDetail(
). The method get_bindingDetail() returns the run-time binding information
(<bindingTemplate> structure) used for invoking methods against a business service. The
method get_BusinessDetail() returns the complete <businessEntity> object for one or more
business entities. The method get_BusinessDetailExt() is identical to the method

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 39

get_BusinessDetail(), but returns extra attributes in case the source registry is not an
operator node. The method get_serviceDetail() returns the complete <businessService> object
for a given business service. The method get_tModelDetail() returns <tModel> details.

 and choreography

e interchanges. However, the interaction
odel that is directly supported by WSDL is essentially a stateless model of uncorrelated synchronous or

 [Bloch03].

ultiple services. There are two competing specifications that address this concept: WS-
oordination and WS-CAF (Web Service Composite Application Framework), both are still at the draft stage

[Little0
be man
Most of
activity

WS-CAF
betwee
service
of cours posed by WS-CAF.

9.1 Orch
When the
automation
the descript
exchange o
implementa
monitoring
because th
separate in
business bo based on precise external protocols is required because the parties
involved
control
message-ce
without req

• UDDI sites use publishing functions to manage the information provided to requestors. The

publishing API essentially allows applications to save and delete the five data structures supported
by UDDI and described earlier in section-8.3.1 and Figure 14. These calls are used by service
providers and enterprises to publish and un-publish information about themselves in the UDDI
registry. These API calls require authenticated access to the registry, unlike the enquiry API
[Cauldwell01]. UDDI does not specify authentication procedures, but leaves them up to the
operator site.

9 Web services coordination, orchestration

Web service technologies provide the foundation for peer systems to perform units of work cooperatively
over complex interactions materialized by long running messag
m
asynchronous interactions. For instance, models for e-business interactions typically require specifying
sequences of peer-to-peer message exchanges between a collection of web services, both synchronous and
asynchronous, within stateful, long-running interactions involving two or more parties. Such interactions
require that business processes are described in terms of a business protocol (or abstract business model)
that precisely specifies the mutually visible message exchange behaviour of each of the parties involved in
the protocol, without revealing their internal implementation. It also requires modelling the actual
behaviour of participants involved in a business interaction. To define such business processes and
protocols, a formal description of the message exchange protocols used by business processes in their
interactions is needed

The concept of service coordination has been introduced to support the execution of complex units of work
involving m
C

3c]. These specifications suggest that at a minimum peer message interchanges require a context to
aged and be available during the interchange. This context can be passed by value or by reference.
ten, the boundaries of the units of work that constitutes the interchange will be made explicit. An
 lifecycle service may be used to identify and manage the corresponding activity instances.

 presents a well abstracted view of the architecture needed to support long running interactions
n web services. This architecture can be used as a foundation to address all aspects of complex web
interactions: B2B collaborations, business processes, orchestration, composition, choreography and
e transactions which can all share the architecture pro

estration versus choreography
message interchange occurs within the context of an e-business solution, it enables the
of cross-enterprise business processes. However, additional semantics are required to enable
ion and handling of the collaboration aspects of the business processes, e.g., commitments and
f economic resources, in a standard form that can be consumed by tools for process
tion and monitoring. Enterprise workflow systems today support the definition, execution and
of long-running processes that coordinate the activities of multiple business applications. But
ese systems are activity oriented and not communication (message) oriented, they do not
ternal implementation from external protocol description [Leymann00]. When processes span
undaries, loose coupling

 do not share application and workflow implementation technologies, and will not allow external
over the use of their backend applications. Such business interaction protocols are by necessity

ntric; they specify the flow of messages representing business actions among trading partners,
uiring any specific implementation mechanism.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 40

The full pot
applications
technologie ffer an
synchronous and message oriented way to communicate and interact with application logic. However,

whe lo
UDDI an
the ser
integrat
services

ential of web services as a means of developing e-business solutions will only be achieved when
 and business processes are able to integrate their complex interactions. Web services
s offer a viable solution to this problem since they support coordination and o

a
n oking at web services, it is important to differentiate between baseline specifications of SOAP,

d WSDL that provide the infrastructure that supports publishing, finding and binding operations in
vice-oriented architecture (see Figure 4) and higher-level specifications required for e-business
ion. These higher-level specifications provide functionality that supports and leverages web
 and enables specifications for integrating automated business processes.

Purchase Order Request

Purchase Order Acknowledgement

Invoice

Buyer Seller

Purchase Order Request

Purchase Order Acknowledgement

Invoice

Buyer Seller

Figure 16 A typical business process.

Currently, there are competing initiatives for developing business process definition specifications, which
aim to define and manage busin

llaborating web services. The
ess process activities and business interaction protocols comprising

terms “orchestration” and “choreography” have been widely used to

 process
interactions are always controlled from the (private) perspective of one of the business parties

s endpoints, rather than a
specific business process that is executed by a single party. Choreography is more collaborative in
nature than orchestration. It is described from the perspectives of all parties (common view), and

le behaviour between participants in business process

elate it with the original purchase order, and
lso an invoice number.

co
describe business interaction protocols comprising collaborating web services. There is an important
distinction between web services orchestration and choreography [Pelz03a]:

• Orchestration describes how web services can interact with each other at the message level,
including the business logic and execution order of the interactions from the perspective and under
control of a single endpoint. Orchestration refers to an executable business process that may result
in a long-lived, transactional, multi-step process model. With orchestration, the business

involved in the process. In this context, web service composition represents a limited application of
orchestration.

• Choreography is typically associated with the public (globally visible) message exchanges, rules of
interaction and agreements that occur between multiple business proces

defines the complementary observab
collaboration. A common view, in essence, defines the shared state of the interactions between
business entities. This common view can be used to determine specific deployment
implementations for each individual entity. Choreography offers a means by which the rules of
participation for collaboration can be clearly defined and agreed to, jointly. Each entity may then
implement its portion of the choreography as determined by their common view. Choreography
tracks the sequence of messages that may involve multiple parties and multiple sources, including
customers, suppliers, and partners, where each party involved in the process describes the part
they play in the interaction and no party “owns” the conversation.

We use Figure 16 to exemplify the concept of orchestration and choreography. This figure shows a typical
business process comprising a purchase order. A buyer may start a correlated message exchange with a
seller by sending a purchase order (PO) and using a PO number in the purchase order document. The seller
can use this PO number in the PO acknowledgement. The buyer may later send an invoice containing an

voice document that carries both the PO number, to corrin
a

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 41

Figure 17 sho s is shown from
e perspective of an Enterprise Resource Planning (ERP) application, which can be employed to check

inventory, place orders and organ ss can be specified using a
typical business process execution

Finally
busines
collabo aboration, the buyer and seller

ion, and then briefly summarise WS-CDL.

Figure 17 Purchase order from an orchestration perspective.

ws the purchase order process from an orchestration perspective. This proces
th

ise buyer resources. The private buyer proce
language such as BPEL.

Figure 18 shows the purchase order from a choreography perspective involving an observable public
exchange of messages. This choreography can be specified using a service choreography specification
language such as WS-CDL.

Figure 18 Purchase order from a choreography perspective.

in Figure 19, the buyer and seller are shown to integrate their business processes. The respective
s analysts at both companies agree upon the rules and processes involved for the process
ration. Using a GUI and a tool that can serve as a basis for the coll

agree upon their interactions and generate a WS-CDL representation. The WS-CDL representation can then
be used to generate a BPEL workflow template for both the buyer and seller. The two BPEL workflow
templates reflect the business agreement.

In the following section we shall first concentrate on the Business Process Execution Language for Web
Services (BPEL for short), which is the standard industry specification that is designed specifically for web
services based orchestrat

From ERP

To ERP

Send
PO

Receive PO
Ack

Receive
Invoice

PO Request

PO Acknowledgement

Invoice

Private Process

Buyer BPEL
Workflow

From ERP

To ERP

Send
PO

Receive PO
Ack

Buyer BPEL
Workflow

Receive
Invoice

Send
PO

Receive PO
Ack

PO Request

PO Acknowledgeme

Receive
Invoice

nt

Invoice

Private Process

PO Request
Send
PO

Receive PO
Ack

Receive
Invoice

Receive
PO

Send
PO Ack

Send Invoice

PO Acknowledgement

Invoice

Public Process

Buyer Seller

PO Request
Send
PO

Receive PO
Ack

Receive
Invoice

Send
PO

Receive PO
Ack

Receive
Invoice

Receive
PO

Send
PO Ack

Send Invoice

Receive
PO

Send
PO Ack

Send Invoice

PO Acknowledgement

Invoice

Public Process

Buyer Seller

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 42

9.2 The orchestration business process execution language

BPEL has recently emerged as the standard to define and manage business process activities and business
interaction protocols comprising collaborating web services. This is an XML-based flow language for the
formal specification of business processes and business interaction protocols. By doing so, it extends the
web services interaction model and enables it to support business transactions. Enterprises can describe
complex processes that include multiple organisations— such as order processing, lead management, and
claims handling—and execute the same business processes in systems from other vendors.

BPEL provides support for both executable and abstract business processes. An executable process models
the actual behaviour of participants in the overall business process, essentially modelling a private
workflow. This can be perceived as a control “meta-process” that is laid on top of web services controlling
their invocations and abstracting their behaviour into a shape that looks very much like a composition of
services. The logic and state of the process determine the nature and sequence of the web service
interactions conducted at each business partner, and thus the interaction protocols. No attempts are made
to separate externally visible (public) aspects of the business process from its internal behaviour. Abstract

ocesses are modelled as business protocols in BPEL. Their purpose is to specify the public message
exchanges of each of s processes, business
protocols are not execut Abstract business

ship is typically modelled as a <partner-link>.
ssentially, executable processes provide the orchestration support described earlier while the business

SDL to specify activities that should take place in a business

pr
 the parties leveraging the protocol. Unlike executable busines

able and do not reveal the internal details of a process flow.
processes link web service interface definitions with behavioural specifications that can be used to control
the business roles and define the behaviour that each party is expected to perform within the overall
business process. For example, in a supply-chain business protocol, the buyer and the seller are two distinct
roles, each with its own abstract process. Their relation
E
protocols concentrate more on the choreography aspects of the services.

Seller

Choreography GUI

Buyer
Generate BPEL

Specification
Generate BPEL

Specification

Receive
PO

SendPO
Ack

Send

Seller BPEL
Workflow

PO Request

Figure 19 Combining choreography and orchestration.

A BPEL process is a flow-chart-like expression specifying process steps and entry-points into the process
that is layered on top of WSDL, with WSDL defining the specific operations allowed and BPEL defining how
the operations can be sequenced [Curbera03]. At the core of the BPEL process model lays the notion of
peer-to-peer interaction between services described in WSDL. Both the process and its partners are

odelled as WSDL services. BPEL uses Wm
process and describes the web services provided by the business process. A BPEL document leverages WSDL
in the following three ways [Pelz03b].

InvoiceInvoice

Send
PO

Receive PO
Ack

Receive
Invoice

Buyer BPEL
Workflow

PO Acknowledgement

Seller

Choreography GUI

Buyer
Generate BPEL

Specification
Generate BPEL

Specification

Receive
PO

SendPO
Ack

Send

Seller BPEL
Workflow

PO Request

InvoiceInvoice

Send
PO

Receive PO
Ack

Receive
Invoice

Buyer BPEL
Workflow

PO Acknowledgement

Receive
PO

SendPO
Ack

Send
Invoice

Seller BPEL
Workflow

Receive
PO

SendPO
Ack

Send
Invoice

Receive
PO

SendPO
Ack

Send

Seller BPEL
Workflow

PO Request
Send
PO

Receive PO
Ack

Receive
InvoiceInvoice

Buyer BPEL
Workflow

Send
PO

Receive PO
Ack

Receive
Invoice

Send
PO

Receive PO
Ack

Receive
Invoice

Buyer BPEL
Workflow

PO Acknowledgement

Invoice

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 43

Every BPEL process is exposed as a web service using WSDL. WSDL describes the public entry and exit points
r the process.

al

tivities that include invoking an
operation on some web service (<invoke>), waiting for a process operation to be invoked by some
external client (<receive>), and generating the response of an input-output operation (<reply>). As
a language for composing web services, BPEL processes interact by making invocations to other
services and receiving invocations from clients. The prior is done using the <invoke> activity, and
the latter using the <receive> and <reply> activities. BPEL calls these other services partners. A
partner is a web service that the process invokes and/or any client that invokes the process. The
Invoke element only support synchronous operations in the current version of BPEL.

2. The control flow section of BPEL is a hybrid model principally based on block structured and with

the ability to define selective state transition control flow definitions for synchronization purposes.
The control flow part of BPEL includes the ability to define an ordered sequence of activities
(<sequence>), to have branching (<switch>), to define a loop (<while>), and to execute one of
several alternative paths (<pick>). It main structured activity is the <flow> statement that allows
defining sets of activities (including other flow activities) that are connected via <links>. Thus, a
flow activity in BPEL may create a set of concurrent activities directly nested within it. It also
enables expressing synchronisation dependencies between activities that are nested directly or
indirectly within it. Within activities executing in parallel, execution order constraints can be
specified. All structured activities can be recursively combined. The <link> construct is used to
express these synchronisation dependencies providing among other things the potential for parallel
execution of parts of the flow. The links are defined inside the flow and are used to connect
exactly one source activity to exactly one target activity. A <link> may be associated with a
transition condition, which is a Boolean expression using values in the different data variables in a
process.

orrect execution of the business process, e.g., for routing decisions
to be made or for constructing messages that need to be sent to partners. <Variables> provide the

fo

1. WSDL data types are used within a BPEL process to describe the information that passes between
requests.

2. WSDL might be used to reference external services required by a business process.

The role of BPEL is to define a new web service by composing a set of existing services through a process-

tegration type mechanism with control language constructs. The entry-points correspond to externin
clients invoking either input-only (request) or input-output (request-response) operations on the interface
of the composite service. BPEL provides a mechanism for creating implementation and platform
independent compositions of services weaved strictly from the abstract interfaces provided in the WSDL
definitions. The definition of a BPEL business process also follows the WSDL convention of strict separation
between the abstract service interface and service implementation. In particular, a BPEL process
represents parties and interactions between these parties in terms of abstract WSDL interfaces
(<portTypes> and <operation>s), while no references are made to the actual services (binding and address
information) used by a process instance. Both the interacting process as well as its counterparts are
modelled in the form of WSDL services. Actual implementations of the services themselves may be
dynamically bound to the partners of a BPEL composition, without affecting the composition’s definition.
Business processes specified in BPEL are fully executable portable scripts that can be interpreted by
business process engines in BPEL-conformant environments.

We distinguish four main sections in BPEL: the message flow, the control flow, the data flow, and the
process orchestration sections.

1. The message flow section of BPEL is handled by primitive ac

3. Business processes specify stateful interactions involving the exchange of messages between

partners. The state of a business process includes the content of the messages that are exchanged
as well as intermediate data used in business logic and in composing messages sent to partners. The
data flow section of BPEL requires that information is passed between the different activities in an
implicit way through the sharing of globally visible data <variables>. Data <variable>s specify the
business context of a particular process. These are collections of WSDL messages, which represent
data that is important for the c

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 44

means for holding message content that constitute altogether the state of a business process. The
messages held are often those that have been received from partners or are to be sent to partners.
<Variables> can also hold data that are needed for holding state related to the process and never

atements. The <assign> statement allows not only data manipulation, but also dynamic
ided by BPEL to

specify and execute transformations on the data.

rts) by more than one client [Curbera03]. For
example, a process representing a loan servicing system may offer a single web service, but only

presentative, and the entire service is accessible to the loan underwriters.
The approach of using partners to model clients allows the process to indicate that certain clients

exchanged with partners [Bloch03]. Variables may exchange specific data elements via the use of
<assign> st
binding to different service implementations. Currently, there is no capability prov

4. The process orchestration section of BPEL uses service links to establish peer-to-peer partner

relationships. A <partner> could be any service that the process invokes or any service that invokes
the process. Each <partner> is mapped to a specific role that it fills within a process. A specific
partner may play one role in one business process but completely different role in another process.
Data <variables> are then used to manage the persistence of data across web service requests.
Partners are connected to a process in a bilateral manner using a <partner-link type>. Partner-links
define the shape of a relationship with a partner by specifying the WSDL <message> and <port-
types> constructs used in the interactions in both directions. A <partner-linkType> is a third party
declaration of a relationship between two or more services, comprising a set of roles, where each
role indicates a list of <portType>s. A BPEL partner is then defined to play a role from a given
<partner-link type>. Clients of the process are treated as partners, because a process may need to
invoke operations on clients (for example, in asynchronous interactions), and because the service
offered by the process may be used (wholly or in pa

parts of it are accessible to the customer applying for the loan, while other parts are accessible for
the customer service re

may only invoke certain operations.

<process ...>

<!-- Web services the process interacts with -->

<partnerLinks> ... </partnerLinks>

<!– Data used by the process -->

<variables> ... </ variables >

<!– Supports asynchronous interactions -->

<correlationSets> ... </correlationSets>

<!– Activities that the process performs -->

(activities)*

<!–Exception handling: Alternate execution path to deal with faulty situations -->

<faultHandlers> ... </faultHandlers>

<!–Code that is executed when an action is “undone” -->

<compensationHandlers> ... </compensationHandlers>

<!–Handling of concurrent events -->

<eventHandlers> ... </eventHandlers>

</process>

BPEL co
service
simplest
interact
One can
For exa

Figure 20 Structure of BPEL process.

mprises basic and structured activities. Each activity is implemented as an interaction with a web
provided either by a particular provider or by one of its business partners. Basic activities are the
 form of interaction with a service. They are not sequenced and comprise individual steps to
 with a service, manipulate the exchange data, or handle exceptions encountered during execution.
 think of a basic activity as a module that interacts with messages external to the process itself.
mple, basic activities would handle receiving or replying to message requests as well as invoking

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 45

externa
process
request
activitie
<sequen
in whic
parallel underlying programming logic for BPEL as they
des ibe how a business process can be created by composing the basic activities it performs into
stru
and coo

Abstrac
of abstr
concept
opposed
business
determi
back-en
it affec
provide
transact
buyer,
alternat
within t
process

.2.1 A simple example in BPEL
Figure 20 shows the structure of a typical BPEL process. We shall explain the constructs in this structure by
means of a simplified version of the purchase order application shown in Figure 21. In this example we show
a buyer placing a purchase order. In the process the buyer works through the seller to fulfil his/her
request. The seller then communicates with credit service, billing service and inventory service providers
to fulfil the client’s wishes. Once an invoice is generated it is then sent back to the client. Several BPEL
details are skipped in the interest of brevity.

The first part in a BPEL document is the definition of the process itself ("PurchaseOrder"). This is
accomplished by means of the <process> element at the process root level (see Figure 20). The <process>
element provides a name for the process and supplies references to the XML namespaces used. In this way
the process places WSDL specific references in a BPEL process definition.

l services. The typical scenario is that there is a message received into the BPEL process. The
 may then invoke a series of external services to gather additional data, and then respond to the
or in some fashion. BPEL messages such as <receive>, <reply>, and <invoke> all represent basic
s for connecting services together. In contrast, structured activities (BPEL messages including
ce>, <switch>, <while>, <pick>, and <flow>) manage the overall process flow, specifying the order

h activities execute. They might also specify that certain activities should run sequentially or in
. One may think of structured activities as the

cr
ctures. These structures involve the control patterns, data flow, fault handling, external event handling

rdination of message exchanges between process instances.

t processes use all the concepts of BPEL but approach data handling in a way that reflects the level
action required to identify protocol-relevant data embedded in messages [Bloch03]. Using the
 of message properties, properties can be viewed as transparent data relevant to public aspects as
 to opaque data that internal/private functions use [Bloch03]. Transparent data affects the public
 protocol in a direct way. Abstract processes handle only protocol-relevant data and use non-
nistic data values (opaque data) to hide private aspects of behaviour. Opaque data is related to
d systems and affects the business protocol only by creating non-determinism because the manner
ts decisions is opaque. For instance, in the case of a purchase business protocol the seller may
 a service that receives a purchase order and responds with either acceptance or rejection of the
ion based on a number of criteria, such as availability of the goods, the creditworthiness of the
etc. The decision processes is opaque, but the fact of the decision is reflected as behaviour
ives exhibited by the external business protocol. In other words, the protocol acts as a “switch”
he behaviour of the seller’s service, although the selection of the decision branch taken in the

 flow is non-deterministic.

9

<partnerLinks>
<partnerLink name= “Buyer" partnerLinkType=“PurchasePLT"

myRole= " Purchaser“ />

<partnerLink name=“CreditService“ partnerLinkType=“CreditCheckPLT "
myRole="CreditRequester" partnerRole=“CreditChecker"/>

<partnerLink name=“BillingService" partnerLinkType=“BillingPLT"
myRole=“BillRequester" partnerRole=“Biller"/>

</partnerLinks>

<partnerLinkType name=“PurchasePLT">
<role name=“Purchaser">

<portType name=“PurchasePortType"/>
</role>

</partnerLinkType>

<partnerLinkType name=“CreditCheckPLT">
<role name=“CreditChecker">

<portType name="CreditCheckPortType"/>
</role>

</partnerLinkType>

WSDL document

<partnerLinks>
<partnerLink name= “Buyer" partnerLinkType=“PurchasePLT"

myRole= " Purchaser“ />

<partnerLink name=“CreditService“ partnerLinkType=“CreditCheckPLT "
myRole="CreditRequester" partnerRole=“CreditChecker"/>

<partnerLink name=“BillingService" partnerLinkType=“BillingPLT"
myRole=“BillRequester" partnerRole=“Biller"/>

</partnerLinks>

<partnerLinkType name=“PurchasePLT">
<role name=“Purchaser">

<portType name=“PurchasePortType"/>
</role>

</partnerLinkType>

<partnerLinkType name=“CreditCheckPLT">
<role name=“CreditChecker">

<portType name="CreditCheckPortType"/>
</role>

</partnerLinkType>

WSDL document

<partnerLinkType name=“PurchasePLT">
<role name=“Purchaser">

<portType name=“PurchasePortType"/>
</role>

</partnerLinkType>

<partnerLinkType name=“CreditCheckPLT">
<role name=“CreditChecker">

<portType name="CreditCheckPortType"/>
</role>

</partnerLinkType>

WSDL document
Figure 21 Definition of roles in a BPL document.

The <partnerLinks> section in Figure 21 defines the different parties that interact with the business process
in the course of processing a buyer’s order. In the purchase order process there are four interacting roles:
that of the buyer, that of the credit service, the billing service and the inventory service (not shown in this
figure). Each <partnerLinks> definition is characterised by a <partnerLinkType>. Further, it specifies which
role of the underlying <partnerLinkType> the process itself accepts (myRole) and which role has to be

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 46

accepted by the partner (partnerRole). The "PurchaseOrder" process is defined from the perspective of the
seller. When the buyer interacts with the seller, the buyer is the requester while the seller is the credit
requester and bill requester (on behalf of the buyer). Conversely, the roles are reversed when the seller
interacts with the "CreditService" or "BillingService" providers. Figure 21 shows this situation as well as the
WSDL <portTypes> that are associated with each role via the <partnerLinkType> element. The
<partnerLinkType> element defines the dependencies between the services and the WSDL <portType>s
used. For instance, it is shown that the WSDL <portType> "Purchase" is associated with a request initiated
with the buyer. The seller will also have a reference to the "CreditService" provider for requesting a credit
service for the client. The port types themselves are defined elsewhere.

BPEL processes manage flow of data between partners represented by their service interfaces. The

tivities are employed. A business
rocess provides services to its partners through receive activities and corresponding reply activities. The

<receive> construct allows the business process to do a blocking wait for a matching message to arrive. A
receive activity specifies the partner link it expects to receive from, and the port type and operation that
it expects the partner to invoke. In addition, it may specify a variable that is to be used to receive the
message data received. The only way to instantiate a business process in BPEL is to annotate a receive
activity with the createInstance attribute set to "yes". The <reply> construct allows the business process to
send a message in reply to a message that was received through a <receive> activity. The combination of a
<receive> and a <reply> forms a request-response operation on the WSDL <portType> for the process. Such
responses are only meaningful for synchronous interactions. A <reply> activity may specify a variable that
contains the message data to be sent in reply. To invoke a web service a process uses the <invoke>
construct. This construct allows the business process to invoke a one-way or request/response operation on
a <portType> offered by a partner. When invoking partners one needs to determine the partner to invoke as
well as which operation to involve.

<variables> section of BPEL defines the data variables used by the process, providing their definitions in
terms of WSDL message types and XML Schema elements. Variables allow processes to maintain state data
and process history based on messages exchanged. For example, the business process stores a POMessage in
a PO variable. Using <assign> and <copy>, data can be copied and manipulated between variables. In
particular, <copy> supports XPath queries to sub-select data expressions. The PurchaseOrder part of
POMessage is assigned to the PurchaseOrder part of a creditRequester. This message is stored in the
creditRequest variable once received. The process (purchase order) passes on the credit service (inventory
service) part of the message to the credit service (inventory service) provider. This message uses the part-
purchase-order PO variable. The credit service (inventory service) providers then process the requests.
Each variable shown in Figure 22 is followed by a reference to a specific WSDL message type.

<variables>
<variable name=“PO“ messageType=“POMessage"/>
<variable name=“Inv“ messageType=“InvMessage"/>
<variable name=“OrderAcceptance" messageType=“OrderAcceptMessage"/>

</variables>

<assign>
<copy>
<from variable="PO" part=“PurchaseOrder"/>
<to variable=“creditRequest” part=“PurchaseOrder"/>

</copy>
</assign>

Figure 22 BPEL data variables for the PurchaseOrder process.

A fundamental part of a BPEL specification is the definition of the activities and the sequence of steps
equired to make up a given process. This is where basic and structured acr

p

A key part of the BPEL4WS document is the definition of the basic sequence of steps required to handle the
request. This is where basic and structured activities come into play. The process flow in Figure 23 is shown
to comprise of an initial request from a customer, followed by an invocation of credit service and billing
service providers in parallel, and ultimately a response to the client from the seller sending a concrete
purchase order.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 47

To model this, the <sequence> tag is used for running components sequentially, the <flow> tag is used for
parallel execution, and the <receive>, <reply>, and <invoke> tags handle the basic activities required to
interact with the services.

<sequence>
<receive name="receive_PurchaseOrder"

partnerLink=“Buyer” portType=“PurchaseOrderPortType"
operation=“SendPurchaseOrder” variable=“PO”
createInstance="yes" />

<flow>
<invoke partnerLink=“CreditService" portType=“CreditCheckPortType"

operation=“CheckCredit" inputVariable=“CreditRequest"
outputVariable=“CreditResponse" >

<invoke/>

<invoke partnerLink=“BillingService" portType=“BillingPortType"
operation=“BillClient" inputVariable=“BillRequest"
outputVariable=“BillResponse" >

<invoke/>
</flow>
...
<reply name="respond_PurchaseOrder"

partnerLink=“Buyer” portType=“PurchaseOrderPortType”
operation=“SendPurchaseOrder” variable=“Inv"/>

</sequence>

Figure 23 BPEL process flow for PurchaseOrder process.

The first step in the process flow is the initial buyer request. The “createInstance” flag is used to identify
the start of a new process instance. Once this request is received, there is a parallel set of activities that
are executed using the <flow> tag. Here, a credit service is contacted in order to receive a credit check for
the buyer, while a billing service is contacted to bill the buyer. Each references a specific WSDL operation
(e.g., CheckCredit), and uses the available containers for input and output. Upon receiving the responses
back from these suppliers, the seller would construct a message back to the buyer. This could involve use
of the XPath language to take the various containers received from the service providers and building a
final proposal to the buyer.

A correlation mechan ssociated messages.

tification number might be used to identify an individual buyer in a long-running

fied by a qualified name. In particular, each WSDL fault is identified in

ism exists with BPEL processes to connect service instances with a
For example, a buyer iden
multiparty business process relating to a purchase order. In correlation, the property name, e.g., buyer-id,
purchase-order-id, invoice-number, vendor-id, etc, must have global significance to be of any use. Figure
24 shows a graphical representation as well as a BPEL specification of a correlation. In particular, this
figure shows that there exists a unique purchase order identifier for each purchase order forwarded by a
buyer and received by a seller and a unique number for each corresponding invoice created by the seller. A
buyer may start a correlated exchange with a seller by sending a purchase order (PO) and using a PO id in
the purchase order document as the correlation token. This PO id is used in the PO acknowledgement by
the seller. The seller may later send an invoice document that carries both the PO id, to correlate it with
the original purchase order, and also an invoice number. In this way future payment related messages may
carry only the invoice number as the correlation token. The invoice message thus carries two separate
correlation tokens and participates in two overlapping correlated exchanges. The scope of correlation is
not, in general, the entire interaction specified by a service, but may span a part of the service behaviour.

The BPEL <faultHandlers> section contains structures defining the activities that must be performed in
response to faults resulting from the invocation of services. In BPEL, all faults, whether internal or resulting
from a service invocation, are identi
BPEL by a qualified name formed by the target namespace of the WSDL document in which the relevant
<portType> and fault are defined, and the name of the fault [Bloch03]. Certain operations can return
faults, as defined in their WSDL definitions. For example, Figure 25 illustrates the case where there is an
error when a buyer submits a purchase order. In this situation the seller may use a fault handler
("OrderNotComplete") employing a <reply> element to return a fault to the buyer.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 48

Buyer
•SendPurchase
•ProcessPurchaseResponse

PO
Correlation:
<PO_BuyerId = ..>
<PO_OrdId = ..>

Seller
•PurchaseReceipt
•PurchaseResponse

initiate=yesinitiate=yes

Figure 24 Correlation properties and sets for the PurchaseOrder process.

In many cases error handling in business processes relies heavily on the well-known concept of
compensation, that is, application-specific activities that attempt to reverse the effects of a previous
activity that was carried out as part of a larger unit of work that is being abandoned. BPEL provides a
compensation protocol that has the ability to define fault handling and compensation in an application-
specific manner, resulting in long-running (business) transactions [Bloch03]. To set up a transactional
context in BPEL, the <scope> element is used. This element groups related activities together. To
exemplify the concept of compensation conisder the case where a purchase is made and this purchase
needs to be cancelled. In this case a <compensationHandler> can be issued to invoke a cancellation
operation at the same port of the same WSDL <partnerLink>, using the response to the purchase order as its
input.

Figure 25 A simple fault handler for the PurchaseOrder process.

initiate=no pattern=outinitiate=no

initiate te=yes pattern=out=yes initia

PO-Response
Correlation:
<PO_BuyerId = ..>
<PO_OrdId = ..>

<Inv_VendorId = ..>

Buyer
•SendPurchase
•ProcessPurchaseResponse

PO
Correlation:
<PO_BuyerId = ..>
<PO_OrdId = ..>

Seller
•PurchaseReceipt
•PurchaseResponse

initiate=yesinitiate=yes

<Inv_InvNr = ..>

<correlationSets
<correlationS r:ordId"/>
<correlationS rId cor:invNr"/>

</correlationSet

<receive partner Type"
operation="P

<correlations>
<correlation

</corre
</rece

>
et name="POCorr" properties="cor:buyerId co
et name="InvoiceCorr" properties="cor:vendo
s> ...

Link=“Buyer” portType="PurchaseOrderPort
urchaseReceipt" variable="PO">

 set="POCorr" initiate="yes">
lations>

ive> ...

<invoke partnerLink=“Buyer” portType=“BuyerPortType"
operation=“ProcessPurchaseResponse" inputVariable="POResponse">

<correlations>
<correlation set="POCorr" initiate="no" pattern="out">
<correlation set="InvoiceCorr" initiate="yes" pattern="out">

</correlations>
</invoke> ...

initiate=no pattern=outinitiate=no

initiate=yes initiate=yes pattern=out

PO-Response
Correlation:
<PO_BuyerId = ..>
<PO_OrdId = ..>

<Inv_VendorId = ..>
<Inv_InvNr = ..>

<correlationSets>
<correlationSet name="POCorr" properties="cor:buyerId cor:ordId"/>
<correlationSet name="InvoiceCorr" properties="cor:vendorId cor:invNr"/>

</correlationSets> ...

<receive partnerLink=“Buyer” portType="PurchaseOrderPortType"
operation="PurchaseReceipt" variable="PO">

<correlations>
<correlation set="POCorr" initiate="yes">

</corre
</rece

lations>
ive> ...

<invoke partnerLink=“Buyer” portType=“BuyerPortType"
operation=“ProcessPurchaseResponse" inputVariable="POResponse">

<correlations>
<correlation set="POCorr" initiate="no" pattern="out">
<correlation set="InvoiceCorr" initiate="yes" pattern="out">

</correlations>
</invoke> ...

<faultHandlers>
<catch faultName="OrderNotComplete"

faultVariable="POFault">
<reply partnerLink=“Buyer"

portType=“PurchaseOrderPT"
operation=“SendPurchaseOrder"
variable="POFault"
faultName="OrderNotComplete "/>

</catch>
</faultHandlers>

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 49

9.3 The choreography definition language
A large class of e-Business activities and applications requires the ability to perform long-lived, peer-to-
peer message interchanges between the participating services, i.e. choreographies, within or across the
trusted domains of an organization. The primary goals of a choreography definition are:

• to verify at run time that all message interchanges are proceeding according to plan, and
• to guaranty that changes in the implementations of services are still in compliance with the

message interchange definition.

As such a choreography is not executed but rather monitored and validated (or invalidated).

The first draft of the WS-CDL has been released in April 2004 [Kavantzas04]. In the specification, the
message interchanges take place in a jointly agreed set of ordering and constraint rules. Choreography
definitions can involve two (binary) or more (multiparty) participants. WS-CDL, describes a global view of
the message interchange without taking any participants point of view, unlike the BPEL global model which
takes the point of view of one participant. This approach is a lot more scalable when the number of
participants increases. However, and like BPEL, WS-CDL is an infrastructure specification which does not
contain any business semantics (e.g. resources, commitments, agreements …).

A choreography definition is always defined abstractly between roles which are later bound to participants.
Roles are related to each other via relationships. A relationship is always between exactly two roles. A
participant may implement any number of non-opposite roles in the choreography. A distributor may
implement the buyer-to-manufacturer and seller-to-customer roles, which is yet different from the seller-
to-distributor role.

Choreographies are composed of activities. The main activity is called an interaction which results in
exchange of messages between participants and possible synchronization of their states and the actual
values of the exchanged information. Other activities are used to create meaningful combinations of
interactions. For instance ordering activities (sequence, parallel, choice) or a perform activity which
composes another choreography in the parent choreography. Choreography neutral activities are also
defined: assign, which associates a given value from a variable to another one, a no-action activity and a
workunit activity. Interactions may also be organized in work units which may be guarded by a series of
pre-conditions, and generate a series of post-conditions as they complete.

The notion of role state is relatively new in the web service architecture and adds a new layer of
semantics. The web services architecture was based on typed messages as defined in WSDL and used for
instance in BPEL or WS-CDL. It was introduced to be able to achieve “state alignment” which is a major
issue in web services interactions. The question has often been neglected reducing it to a reliable
messaging problem. Reliable messaging is actually just one layer in the path to achieve state alignment:
this is not because an application receives a message that it agrees that its content is valid or that the
application is able to process this message. If a message is received and this message cannot be understood
or processed (it is encrypted), a state misalignment may occur, especially if there is no protocol in place to
ensure that the receiver of the message can signal the sender that a error occurred. Without such protocol
in place, the sender may consider that since the message was received, the receiver must be in the same
state. WS-CDL offer when the state of
two roles is aligned. a state alignment
protocol like ebXML BPSS offers. It also groups state alignment guards at the work unit level and not at the

Choreography definitions may be data driven, i.e. the data contained in the messages impacts the ordering
of interactions. Data is modelled as variables which may either be associated to message content, a
channel or the state of roles involved in the choreography. Tokens are aliases which may represent parts of
a variable. Both token and variables have types that specify their data structure. The type is either an XML
schema or the element definition of an XML schema. State variables are bound to roles, and describe any
relevant state of a given role. State variables may have the same name at different roles (e.g. OrderState),
but each role may have different values (e.g. OrderSentState at the buyer, and OrderReceivedState at the
seller). It would be preferable though to align state definitions, because semantically, Buyer:OrderSent is
equivalent to Seller:OrderReceived, assuming that the state “OrderSent” is really reached when the
message has reliably been delivered to the Seller.

s an isAligned() function which should be computed and return true
 Unfortunately, at the current stage, the WS-CDL does not mandate

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 50

operation level. While, it is very useful to specify series of interactions performing a given activity, it may
also be as important to guaranty state alignment within the work unit itself, otherwise it could force users

n and defeat the purpose of a very useful construct.

ires at
as n ed a run-

tim m
CDL lo

C process, it is
ASIS BEPL and

ystems today support the
efinition, execution and monitoring of long running processes that coordinate the activities of multiple

usiness collaboration requires transactional support in order to guarantee consistent and reliable

 failure.

rdination (see also section 9) behaviour provided by a
aditional transaction mechanism to control the operations and outcome of an application. However, it

of WS-CDL to define work units as big an interactio

Interactions specify the unit of message exchange between roles. An interaction corresponds to the
invocation of a web service operation on a role. Consequently, an interaction is defined as a request with

ro or more responses. An interaction definition is bound to an operation definition (which requze
le t a abstract WSDL definition) and a channel variable. The channel variable will be initializ

e, ost likely at the start of the choreography, though, like pi-calculus –its theoretical foundation- WS-
 al ws for dynamic passing of channel values.

WS-CDL represents an important new layer of the web services stack. As it is early in the W3
ifficult to picture exactly what the final recommendation will be and whether or not the Od

W3C WS-CDL working group will come to an agreement on how the two standards would work together.

9.4 Web service transactions
One key requirement in making cross-enterprise business process automation happen is the ability to
describe the collaboration aspects of the business processes, such as commitments and exchange of
monetary resources, in a standard form that can be consumed by tools for business process implementation
and monitoring. Enterprise workflow and business process management s
d
business applications. However, the loosely coupled, distributed nature of the Web prevents a central
workflow authority (or a centralized implementation of middleware technology) from exhaustively and fully
coordinating and monitoring the activities of the enterprise applications that expose the web services
participating in message exchanges [Papazoglou03b].

B
execution. Database transactions are a well-known technique for guaranteeing consistency in the presence
of failures. A classical transaction is a unit of work that either completely succeeds, or fails with all
partially completed work being undone. Such classical transactions have ACID properties:

• Atomicity: executes completely or not at all.
• Consistency: preserves the internal consistency of an underlying data structure.
• Isolation: runs as if it were running alone with no other transactions running.
• Durability: the transaction’s results will not be lost in the event of a

The ACID properties of atomic transactions ensure that even in complex business applications consistency of
state is preserved, despite concurrent accesses and failures. This is an extremely useful fault-tolerance
technique, especially when multiple, possibly remote, resources are involved. However, traditional
transactions depend upon tightly coupled protocols, and thus are often not well suited to more loosely-
coupled web services based applications, although they are likely to be used in some of the constituent
technologies. Strict ACIDity and isolation, in particular, is not appropriate to a loosely coupled world of
autonomous trading partners, where security and inventory control issues prevent hard locking of local
resources that is impractical in the business world.

A web service environment requires the same coo
tr
also requires the capability to handle the coordination of processing outcomes or results from multiple
services, in a more flexible manner. This requires more relaxed forms of transactions -- those that do not
strictly have to abide to the ACID properties --such as collaborations, workflow, real-time processing, etc.
Additionally, there is a need to group Web services into applications that require some form of correlation,
but do not necessarily require transactional behaviour. In the loosely coupled environment represented by
web services, long running applications will require support for coordination, recovery and compensation,
because machines may fail, processes may be cancelled, or services may be moved or withdrawn. Web
service transactions also must span multiple transaction models and protocols native to the underlying
infrastructure onto which the web services are mapped.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 51

The concept of a business transaction is central to web service applications as it defines a shared view of
messages exchanged between web services from multiple organisations for the purpose of completing a
business process [Papazoglou03b]. A business transaction is a consistent change in the state of the business
that is driven by a well-defined business function. At the end of a business transaction the state of both
parties must be aligned, i.e. they must have the same understanding of the outcome of the message
interchange during the business transaction. Usually, a business process is composed of several business

ansactions. In a web service environment business transactions essentially signify transactional web

ment copy of the purchase order is filed. More complex
usiness transactions may involve activities such as payment processing, shipping and tracking, coordinating

his
synchronization is one part of a wider business coordination protocol that defines the public, agreed

iness parties.

ons of distributed applications via context

he xtensible framework for providing protocols that
coordin used to support a
num r n the outcome of
dist u as the coordinator)

s i eason, e.g., reaching

ices working together to provide a common solution.

tr
service interactions between organisations in order to accomplish some well-defined shared business
objective. Business transactions are long-running activities that can take minutes, hours, or even more to
complete. Business transactions, just like database transactions, either execute to completion (succeed) or
fail as a unit. A business transaction in its simplest form could represent an order of some goods from some
company. The completion of an order results in a consistent change in the state of the affected business:
the back-end order database is updated and a docu
b
and managing marketing strategies, determining new product offerings, granting/extending credit,
managing market risk, product engineering and so on. Such complex business transactions are usually driven
by interdependent workflows, which must interlock at points to achieve a mutually desired outcome. T

interactions between interacting bus

The problem of coordinating web services is tackled by a trio of standards that have been recently
proposed to handle this next step in the evolution of Web services technology. The standards that support
business process orchestration while providing web service transactional functionality are: Business Process
Execution Language for Web Services (see section-9.2), WS-Coordination [Cabrera02a] and WS-Transaction
[Cabrera02a]. As already explained, BPEL is a workflow-like definition language that describes sophisticated
business processes that can orchestrate web services. WS-Coordination and WS-Transaction complement
BPEL4WS to provide mechanisms for defining specific standard protocols for use by transaction processing
systems, workflow systems, or other applications that wish to coordinate multiple web services. WS-
oordination provides a framework for coordinating the actiC

sharing. WS-Transaction provides standards for atomic transactions as well as long-running transactions.
These three specifications work in tandem to address the business workflow issues implicated in connecting
and executing a number of web services that may run on disparate platforms across organisations involved
in e-business scenarios.

T WS-Coordination specification describes an e

ate the actions of distributed applications. Such coordination protocols are
t obe of applications, including those that need to reach consistent agreemen

ted transactions. Typically, coordination is the act of one entity (knownrib
em nating information to a number of participants for some domain-specific rdis

consensus on a decision like a distributed transaction protocol, or simply to guarantee that all participants
obtain a specific message, as occurs in a reliable multicast environment [Webber03a]. When parties are
being coordinated, information known as the coordination context is propagated to tie together operations
that are logically part of the same activity. The WS-CAF specification supports self-coordinated message
interchanges that do not require necessarily a third party coordinator. However, a transaction always
requires a coordinator.

WS-Coordination provides developers with a way to manage the operations related to a business activity. A
business process may involve a number of web serv
Each service needs to be able to coordinate its activities with those of the other services for the process to
succeed. WS-Coordination sequences operations in a process that spans interoperable web services to reach
an agreement on the overall outcome of the business process. The specification supplies standard
mechanisms to create an activity via an activation service and register via a registration service with
transaction protocols that coordinate the execution of distributed operations in a web services
environment. WS-Coordination provides a definition of the structure of coordination context and the
requirements for propagating this context between cooperating services via its coordination context.

WS-Transaction provides transactional coordination mechanisms for Web services. An important aspect of
WS-Transaction that differentiates it from traditional transaction protocols is that it does not assume a

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 52

synchronous request/response model. This derives from the fact that WS-Transaction is layered upon the
WS-Coordination protocol whose own communication patterns are asynchronous. WS-Coordination provides
 generic framework for specific coordination protocols, like WS-Transaction, to be plugged in. The WS-T

at they take much longer time to complete
nd do not require resources to be held. To minimise the latency of access by other potential users of the

ceed or fail as a unit.

ns as well as within a single organization. The BTP specification defines
mmunications protocol bindings that target the web services arena, while preserving the capacity to

a
specification leverages WS-Coordination by extending it to define specific protocols for transaction
processing. WS-Coordination provides only context management – it allows contexts to be created and
activities to be registered with those contexts. WS-Transaction leverages the context management
framework provided by WS-Coordination in two ways [Little03a]. Firstly, it extends the WS-Coordination
context to create a transaction context. Second, it augments the activation and registration services with a
number of additional services, e.g., completion, completion withAck, two phase-commit, outcome
notification, etc) and two protocol message sets (one for each of the transaction types supported in WS-
Transaction) to build a full-fledged transaction coordinator on top the WS-Coordination protocol
infrastructure.

WS-transaction defines two transaction types: atomic transaction and business activity while WS-CAF
provides three types of transaction within an extensible framework: atomic, activity and business process.
Atomic transactions are suggested for transactions that are short-lived atomic units of work within a trust
domain, while business activities are suggested for transactions that are long-lived units of work comprising
activities of potentially different trust domains. Atomic transactions compare to the traditional distributed
database transaction model (short-lived atomic transactions). The coordination type correspondingly
comprises protocols common to atomic transactions, where resource participants register for the two-phase
commit protocol. The business activity coordination type supports transactional coordination of potentially
long-lived activities. These differ from atomic transactions in th
a
resources used by an activity, the results of interim operations need to be realised prior to completing the
overall activity. They also require that business logic be applied to handle exceptions. Participants are
viewed as business tasks (scopes) that are children of the business activity for which they register.
Participants may decide to leave a business activity (for example, to delegate processing to other services),
or, a participant may declare its outcome before being solicited to do so. Developers can use either or both
of these coordination types when building applications that require consistent agreement on the outcome
of distributed activities. The WS-Transaction specification monitors the success of specific, coordinated
activities in a business process. Just like in WS-CAF, WS-Transaction uses the structure that WS-
Coordination provides to make sure the participating web services end the business process with a shared
understanding of its outcome. For example, a purchase order process contains various activities that have
to complete successfully but might run simultaneously (at least to some extend), such as credit check,
inventory control, billing and shipment. The combination of WS-Transaction and WS-Coordination makes
sure that these tasks suc

Finally, the BPEL specification suggests WS-Transaction as the protocol of choice for coordinating
distributed transactions across workflow instances. Thus, when a scope containing invocations on a
partner’s Web services is compensated, the underlying BPEL engine should ensure that the appropriate WS-
Transaction messages are sent to the transaction coordinator so that any partner’s systems can be informed
of the need to compensate the invoked activities.

In a related activity, the Committee Specification of the Organization for the Advancement of Structured
Information Standards (OASIS) Business Transaction Protocol (BTP) Working Group is an industry initiative
that is working on creating a vendor neutral standard for business transaction interoperability [Little03b].
BTP is designed to support transactional coordination of participants of services offered by multiple
autonomous organisatio
co
carry BTP messages over other communication protocols. Protocol message structure and content
constraints are schematised in XML, and message content is encoded in XML instances. As of April 2004, the
two OASIS technical committees, WS-CAF and BTP, are seeking alignment and integration.

10 Web services security
As web services using the insecure Internet for mission-critical transactions with the possibility of dynamic,
short-term relationships, security is a major concern. An additional concern is that web service applications
expose their business processes and internal workflows. This calls for securing them against a wide range of

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 53

attacks, both internal and external. With Web services, more of the application internals are exposed to

ecure tunnel through which data can pass [Mysore03]. For instance, SSL is a good solution
r server-to-server security but it cannot adequately address the scenario where a SOAP request is routed

identify the party which performed any given request.

is that at any time in the future, it is possible to prove
whether different copies of the same document are in fact identical. Confidentiality means that an

on which other
applications and network security components are built. The specific security functions for which a
PKI can provide a foundation are confidentiality, integrity, non-repudiation, and authentication.
Public key infrastructure (PKI) plays an essential role in web services security, enabling end users

the outside world.

Web services can be accessed by sending SOAP messages to service endpoints identified by URIs, requesting
specific actions, and receiving SOAP message. Within this context, the broad objective of securing Web
services breaks into providing facilities for securing the integrity and confidentiality of the messages and
for ensuring that the service acts only on requests in messages that express the claims required by policies.

Traditionally, the Secure Socket Layer (SSL) along with the de facto Transport Layer Security (TLS) and the
Internet Protocol Security (IPSec) are some of the common ways of securing content. SSL/TLS offers several
security features including authentication, data integrity and data confidentiality. SSL/TLS enables point-
to-point (server-to-server) secure sessions. IPSec is another network layer standard for transport security
that may become important for Web services. Like SSL/TLS, IPSec also provides secure sessions with host
authentication, data integrity and data confidentiality. However, these are point-to-point technologies.
They create a s
fo
via more than one server. In this case the recipient has to request credentials of the sender and the
scalability of the system is compromised. The session-based authentication mechanisms used by SSL have
no standard way to transfer credentials to service providers via SOAP messages. Web services require much
more granularity. They need to maintain secure context and control it according to their security policies.

To address the security issues facing organizations as they adopt web services technology, it is essential to
apply the principles of application security. Application security contains five basic requirements,
expressed in terms of the messages exchanged between parties [Pilz03]. Such messages include any kind of
communication between the sender (party who wishes to access an application) and the recipient (the
application itself). The six requirements for application level security can be summarised as follows:

1. Authentication: Verifies that the identity of entities is provided by the use of public key certificates
and digital signature envelopes. Authentication in the Web services environment is performed very
well by public key cryptographic systems incorporated into Public Key Infrastructure (PKI). The
primary goal of authentication in a PKI is to support the remote and unambiguous authentication
between entities unknown to each other, using public key certificates and trust hierarchies.

2. Authorisation: Verifies that the identity has the necessary permissions to obtain the requested

resource or act on something before providing access to it. Normally, authorization is preceded by
authentication.

3. Non-Repudiation: Constantly monitors and record service requests such that audits may be

performed at a later time to positively

4. Message integrity and confidentiality: Integrity ensures that data cannot be corrupted or modified,
and transactions cannot be altered. Message (data) integrity comprises two requirements: first, the
data received must be the same as the data sent. In other words, data integrity systems must be
able to guarantee that a message did not change in transit, either by mistake or on purpose. The
second requirement for message integrity

unauthorized person cannot view or interfere with a communication between two parties.

5. Operational defence. The system must be able to detect and guard against attacks by illegitimate
messages, including XML Denial of Service (XDoS) and XML viruses, and must be operationally
scalable with existing personnel and infrastructure.

6. Standards for securing web services are heavily Public Key Infrastructure (PKI) oriented. PKI relies

upon public key cryptography and uses a secret private key that is kept from unauthorized users
and a public key that is handed to trusted partners. A PKI is a foundation up

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 54

and web services alike to establish trusted digital identities which, in turn, facilitate trusted

s and servers. Authorization is particularly important because of the need for

Whi c
privileg
them a
challen

lating quest
se

pro
underly

sertio s. A subject is an entity that has an identity in some security domain. Assertions
n

author

no
con
that mu
(asymm
data bo
protect
after it

chniq d at an

Preserv
articula quirements put on both the web service
rov

communications and transactions.

When securing web services, enterprises should focus on authentication, authorization, non-repudiation,
confidentiality, and data integrity, as well as threat detection and defence. The requirement for securing
web services concentrates on mutually authenticating all trading partners and communicating

frastructure, i.e., userin
tiered security administration in service-oriented environments. This situation is even more complex when
multiple, heterogeneous systems are involved, either within an enterprise or across two or more
companies. Every company will likely have its own security policies, in addition to its own authorization
technology. Therefore, the ability to provide and administer authorization across multiple systems is an

portant problem that a web services specification known as WS-Security is intended to address im
[Atkinson02].

WS-Security specifies an abstraction layer on top of any company’s particular application security
technology (PKI, Kerberos, etc.) that allows such dissimilar infrastructures to participate in a common trust
relationship. WS-Security provides a set of SOAP extensions that can be used to implement message
integrity, confidentiality and authentication. It is designed to provide support for multiple security tokens,
trust domains, signature formats and encryption technologies. No specific type of security token is required
by WS-Security. It is designed to be extensible (e.g. support multiple security token formats). For example,
a requester might provide proof of identity and proof that they have a particular business certification.
Message integrity is provided by leveraging XML Signature in conjunction with security tokens (which may
contain or imply key data) to ensure that messages are transmitted without modifications. XML Signature
defines rules for digitally signing XML documents and processing the signatures. The integrity mechanisms
re designed to support multiple signatures, potentially by multiple actors, and to be extensible to supporta

additional signature formats. The signatures may reference (i.e. point to) a security token. Similarly,
message confidentiality is provided by leveraging XML Encryption in conjunction with security tokens to
keep portions of SOAP messages confidential. XML Encryption specifies the syntax for encrypting XML
documents so that only authorized Web services can access the contents. The encryption mechanisms are
designed to support additional encryption technologies, processes, and operations by multiple actors. The
ncryption may also reference a security token. e

le urrent technologies enable an e-Business applicatin to authenticate users and manage user access

es, it takes considerable effort and cost to extend these capabilities across an enterprise or share
mong trading partners. Security Assertions Markup Language (SAML) [SAML03] addresses this
ge. SAML is an XML-based framework that enables web services to readily exchange information
 to authentication and authorisation. SAML defines a protocol by which clients can rere

as rtions from SAML authorities and receive responses from them (exchange of security information). This
tocol, consisting of XML-based request/response message formats, can be bound to many different

ing communications and transport protocols. The security information is expressed in the form of
ns about subjectas

ca convey information about authentication acts performed by subjects, attributes of subjects, and
ization decisions about whether subjects are allowed to access certain resources.

A ther important requirement for securing web services is providing end-to-end message integrity and

fidentiality. Public key certificates and digital signature envelopes are good examples of information
st have an assurance of message integrity. Integrity can be provided by the use of either public
etric), or secret (symmetric) cryptography. PKI can use encryption to protect the confidentiality of
th in transit and in storage. Virtual Private Networks (VPNs) and Secure Sockets Layer (SSL) can
 the confidentiality of messages between two endpoints, but neither secures the data in storage
 has been received, or across intermediaries, because both SSL and VPNs are point-to-point
ues. Therefore, an SSL-encrypted message, for example, would have to be unencryptete

intermediary, which opens a security hole.

ing loose coupling while ensuring confidentiality data integrity, in a service-oriented environment is
rly challenging, because of the constraints such rep

p iders and requesters. Specifications like WS-Security and SAML are intended to address the issue of

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 55

preserv
particip

The tw
confide
for han making it possible to address varying requirements for access
uthority, confidentiality and data integrity within one document.

the service provider will furnish. Understanding business requirements, expected usage

ing loose coupling by providing standard ways for both ends of a secure web services message to
ate in the various forms of application security.

o specifications WS-Security and SAML, which are closely related, ensure the integrity and
ntiality of XML documents. They differ from existing capabilities in that they provide mechanisms
dling whole or partial documents,

a

11 Quality of Service requirements

The Service Level Agreement (SLA) is an important and widely used instrument in the maintenance of
service provision relationships. Where contracts are clearly defined and closely monitored in order to
guarantee adherence of all involved parties to the terms agreed upon, then participants are protected by
the SLA. Both service providers and clients alike need to utilise SLAs in order to work well together.

An SLA is a contract between a service provider and a client that specifies, usually in measurable terms,

hat services w
patterns and system capabilities can go a long way toward ensuring successful deployments. To better
understand requirements entering into a web services SLA, one needs to address several important
concerns. These include: the levels of availability that are needed for a web service; whether the business
can tolerate web services downtime and how much; whether there is adequate redundancy built in so that
services can be offered in the event of a system or network failure; the transaction volumes expected of
web services; whether underlying systems have been designed and tested to meet these peak load
requirements and, finally, how important are request/response times.

One important function that an SLA should address is the Quality of Service (QoS) at the source. This refers
to the level of service that a particular service provides [Mani02]. QoS is defined by important functional
and non-functional service quality attributes, such as service metering and cost, performance metrics (e.g.,
response time), security attributes, (transactional) integrity, reliability, scalability, and availability. Service
clients (end user organisations that use some service) and service aggregators (organisations that
consolidate multiple services into a new, single service offering) utilize service descriptions to achieve their
objectives.

The major requirements for supporting QoS in Web services are summarised in what follows and are partly
ased on [Mani02]: b

1. Availability: Availability is the absence of service downtimes. Availability represents the probability

that a service is available. Larger values represent that the service is always ready to use while
smaller values indicate unpredictability of whether the service will be available at a particular
time. Also associated with availability is time-to-repair (TTR). TTR represents the time it takes to
repair a service that has failed. Ideally smaller values of TTR are desirable.

2. Accessibility: Accessibility represents the degree with which a web service request is served. It may

be expressed as a probability measure denoting the success rate or chance of a successful service
instantiation at a point in time. A high degree of accessibility means that a service is available for a
large number of clients and that clients can use the service relatively easily.

3. Conformance to standards: describes the compliance of a web service with standards. Strict

adherence to correct versions of standards (for example, WSDL version 2.0) by service providers is
necessary for proper invocation of Web services by service requesters. In addition, service providers
must stick to the standards outlined in the SLAs.

4. Integrity: describes the degree with which a web service performs its tasks according to its WSDL

description as well as conformance with service-level agreement (SLA). A higher degree of integrity
means that the functionality of a service is closer to its WSDL description or SLA.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 56

5. Performance: Performance is measured in terms of two factors: throughput and latency.
Throughput represents the number of web service requests served at a given time period. Latency
represents the length of time between sending a request and receiving the response. Higher
throughput and lower latency values represent good performance of a web service. When
measuring the transaction/request volumes handled by a web service it is important to consider
whether these come in a steady flow or burst around particular events like the open or close of the

 failures. The reliability of a web service
is usually expressed in terms of number of transactional failures per month or year.

ility to consistently serve the requests despite variations in

cation

vice requires digital signatures and

 of service requirements, preferences, and capabilities. WS-Policy defines a policy to be a

S-
as a
e.g., a
subject
syntax f
to w (WS-PolicyAttachment)
spe
UDD

12 We

Web
Given th
develop
specific ts that implement the specifications in ways that
they are different enough to prevent their implementations from being fully interoperable. Individual
enterprises are forced to provide individual interpretations of how their specifications are to be used. Thus,
implementing standards alone cannot ensure interoperability. The fundamental goal of interoperability in

business day or seasonal rushes

6. Reliability: Reliability represents the ability of a service to function correctly and consistently and
provide the same service quality despite system or network

7. Scalability: Scalability refers to the ab

the volume of requests. High accessibility of web services can be achieved by building highly
scalable systems.

8. Security: Security involves aspects such as authentication, authorisation, message integrity and

confidentiality (see section-10). Security has added importance because web service invo
occurs over the Internet. The amount of security that a particular web service requires is described
in its accompanying SLA, and service providers must maintain this level of security.

9. Transactionality: There are several cases where web services require transactional behaviour and

context propagation. The fact that a particular web service requires transactional behaviour is
described in its accompanying SLA, and service providers must maintain this property.

A standard policy framework makes it possible for developers to express the policies of services in a
machine-readable way and for web services to understand policies and enforce them at runtime. For
xample, a developer could write a policy stating that a given sere

encryption. Service clients could use the policy information to ascertain whether they can use the service.

The Web Services Framework (WS-Policy) [WS-Policy03] fills this gap by providing building blocks that may
be used in conjunction with other web service and application-specific protocols to accommodate a wide
variety of policy exchange models. The Web Services Policy Framework provides a general purpose model
and corresponding syntax to describe and communicate the policies of a web service. WS-Policy defines a
base set of constructs that can be used and extended by other web services specifications to describe a
road rangeb

collection of one or more policy assertions. A policy assertion represents an individual preference,
requirement, capability, or other general characteristic.

W Policy provides a flexible and extensible grammar for expressing policies in an XML format referred to

 policy expression. A policy expression is bound to a policy subject, which is the resource it describes,
web service endpoint. The mechanism for associating a policy expression with one or more policy
s is referred to as a policy attachment. The WS-Policy specification defines the general model and
or policy expressions and policy assertions but does not specify how policies are located or attached
eb service. To address this issue a Web Services Policy Attachment a

cification is used to define how to attach policy expressions to XML elements, WSDL definitions, and
I entries.

b services interoperability

 service implementations details of specifications and best practises are becoming slowly established.
e potential to have many necessary interrelated specifications at various versions and schedules of
ment, it becomes a very difficult task to determine which products support which levels of the
ations. Consequently, there are versions of produc

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 57

web
services
standar o gain widespread
doption and insufficient understanding of the interaction among the various specifications [WSI03].

Web ser
I) an in
systems
of Gen
protoco
for the very of messages.

Profiles
develop
product iles

ntain a list of named and versioned web services specifications together with a set of implementation
and
interope
general es functionality.

Basi
develop
and XM
technol E 1.4, and the
pcoming upgrade of the IBM WebSphere Studio development environment. Version 1.0 of the profile is

inte
common

mong the key deliverables of WS-I are testing tools, which developers can use to test conformance of their

vices [Tuecke02]. This will enable what has been

s with a grid service. These conventions, and other OGSI mechanisms associated with grid
r the controlled, fault resilient, and secure management of the

 is commonly required in advanced distributed applications.

 services is to blur the lines between the various development environments used to implement
. Web services interoperability addresses the problem of ambiguity among the interpretation of
ds that have been agreed upon; differences among specifications that have yet t

a

vice interoperability concerns are addressed by the Web Services interoperability Organization (WS-
dustry consortium focused on promoting web service interoperability across platforms, operating
, and programming languages. WSI was formed specifically for the creation, promotion, or support
eric Protocols for Interoperable exchange of messages between services. Generic Protocols are
ls that are independent of any specific action indicated by the message beyond actions necessary
secure, reliable, or efficient deli

make it easier to discuss web services interoperability at a level of granularity that makes sense for
ers, users, and executives making investment decisions about web services and web services
s. WS-I focuses on compatibility at both the individual specification and at the Profile level. Prof

co
 interoperability guidelines recommending how the specifications should be used to develop

rable Web services. WS-I will develop a core collection of profiles that support interoperability for
 purpose web servic

c Profile 1.0 includes implementation guidelines on using core Web services specifications together to

 interoperable web services. Those specifications include SOAP 1.1, WSDL 1.1, UDDI 2.0, XML 1.0,
L Schema. The availability of Basic Profile 1.0 sets the stage for unified web services support in
ogies such as the next major version of the enterprise Java specification, J2E

u
nded to provide a common framework for implementing interoperable solutions while giving buyers a

 reference point for purchasing decisions.

A
Web services with the test assertions that represent the interoperability guidelines of established WS-I
Profiles. The process used to develop these Profiles, interoperability guidelines, test assertions, and testing
tools generates other related resources useful to developers. The tools developed monitor the interactions
with a web service, record those interactions, and analyse them to detect implementation errors.

13 Grid services

Grid computing, is much more than just the application of massive numbers of MIPS to effect a computing
solution; it also will provide a framework whereby massive numbers of services can be dynamically located,
relocated, balanced, and managed so that needed applications are always guaranteed to be securely
available, regardless of the load placed on the system. One of the aims of grid computing is the ability to
manage ever-growing and ever more complex networks without overheads. Grid technology is about to
volve towards a “virtualisation layer” for hosting web sere

called recently “utility computing” or “on demand computing” [Leymann03]. The grid service domain
architecture is a high-level abstraction model that describes the common behaviours, attributes, and
operations and interfaces to allow a collection of services to function as an integral unit and collaborate
with others in a fully distributed, heterogeneous, grid-enabled environment.

The Open Grid Services Infrastructure (OGSI) builds on both grid and web services technologies and defines
mechanisms for creating, managing, and exchanging information among entities called grid services. A grid
service is a web service that conforms to a set of conventions (interfaces and behaviours) that define how a
client interact
service creation and discovery, provide fo
distributed and often long-lived state that

Grid services are stateful services that provide a set of well-defined interfaces and follow specific
conventions to facilitate coordinating and managing collections of web service providers/aggregators. The
grid service indicates how a client can interact with it and is defined in WSDL. The state of the service is

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 58

exposed to its clients as a standard interface that addresses web service filtering, discovery, routing,
aggregation, selection, data and context sharing, notification and life-time management.

The principal strengths of web and grid services are complementary with web services focusing on
platform-neutral description, discovery and invocation, and grid services focusing on the dynamic discovery
and efficient use of distributed computational resources. This complementarity of web and grid services has
given rise to the proposed Open Grid Services Architecture (OGSA) [Foster02], [Tuecke02], which makes the
functionality of grid services available through web service interfaces.

14 The extended service oriented architecture
Service-oriented architectures provide major advantages by presenting the interfaces that loosely coupled
connections require, albeit being in the first stages of emergence. Service oriented computing is based on
the premise that logic, be it business, computational, data access, etc, can be organized in ways that make
it independent of the context in which it is being used. Just like the post office ignores why a particular

tter or parcel is being shipped, services in SOA are designle ed to be combined in ways that are unknown at

lived web service transactions. Currently, the basic SOA does

ality needed for composing services and the need to

sponsible
iption of the service(s) they provide. Clients must able to find the description(s) of
ire and must be able to bind to them. The interactions involve the publishing, finding

nd binding of operations. For reasons of conceptual simplicity in Figure 26 we assume that service clients,

cts and a service may exhibit
aracteristics of both.

rvice

design or implementation time. Just like object-orientation promotes concepts such as interface extensions
and inheritance, services (which cannot be extended or inherited from) are re-used via the notions of
coordination (of which the most common form is composition) to perform a given unit of work. Web service
technologies offer building blocks which are highly decoupled from each other. The current deployment of
web services technology is promising early initiative in this direction. However, before this becomes true
other standards and protocols for service-orientated architectures, particularly standards relating to
security, coordination and the management of business processes, will have to become more robust before
hey can fully support mission-critical, long-t

not address overarching concerns such as management, service choreography and orchestration, service
transaction management and coordination, security, and other concerns that apply to all components in a
services-based architecture. Such concerns are addressed by the extended SOA (ESOA) [Papa03] that is
depicted in Figure 26. The architectural layers in the ESOA describe a logical separation of functionality in
such a way that each layer definers a set of roles and responsibilities and leans on constructs of its
predecessor layer to accomplish its mission. The logical separation of functionality is based on the need to
separate basic service capabilities provided by the conventional SOA (for example building simple
pplications) from more advanced service functiona

distinguish between the functionality for composing services from the management of services. As shown in
Figure 26, the ESOA utilizes the basic SOA constructs as its bottom layer and layers service composition and
management on top of it.

The basic services layer in the ESOA (see section-6) defines an interaction between software agents as an
exchange of messages between service requesters (clients) and service providers. Providers are re
for publishing a descr
the services they requ
a
providers and aggregators can act as service brokers or service discovery agency (see section-6) and publish
the services they deploy.

In a typical service-based scenario employing the basic services layer in the ESOA, a service provider hosts a
network accessible software module (an implementation of a given service). The service provider defines a
service description of the service and publishes it to a client (or service discovery agency) through which a
service description is published and made discoverable. The service client (requestor) uses a find operation
to retrieve the service description typically from a registry or repository like UDDI and uses the service
description to bind with the service provider and invoke the service or interact with service
implementation. Service provider and service client roles are logical constru
ch

The service composition layer in the ESOA encompasses necessary roles and functionality for the
consolidation of multiple services into a single composite service. Resulting composite services may be used
by service aggregators as components (i.e., basic services) in further service compositions or may be
utilized as applications/solutions by service clients. Service aggregators thus become service providers by
publishing the service descriptions of the composite service they create. A service aggregator is a se

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 59

provider that consolidates services that are provided by other service providers into a distinct value added

 dataflow among
them and to the output of the component service (e.g., by specifying workflow processes and using

 matching its parameter types with
those of its components, imposes constraints on the component services (e.g., to ensure

sion activities.

 load conditions. Web service based application management is an indispensable
e management and business/application specific

service. Service aggregators develop specifications and/or code that permit the composite service to
perform functions that include the following (in addition to web services interoperation support, see
section-12):

• Coordination: controls the execution of the component services, and manages

a workflow engine for run-time control of service execution).
• Monitoring: allows subscribing to events or information produced by the component services, and

publish higher-level composite events (e.g., by filtering, summarizing, and correlating component
events).

• Conformance: ensures the integrity of the composite service by

enforcement of business rules), and performs data fu
• QoS composition: leverages, aggregates, and bundles the component's QoS to derive the composite

QoS, including the composite service's overall cost, performance, security, authentication, privacy,
(transactional) integrity, reliability, scalability, and availability.

• Policy enforcement: web service capabilities and requirements can be expressed in terms of
policies. For example, knowing that a service supports a web services security standard such as WS-
Security is not enough information to enable successful composition. The client needs to know if
the service actually requires WS-Security, what kind of security tokens it is capable of processing,
and which one it prefers. The client must also determine if the service requires signed messages.
And if so, it must determine what token type must be used for the digital signatures. And finally,
the client must determine when to encrypt the messages, which algorithm to use, and how to
exchange a shared key with the service. Trying to orchestrate with a service without understanding
these details will lead to erroneous results.

Composition

Mana-gement

•Coordination•Conformance•MonitService provider

Figure 26 The Extended Service Oriented Architecture.

Managing critical web service based applications requires in-depth administration capabilities and
integration across a diverse, distributed environment. For instance, any downtime of key e-business
systems has a negative impact on businesses and cannot be tolerated. To counter such a situation,
enterprises need to constantly monitor the health of their applications. The performance should be in tune,
t all times and under alla

element of the ESOA that includes performanc

De

oring•QoS

scription & Basic Operations•Capability•Inteface
•Behavior
•QoS

•Publication•Discovery•Selection
•Binding

Service client

Service aggregator

performs

publishes

uses

Role actions

becomes

Operations•Assurance•Support

Market•Certification•Rating•SLAs

Service operator

Market maker

Managed services

Composite services

Basic services

Composition

Mana-gement

•Coordination•Conformance•MonitService provider

De

oring•QoS

scription & Basic Operations•Capability•Inteface
•Behavior
•QoS

•Publication•Discovery•Selection
•Binding

Service client

Service aggregator

performs

publishes

uses

Role actions

becomes

Operations•Assurance•Support

Market•Certification•Rating•SLAs

Service operator

Market maker

Managed services

Composite services

Basic services

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 60

management. This requires that a critical characteristic be realized: that services be managed. Service
management includes many interrelated functions. The most typical functions include:

1. Deployment: The web services support environment should allow the service to be redeployed
(moved) around the network for performance, redundancy for availability, or other reasons.

2. Metrics: The web services support environment should expose key operational metrics of a web
service, at the operation level, including such metrics as response time and throughput. In addition
it should allow web services to be audited.

3. Dynamic rerouting: The web services support environment should support dynamic rerouting for fail
over or load balancing.

5. support the ability to make specific

6.
n of versions of web services and notification of a change or impending change to the

7.
tion.

Web e
availab
life-cyc
services
technol
busines
relation
these a
of any

To manage critical applications/solutions and specific markets, ESOA provides managed services in the
service management layer depicted at the top of the ESOA pyramid. The ESOA managed services are
divided in two complementary categories:

• Service operations management that can be used to manage the service platform, the deployment
of services and the applications and, in particular, monitor the correctness and overall functionality
of aggregated/orchestrated services.

• Open service marketplace management that supports typical supply chain functions and by
providing a comprehensive range of services supporting industry-trade, including services that
provide business transaction negotiation and facilitation, financial settlement, service certification
and quality assurance, rating services, service metrics, and so on.

The ESOA's service operations management functionality is aimed at supporting critical applications that
require enterprises to manage the service platform, the deployment of services and the applications.
ESOA's service operations management typically gathers information about the managed service platform,
web services and business processes and managed resource status and performance, and supporting specific
management tasks (e.g., root cause failure analysis, SLA monitoring and reporting, service deployment, and
life cycle management and capacity planning). Operations management functionality may provide detailed
application performance statistics that support assessment of the application effectiveness, permit
complete visibility into individual business processes and transactions, guarantee consistency of service
compositions, and deliver application status notifications when a particular activity is completed or when a
ecision condition is reached. We refer to the organization responsible for performing such operation

management functions as the irements a service
operator may be a servic

4. Life cycle/State management: The web services support environment should expose the current
state of a service and permit lifecycle management including the ability to start and stop a service.
Configuration: The web services support environment should
configuration changes to a deployed web service.
Change management and notification: The web services support environment should support the
descriptio
service interface or implementation.
Extensibility: The web services support environment should be extensible and must permit
discovery of supported management functionality in a given instantia

8. Maintenance: The web services support environment should allow for the management and
correlation of new versions of the service.

 s rvices manageability could be defined as the functionality required for discovering the existence,
ility, performance, health, patterns of usage, extensibility, as well as the control and configuration,
le support and maintenance of a web service or business process within the context of the extended
 architecture. This definition implies that web services can be managed using web services
ogies. In particular, it suggests a manageability model that applies to both web services and
s processes in terms of manageability topics, (identification, configuration, state, metrics, and
ships) and the aspects (properties, operations and events) used to define them [Potts03]. In fact,
bstract concepts apply to understanding and describing the manageability information and behaviour
resource, including business processes and web services.

d
service operator. Depending on the application requ

e client or aggregator.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 61

In the context of service operations management it is increasingly important for management to define and
support active capabilities versus traditional passive capabilities. For example, rather than merely raising
an alert when a given web service is unable to meet the performance requirements of a given service-level
agreement, the management framework should be able to take corrective action. This action could take
the form of rerouting requests to a backup service that is less heavily loaded, or provisioning a new
application server with an instance of the software providing the service if no backup is currently running
nd available.

Service ble to
tha
any sin
translat ce indicators (KPIs). Management visibility is expressed
in t
target cent of requests fulfilled within the limits specified by a service level
agr

Con
individu cess, and so on. Thus, in addition to the above
con
services
require (also referred to as policies). For example, knowing that a
serv
success d of
sec
service determine what token type must be used for the digital

gnatures. And finally, the client must determine when to encrypt the messages, which algorithm to use,

g mitigation of this type of risk, since the
perations management level allows business managers to check the correctness, consistency and adequacy

nother aim of ESOA's service management layer is to provide support for open service marketplaces.
Cur t
automo
way like are open. Their purpose is to create opportunities for buyers
and l
added
marketp
enterpr onduct business. Open service

arketplaces typically support supply chain management by providing to their members a unified view of

a

 operations management should also provide global visibility of running processes, compara
t provided by Business Process Management (BPM). BPM promises the ability to monitor both the state of

gle process instance and all instances in the aggregate, using present real-time metrics that
e actual process activity into key performan

he form of real-time and historical reports, and in triggered actions. For example, deviations from KPI
values, such as the per

eement, might trigger an alert and an escalation procedure.

siderations need also be made for modelling the scope in which a given service is being leveraged
al, composite, part of a long-running business pro

cerns, which relate to individual business processes or services, in order to successfully compose web
 processes), one must fully understand the service's WSDL contract along with any additional

ments, capabilities, and preferences
ice supports a web services security standard such as WS-Security is not enough information to enable

ful composition. The client needs to know if the service actually requires WS-Security, what kin
urity tokens it is capable of processing, and which one it prefers. The client must also determine if the

requires signed messages. And if so, it must
si
and how to exchange a shared key with the service. Trying to orchestrate with a service without
understanding these details will lead to erroneous results. Such concerns are addressed by the service
operations management. Service operations management is a critical function that can be used to monitor
the correctness and overall functionality of aggregated/orchestrated services thus avoiding a severe risk of
service errors. In this way one can avoid typical errors that may occur when individual service-level
agreements (SLAs) are not properly matched. This fact was illustrated by the failure of the rail network
operator in the UK a few years ago, apparently triggered in part by a complete mismatch between the SLAs
imposed on the track repair subcontractors and the SLAs and legitimate safety expectations of the train
companies. Proper management and monitoring provides a stron
o
of the mappings between the input and output service operations and aggregate services in a service
composition.

A

ren ly, there exist several vertical industry marketplaces, such as those for the semiconductor,
tive, travel, and financial services industries. Open service marketplaces operate much in the same
 vertical marketplaces, however, they

 se lers to meet and conduct business electronically, or aggregate service supply/demand by offering
value services and grouping buying power (just like a co-op). The scope of such a service
lace would be limited only by the ability of enterprises to make their offerings visible to other

ises and establish industry specific protocols by which to c
m
products and services, standard business terminology, and detailed business process descriptions. In
addition, service marketplaces must offer a comprehensive range of services supporting industry-trade,
including services that provide business transaction negotiation and facilitation, financial settlement,
service certification and quality assurance, rating services, service metrics such as number of current
service requesters, average turn around time, and manage the negotiation and enforcement of SLAs. ESOA's
service management layer includes market management functionality (as illustrated in Figure 26 that is
aimed to support these marketplace functions. The marketplace is created and maintained by a market
maker (a consortium of organizations) that brings the suppliers and vendors together. The market maker
assumes the responsibility of marketplace administration and performs maintenance tasks to ensure the

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 62

administration is open for business and, in general, provides facilities for the design and delivery of an
integrated service that meets specific business needs and conforms to industry standards.

gration and management of services with the context of dynamic virtual marketplaces. Grid
rvices provide the possibility to achieve end-to-end qualities of service and address critical application

iding a common front end while

dination providers.

The ESOA service management functions can benefit from grid computing as it targets manageability, see
section-13. Service grids constitute a key component of the distributed services management as the scope
of services expands beyond the boundaries of a single enterprise to encompass a broad range of business
partners, as is the case in open marketplaces. For this purpose grid services can be used to provide the
functionality of the ESOA's service management layer [Foster02], [Tuecke02]. Grid services used in the
ESOA's service management layer to provide an enabling infrastructure for systems and applications that
require the inte
se
and system management concerns.

15 Composite Applications
Composite applications are built on the premise that application boundaries are becoming harder to define.
In a not so distant past, applications were installed on a single server within a company firewall. Over time,
people integrated these applications together bridging islands of functionality, delivering new value to old
ystems. Later, web technologies opened up new possibilities by provs

seamlessly interacting with multiple servers, sometimes, way beyond company boundaries. Moreover, web
applications allowed new categories of users to securely access application functionality that would have
normally been accessed by highly trained workers through complex clients. For instance many companies
have built separate Order Entry and Inventory Management applications. When orders were coming through
a paper trail (fax, mail, …) it was probably sufficient for a clerk to use both applications at the same time
and key in the same kind of information on both systems. The web really changed the expectations of the
customers in that kind of scenario and required a totally integrated experience hiding the intricacies of
these systems to the self-served user. The web technologies themselves have transformed application
integration, from being a back-end process only, often batch oriented, into a “front-end” driven integration
whereby user activities on a browser could directly interact with multiple systems alleviating both the need
to log into different systems and interact with different kinds of clients or the need to integrate these
applications in the back-end when one front end could be used to perform the activity. The focus of
composite applications is to provide a unified and seamless user experience regardless of the number and
geographic location of systems that are involved in a given user activity.

The Service Oriented Architecture and web services are key enablers in the construction of composite
applications. They enable an application model where some or most of the business logic is executed within
services outside the composite application domain. The composite application itself is mostly responsible
for managing user activities and the coordination of services. Some of these services represent the
“systems of record”. The traditional Model-View-Controller pattern shifts to a Service-View-Coordination
pattern. There are multiple forms of coordination as we have seen in section 9. In this new application
model, the View and Coordination layers are loosely coupled: a given view might even interact with
ifferent coord

The traditional realm of application of Enterprise Application Integration is at the “Model” level (Figure
27). Because of this new application model, composite applications do not require as much “back-end”
integration. The interactions with multiple systems can be handled directly by the coordination layer.

Composite applications differ quite extensively from “Portals”. In a portal, a user is very conscious of the
different sources of information that they access. Portals are also often mostly read only. In a composite
application, a user is performing enterprise activities like entering an order or creating a quote but these
activities can now reach far beyond the boundaries of a single enterprise application.

The concept of composite applications will open the way for a new kind of business logic that we can label
“Global Business Logic”. This kind of business logic lives outside the enterprise boundaries for various
reasons: the amount of information on which it is based may be too large to host in every company, the
information maybe a real-time feed, or the logic itself maybe fairly complex and changing often enough for
justifying hosting it as services that can then be accessed by the consumer application. For instance, the
problem of calculating sales taxes is usually handed by an enterprise’s ERP systems. However, it is easy to

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 63

imagine that an ERP system may never be able to give an enterprise an accurate calculation if it is selling
worldwide because of the intricacies of scenarios and regulation, not to mention the impact of ever
changing legislation. In a composite application scenario it would be relatively easy to invoke a service
provided by SalesTax.com (a fictitious company) each time a user needs to prepare a quote, an order or an

voice. If a company sells worldwide and there are no services available that can give it a world wide in
response, it may have to create its own “service composition” to cover all possible geographical cases.
However, it is likely that over time the regional “SalesTax.com” will federate and offer a composite
service.

Figure 27 Evolution of the application model

Composite applications represent the natural evolution of existing enterprise and legacy systems. They
represent yet another contribution to the return on investment to evolving information technology assets
towards the Service Oriented Architecture.

16 Research directions
This section focuses on research activities conducted on services. We classify these research activities on

e basis of the functional layers of ESOA and summarize several representative research initiatives under

d notification mechanisms across distributed, heterogeneous, dynamic

ent)

e use of declarative

th
each functional layer.

16.1 ESOA basic services layer: research activities

Research activities in the basics services layer to date target formal service description language(s) for
holistic service definitions addressing, besides functional aspects, also behavioural as well as non-functional
aspects associated with services. They also concentrate on open, modular, extensible framework for
ervice discovery, publication ans

(virtual) organisations as well as unified discovery interfaces and query languages for multiple pathways. In
the following we summarise several research activities contribute to these and related problems.

 addition to the application-specific functions that services provide, services may also support (differIn
sets of protocols and formats addressing extra-functional concerns such as transaction processing and
reliable messaging. This raises the need for services to complement their functional service descriptions
with descriptions of extra functional capabilities, requirements, and/or preferences, which must be
matched and enforced for service interactions. Tai et. al [Tai04] address the problem of transactional
oordination in service-oriented computing. The authors of this publication argue for thc

policy assertions to advertise and match support for different transaction styles (direct transaction
processing, queued transaction processing, and compensation-based transaction processing) and introduce
the concept of and system support for transaction coupling modes as the policy-based contracts guiding
transactional business process execution.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 64

The web services approach is requires that developers discover (at development time) service descriptions
on UDDI and, by reading these descriptions they are able to code client applications that can (at run time)
bind to and interact with services of a specific type (i.e., compliant to a certain interface and protocol).
Understanding the execution semantics is a rather cumbersome task. Thus, richer service descriptions and
richer description models are needed for this purpose. Benatallah et. al. propose an extension of SOA basic
services layer for defining extended service models to enable the definition and description of richer
execution abstractions [Benatallah03]. This framework enables the definition of service properties in a way
that can support: (i) humans in understanding the service execution properties, (ii) clients in searching
services based on these properties, and (iii) applications in automating the enforcement of these
properties, much like transactional middleware supports transactional abstractions.

Leymann proposes extended middleware facilities based on business process technology to enable the
composition web services into higher-level business functionality based on a two-level programming
paradigm [Leymann03]. The high-level middleware facilities are based on the concept of a service that
channels service requests to service providers. Choices of prospective services are made on the basis of QoS
properties like actual workload at the service provider side, average response time etc (e.g. measured or
based on service level agreements with the service providers). The service bus also considers combining of
multiple policies into a single policy that describes a service or a request.

The AI and semantic web community has concentrated their efforts in giving richer semantic descriptions
of Web services that describe the properties and capabilities of web services in an computer-intepretable
form. For this purpose DAML-S language has been proposed to facilitate the automation of Web service
tasks including better means of web service discovery, execution, “automatic” composition, verification
and execution monitoring. The following two publications are representative publications from this
community that propose semantic extensions to the basic SOA functionality.

In the basic SOA UDDI provides a simple browsing-by-business-category mechanism for developers to review
and select published services. Stroulia and Wang [stroulia03] developed methods that utilize both the
semantics of WSDL descriptio ages and types to assess the
similarity of any two WSDL se desired service, a semantic

nature-matching step assessing the structure similarity of the
desired vs. the retrieved services.

s and different parameters have to be supplemented by the service requestor and
(like DAML-S) treat service

s and accordingly do not support this stepwise
finement. Klein et. al introduce the concept of partially instantiated service descriptions containing

ance and

problems.

ns and the structure of their operations, mess
rvices. Given only a textual description of the

information-retrieval method can be used to identify and order the most similar service-descriptions. If a
(potentially partial) specification of the desired service behaviour is also available, this set of likely
candidates can be further refined by a sig

In order for service-oriented architectures to become successful, powerful mechanisms are needed that
allow service requestors to find service providers that are able to provide the services they need. Typically,
this service trading needs to be executed in several stages as the offer descriptions are not completely
specified in most case
provider alternately. Unfortunately, existing service description languages
discovery as a one shot activity rather than as a proces
re
different types of variables which are instantiated successively, thereby mirroring the progress in a trading
process [Klein03].

16.2 ESOA composition layer: research activities

Service composition is today largely a static affair. All service interactions are anticipated in adv
there is a perfect match between output and input signatures and functionality. More ad hoc and dynamic
service compositions are required very much in the spirit of lightweight and adaptive workflow
methodologies. These methodologies will include advanced forms of co-ordination, less structured process
models, and automated planning techniques as part of the integration/composition process. On the
transactional front, although standards like WS-Transaction, WS-Coordination and BTP are a step in the
right direction, they fall short of describing different types of atomicity needs for e-business and e-
government applications. These do not distinguish between transaction phases and conversational
sequences, e.g., negotiation. Another area that is lacking research results is advanced methodologies in
support for the service composition lifecycle. Several research activities contribute to these and related

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 65

Yang and Papazoglou present an integrated framework and prototype system that manage the entire life-

cle of service components ranging from abstract service component definition, scheduling, and

he following two publications concentrate on the development of theoretical approaches for service

that together allow for basic automated service composition. There
as been some work on the instantiation (based on user preferences and service availability) of

In all of these works the authors assume to be interacting with services that are described in a standard and
e same functionality are called in the same way,

quire the same inputs and produce the same outputs.

cy
construction to execution [Yang04]. Service compositions are divided in three categories: fixed, semi-fixed
and explorative compositions. Fixed service compositions require that their constituent services be
synthesized in a fixed (pre-specified) manner. Semi-fixed compositions require that the entire service
composition s specified statically but the actual service bindings are decided at run time. Finally,
explorative compositions are generated on the fly on the basis of a request expressed by a client
(application developer). A companion article introduces the concept of a service component that raises the
level of abstraction in web service compositions [Yang03]. Service components represent modularised
service-based applications that associate service interfaces with business logic into a single cohesive
conceptual module. Service components can be extended, specialized, and generally inherited, to facilitate
the creation of applications.

In [Orriens03] the authors discuss how business processes can be built dynamically by composing web
services in a model driven fashion where the design process is controlled and governed by a series of
business rules. This publication examines the functional requirements of service composition and introduce
a phased approach to the development of service compositions and analyses the information requirements
for developing service compositions by identifying the basic elements in a web service composition and the
business rules that are used to govern the development of service compositions.

T
composition and verification thereof.

Berardi et. al develop a theoretical framework in which the exported behaviour of a web service is
described in terms of its possible execution sequences (execution trees) which are represented by finite
state machines [Berardi03]. Subsequently, the complexity of synthesizing a composition is analysed and
algorithms to check that valid compositions are proposed.

Meredith and Borg examine the complexity problem of distributed heterogeneous applications (assuming
that service connectivity has been addressed) [Meredith03]. They propose a formal approach based on the
development of type systems for the specification and automatic verification of crucial properties of
service behaviour.

The AI community has been concerned with designing semantic web standards for adding semantic mark-up
to web service descriptions, and has proposed semantic type matching algorithms, interleaved search
mechanisms and execution algorithms
h
precompiled plans in [McIlraith02] as well as on extending the planning domain description language PDDL
to handle information producing actions [McDermott02]. Other activities assume full knowledge of the
semantics of operations [Aiello02], the authors use a non-deterministic planning language with extended-
goals and constraint satisfaction to model the web services planning problem. A different approach was
taken by the authors of [Thakkar02] in which automated service composition is achieved by modelling
services as web information sources (exposed by automated web-site wrapping software) for which a
common data model was already known. A common data model means that database query planning and
transformation techniques can be used for plan synthesis and optimisation.

possibly formal manner, i.e. all services which provide th
re

16.3 ESOA management layer: research activities

Service management constitutes the foundation of the upper layer of the extended SOA. Traditional
management applications fail to meet enterprise requirements in a service-centric world. Conventional
systems management approaches and products view the world in a very coarse (mostly applications
oriented) manner. The most recent wave of management product categories does not have the business-
awareness that services management will require. The finer grained nature of services (as opposed to

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 66

applications) requires evaluating processes and transactions at a more magnified rate and in a more
contextually aware manner.

Casati et al. shift attention to the management layer of the SOA and more specifically to operations

ervice and then the quality of the service is calculated only at the time a
quest for the service is made and only by using the ratings that have similar expectations.

rm-agnostic computational

etwork of loosely coupled services to create dynamic business

erable interfaces. Service descriptions are used

e. The (expected) behaviour of a service during its execution is described by its service

chitecture (ESOA).

posite service. It also provides a tier for service
 correctness and overall functionality of
aggregate (cross-component) management use

ses, such as service-level agreement enforcement and dynamic resource provisioning. The layers of the

management [Casati03]. The proposed business oriented management of web services is an attempt to
assess the impact of service execution from a business perspective and, conversely, to adjust and optimize
service executions based on stated business objectives. This is a crucial issue as corporations strive to align
service functionality with business goals.

The ability to gauge the quality of a service is critical if we are to achieve the service oriented computing
paradigm. Many techniques have been proposed and most of them attempt to calculate the quality of a
service by collecting quality ratings from the users of the service, and then combining them in one way or
another. Collecting quality ratings alone from the users is not sufficient for deriving a reliable or accurate
quality measure for a service. To address this problem Deora et. al. [Deora03] propose a quality of service
management framework based on user expectations. This framework collects expectations as well as
ratings from the users of a s
re

17 Concluding remarks

Web services are lightweight constructs that enable the development of rapid, low-cost and easy
omposition of distributed applications. Web services are self-describing, platfoc

modules that support rapid, low-cost and easy composition of loosely coupled distributed applications. The
promise of web service technology is a world of cooperating services where application components are
ssembled with little effort into a na

processes and agile applications that span organisations and computing platforms.

Key to developing web service-based applications is the service-oriented architecture (SOA). SOA is a
logical way of designing software solutions to provide services to either end-user applications or to other
ervices distributed in a network, via published and discovs

to advertise the service capabilities, interface, behaviour, and quality. Publication of such information
describing available services (in a service registry) provides the necessary means for the discovery,
selection, binding, and composition of services. In particular, the service interface description publishes
the service signature while the service capability description states the conceptual purpose and expected
esults of the servicr

behaviour description (e.g., as a workflow process). Finally, the Quality of Service (QoS) description
publishes important functional and non-functional service quality attributes, such as service metering and
cost, performance metrics (response time, for instance), security attributes, (transactional) integrity,
reliability, scalability, and availability.

Currently, the SOA provides the basic operations necessary to describe, publish, find and invoke services.
However, those basic operations—while they help services to be ubiquitous and universal—are not a
complete solution. For services to be used widely, there is additional functionality that must be considered
for service composability — including specifications regarding the dynamic composition of services,
transactional context and coordination, adaptability to varying circumstances, security and so on — as well
as for service management. In addition, the SOA is accelerating and exacerbating a systems management
challenge that has been growing in urgency in parallel with the development of enterprise-scale distributed
omputing. Such concerns are addressed by the extended service-oriented arc

The ESOA extends the basic service description/publication/discovery functions of the conventional service-
oriented architecture by providing a service composition tier to offer necessary roles and functionality for
the consolidation of multiple services into a single com
management that can be used to monitor the
aggregated/orchestrated services, supporting complex
ca

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 67

ESOA provide a natural conceptual framework for grouping and discussing current research activities in the
field of web services.

18 References

[Aiello02] M. Aiello, et. al. “A request language for web services based on planning and constraint
satisfaction.”, Workshop on Technologies for E-Services (TES), Hong-Kong, Springer Verlag, September
2002.

[Aldrich02] S.E. Aldrich “Anatomy of Web Services”, 2002 Patricia Seybold Group, Inc, www.psgroup.com

[Andrews03] T. Andrews et. al. “Business Process Execution Language for Web Services”, Version 1.1, March
2003.

[Ankolenkar 01] A. Ankolenkar, at. al. “DAML-S: A Semantic Markup Language for Web Services. In
Proceedings of SWWS’01, Stanford, USA, August 2001, also available at xml.coverpages.org/ISWC2002-
DAMLS.pdf

[Arkin01] A. Arkin “Business Process Modelling Language” March 2001, bpmi.org.

[ASP00] ASP Industry Consortium, Internet Survey http://www.aspindustry.org/surveyresults.cfm, 2000.

 et. al. “Web Services Security (WS-Security)”,
ttp://www.ibm.com/developerworks/library/ws-secure/, April 2002.

ems Engineering
AiSE'03), Springer Verlag, Velden, Austria, June 2003.

hitecture overview: The next stage of evolution for e-business, IBM
eveloperWorks Web Architecture Library, October 20th 2000.

Services”,
ommunications of ACM, Special Section on Service-Oriented Computing, M.P. Papazoglou and D.

[Atkinson02] B. Atkinson
h

[BEA01] BEA Systems Inc., “BEA WebLogic Server: Programming WebLogic Web Services”, December 2001,
available at www.bea.com.

[Benatallah03] B. Benatallah, F. Casati, F. Toumani, R. Hamadi ”Conceptual Modeling of Web Service
Conversations”, Proc. of 15th International Conference on Advanced Information Syst
(C

[Berardi03] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella “Composing eServices that
export their behavior “, Proc. Of 1st International Conference on Service Oriented Computing, Springer
Verlag, Trento, Italy, Dec. 2003.

[Beugnard99] Beugnard, A.; Jezequel, J.-M.; Plouzeau, N.; & Watkins, D. “Making Components Contract
Aware.” Computer 32, 7 (July 1999): 38-45.

[Bloch03] B. Bloch et al. (eds), “Web Services Business Process Execution Language”, OASIS Open Inc.
Working Draft 01, October 2003, http://www.oasis-open.org/apps/org/workgroup/wsbpel/

[Boubez 00] T.Boubez, Web Services arc
D

[Cabrera02a] F. Cabrera et al., “Web Services Coordination (WS-Coordination),” August 2002,
http://www.ibm.com/developerworks/library/ws-coor/

[Cabrera02b] F. Cabrera et al., “Web Services Transaction (WS-Transaction),” August 2002,
http://www.ibm.com/developerworks/library/ws-transpec/

[Casati03] F. Casati, E. Shan, U. Dayal, M. Shan “Business Oriented Management of Web
C
Georgakopoulos (eds), October 2003.

[Cauldwell01] P. Cauldwell, et. al., “XML Web Services”, Wrox Press Ltd., 2001.

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 68

[Chappell01] D.A. Chappell et. al. “ebXML Foundations”, Wrox Press Ltd., 2001.

[Curbera03] P. Curbera, R. Khalaf, N. Mukhi, S. Tai, S. Weerawarana, “Web services, the next step: A
framework for robust service composition,” Communications of ACM, Special Section on Service-Oriented
Computing, M.P. Papazoglou and D. Georgakopoulos (eds), October 2003.

eora03] V. Deora, J. Shao, W. A. Gray ,N.J Fiddian, “Rating Based Quality of Service Management on
st

uske 01] D. Ehnebuske, D. Rogers and C. von Riegen (2001), UDDI Version 2.0 – Data Structure

, IEEE Computer, 35(6), 2002.

Service, IDC White paper,

cture Specification v1.0.4, ebXML

Web service in UDDI”, Web Services Journal, vol. 3, issue 10, October
003, pp. 6-10.

[D
Expectations”, Proc. Of 1 International Conference on Service Oriented Computing, Springer Verlag,
Trento, Italy, Dec. 2003.

Ehneb[

Specification, UDDI.org, June 2001.

[Eisenberg03] R. Eisenberg “Business Process Management: The next generation of software”, EAI Journal,
June 2003, pp. 28-35.

[Erlikh02] L. Erlikh “Integrating Legacy Systems Using Web services”, EAI Journal, August 2002, pp. 12-17.

[Foster02] I. Foster, C. Kesselman, J. M. Nick, S. Tuecke, “Grid Services for Distributed System

tegration”In

Goepfert02] J. Goepfert, M. Whalen An Evolutionary View of Software as a [

www.idc.com, 2002.

[Graham02] S. Graham et. al. (2002), “Building Web Services with Java”, SAMS Publishing, 2002.

Grangard01] A. Grangard et al. (2001), ebXML Technical Archite[

Technical Architecture Project Team, http://www.ebxml.org, February 16th 2001.

[Hoque00] F. Hoque “e-Enterprise”, Cambridge Univ. Press, 2000.

[Holland02] P. Holland “Building Web Services from Existing Applications”, EAI Journal, September 2002,
p. 45-47. p

[Kavantzas04] Web Services Choreography Description Language 1.0, Editor's Draft, April 3 2004,
http://lists.w3.org/Archives/Public/www-archive/2004Apr/att-0004/cdl_v1-editors-apr03-2004-pdf.pdf.

[Klein03] M. Klein, B. König-Ries, P. Obreiter “Stepwise Refinable Service Descriptions: Adapting DAML-S to
Staged Service Trading”, Proc. Of 1st International Conference on Service Oriented Computing, Springer
erlag, Trento, Italy, Dec. 2003. V

[Leymann00] F. Leymann, D. Roller, “Production Workflow”, Prentice Hall Inc., New Jersey, 2000.

[Leymann03] F. Leymann “Web Services: Distributed Applications without Limits”, Database Systems For
Business, Technology and Web BTW 2003, Leipzig, Germany, February, 2003.

[Little03a] M. Little, J. Webber “Introducing WS-Transaction: The basis of the WS-Transaction protocol”,
Web Services Journal, vol. 5, issue 6, June 2003, pp. 28-33.

[Little03b] M. Little “Transactions and Web Services”, Communications of the ACM, vol. 46, no. 10, October
2003, pp. 49-54.

[Little03c] M. Little, J. Webber “Introducing WS-CAF - More than just transactions”, Web Services Journal,
vol. 3, issue 12, December 2003

Manes 03] A.T. Manes, “Registering a [

2

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 69

[Mani02] A. Mani, A. Nagarajian “Web services : Understanding quality of service for Web services” IBM
eveloper Works January 2002, http://www-106.ibm.com/developerworks/library/ws-quality.html

asud03] S. Masud “RosettaNet Based Web Services”, IBM Developer Works, July 2003.

uting, M.P. Papazoglou and D. Georgakopoulos (eds), October 2003.

,
ctober 2003, sun.com/software.

Papazoglou “Model Driven Service Composition” Proc. Of 1st
ternational Conference on Service Oriented Computing, Springer Verlag, Trento, Italy, Dec. 2003.

t. al “Web Service Manageability – Specification 1 (WS-Manageability)”, OASIS,
ptember 2003.

apazoglou02] M. Papazoglou, J. Yang “Design Methodology for Web Services and Business Processes”,

apazoglou03a] M. Papazoglou, D. Georgakopoulos, “Service Oriented Computing”, Communications of the
CM, vol. 46, no. 10, October 2003, pp. 25-28.

apazoglou03b] M. Papazoglou, “Web Services and Business Transactions”, World Wide Web Journal, vol.

ilz03] G. Pliz “ANew World of Web Services Security”, Web Services Journal, March 2003.

er
003.

in Web
rvices Business Strategies and Architectures P. Fletcher, M. Waterhouse (eds), Expert Press, Birmingham,

troulia03] E. Stroulia, Y. Wang “WSDL Semantic Signature Matching”, Proc. Of 1st International

pear in Knowledge and Data Engineering, 2004.

D

[M

[McDermott02] D. McDermott “Estimated-regression planning for interactions with web services”, AI
Planning Systems Conference, 2002.

[McIlraith 02] S. McIlraith, T. Son. Adapting golog for composition of semantic web services. In Proceedings
of the Eighth International Conference on Knowledge Representation and Reasoning (KR2002). Morgan
Kaufmann, 2002.

[McKee01] B. McKee, D. Ehnebuske and D. Rogers (2001), UDDI Version 2.0 – API Specification, UDDI.org,
June 2001.

[Meredith03] G. Meredith, J. Borg “Contracts and Types”, Communications of ACM, Special Section on
Service-Oriented Comp

[Mysore03] S. Mysore “Securing Web Services — Concepts, Standards, and Requirements”, Sun Microsytems
O

[Orriens03] B. Orriens, J. Yang, M. P.
In

[Potts03] M. Potts e
Se

[P
Workshop Technologies for Electronic Services, Sept. 2002, Hong-Kong.

[P
A

[P
6, no.1, March 2003, pp. 49-91.

[P

[SAML03] Security Assertions Markup Language SAML: Overview xml.coverpages.org/saml.html, Decemb
2

[Samtani01] G. Samtani “EAI and Web Services: Easier Enterprise Application Integration?” Web Services
Architect, October, 2001.

[Samtani02] G. Samtani, D. Sadhwani “Enterprise Application Integration and Web services”,
Se
UK, 2002.

[S
Conference on Service Oriented Computing, Springer Verlag, Trento, Italy, Dec. 2003.

[Tai04] S. Tai, T. Mikalsen, E. Wohlstadter, N. Desai, I. Rouvellou “Transaction Policies for Service-Oriented
Computing”, to ap

[Thakkar 02] S. Thakkar, C. A. Knoblock, J. L. Ambite, C. Shahabi “Dynamically composing web services
from

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 70

on-line sources” Workshop on Intelligent Service Integration, 18th National Conference on Artificial
Intelligence (AAAI), 2002.

Service
frastructure WG, Global Grid Forum, 2002. Draft 5, November 5, 2002.

inugopal01] K.E. Vinugopal, J.G. Kupper, P.J. Murray (2001) EAI and Web Services – A Simple Guide,

ebber03] J. Webber, M. Little “Introducing WS-Coordination”, Web Services Journal, vol. 5, issue 5, May

rvices Interoperability Organization “WS-I Overview”, January 2003, available at
ttp://www.ws-i.org/Documents.aspx.

] OASIS Cover Pages “Updated Versions of Web Services Policy (WS-Policy) Specifications”,
03, http://xml.coverpages.org/ni2003-06-04-a.html.

: Web Services
andbook”, Februry 2004, IBM Redbooks, available at ibm.com/redbooks/.

oalition “Workflow Process Definition Interface -- XML Process Definition
anguage” document no. WFMC-TC-1025, October 25, 2002.

ervice-
riented Computing, M.P. Papazoglou and D. Georgakopoulos (eds), October 2003.

g, M.P.Papazoglou “Service Components for Managing the Life-Cycle of Service
ompositions”, Information Systems, vol. 28, no. 1, 2004.

[Tuecke 02] S. Tuecke, et. al. “Grid Service Specification”, Technical report, Open Grid
In

[V
Webservices.org, December, 2001.

[W
2003, pp. 12-16.

[WSI03] Web Se
h

[WS-Policy03
June 20

[Wahli04] U. Wahli, G.G. Ochoa, S. Cocasse, M. Muetschard “WebSphere Version 5.1
H

[Wfmc02] Workflow Management C
L

[Yang03] J. Yang “Web Service Componentization”, Communications of ACM, Special Section on S
O

[Yang04] J. Yan
C

© Copyright Michael P. Papazoglou & Jean -Jacques Dubray 71

	A Survey of Web Service Technologiesl.pdf
	Introduction
	The Concept of software as a service
	What are web services?
	Web services: types and characteristics
	Types of web services
	Service characteristics
	Functional and non-functional properties
	State properties
	Complexity and granularity
	Synchronicity
	Service usage context

	Services, interfaces and components
	The service-oriented architecture
	Roles of interaction in the service-oriented architecture
	Operations in the service-oriented architecture
	Publish
	Find
	Bind

	Aggregated services

	The web services technology stack
	Web service standards
	SOAP: Simple Object Access Protocol
	Structure of a SOAP message
	The SOAP communication model

	WSDL: Web Services Description Language
	Web service interface definition
	WSDL implementation
	WSDL interaction patterns

	UDDI: Universal Description, Discovery, and Integration
	UDDI data structures
	UDDI usage model and deployment variants
	UDDI application programming interface

	Web services coordination, orchestration and choreography
	Orchestration versus choreography
	The orchestration business process execution language
	A simple example in BPEL

	The choreography definition language
	Web service transactions

	Web services security
	Quality of Service requirements
	Web services interoperability
	Grid services
	The extended service oriented architecture
	Composite Applications
	Research directions
	ESOA basic services layer: research activities
	ESOA composition layer: research activities
	ESOA management layer: research activities

	Concluding remarks
	References

