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Abstract. The unstructured, heterogeneous and dynamic nature of the Web
poses a new challenge to query-answering over multiple data sources. The so-
called Semantic Web aims at providing more and semantically richer struc-
tures in terms of ontologies and meta-data. A problem that remains is the
combined use of heterogeneous sources. In a dynamic environment, it is no
longer realistic to assume that the involved data sources act as if they were
a single (virtual) source, modelled as a global schema, as is done in clas-
sical data integration approaches. In this paper, we propose an alternative
approach where we replace the role of a single virtual data source schema
with a peer-to-peer approach relying on limited shared (or: overlapping) vo-
cabularies between peers. Since overlaps between vocabularies of peers will be
limited and the dynamic nature of the system prohibits the design of accu-
rate mappings, query processing will have to be approximate. We provide a
formal model for such approximate query processing based on limited shared
vocabularies between peers, and we show how the quality of the approxima-
tion can be adjusted in a gradual manner. The result is a flexible architecture
for query-processing in heterogenous and dynamic environments, based on a
formal foundation. We present the approach and discuss it on the basis of a
case study.

Keywords: Semantic Web, Methods and Formalisms for Knowledge
Sharing, Knowledge-Based Mediation Architectures

1. Introduction

1.1. Semantic Web and Peer-to-Peer

The approach to query-processing that we present in this paper is strongly
motivated by the peer-to-peer (P2P) architecture [12] that we expect for the
Semantic Web. In this section we will argue why we expect the Semantic Web to
have such a peer-to-peer architecture.

When we look at the current World Wide Web, we see in fact a mixed
architecture, that is partly client/server-based, and partly P2P. On the one hand,
each node in the network can directly address every other node in the network in a
single, flat, world-wide address space, giving it the structure typical of many P2P
networks. On the other hand, in practice there is currently a strong asymmetry
between nodes in this address space that act as content-servers, and nodes that
act as clients. Recent estimates indicate the presence of 50 million web-servers,
but as many as 150 million clients. On the scale of the World Wide Web, any
form of centralization would create immediate bottlenecks, in terms of network
throughput and server capacity.
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This need for a flat, non-server-centered architecture will be even stronger
on the Semantic Web. Of course, the same physical load-balancing arguments
hold as on the current Web, but the Semantic Web adds a new argument in favor
of a P2P-style argument. On the Semantic Web, any server-centered architecture
will not only create physical bottlenecks, but as communication relies on the
use of ontologies will also create semantic bottlenecks. Since the semantics of
information will be explicit (or at least: more explicit) on the Semantic Web, any
single server will in a way “impose” a particular semantic view on all its clients.
This will have undesirable consequences, both in terms of the pluriformity of the
available information, as well as in terms of the size of the central ontology that
such information-servers would have to maintain.

Instead, a P2P-style architecture will be able to avoid both the physical and
the semantic bottlenecks. Different semantic views, expressed in terms of different
ontologies, will be provided by many peers in a flat network of peers, each employ-
ing their own local, small ontology. Of course, this increased flexibility comes at
a price: such ”different semantic views, in terms of different ontologies” creates a
significant data-integration problem: how will these peers be able to communicate
if they do not share the same view on their data? In the remainder of this paper,
we propose an approach where the communication between peers relies on a lim-
ited shared vocabulary between them. This replaces the role of the single virtual
database schema that is the traditional basis for solving data integration problems.

In the following, we will briefly point to existing work on integration of het-
erogeneous databases, and we will see that this work is predominantly based on
the notion of a global schema that is connected to the heterogeneous schemas to be
integrated. Subsequently, we argue why this traditional approach is no longer vi-
able in a peer-to-peer style network as the Semantic Web will be. The remainder of
the paper will then be devoted to describing our proposal for such new approaches
that will enable us to do query processing in a peer-to-peer setting without the
need for global integrating schemas.

1.2. The Need for New Approaches

The problem of integrating heterogeneous database schemas [10] has been
addressed by many researchers.

The integration is normally done using a global schema that is connected
to the heterogeneous schemas to be integrated by a number of views. We can
distinguish two general approaches [7]:

• Global-As-View: In the global-as-view approach every relation in the
global schema is defined as a view over the different schemas to be in-
tegrated.
• Local-As-View: In the local-as-view approach, views are used to define the

schemas of local information sources in terms of the global one.
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The benefits of using explicit semantic models, i.e. ontologies, has been
recognized in many approaches. A survey of approaches using ontologies is
provided by [19]. Description logics have been proven to be a useful formalism
for specifying and reasoning about semantic models [3] to support information
integration. It has been shown that results from the database area provide
solutions for the integration of semi-structured information (see e.g. [1]).

However, some peculiar characteristics of P2P networks and, in particular,
the fact that they are characterized by strong dynamics, require the development of
new solutions, which substantially extend the current data integration technology.
This issue has been discussed in length in [5]. We report here only the main ideas.
Consider the situation where John, a person living in Toronto, is described in the
database F of his family doctor, and also in the database H of the hospital where
he once received medical treatment.

Example: John goes to another country, for instance Trentino in Italy. Un-
luckily, here he has an accident; he breaks a leg, and he must get medical aid.
The medical office has its own database M which now needs to query H for the
purpose of retrieving previous treatment details. Furthermore, a new record from
M should appear in F. However the acquaintance between M and F does not
need to be maintained for ever, since the two databases will probably not need to
coordinate again.

1.2.1. Dropping the global schema In situations like that described in the
example, the design and development of data integration mechanisms for randomly
acquainted databases which may need to communicate only a few times, becomes
impractical. In particular, it makes little sense to speak of a global schema [7], as
we cannot think of a set of P2P databases just as an implementation of a single
virtual database (this being the assumption which motivates the definition of a
global schema). It is no longer possible to see the global schema as a view of
the local database (global-as-view approach) or, vice versa, the local databases
as views of the global database (local-as-view approach). For instance, we can
no longer assume that there is a unique universe, containing all the elements of
the single databases, but rather many overlapping domains. From a foundational
point of view, any theory developed under the assumption of a global schema,
and under the implicit assumption that the global schema is fixed, prevents us
from the studying the dynamics of a P2P network. As far as we know, in the
data integration literature, these two assumptions have never been relieved, see for
instance [7, 10]. As a consequence, the problem handling heterogeneous information
sources becomes a coordination task that reoccurs whenever two peers want to
cooperate.

1.2.2. Good enough answers In a P2P network, it becomes hard to maintain
high quality answers to queries, for instance the fact that data can flow among
the databases preserving soundness and completeness. In this context, soundness
means that the data provided by the local databases satisfy the global schema
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(but they are not necessarily complete, some of them can get lost in the coordi-
nation). Completeness has the dual meaning. In the data integration literature,
completeness is often given up, still maintaining the request of soundness. In a
P2P environment, it will be possible to have completeness and soundness only in
limit cases, for instance with low dynamics or simplified interaction among the
databases.

One area where there will often be interest in getting very high quality
data integration is the medical care domain. There are however many other
application domains where this is not the case. One such example is tourism. This
domain is not life critical, and in many cases the small dimension of a single busi-
ness (e.g., hotels) does not justify big investments. Consider the following example.

Example: When planning his vacation in Trentino, John goes to a local
agency. The agency searches for single operators (hotels, for instance), and queries
them for the necessary information (e.g., prices and availability).

In this, the dynamics will have a high impact on the quality of the answer.
We have network variance: the relevant databases are much more unstable in their
being active and coordinated in the network, nodes come and go (for instance
depending on the season), and so on. We have database variance: John travels
around and queries different databases. The same query will get different results
since each database will implement different degrees of coordination with the
others, and so on. Thus, for instance, a query about hotels made to a hotel
database will likely get an answer that is better than the answer obtained from
a campsite database. We also have query variance: if you ask a query about
campsites to a campsite database you will likely get a better quality answer
than if you ask this database a query about hotels. Depending on the query,
certain coordination mechanisms may or may not be activated. However, in this
application, the agency doesn’t need the best possible answer. It simply needs
some answer. As long as, for instance, it gets a hotel John likes, this is good enough.

Compared to the previous medical example, in the tourism example much
lower quality data coordination will suffice. The medical care and tourism domains
are just examples. Things can get even more radical and complex when one thinks
of applications where some of the nodes are mobile and where coordination happens
on an even more occasional basis, for instance due to the physical proximity of two
mobile peers. In these situations, and for certain kinds of applications, almost any
answer will suffice. In terms of quality of answers, we can go from one extreme to
the other. On one extreme, it may be usual to get poor quality answers. This may
happen because the databases interact partially or do not interact at all or, even
worse, they pass around data which are wrong (for instance because of unsolved
problems of semantic heterogeneity). On the other extreme, there will be a tight
coordination and it will be possible to achieve or, at least, approximate soundness
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and completeness. Between these two extremes there is a continuum of answers of
different quality. This observation coincides with the ideas of the Semantic Web,
where it is widely agreed that completeness and correctness in a logical sense can
not be reached in many cases.

2. Ontology-Based Peer-to-peer Systems

Before we can present our approach to query processing in ontology-based
peer-to-peer systems, we have to specify the systems we are talking about in
more detail. We assume a system of independent peers that encapsulate the
(possibly redundant) information of the whole system. Each peer uses one or more
ontologies to model the information. These ontologies are used as a conceptual
schema of the actual information that can be seen as an instantiation of the
ontology. Peers exchange knowledge by formulating queries using the vocabulary
defined in the ontologies they use and sending them to other peers in the network.
The task of the receiving peer is to determine the answers to these queries relative
to its own vocabulary and information. This leads to a situation where we are
rather concerned with heterogeneous knowledge bases that plain data sources in
the conventional sense.

In order to get a clearer notion of the problem of processing queries in
such systems we make some simplifying assumptions. First of all we will only
consider two peers that want to communicate. Then we assume that there are
only two ontologies involved, a shared one and a private one of the peer trying to
communicate. We further assume that both ontologies are encoded on the same
language, preventing us from the problem of integrating the ontology languages.

This simplified communication problem can easily be extended to more
realistic scenarios as communication is mostly bi-lateral even in complex systems.
There might be more than two ontologies involved in the communication, but
they will all either be shared or private to one of the peers. The assumption
that there are actually ontologies being shared by peers in the system is backed
by the observation, that real-world ontologies are in most cases not build from
scratch. It is rather common to at least start with an existing ontology (see
for example http://www.daml.org/ for a library of ontologies about various
domains. The existence of an internal mapping between the ontologies used
by an individual peer is likely because if the peer wants to use more than one
ontology as a basis for its information, it has to know about their relation.
As a single peer is a rather static system compared to the overall network, we
can use schema matching techniques that have been developed in the database
community in order to find correspondences (see [14] for an overview). The
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only assumption that really is a simplification is the existence of a single ontol-
ogy language. Investigating this problem, however, is out of the scope of this paper.

In the following we give formal definitions for the parts of an ontology-based
peer-to-peer system that are concerned with query processing. These parts include
the definition of ontologies and mappings as well as the notion of queries and
answers in the setting of ontology-based information.

2.1. Ontological Knowledge

A number of languages for encoding ontologies on the Web have been proposed
(see [6] for an overview). In order to get a general notion of ontological knowledge,
we define the general structure of a terminological knowledge base (ontology) and
its instantiation independent of a concrete language.

Terminological knowledge usually groups objects of the world that have cer-
tain properties in common. A description of the shared properties is called a class
definition. Classes can be arranged into a subclass-superclass hierarchy. Classes
can be defined in two ways, by enumeration of its members or by stating that it
is a refinement of a complex logical expressions. The specific logical operators to
express such logical definitions can vary between ontology languages; the general
definitions we give here abstract from these specific operators. Further relations
can be specified in order to establish structures between classes. Terminological
knowledge considers binary relations that can either be defined by restricting their
domain and range or by declaring them to be a sub-relation of an existing one. In
order to capture the actual information content of a knowledge base we allow to
specify single objects, also called instances. In our view on terminological knowl-
edge, instances can be defined by stating their membership in a class. Further, we
can define instances of binary relations by stating that two objects form such a
pair.

Definition 1 (Terminological Knowledge Base). A Terminological Knowledge Base
T is a triple T = 〈C,R,O〉 where C is a set of class definitions of the form:

• c ≡ (o1, · · · , on) where c is a class definition and o1, · · · , on are object
definitions.
• c1 v c2 where c1 and c2 are class definitions.

R is a set of relation definitions of the form:
• r v (c1, c2) where r is a role definition and c1 and c2 are class definitions.
• r1 v r2 where r1 and r2 are role definitions.

and O is a set of object definitions of the form:
• o : c where c is a class definition and o is an individual.
• (o1, o2) : r where r is a relation definition and o1, o2 are object definitions.

In the following, we will consider terminological knowledge bases that consist
of such axioms. Of course, any specific ontology language will have to further
instantiate these definitions to specify logical operators between classes etc, but
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for the purposes of this paper, these general definitions are sufficient. Further, we
define the signature of a terminological knowledge base 〈C,R,O〉 to be a triple
〈CN ,RN ,ON〉, where CN is the set of all names of classes defined in C, RN the
set of all relation names in O and ON the set of all object names occurring in O.

We define a Tarski style semantics for the notion of terminological knowledge
that is very much inspired by Description Logics (compare [3]). The formal defini-
tion of this semantics and the notion of logical consequence is omitted due to lack
of space and can be found in an extended version of this paper [18].

2.2. Inter-Ontology Mappings

We assume that each peer has an integrated view on the ontologies it uses as
a semantic foundation for its information. This integrated view is created by
the mappings relates elements from different ontologies. The creation of these
mappings is discussed in other work (see e.g. [14] for an overview) and is not
further discussed in this paper. As our methods for query processing rely on
these internal mappings of individual peers, we have to define the nature of the
mappings. For this work, we adopted the mapping framework proposed in [11]
summarized in the following.

Madhavan et.al. define mappings in terms of operations between expressions
in two different domain models, in our case ontologies. They further demand
that the resulting expression is consistent with the logical interpretation of the
individual ontologies (we cover this point in the next section). As this framework
is very generic, we instantiate it in the context of ontological knowledge as defined
in the last section. In particular, we need to define the kinds of expressions, we
consider and the operations used to relate them.

The expressions, we are considering here are the definitions of classes, rela-
tions and objects, respectively. Further, we define the following mappings between
the different types of knowledge:

c1
mC←→ c2,mC ∈ {v,w,≡}

r1
mR←→ r2,mR ∈ {v,w,≡}

o1
≡←→ o2(1)

Intuitively the mappings marked with the operator ≡ state that definitions in the
different ontologies refer to the same class, relation or object. Mappings marked
with v (and w) state that the definition in the one ontology is a special (more
general) case of the other definition. Further, Madhavan et.al. consider the use of
a helper model individual models are mapped to. The helper model is then used to
derive composed mappings between these models. In our view on ontology-based
peer-to-peer systems, the shared ontologies can be seen as such helper models.
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The formal semantics for terminological knowledge can easily be extended to
cover mappings between different models. Here we assume a set of interpretation
mappings into partially overlapping domains. Mappings impose constraints on
these interpretations. A formal definition of the semantics of mappings can be
found in [18].

2.3. Semantics and Logical Consequence

We can define semantics and logical consequence of a terminological knowledge
base using an interpretation mapping .= into an abstract domain ∆ such that:

• c= ⊆ ∆ for all class definitions c in the way defined above
• r= ⊆ ∆×∆ for all relation definition r
• o= ∈ ∆ for all object definitions o

This type of denotational semantics is inspired by description logics [4], how-
ever, we are not specific about operators that can be used to build class definitions
which are of central interest of these logics. Using the interpretation mapping, we
can define the notion of a model in the following way:

Definition 2 (Model of a Terminological Knowledge Base). An interpretation = is
a model for the knowledge base T if = |= A for every axiom A ∈ (C ∪R∪O) where
|= is defined as follows.

• = |= c ≡ (o1, · · · , on), iff c= = {o=1 , · · · , o=n}
• = |= c1 v c2, iff c=1 ⊆ c=2
• = |= r v (c1, c2), iff r= ⊆ c=1 × c=2
• = |= r1 v r2, iff r=1 ⊆ r=2
• = |= o : c, iff o= ∈ c=

• = |= (o1, o2) : r, iff (o=1 , o=2 ) ∈ r=

In order to be able to handle multiple ontologies, we have to define the
interpretation mapping over different models and mappings between them. In the
following, we only consider an interpretation for two ontologies and mappings
between them. The definitions, however, can easily be extended to more than two
ontologies.

First of all, we divide the interpretation mapping = into two sub-mappings
=1 and =2 each defining the interpretation for one of the two ontologies in the
way described above. Further, we define the interpretation of mappings between
the ontologies in the following way:
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= |= (c1
mC←→ c2) iff


c=

1

1 = c=
2

2 for mC =≡
c=

1

1 ⊆ c=
2

2 for mC =v
c=

1

1 ⊇ c=
2

2 for mC =w
(2)

= |= (r1
mR←→ r2) iff


r=

1

1 = r=
2

2 for mR =≡
r=

1

1 ⊆ r=
2

2 for mR =v
r=

1

1 ⊇ r=
2

2 for mR =w
(3)

= |= (c1
≡←→ c2) iff o=

1

1 = o=
2

2(4)

These definitions enable us to perform reasoning across different ontologies
using the notion of logical consequence:

Definition 3 (Logical Consequence). An axiom A logically follows from a set of
axioms S if = |= S implies = |= A for every model =. We denote this fact by
S |= A.

In order to perform logical reasoning, we can use existing reasoning systems
that have been build for reasoning about description logic knowledge bases. The
system that has been used in the case study is the FaCT system [8].

2.4. Ontology-Based Queries

As mentioned in the beginning of this section, the peers in a system will exchange
information by querying information from other peers in the network using terms
from their own ontology. In the following we first define ontology based queries
as well as the notion of answers to and relations between queries. We formalize
queries in the following way: conjuncts of a query are predicates that correspond
to classes and relations of the ontology. Further, variables in a query may only be
instantiated by constants that correspond to objects in that ontology.

Definition 4 (Terminological Queries). Let V be a set of variables disjoint from
ON then an terminological query Q over a knowledge base T = 〈C,R,O〉 is an
expressions of the form Q(X̄) ← q1i

∧ · · · ∧ qmi
where qi are query terms of the

form x : c or (x, y) : r such that x, y ∈ V ∪ ON , c ∈ CN and r ∈ RN or are of
the form x = o where x ∈ V and o ∈ ON 1.

The following expression in an example query based on an ontology used in
the case study described later. It asks for hotels in castles that are located in towns
in Mecklenburg and have less than 25 rooms:

Q(X) ← X : Hotel ∧ (X, Z) : hat− Zimmer ∧ Z ≤ 25 ∧
(X, W ) : ist− in− Schloss ∧W = ja ∧ (X, Y ) : liegt− in−Ort ∧
(Y, V ) : liegt− in− Land ∧ V = mecklenburg(5)

1Note that this may include data-type expressions as the type itself is can be considered to be a
class, the actual value an instance of that class and the comparison operator a special relation.
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The fact that all conjuncts relate to elements of the ontology allows us to de-
termine the answer to terminological queries in terms of instantiations of the query
that are logical consequences of the knowledge base. The computation of query
answers in the sense being defined above is the main inference task of peers within
a system. In the next section we will discuss a logically well-founded approach for
computing such answers.

3. Query Processing

After having introduced some basic notions related to ontology-based peer-to-
peer systems we now turn our attention to the problem of query processing. The
definition of query answers provides us with a deductive definition that describes
correct answers with respect to a query over a single specific ontology. In the case
of an ontology-based peer-to-peer system, however, we face a situation where we
have to deal with more than one ontology. In many cases, the answering peer does
not know all terms used in the query expression, because they are taken from the
local ontology of the asking peer. In order to overcome this problem, we have to
align the vocabularies the asking and the answering peer. In [16] we describe an
approach for approximately translating classes from one ontology into another. We
briefly summarize this approach in the next section and extend it to conjunctive
queries. Further, we discuss the issue of the quality of approximations generated
by our approach.

3.1. Approximating Class Descriptions

The notion of an interpretation given above is a very general one and does not
restrict the nature of members of a concept. This is done by the use of operators
for defining classes. These kinds of operators restrict the possible members of a
class using an interpretation mapping to an abstract domain ∆. Figure 1 defines
some operators we use in the following in order to define classes. These operators
include the definition of a class by enumerating its members, the conjunction of two
classes interpreted as the intersection of their members and existential restriction
on a certain property defining that all members of that class have to be related to
at least one object of a certain type C by the relation P (compare figure 1).

Operator Extension .=

C1 u C2 C=
1 ∩ · · · ∩ C=

n

{x1, · · · , xn} {x1, · · · , xn} ⊂ ∆

(∃P.C) {y ∈ ∆|∃x((y, x) ∈ P=) ∧ x ∈ C=}
(≤ n) {x= ∈ N |xE ≤ n}

Figure 1. Some operators for Constraining Classes

These kinds of restriction are the basis for deciding whether a class definition
is equivalent, more specialized or more general than another. Formally, we can
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decide whether one of the following relations between two classes can be deduced
from the ontology:

subsumption:: C1 v C2 ⇐⇒ C=
1 ⊆ C=

2

membership:: x : C ⇐⇒ x= ∈ C=

The classes in an ontology form a hierarchy with respect to the subsumption
relation. In the case of multiple ontologies connected by mappings such a hierarchy
can also be computed for the united set of classes. Therefore, we will always have
a set of direct super- and a set of direct subclasses of a class c1 from the private
ontology. We can use those direct sub- and super classes that belong to the shared
ontology as upper and lower approximation for c1 in the shared ontology:

Definition 5 (Lower Approximation). Let C1 be the set of classes of a private
ontology, C2 the set of classes of a shared ontology and c ∈ C1, then a class
cglb ∈ C2 is called a lower approximation of c in C2, if the following assertions
hold:

1. cglb v c
2. (∃c′ ∈ C2 : c′ v c) =⇒ (c′ v cglb)

The greatest lower bound glbC2(c) denotes the set of all lower approximations of c
in C2.

Definition 6 (Upper Approximation). Let C1 be the set of classes of a private
ontology, C2 the set of classes of a shared ontology and c ∈ C1, then a class club ∈ C2
is called an upper approximation of c in C2, if the following assertions hold:

1. c v club

2. (∃c′ ∈ C2 : c v c′) =⇒ (club v c′)

The least upper bound of lubIS2(c) is the set of all upper approximations of c in
C2.

The rational of using these approximations is that we can decide whether an
entity x is a member of a class in the private ontology based on its membership in
classes of the shared ontology. This decision in turn provides us with an approxi-
mate result on deciding whether x is the result of a query stated in terms of the
private ontology, based on the following observation:

• If x is member of a lower bound of c1 then it is also in c1

• If x is not member of all upper bounds of c1 then it is not in c1

In [15] Selman and Kautz propose to use this observation about upper and
lower boundaries for theory approximation. We adapt the proposal for defining an
approximate classifier M ′ that assigns members of shared classes to private ones
in the following way:

Definition 7 (Class Approximation). Let C1 be the set of classes of a private on-
tology, C2 the set of classes of a shared ontology and x member of a class in C2,
then for every c1 ∈ C1 we define M ′ such that:
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• M ′(x, c1) = 1 if x :

( ∨
c∈glbIS2 (c1)

c

)

• M ′(x, c1) = 0 if x : ¬

( ∧
c∈lubIS2 (c1)

c

)
• M ′(x, c1) = ?, otherwise

Where the semantics of disjuction and conjunction is defined in the obvious way
using set union and intersection.

Based on the observation about the upper and lower bounds, we can make
the following assertion about the correctness of the proposed approximate classi-
fication:

Proposition 1 (Correctness of Approximation). The approximation from definition
7 is correct in the sense that:

1. If M ′(x, c1) = 1 then x= ∈ c=1
2. If M ′(x, c1) = 0 then x= 6∈ c=1

Using the definition of upper and lower bounds the correctness of the clas-
sification can be established using the model-based semantics of ontologies and
mappings (see [17] for a proof).

3.2. Queries as Classes

The result of the last section provides us with the possibility to compute a set
of objects that are definitely members of a class expression and a set of objects
that are possibly members of a class. This approach can directly be used to answer
trivial queries that only ask for members of a particular class. We have shown that a
slight variation of the mechanism can also be used to approximate Boolean queries
over class names [16]. In order to compute (approximate) answers for ontology-
based conjunctive queries, however, we also have to deal with binary relations in
the query expression. In order to cope with relations as well, we use a method for
translating conjunctive queries into class expressions that has been proposed by
Horrocks and Tessaris

[9]. The idea of the approach of Horrocks and Tessaris now to translate the
query into an equivalent class expression, classify this new class and use standard
inference methods to check whether an object is an instance of the query expres-
sion. This approach makes use of the fact that binary relations in a conjunctive
query can be translated into an existential restriction in such a way that logical
consequence is preserved after a minor modification of the object definition part
of the ontology. Details are given in the following theorem.

Proposition 2 (Role Roll-Up [9]). Let T = 〈C,R,O〉 be an ontology. Let further
R be a role, CI a set of class names in CN and a, b ∈ ON individual names.
Given a new class name Pb not appearing in CN , then 〈C,R,O〉 |= (a, b) : R ∧ b :
C1 ∧ · · · ∧ b : Ck if and only if 〈C,R,O ∪ {b : Pb}〉 |= a : ∃R(Pb u C1 u · · · u Ck)
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The transformation of a complete query is more difficult due to the dependen-
cies between the variables that occur in the query expression. In order to keep track
of these dependencies during the transformation Horrocks and Tessaris introduce
the notion of a query graph.

Definition 8 (Query Graph (Horrocks and Tessaris 2000)). The graph induced by
a query is a directed graph with a node for every variable and individual name in
the query and an directed edge from node x to node y for every role term (x, y) : R
in the query.

The correct transformation of a query into a class expression depends on the
kinds of dependencies between the variables in the query which is reflected in the
structure of the query graph. While the approach of Horrocks and Tessaris is more
general, we restrict ourselves to queries where the query graph is a (directed) tree
and its root node corresponds to the variable we are interested in. In especially, this
requires that none of the roles used in the query is declared to be functional and
that each constant only appears once in a query. While using this simplification, we
would like to emphasize that the translation can be done for unions of conjunctive
queries with an arbitrary number of result variables and a very expressive logical
language for defining class expressions. Our simplifying assumptions lead to a
simple method for transforming a query graph into a class expression. The result
of applying this translation technique to our example query in equation 5 is the
following expression:

(Hotel u (∃ liegt − in −Ort .(∃ liegt − in − Land .{mecklenburg})) u
(∃ hat − Zimmer .(≤ 25)) u
(∃ ist − in − Schloss.{ja}))(6)

As this expression defines a new class in the overall ontology we can now apply
the approximation techniques described in the last section in order to compute the
sets of possible and the set of definite answers to the query. We will use this query
as a running example in the following discussion on approximations.

3.3. Quality of Approximation

Unfortunately, proving the correctness of the approximation says nothing about
the quality of the approximation. In the worst case, the upper and lower bound-
aries of concepts in the other hierarchy are always > and ⊥ respectively. In this
case the translated query always returns the empty set as result. We were not
able to investigate the quality of approximations on theoretical level, however, we
can provide some rules of thumb that can be used to predict the quality of an
approximation:

Depths of hierarchies:: The first rule of thumb, we can state is that deeper
class hierarchies lead to better approximations. For hierarchies of depth
one it is easy to see that we will not be able to find good upper and
lower bounds. We can also assume that deeper hierarchies provide finer
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grained distinctions between concepts that in turn often produce closer
approximations.

Degree of overlap:: Our approach assumes a shared ontology, however, we
cannot guarantee that different systems indeed use the same parts of this
shared vocabulary. Therefore, the actual overlap of terms used in the ex-
isting definitions that are compared is important for predicting the quality
of approximations. In general, we can assume that a high degree of overlap
leads to better approximations.

Both criteria used in the rules of thumb above strongly depend on the
application and on the creator of the corresponding models. At least for the
degree of overlap, we can assume that hierarchies that are concerned with the
same domain of interest will share a significant part if the vocabulary, thus
enabling us to compute reasonable approximations.

In the course of a case study it turned out that in most cases the approxima-
tion of concept expressions returns good results, because people tend to share a
reasonable number of concept names across different ontologies that provide a ba-
sis for creating mappings. These mappings can often be found using stemming and
simple string matching. On the other hand, it turned out that it is much harder to
come up with reasonable mapping between the relations used in different ontolo-
gies leading to a situation where we only have very sparse mappings between these
relations. This in turn has a major impact on the quality of approximation applied
to conjunctive queries. In fact the lack of mappings between relations often leads
to a situation, where answers could not be found, because names of relations in
the query were not known in the ontology in the answering peer. In the next sec-
tion, we discuss an approach to overcome the problem of sparse mappings between
relation names.

4. Query Relaxation

In the presence of sparse mappings, we face a situation where the descriptions of
different peers referring to the same real-world object can be significantly different.
In most cases, the descriptions are different in the sense that different relations are
used to related same object to other objects in the domain. These relations may
refer to the same properties of the object that cannot be matched due to a missing
mapping or the set of properties itself used might be different. As a consequence,
real-world objects that are meant to be an answer to a query are not returned
because their description does not match the query that is formulated using terms
form a different ontology. We address this problem by relaxing the query, i.e. by
weakening those constraints from the query expression that are responsible for
the failure. In order to be useful, this weakening process has to fulfill certain
formal properties. In especially, we want to make sure that we do not loose any
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answers when modifying the query. We can guarantee this using the notion of
query subsumption as described by Halevy:

Definition 9 (Query Containment and Equivalence (Halevy 2001)). Let T =
〈C,R,O〉 and Q1, Q2 conjunctive queries over T . Q1 is said to be contained in
another query Q2 denoted by Q1 v Q2 if for all possible sets of object definitions
of a terminological knowledge base the answers for Q1 is a subset of the answers
for Q2 : (∀O : res(Q1) ⊆ res(Q2)). The two queries are said to be equivalent,
denoted as Q1 ≡ Q2 iff Q1 v Q2 and Q2 v Q1

Based on these notions we compute a sequence of queries Q0, · · · , Qn such
that the following properties hold:

1. Q0 ≡ Q
2. i < j =⇒ Qi v Qj

The intuition behind this approach is to start with the original query and
generate queries where each is more general than the one before, i.e. each query
following in the sequence returns all results of the previous one, but might return
more results. Our hope is that these new results contain the description of some
real-world objects that should be answers, but were not found due to their
description.

There are many different ways of making a query more general in order to
increase the chance of matching a potential answer. In the following we discuss
relaxation heuristics we consider useful for the purpose of query processing in a
peer-to-peer setting.

4.1. Variable Elimination

The first heuristic is based on the fact that each variable in a conjunctive might fail
to match a specific object if the object does not satisfy the constraints. Therefore, a
way of increasing the chance of matching the target object in the head of the query
is to successively eliminate non-answer variables from the query. In the example
query in equation 5 for example, we have the variables V,W,X,Y and Z where X is
the answer variable. Therefore we can weaken query by eliminating the variables
V,W,Y and Z. This can be done by removing all conjuncts containing a specific
variable from the query expression. It is easy to see that successively removing
conjuncts from the query leads to a sequence of queries with the desired properties.

The main question that arises when adopting the variable elimination ap-
proach is the order in which the variables should be removed from the query.
This order is partially constrained by the dependencies between the different vari-
ables. Removing the wrong variable first can break these dependencies and make
remaining conjuncts useless. Looking at the example query this would happen
if we first removed the variable Y. In this case the conjunct V = mecklenburg
would be isolated, because the variable V only occurred in the removed conjuncts
that connected it to the answer variable. In order to avoid breaking dependencies
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(a) (b)

(c) (d) (e)

Figure 2. A possible sequence of query-graphs

when removing conjuncts, we can use the query graph of the query to be relaxed
(compare definition 8) as it explicates existing dependencies. In the query-graph
dependencies between variables are represented by arcs between nodes. Therefore
we have to ensure that the query graphs remains connected when removing the
node that represents the variable we want to eliminate. Obviously, this is only the
case if we eliminate variables that correspond to leaf nodes in the graph. Figure
2 illustrates the successive elimination of the variables V, Y, Z and W from the
example query, showing the corresponding sequence of query graphs.

4.2. Guided Elimination

The major drawback of the variable elimination heuristic as explained so far is the
high number of arbitrary choices that still exist in the order of elimination. More
specifically, whenever the query tree has more than one leaf node, we have no strat-
egy yet to decide which one to eliminate. In general, there are many possibilities
for defining ordering heuristics, based on:

1. The nature of the domain
2. The preferences of the user
3. The task to be solved
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As our approach does not aim at a specific domain, user or task, we will have to
rely on rather general heuristics being aware that they will never be optimal. In
our case, the only information we can use to decide on an elimination order is the
existence of local mappings that relate the query vocabulary to the shared one that
is actually used to compute the answer. The general idea is that we would rather
drop conjuncts that represent concepts or relations without a suitable mapping
into the shared ontology, because it can never be satisfied by any object classified
according to that ontology. We have seen that for the case of concepts, we can often
find a suitable approximation even if there is no direct counterpart in the shared
ontology. Therefore, we focus on conjuncts representing relations and eliminate
such variables first that are constrained by a relational conjunct that has no direct
mapping to the shared ontology. The effect of this strategy is illustrated in the
next section where we describe some experiments with approximating concepts
and relaxing queries in a case study.

5. Examples from a Case Study

We performed a first case study in order to validate the methods described
in this paper. The case study is based on three different ontologies in the
domain of tourism. The ontologies are available in the DAML ontology library
(www.daml.org) and have been created by independent groups of students at the
university of Karlsruhe. All ontologies aim at describing the conceptualization of
an internet site that is advertising tourism in north-east Germany. All ontologies
contain information about accommodation, tourist attractions and transportation
facilities. While sharing these general topics, the different ontologies describe
them in a very different way focusing on different parts of the overall domain. We
chose these ontologies, because they very closely resemble the situation we expect
in a peer-to-peer network, where peers model information about the same domain
in different ways.

In the course of our case study, we imported the ontologies, each containing
about 300 classes and 50 to 70 relations into an ontology editor using some
syntactic transformations. We then analyzed the ontologies and created about
150 obvious mappings, mainly between classes that have exactly the same name
and between classes where one name is the plural form of the other. Based on
these mappings we computed two overlapping class hierarchies consisting of about
600 classes each. These hierarchies served as the basis for evaluating our class
approximation and query relaxation techniques. In the following, we describe
examples of class approximation and of query relaxation with respect to these
hierarchies.

As an example of class approximation we use the class ’Ferien-Wohnung’ (a
flat used as accommodation during holidays). The relevant parts of the hierarchies
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can be seen in figure 5. We can see that classes from private (identified by the prefix
’PEERA’ or ’PEERB’ respectively and shared (identified by the prefix ’SHARED’)
ontologies occur in both hierarchies.

The approximations we are interested in are the direct sub- and super-classes
of our example class form the shared ontology. We can see in the figure that these
are: ’Bungalow’ and ’Appartment’. If we look at the view of PeerB on the world we
see that also the class ’Ferienhaus’ (house used during holiday) would fall under
this category. While this result is not completely true, because houses are not flats,
it still serves the purpose very well, because all classes describe accommodations
that are reasonable replacements in the case that no flat is available.

(a) Peer A

(b) Peer B

Figure 3. The Views of two different peers on the same domain

If we determine the upper approximation of the example class, we get the
general class ’Unterkunft’ (accommodation). Our method now determines all
instances of this general class to be potential members of the example class.
Besides the members of the already mentioned classes, this also includes objects
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that are members of the classes ’Hotel’ and ’Campingplatz’ (camp-site) in the
view of the answering peer B. We see, that these results are still closely related
to the example classes, because they are all accommodations mainly used during
holiday, however, hotels and camp-sites are not really the kind of answer the user
would assume to get when asking for a flat. Still, returning hotels and camp-sites
as answers to a query for a flat is still better than not returning any result,
because the user might want to change her choice in favor of other preferences
(e.g. the location).

As an example for query relaxation, we take the example query introduced
in equation 5. If we transform this query in to a class expression (equation 6)
and classify it into the overall class hierarchy of the case study, it end up as a
sub-class of ’Schlosshotel’ (castle acting as a hotel). Computing the answer to
the query we get an empty set, because there are no instances of ’Schlosshotel’
satisfying all properties of the query class. Using the upper bound, however, we
already get the members of the class ’Schlosshotel’. Looking at the ontologies
in the case study, we see that none of the ontologies except for one the query
is based on contains information about the number of rooms of a hotel which
makes it impossible to prove that a specific Hotel is an answer to the query. As
a response to this observation, the query is relaxed by removing the restriction
on the number of rooms. This leads to a situation, where we already get some
definite results, namely those members of the class ’Schlosshotel’ that satisfy the
requirement of being in the federal state of Mecklenburg. Note that this provides
us with a better result than the use of the upper bound, because we already have
a pre-selection of results according to the geographic criterion.

The ability to retrieve relevant information using this second query relied on
the fact that the ontology describing the information defines the class ’Schlosshotel’
as the set of all hotels for which the property ’liegt-in-schloss’ (is located in a castle)
is true. We were able to use this implicit information about the specific relation in
order to retrieve information without having an explicit assertion stating that a
hotel has this specific property. In a case where the ontology does not contain the
necessary information, we would still get no results for the relaxed query, because
the property ’liegt-in-Schloss’ is not satisfied by any information item. In this case
we can again use the upper bound for answering the query, which would now be the
class ’Hotel’. Consequently, we would get all Hotels as potential answers. Again,
this result is too general, as we want to preserve at least the geographic constraint.
A solution is to further relax the query by removing the ’liegt-in-Schloss’ property
from the query. The resulting query will match all Hotels in the federal estate of
Mecklenburg.
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6. Conclusions

The existing data integration technology is based on the assumption that it is pos-
sible to define a virtual global schema. A query is therefore posed to this schema
and then suitably translated in local queries to the information bases being in-
tegrated. As hinted in this paper and more extensively argued elsewhere, this
approach hardly scales to a highly dynamic P2P network.

In this paper we have proposed a novel approach based on the following key
ideas:

1. We shouldn’t think in terms of a global schema but, rather, in terms
of independent autonomous nodes which, at run time, depending on the
query, provide local answers which must then be integrated.

2. In most cases, the system will not be able to provide the best possible
answer. It is more an issue of providing an answer which is good enough.

The proposed approach exploits ontologies as a conceptual ”high level”
schema which allows to hide local implementation details, and to exchange
information using the vocabulary defined by the ontologies themselves. In this
setting, good enough answers are obtained by posing queries to local ontologies,
by allowing queries to be propagated by using inter- ontology mappings, and
by using approximation techniques in order to avoid the problem of very sparse
mappings.

We are only at the beginning and a lot of work is still to be done before
integrating Semantic Web and P2P network technology. We list below some of the
open problems we can foresee:

Foundations. Once we assume that we have no global schema we must also
assume, among other things, that we no longer have a single domain of inter-
pretation (a single set of models). To take this into account we must define a
new semantics which allows for multiple interpretation domains, and for mappings
which tell how ontology elements, and also domain elements, are mapped. In this
framework, queries, query answers, and the mappings defined in this paper can be
formally characterized and various (partial) completeness and correctness results
can be provided (characterizing, for instance, to which extent, a query has been
answered). Some preliminary ideas in this direction can be found in [2].

Semantic Routing. In a P2P network, in most if not all cases, a node has very
little knowledge of its peers, and this knowledge becomes obsolete very quickly.
Before worrying about how to answer a query (the problem we have mainly dealt
with in this paper) a node has to worry about which nodes should be queried.
This requires some mechanisms for peer discovery that, in general, will have again
to deal with the problem of semantic heterogeneity (each node will advertise itself
using some local vocabulary). A preliminary description of a possible solution has
been provided in [5], which proposes ”Interest Groups” as a way of collecting
peers having knowledge about same or similar topics and a ”locally centralized”
mechanism for handling such groups.



22 Heiner Stuckenschmidt1, Frank van Harmelen1, and Fausto Giunchiglia2

Quality of Answers. We have already given up the hope for complete or, more
simply, correct answers. But how do we judge when an answer is good answer?
Whether an answer is good enough depends on many things: what the user wants,
the status of the network, its connectivity, the topic of the query, and so on. If
we want to make the approximation independent of human judgement, we have to
provide formal quality measures that can be used to judge the quality of an ap-
proximation and provide a basis for deciding between alternative approximations.
A promising proposal for such a quality measure is described in [13]. A partic-
ular question concerns the trade-off between the accuracy of an approximation
and the complexity of computing it. One of the strengths of our approach is that
determining the next approximation does not require logical reasoning itself due
to the structure based relaxation criterion. It is very likely that we could further
improve the accuracy of the approximation by using logical reasoning for find-
ing alternatives for class and relation names rather than removing them from the
query.
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