UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

A PROPOSITIONAL BRANCHING TEMPORAL LOGIC
FOR THE AMBIENT CALCULUS

Radu Mardare and Corrado Priami

October 2003

Technical Report # DIT-03-053

A Propositional Branching Temporal Logic for Ambient
Calculus'

Radu Mardare and Corrado Priami
University of Trento

Abstract

We advocate the use of a CTL* logic, built upon the Ambient Calculus in dealing with
mobile computing phenomena. Our logic is a more expressive alternative to Ambient Logic,
based on a single modality, but still powerful enough to handle mobility and dynamic
hierarchies of locations. In applications, the possibility of expressing path properties of
computation together with state properties opens new perspectives. Moreover, having a
temporal logic to express properties of computation, we can reuse the algorithms for model
checking temporal logics in analyzing the phenomena described using Ambient Calculus.

We resort to syntax trees of Ambient Calculus and enrich them with labelling functions
that generates the state processes. These constitute a sound model for Ambient Calculus
and are used as possible worlds in a Kripke structure developed for a propositional branch-
ing temporal logic. The accessibility relation is generated by the reduction of Ambient
Calculus considered as reduction between syntax trees.

We provide the algorithms able to compute, giving the initial state of a system, any
possible next state. These algorithms could be used together with the algorithms for model
checking temporal logic in order to develop model checking analysis for Ambient Calculus.

1 Introduction

Ambient Calculus [6] is a useful tool to study mobility when processes may reside within a
hierarchy of locations. Strongly based on Ambient Calculus was constructed Ambient Logic
[5, 4], a logic that can describe properties of mobile computations as well as the hierarchy of
locations and the modifications of this hierarchy in time. The main idea of Ambient Logic is
treating processes as spatio-temporal entities thus were used two kinds of modalities - one for
assertions about space and the other for assertions about time.

Our approach preserves the same spatio-temporal paradigm, but uses only the temporal
modality. In [3] is proved that any structure of ”bozes inside bozes” type can be uniquely
described by a modal logic, but also by a flat system of equations in Set Theory. We choused to
describe the spatiality of ambient processes by a flat system of equations that is, then, treated as
a set of atomical propositions in a propositional logic!. To our logic are attached the temporal
operators obtaining a branching propositional temporal logic. This logic, as argued bellow, is
more expressive than Ambient Logic (being a temporal one, expresses path properties together
with state properties), more comprehensive with respect to the intentional model (it distinguish
between different processes which cannot be distinguished using Ambient Logic?), more simple
(being one-dimensional and propositional) and more easy to use for complex analysis as model

TWork partially supported by the FET project IST-2001-32072 DEGAS under the pro-active initiative on
Global Computing.

n order to do this we had to encode all the information in an ambient process in Set Theory and to prove
that this encoding generates a sound model for Ambient Calculus.

20ur logic can make the difference between P|Q|R and P|c.(Q|R), but Ambient Logic cannot

checking (there are software already developed for this purpose, as SMV, NuSMV, SiMpLer,
VIS).

The paper is organized as follows. We begin with a critical analysis of the expressivity of
Ambient Logic pointing to the aspects that our approach improves. The next two sections
introduce the main concepts of our approach, the labeled syntax tree and the state processes
constructed for an ambient process. Section 5 introduce some basic notions of Set Theory,
as the system ZF A~ the flat systems of equations, and some classical results concerning the
power of such systems to express hierarchies. Section 6 introduces a congruence relation over
state processes that preserve the structural congruence over processes and it proves that the
state processes constitute a sound model for Ambient Calculus. In section 7 we introduce our
logic and in last section we implement it in order to ...

2 A short presentation of Ambient Calculus

We briefly recall the Ambient Calculus [6] starting with the syntax of ambient processes.

P, Q,R::= processes M:= capabilities
(vn)P restriction n name
0 void in M can enter into M
P|Q composition out M can exit out of M
IP replication open M can open M
MI[P] ambient M.M’' path
M.P capability action e null

(n).P input action
(M) output action

Hereafter we assume that ambient programs can include unspecified processes denoted by capital
letters P, Q, R, hereafter atomical processes®. Let II be the class of atomical process names,
and A the class of ambient names.

The structural congruence is defined as follows:

1. P=P 12.P=Q = M.P=M.Q

2. P=Q=Q=P 13.P=Q = (n).P=n).Q

3. P=Q,Q=R=P=R 14. P=¢.P

4. P=Q = (vn)P = (vn)Q 15. (M.M").P = M.M'.P

5. P=Q = PIR=Q|R 16. (vn)(vm)P = (vm)(vn)P

6. P=Q=!P=1Q 17. (vn)0=0

7. P=Q = n[P] =n|[Q] 18. (vn)P|Q = P|(vn)@Q,n ¢ fn(P)
8. (vn)(m[P]) =m[(vn)P], n#m 19. P0=P

0. I(PIQ) =IP|'Q 20. (PIQ)IR = P|(QIF)
10.10=0,!P = P|IP 21. P|Q = Q|P

11. 1P =IP 22. ().P = (y).P(x — y) if y & fn(P)

and the reduction rules of the ambient calculus by:

nlin m.P|Q]|m[R] — m[n[P|Q]|R] P — Q= (vn)P — (vn)Q

m[nlout m.P|Q]|R] — n[P|Q]/m[R] P — Q= P|[R— Q|R

open n.Pln(Q] — PIQ P— Q= nlP] - n[Q)
(n).P|(M) — P{n — M) P=PP-QQ=Q =P -

3This is a necessary requirement in developing complex analysis, as model checking, for Ambient Calculus
because we have to recognize and distinguish, over time, unspecified processes inside the target process. For
instance P is an unspecified process in n[in m.P)]

3 Ambient Logic

Ambient Logic is a modal logic constructed for Ambient Calculus and able to express properties
of mobile computations as well as the hierarchy of location and the evolution of this hierarchy in
time. The main idea of Ambient Logic is to treat ambient processes as spatio-temporal entities.
Two modal operators were choused to express this universe: one for assertions about space,
and other for assertions about time. As in the case of Spatial Logic, the satisfaction relation
P = A means that the process P satisfy the closed formula A.

A logical constant, 0, was chosen to be satisfied by the null process 0, 0 = 0.

Naturally, we have P =T, (P E-Aiff -P= A),and (PE AV Biff PE Aor P E B).

We have logical propositions of the form n[A], meaning that A holds at location n. These
are satisfied by processes of the form n[P’| provided that P’ satisfy A:

P = n[A] iff 3P’ such that P =, n[P'] and P’ = A.

We have logical propositions of the form A|B, meaning that A and B hold contiguously,
which are satisfied by contiguous processes of the form P’|Q if P’ satisfy A and @ satisfy B, or
vice versa:

P = A|B iff 3P',Q such that P =, P’'|Q and (P = A and Q = B) or (P’ E B and Q E A).

Further, consider P | P’ meaning that In, P’ such that P =, n[P’]|P”, and |* being the
reflexive and transitive closure of the relation |. In the same way —* means the transitive and
reflexive closure of the reduction relation — of Ambient Calculus.

The spatial modality (somewhere modality) is introduced as ©gA meaning that, inside of
the process P that satisfies it, there is a process P’ that satisfy A:

P = O A iff 3P such that P |* P’ and P E A

A temporal modality is added as well (sometime modality), ¢¢A, in order to express that
in the future of the process satisfying it, a state will be reached that will satisfy the formula A:

P = ©Aiff 3P’ such that P —* P’ and P/ = A

A location adjunct operator, A@n proves its utility: P = AQn iff n[P] = A. Other
operators can be added as well, especially for express properties of computation involving the
new names operator.

An important result is that the satisfaction is up to structural equivalence, i.e. if a process
satisfies a formula, then any process structural equivalent with it will satisfy this formula as
well:

(PEAANP=,P)= P A

3.1 Expressivity of Ambient Logic

Suppose we want to construct a model for the interaction between a firewall and an agent
knowing the access passwords, using Ambient Calculus. We have the following definitions, [6]:

Firewall & (vn)nlklout n.in k'.in n.0)|open k'.open k" .P)
Agent =Y [open k.E"[Q])]

The interactions will be:

Agent|Firewall =
(vn)(K'[open k.E"[Q]]In[klout n.in k' .in n.0]|open k'.open k" .P])
—* (vn)(K'[open k.K"[Q]]|k[in K .in n.0]|n[open k'.open k" .P])

—* (vn)(K'[open k.K"[Q]|k[in n.0]]|n[open k'.open k".P])
—* (vn)(K'[K"[Q]|in n.0]|n[open K .open k" .P])
=" (vn)(n[K'[K"[Q]]|open K'.open k".P])
) ([l open kP
=" (vn)n[Q|P]

The problem that arises once we developed a mathematical model for a phenomenon concerns
the success of this construction. In this particular case, it concerns the success of the agent to
cross the firewall such that, formally, its process @ to be in parallel with P inside the ambient
n. Such a property, being about Ambient Calculus computations, cannot be expressed using
Ambient Calculus, but only using a logic in top of it. If we try to express such a property in
Ambient Logic, we could only say that the expected relation is possible sometime in the future,
using the temporal modality. But this do not exclude the possibility that for some possible
temporal paths this situation to not be reached ever. In temporal logic, having quantifiers over
paths together with quantifiers over moments, we can say that, for all possible paths there
exists a moment when our property will be reached. And, only in this way, we can prove that,
indeed, our model express correctly the desired property.

Consider now an example from Biology known as the trimetric GTP binding proteins (G-
proteins) that plays an important role in the signal transduction pathway for numerous hor-
mones and neurotransmitters [2]. It consists in five processes: a regulatory molecule RM, a
receptor R, and three processes that are bounded together composing the protein «, 8 and 7.
An information sent by RM to R determines a communication between the receptor R and the
protein that generates the brake of the boundary of «, 8 and . We ca express this in Ambient
Calculus by:

~>*(

def

RM open n RM R = n[(GTP)|R],

Protein & (GDP)(a|ﬁ|’y)
where GDP is a name that appears in « only, bounded by the input prefix
RM|R|Protein = open n.RM | n[(GTP)|R] | (GDP)(«|By) —
RM | R | (GTP) | (GDP)(a|8ly) —
RM|R|(«|B|7)(GDP —~ GTP) —
RM|R|(a)(GDP — GTP)|B|y

where we denoted by (a)(GDP «— GTP) the process obtained from « by substituting GDP
with GTP inside a. If we try, using Ambient Logic, to express the spatial architecture of
the ambient Rm|R|Protein we will obtain the proposition A|n[B|C]|D|E|F, where RM |= A,
(GTP) EB,REC, aF D, B = E, and v E F. The spatial paradigm of this logic do not
allows us to assert about the fact that a, 3 and = are bound together and this boundary is
blocking any reaction of them. The first possible interaction have to be between RM and R
and have as result unlocking the protein complex.

More generally, Ambient Logic cannot distinguish between P|Q|R and Plc.(Q|R). If we have
PE A, QE Band R [C, then we have P|Q|R = A|B|C and Plc.(Q|R) = A|B|C without
having P|Q|R =, Plc.(Q|R).

It is still obvious that there is a big spatial difference between the two processes. While in
the case of the process P|Q|R any interaction between these three is possible, in the case of
the process Plc.(Q|R), P cannot interact with @ or R, and any interaction between @ and R
is forbidden until the capability ¢ will be consumed. It seems that @) and R are bounded into
a theoretical box, and even if this box is not an ambient, its action over the things inside it,
is very similar with the ambient case. In the biological example presented before, we cannot
express the fact that «, 0 and « cannot interact and cannot move before RM and R interact
each other. Only this interaction opens the boundary of the protein such that the three parts
of it to be able to interact with the environment. This proves that the Ambient Logic is not

comprehensive enough with respect to the complexity of the phenomena described by Ambient
Calculus.

For solving such a problem, a reconsideration of the spatial paradigm is required. As far
as the Ambient Logic is not able, in some situations, to distinguish between processes that are
not even alpha-congruent (but bisimilar), it seems that it is not an appropriate logic to be used
for assumptions about the future of our processes, as we need if we want to perform complex
analysis, as model checking, for Ambient Calculus.

The logic we want to propose here, comes to solve these problems and to open the perspective
of model checking Ambient Calculus.

4 A Set Theoretical model for Ambient Calculus

4.1 Labeled syntax trees

In this section we define the labeled syntax trees for the ambient calculus processes starting
from the syntax trees. Then, some abstractions of the labeled syntax trees will be used as the
states in the logic we are going to construct.
We first consider only processes without new name operator (handled in the subsection 3.3).
A syntax tree S = (5, —g) for an ambient process is a graph with S = PUCU DO =
(PpUP4)UCUD where

B is a set that contain all the unspecified process nodes (hereafter atomical processes* and
collected in the subset Pp) and the ambient nodes (collected in the subset P4);

¢ is the set of capability nodes (we include here the input nodes and the nodes of variables
over capabilities as well); and

9 is the set of syntactical operator nodes (this set contains the parallel operators | and the
prefix operators,). We identify the subset O’ = {e; € O | @1 —g | } C O of the prefix
nodes that are immediately followed in the syntax tree by the parallel operator because

they play an important role in the spatial structure of the ambient process °.

The intuition behind the construction of a labeled syntax tree is to associate to each node
of the syntax tree some labels by two functions: id that gives to each node an identity, and sp
that registers the spatial position of the node with respect to the underpinned structure of the
process.

The identity function id associates a label (urelement or (}):

e to each unspecified process and to each ambient; this label will identify the node and will
help us further to distinguish between processes that have the same name

e to each capability, the identity of the process in front of which this capability is placed

e (), to each syntactical operator node

The spatial function sp associates:

e to each ambient the set of identities of its children®, while to unspecified processes asso-
ciates the id-label.

e to each capability, a natural number that counts the position of this capability in the chain
of capabilities (if any) belonging to the same process

4We use these to denote unspecified processes found inside an ambient process; this is a necessary requirement
in developing model checking for Ambient Calculus because we have to recognize and distinguish, over time,
unspecified processes inside the target process. For instance P is an unspecified process in n[in m.P)]

5These point operators are those that connect a capability with a process formed by a parallel composition
of other processes bounded together by brackets, hereafter complex processes, as in c.(P|Q)

SWe use the terms parent and child about processes, meaning the immediate parent and immediate child in
Ambient Calculus processes.

e to each syntactical operator node the spatial function associates 0, except for the nodes
in O’ to which the function sp will associate the set of identities of the processes connected by
the main parallel operator in the compound process that this point is prefixing. For example
in the situation ¢.(P|Q), sp(e) = {id(P),id(Q)}.

We recall further some basic definitions of Set Theory and Graph Theory that are needed
to formally define the functions id and sp above.

We choose to work inside Zermelo-Fraenkel system of Set Theory with the Anti-Foundation
Axiom, ZFA, as being a fertile field that offers many tools for analyzing structures, as argued
in [3]. Hereafter, we assume a class U of urelements, set-theoretical entities which are not sets
(they do not have elements) but can be elements of sets’.

Definition 4.1. A set a is transitive if all the elements of a set b, which is an element of a,
also belong to a: Vb € a if ¢ € b then c € a.
The transitive closure of a, denoted by T'C/(a) is the smallest transitive set® including a.

Definition 4.2. The support of a set a, denoted by supp(a) is TC(a) N U. The elements of
supp(a) are the urelements that are somehow involved in a.

Definition 4.3. If ¢ C U then V(a) = {b] bisa set and supp(b) C a}. V(a) is the class of
all sets in which the only urelements that are somehow involved are the urelements of a.

Definition 4.4. A decoration of a graph G = (G, —¢) is an injective function
e: G — V(U)UU such that for all a € G we have:

e if #b € G such that a —¢ b then e(a) € U
e if 3b € G such that a —¢ b then e(a) = {e(b)] for all b such that a —¢ b}.

Definition 4.5. Let Sp = (5, —g) be the syntax tree associated with the ambient process
P. We call the structure graph associated with P, the graph obtained by restricting the edge
relation of the syntax tree to P U D', i.e. the graph Tp = (P U O’, —7) defined by:

for n,m € PU O’ we have n —7 m iff n —% m and Fp € P U O’ such that n —% p —% m

We now introduce a set of auxiliary functions that are the building blocks for id and sp (we
present in Appendix the following constructions for an example).

Definition 4.6. Let the next functions be defined on the subsets of nodes of the syntax tree
(S, —) as follows:

e Let spyp : PULO' — V(U) UDU be a decoration of the structure graph associated with our
syntax tree.

o Let idy : P — U be an injective function such that idp(P) = spyp(P) for all P € Pp.

Consider Up ef idyp(Ppr) C U, Ua &t idyp(Pa) C O

o Let spp : O — UUV(U)UN defined by

iff s € O’ . e
Po(s) = { (S)pm(S) iffz eO\O Consider O </ spo (D) C V(U)

o Let idp : O — V(U) UU defined by ido(s) =10

o Let spg : € — N such that

(c) = 1 iff | ~e—corn—e—cwithneP
Spelc) = kE+1 iff e — @3 — cand ¢ — ¢ € € with spe(c’) =k

"The urelements together with the empty set () generates all the sets we work with (sometimes sets of sets)
8The existence of TC(a) could be justified as follows: TC(a) = U{a,Ua,UUa, ...}

e Let ide : € — V(U) U DU defined for ¢ € € such that e, — ¢ by

idg(n) iff oo — n withn € P
ide(c) = ide(c) iff o, — o' with o' — ¢/
spo(ec) iff ec €D’

Summarizing we can define the identity function id : PUCUO — VUV (U) and the spatial
function sp: PUCUO — BUV(U)UN by:

idyp(s) iff seP spp(s) iff seP
id(s) = ide(s) iff se€ sp(s) = spe(s) iff sec
ido(s) iff s€ O spo(s) iff se€eO

Observe that while the range of id is U U V(U), the range of sp is U U V(U) UN (we can
consider here natural numbers as cardinals® so that no structure anomaly emerges as long as
N C DU V(U)). Hereafter, for the sake of the presentation, we still use natural numbers.

We identify the sets Uz of urelements chosen for ambients, Up of urelements chosen for
atomical processes, and the set of sets of urelements O that contain all the addresses of the
elements in 9.

We now define the labeled syntax tree for a given syntax tree of an ambient process.

Definition 4.7. Let Sp = (S5, —) be the syntax tree of the ambient process P. We call the
labeled syntaz tree of it the triplet Slp = (S, —, ¢) where ¢ is the function defined on the nodes
of the syntax tree by

@(s) = (id(s), sp(s)) for all s € S.

Remark 4.1. Tt is obvious the central position of the function ¢d in the previous definitions. For
a particular ambient process, once we defined the function id, all the construction, up to the
labeled syntax tree, can be done inductively on the structure of the ambient process. Because
of this, our construction of the labeled syntax tree is unique up to the choice of urelements (i.e.
of Up and Uy).

4.2 State processes

In this section we organize the information in the labeled syntax tree, as the state process
associated with our ambient process. The state process will be a set-theoretical construct that
will rearrange the information contained in the labeled syntax tree (implicitly in the associated
ambient process) in a form easy to interpret and implement as state in our logic.

Definition 4.8. For a given labeled syntax tree SI = (S, —, ¢) we define the functions:
eur:PUO - UpUU4UO by:

_ id(s) ifseP
ur(s) = { sp(s) ifseO

This function associates to each node of the structure graph the set-theoretical identity defined
by the labeled syntax tree
eLet e: UpUU4UO — BUV(U) be the function defined by
e(v) = sp(ur~'(v))
9nformally, we treat 0 as @, 1 as {0}, 2 as {0, {0}}, 3 as {0, {0}, {0, {0}}} and so on.

It associates to each urelement chosen for an ambient, atomical process or complex process, the
set of addresses of its children.

o f:UpUU4,UO — AUII, where A is the set of names of ambients of Ambient Calculus,
and II is the set of atomical process names'®. For each v € Up UU4 C U, f(v) is the name of
the process with which v is associated by id'!, and f(v) = (0,0) if v € O. By the function f
each urelement (or set of urelements) used as identity will receive the name of the ambient or
atomical process that it is pointing to (or the name (0, 0) if it points to the complex processes
in O).

e FF:UpUU,UO — €* foreach v e UpUU4, UO, F(v) = (¢1, ¢, ...c) where ¢; € € such
that Vi € N, id(c;) = v, sp(c;) =i and ficg11 € € such that id(ck41) = v and sp(cpy1) = k+ 1.
In the case that, for v we cannot find any such ¢;, we define F'(v) = (g,¢,...), € being the null
capability. We adopt the following enrichment of equality relation, =¢, over capability chains'?:

- {e1,¢a,¢3,...cn) — (c1) =¢ {(c2, ¢35, ...Cn),

- <6, Cly.-ey Ck> =¢ <Cl, C2, ..., Ck, 8> =¢ <Cl, ey Cty €, Cy 1, ...Ck-> =¢ <01, Co, ...y Ck>,

- (e,&,...€) =¢ 0.

The function F associates with each urelement used to point to a process, the list of capa-
bilities that exists in front of it.

Remark 4.2. Once constructed the function ¢ for our ambient process, the construction of the
functions f, F and e is unique. Moreover, it is easy to verify that, giving an ambient process
and the functions f, F' and e of it, we can uniquely define the function ¢ of it.

Definition 4.9. Let Slp = (5, —, ¢) be the syntax tree associated with the ambient process
P, and let Tp = (P U D', —7) be the structure graph associated with it. We call the labeled
structure graph of it the triplet Tlp = (P U D', —r1,9) where ¢ is the function defined on the
nodes of the structure tree by:

¥(s) = (urs, e(ury), f(urs), F(urs)).

Further we call, for short, by ¢p def (B U O’) the image by ¢ of S, where, as before,

Slp = (S,—,$). Moreover, because ur(Pp) = Up, ur(Pa) = Ua and ur(O’') = O we can
describe ©¥p as

’(/JP: <UAUO,UP7€,f,F> :<<UAUO>UP36>7f7F>'

Definition 4.10. With respect to the previous definitions, we call the state process associated

. d . .
with P the ordered set STp ef p={{UsUO,Up,e), f, F). By extension, we can consider v
as associating to each ambient process its state process.

Remark 4.3. In addition to remarks 4.1 and 4.2, we can observe that, being a process P,
the construction of its state process is unique up to the choice of urelements, i.e. up to the
choice of Up and Uy, and it is made by assigning an urelement to each ambient process and to
each atomical process (the rest of the construction being done, uniquely, by induction on the
structure of the process).

10By accepting unspecified processes, we have to accept that the set IT contain more than the null name

nformally we could say that, on Ug UUp, we have f =id~!, but this is not exact for the reason that id is
an injective function while f is not. Because if we have two processes named P, then, for both, the value by f
will be P, but, by id—!, they point to different nodes in the syntax tree.

12These rules are allowed by the syntax of Ambient Calculus together with the rules of structural congruence
over processes

4.3 Handling the new name operators

It is now the moment to clarify the action of the new name operator. We propose an alternative
to express, inside Ambient Calculus, the action of the new name operator without using it.

Consider the interaction between the firewall and the agent presented before, in parallel
with other two processes n[R] and open n.t[S]:

K'lopen k.k"[Q]]|(vn)n[k[out n.in k' .in n.0]|open k'.open k”.P]|n|R]|open n.t[S]

Here, (vn) means that the name n inside the scope of (vn) is different of all the other names in
the program. In the example, we want to be sure that out n and in n, which are capabilities
prefixing the process 0, will never act over n[R] but only over the ambient that was chosen
to name the firewall. Vice versa, open n, the capability of ¢, will never act over the firewall
ambient, but only over n[R].

Being the fact that the number of occurrences of new name operator in a process is finite!?
the action of it can be supplied by predefining a wellordered set of ambient names, subset of
A. These names should never be used to name ambients in other situation but for new names.
Each time the new name operator appears, we choose the next unused name from this set and
replace it in all its occurrences inside the scope of the quantifier. In this way, we can supply
the action of the new name operator without supplementary syntactical rules. This choice will
be very useful for applications, as argued bellow.

Our proposal is to accept NxN C A. In this way, by a trick that resembles de Bruijn indexes
for name-free A-calculus, we guarantee compositionality with respect to future constructions.
We accept ordered pairs of natural numbers as possible names of ambients and we use them
to completely remove any (vn) occurrence from processes. So, we replace the k' new name
(vn) in a process with the pair (k,1) 4. This approach allows us to combine our process with
others. All the new names in the second process will receive names as (k,2) meaning that is
the k** new name of the second process, and so on, the k" new name of the I process will
receive the name (k,1).

According with the above, our example becomes:

k' [open E.E"[Q])|(1, 1)[k[out (1,1).in k'.in (1,1).0]|open k'.open k" .P]
|n[R]|open n.t[S)

The analysis of the reductions of our process shows that the expected result is still possible
without using the new name operator. Indeed:

Firewall (1 D[klout (1,1).9n K .in (1,1).0]|open k'.open k'.P]
Agent =Y [open k.E"[Q))
Agent|Firewall|n[R]|open n.t[S] =
k' [open k.E"[Q])|(1, 1) [k[out (1,1).in k'.in (1,1).0]lopen k'.open k”.P]in[R]|open n.t[S]
—* k:'[open k.E"[Q]|k]in (1).0]](1, 1) [open k'.open k" .P]|n|[R]|open n.t[S]
—* k’[k”[]\ in (1,1).0]|(1, 1)[open k'.open k".P]|n[R]|open n.t[S]
—* (1, [k’[k”[1llopen K .open k" .P]|n|R]|open n.t[S]
=" (L, D[Q|P|n[R]|open n.t[S]
L D[QIPIIRIS)
Further we will treat (I, k) as any other ambient name, whenever it appears in our processes.

This mean that we consider that the set A contains, as a subset, a subset of N x N. This
modification'® does not affect the four rules of structural congruence ((Struct Res Res), (Struct

13In extenso, we can accept the denumerable possibility

14We replace n by (k, 1) in all its occurrences inside the scope of (vn), being ambients or capabilities

151t is not necessary to accept natural numbers as ambient names, but to define a function from N x N to A
that will generate the ordered set of names required

Res Par), (Struct Res Amb) and (Struct Zero Res), see [6]). It modify only the intentional
interpretation of (vn). It will not mean this name is new inside the scope of our quantifier, but
replace this name in all its occurrences inside the scope of our quantifier by an unused pair of
natural numbers.

In this way we reduce all the syntax trees of ambient calculus to syntax trees free of new
name operators.

4.4 Hierarchical Structures as Hypersets

In this section we present the set theoretical tools used to analyze hierarchies. We define the
notion of flat system of equations. These systems will be identified behind the spatial structure
of any ambient process, and will be used to understand the relevance of structural congruence
between processes from spatial point of view.

All our work is based on some results of Set Theory, first developed by F. Honsell and M.
Forti (1983) [8], P. Aczel (1988) [1], and by J.Barwise and L.Moss (1996) [3]. The advantages
of using the system ZFA is that it allows non-wellfounded sets (hypersets), that can describe
recursive hierarchies in a finite manner, as we will show further. We use these properties, but
concerning the economy of the paper, we will not present additional features of the system here.
For more can be consulted the cited literature. Hereafter we speak about sets meaning also
wellfounded (classical) sets and non-wellfounded sets (hypersets).

Definition 4.11. A flat system of equations is a triple &€ = (X, A,e) with X and A disjoint
sets (not necessarily sets of urelements) such that X N A = (), and a function e : X — P(XUA).
X is called the set of indeterminates of £, A is called the set of atoms of £. For each v € X, the

set b, = e, N X is called the set of indeterminates on which v immediately depends. Similarly,

d
the set ¢, ef e, N A is called the set of atoms on which v immediately depends (we wrote e,
for e(v)).

Example 4.1. Consider the set x = {a, {8,{v}}}. This hierarchical structure can be described
by a few one-level hierarchies x = {a,y}, y = {0, z}, z = {7} or using a flat system of equations
E=(X,Ae) with X = {z,y,2}, A={c, 5,7} and e, = {a,e,}, e, = {B,€.}, ex = {7y}. The
solution of this system of equations describes our set.

If our set have the definition © = {«a,{B3,{x}}}, i.e. is a hyperset (having a recursive
definition), it still can be expressed using a finite flat system of equations defined by e, = {c, ey},
ey ={0B,e.}, e, = {ex}. And the solution of this system describes our hyperset x.

Definition 4.12. A solution to £ is a function s with domain X satistying s, = {s,|y € bz }Uc,
for each z € X.
The solution-set of a flat system £ of equations is the set

38(€) = {sy|v € X} = s[X] (we wrote s[X] for the image of X by s).

The following result'® is the one that allows our further construction. We will not present
the technical set theoretical details here, they can be found in the cited literature.

Theorem 4.2. In ZFA each set a € V[A] is a solution-set of a flat system of equations which
has A as the set of atoms (or a subset of A) and any flat system of equations with the atoms
from A have as unique solution-set, a set a € V[A].

Further we introduce the relation of bisimulation over systems of equations, extending the
one proposed in [3], which will help us to define the relation of congruence over state processes.

Definition 4.13. Let A C U, and let £ = (X, A,e) and & = (X', A, €’) be two flat systems of
equations which use A as their set of atoms. An A-bisimulation relation between £ and £’is a
relation R C X x X’ such that whenever Rz’ the following conditions hold:

16This is proved and discussed in [3], part ITI, section 6

10

/

1. For every y € e, N X there is an ¢’ € e/, N X’ such that yRy
2. For every y' € e/, N X’ there is an y € e, N X such that yRy’
3. e, and €/, contain the same atoms, i.e. e; N A =€/, N A.

The systems are A-bisimilar, written & =4 &', if there is an A-bisimulation relation between
them such that for every z € X there is an 2’ € X’ with 29z’ and vice verse.

Theorem 4.3. The relation =47 is an equivalence relation over flat systems of equations with
the atoms in A.

For the proof, see [3], p.81.

Theorem 4.4. Let £ and &' be flat systems of equations over the same set A € U. &€ and &’
have the same solution-sets if and only if they are bisimilar.

For the proof, see [3], p.79.

For our purpose the bisimulation defined before is not enough. The previous bisimulation
works on systems that describe the same sets. We need a relation of bisimulation able to
identify a structure (hierarchy) up to the urelements involved in it. Thus we define a relation
which considers bisimilar systems up to the choice of atoms as far as the systems have cardinal
equivalent sets of atoms.

Definition 4.14. Let A, A’ C U, and X, X' with AN X =0, ANX' =0. Let £ = (X, A, e)
and & = (X', A’,€¢’) be two flat systems of equations. A weak-bisimulation relation between
€ and £’ is a relation R C X x X’ such that there is a bijective function ¢ : B — B’ where
B,B' Cc U, AC B,A’ C B’, and whenever 2Rz’ the following conditions hold:

1. For every y € e, N X there is an ¢’ € €/, N X’ such that yRy’
2. For every y' € e/, N X’ there is an y € e, N X such that yRy’
3. ClezMA)y=el, NA

We say that the systems are weak-bisimilar, and we write £ =, £’ if there is a weak-bisimulation
relation between them such that for every z € X there is an 2’ € X' with 2Rz’ and vice versa.

The meaning of this definition is that two weak-bisimilar systems describe the same structure
up to the choice of the atoms.

Theorem 4.5. An A-bisimulation is a weak-bisimulation.

Proof. Indeed if we take ¢ to be the identity function on A, the conditions of definition are easy
to verify. O

Hereafter we assume ¢ : U — U, by extending it with {(x) = z for all x € U\ B. This allows
us to prove the following theorem:

Theorem 4.6. The relation =,, is an equivalence relation over flat systems of equations.
Proof. The proof is immediate

e =, is reflexive: the identity relation over X is a bisimulation if we take the identity over

A as (.

e =, is symmetric: suppose £ =, £’. For proving that £ =,, £ is enough to consider the
inverse of the relation R together with the inverse of (.

11

e =, is transitive: suppose that & =, & by R with ¢ and & =,, £” by R’ with {’. Then
we have £ =, £” if we consider (" = (' o (and R” = R o R.

O

We can extend the definition of ¢ to the whole universe of set theory U UV (U) by letting
C(x) ={C(y) | y € x} for all z € V(U). This extension gives the possibility to prove:

Theorem 4.7. Let A,A" C U and & = (X, A,e), & = (X', A',¢') be two flat systems of
equations. Then € =, &£ iff ((ss(€)) = ss(&'), where (is the function used by the weak-
bisimulation relation.

Proof. We will prove this by induction on the complexity of the solution sets. The complexity
of a set is used as the number of levels of set-nesting inside a given set. The urelements (i.e the
atoms of our systems) have complexity 0.

e (=) Suppose & =, &', we will prove that ((ss(€)) = ss(&’), i.e. that {{(s.)|z €
X} = {sl.|z’ € X'}. These sets contain elements of different complexity. We will prove
this equality by induction on the complexity. For urelements, for each x € A Jla’ €
A" s.t. ((x) = 2’ and vice versa. For complexity 1: s, = ¢; C A, so ((s;) = ¢, for sets
of complexity 1. Suppose the same for the complexity k. Let x € X be an element of
complexity k + 1. Then s, = {sy|y € by} U ¢, by definition, where y has the complexity
k and the elements of ¢, have the complexity 0. Now we can use the inductive hypothesis
and we obtain the desired proof.

e (<) Suppose ((ss(€)) = ss(&’), we will prove that £ =, £ by defining R C X x X' as
{z,2'} € R iff {(s;) = s,r. The requirements of the definition can be easily verified.

O

This theorem says that, as far as we can extend a bijection { between the set of atoms of the
two systems to the whole universe of set theory in the way presented before, then the systems
are bisimilar iff their solutions correspond each other by (.

4.5 The Congruence relation over state processes

Consider an ambient process P and its state process STp = ((Uq U O,Up,e), f, F). In this
context we can prove that:

Theorem 4.8. £ = (Us U O,Up,e) is a flat system of equations with Uy U O the set of
indeterminates and Up the set of atoms.

This result allows us to identify the state processes by STp = (€, f, F) where £ = (Uyq U
0, Up, e) is the flat system of equations which describes the hierarchical structure of the ambient
process.

Definition 4.15. Let P be an ambient process and STp be a state process for it. If U} =
F71H0) N F~1(e) # 0, we will denote by ST; = <5+7f|(UP\U;)uUAuO’F|(UP\U;)UUAUo>’ the
state process obtained from STp by restricting the functions f respective F to (Up\Up)UU4UO
and by defining £+ = (X, Up \ U, e*), where e} = e, \ Ujt. We call ST} the canonical state
process of P.

The introduction of canonical state processes it was necessary in order to simulate the null
action of the process 0 in ambient calculus, when it appears without capabilities.

12

Definition 4.16. Let STi, ST» be two state processes and ST;" = (€1, f1, F1) and ST, =
(€3, fa, F») be the canonical state processes for them, with & = (U} U O, U}, e1), & =
(U3 UO? U3, es). We call the two state-processes congruent, and write ST = STy, if the
following conditions hold:

1. There exists two bijective functions
C:ULUULUO; - U3UUZUO; and Pr: AU — A UII with the properties!”

a) ((Up) =Up, ((Uy) = U3 and ((y) = {¢(2)| for all x € y};
b) Pr(n) =n foralln e AUIL\ (N x N)

(c) Pr(fi(a)) = f2(¢(a)) for all . € UL U UL U Oy

(d) Pr(Fi(a)) =¢ F2(¢(a)) for all a e U, UUL U Oy

2. &1 =y &> where the function used in the weak-bisimulation relation is ¢

The function ¢ associates to each urelement of the first state process an urelement of the
second one. This correspondence is meant to associate urelements that were chosen for ambients
or atomical processes having the same name (in the case that this name is in N x N we take into
consideration the possibility of renaming it by the function Bt). Moreover, these processes have
to have the same chain of capabilities in front. The condition 2 ensures that the two ambient
processes corresponding to the state processes have the same hierarchical structure.

Theorem 4.9. The congruence relation over state processes is an equivalence relation.

Proof. Let STy,S5T5,ST; be state-processes

Symmetry: if STy = STy (using ¢ and Pr) then ST, =2 ST (using ¢’ and Pr'). We will define
(= P =P

Reflexivity: ST = ST. We define ¢ as the identity over Up U U4 U O and ‘Br as the identity
over (N x)N (f(Up)).

Transitivity: if STy = ST, (using ¢; and Pry) and STy = ST (using (2 and Pry) then
STy = ST3 (using ¢’ and Pr’). We define ¢’ = (5 0 (; and Pr’' = Pr, o Pr, O

4.6 Algebra of State Processes

In this section we define an Algebra of state processes extending the compositional operations
of Ambient Calculus from syntax trees to the class &% of state processes. We start from the
state processes of P; and P,, and we will define those for P;|Ps, ¢1.ca...c,.m[Pi] and !P;. Such
a construction, following the remark 4.1, can be reduced to the construction of the function id
for each case, the rest being only an inductive construction.

Remark 4.4 (Technical trick). In order to treat the hierarchy of the ambient process as a set
theoretical one, we have to consider the top-level ambients arranged in a top box - hereafter
master ambient'®. This mean that if we have to analyze a process as P|Q, we will analyze the
process u[P|Q], where u is the master ambient.

4.6.1 Parallel composition

Assume that (S1,—1,¢1) and (S2, —2, ¢2) are the labeled syntax trees for the processes P
respective P,. According to the remark 4.1, we can suppose that the sets of urelements chosen
for the two labeled trees are disjunct!?. We can construct the syntax tree for P;|P, using the

1TFurther we write $Br({c1, ca, ...)) for all ¢; € € in order to denote the result of substituting all names n € AUTI
that appear in capabilities by Pr(n)

18 This choice is sustained by the reduction rule, (Red Amb): If P — @ then n[P] — n[Q], of Ambient Calculus

19Tf this is not the case, because the labeled tree is unique up to the choice of the urelements, we can choose
other urelements for Py

13

rules of Ambient Calculus. All we have to do further is to define the function ¢ for the new
syntax tree.

Suppose that aq,as € U are the identities of the master ambients in the two cases (i.e.
(S1,—1,¢1) is the tree for ui[P1] and (S2, —2, ¢2) is the tree for us[Ps]). Consider a € U a new
urelement (unused in the two labeled trees). Now we define the function id for u[P;|Ps] by:

id(u) = a,
id(n) = idy(n) for each n € Py \ {a1}, id is not defined in oy,
id(n) = ida(n) for each n € Pa \ {a2}, id is not defined in aq

Of course, from the way of composing two processes by parallel operator, we have e, = e,, U
€as- If (&1, f1, F1) is a state process for Py and (s, fa, F3) is a state process for Py, then the
state process constructed in top of the labeled syntax tree defined before will be denoted by
<(€1,f1,F1> || <52, f2,F2>. SO, we have H 6% x 6% — 6%.

Theorem 4.10. A state-process for Pi|Py is congruent with (€1, f1, F1) || (€2, fa, F2).

Proof. Suppose that ST is a state-process for P;|P>. We will prove that ST = (&1, f1, F1) ||
(&2, fa, Fo). We define ¢ such that to associate the master ambient of P;|P, with u, and the
rest of urelements to the corresponding ones of (&1, f1, F1) || (€2, f2, F2) that point to the same
ambients or atomical processes. In the same way we define the projection Bt to associate the
pairs of natural numbers that rename the same new names or the same name variables. With
these definitions, the congruence can be easily prove. O

Theorem 4.11. If STp, = STp, and ST, = STg, then STp, || ST, = STp, || STg,

Proof. We define (as being (p for urelements chosen for P;, (g for urelements chosen for Q;
and that associates the master ambient of STp, || STg, with the one of STp, || STg,. Pr will
be the concatenation of Prp and Pry. With these definitions the congruence is immediate. [

Theorem 4.12. If STp = ST then STpr = STg|r-

Proof. Because STp = STg and STgr = STg, using the previous theorem, we have STp ||
STr = STy || STr. We proved that STp || STgr & STP|R and STg || ST = STQ\R~ Now, by
transitivity, we obtain the desired relation. O

4.6.2 Ambient composition

Assume that the labeled syntax tree for P; is (S1,—1,¢1). We want to construct the labeled
syntax tree (S, —, @) for ¢j.ca...ck.m[P;]. Consider that the labeled syntax tree of P; has wu;
as its master ambient, with the identity a;. Let «,8 € U be two urelements unused in the
labeled syntax tree of P. Let u be the master ambient of ¢;.ca...cy.m[P1]. We can define, in
the standard way, the syntax tree of u[cy.ca...c.m[P1]] using the rules of Ambient Calculus.
Further we define id for it by:

id(u) = a, id(m) = 3,
id(n) =idy(n) for all n € Py \ {u}, id is not defined in uq
Of course, from the way ambient composition is defined, we have e, = {eg}, and eg = e,,. If

(&1, f1, F1) is a state-process for Py, then a state-process constructed in top of the labeled syntax
tree defined before is denoted by ¢;.ca....c,. mQ(E, f, F'). So, we have ¢;.c3...c;.mQ : 6% — &F.

Theorem 4.13. A state-process for ¢y.ca....c,.m[P) is congruent with c;.ca....c,.mQ(E, f, F).

Proof. Suppose that ST is a state-process for ¢1.cs....c,.m[P]. We prove that ST 2 ¢;.ca....c,. m@Q(E, f, F).
We define (as associating the master ambient of ST with the master ambient of ¢1.ca....c,,. mQ(E, f, F),
and the urelements chosen for the same occurrence of the same atomical process or ambient in

the both state processes. With these definitions the congruence is immediate. O

14

Theorem 4.14. If STp = STy then c;...c;.n@QSTp = ¢;...c,;. nQSTy.

Proof. We define (' as being ¢ for the urelements of P and that associates the urelement chosen
for n in ¢;...c;.n@QSTp with the one chosen for n in ¢;...c;.n@QSTy. This definition verify the
requirements of congruence relation. O

Theorem 4.15. If STp = STq then ST, p) = ST, g

Proof. Because STp = STg, using the previous theorem, we have nQSTp = nQSTy. We
proved that ST, p) & n@QSTp and ST, = n@QSTg,. Now, by transitivity, we obtain the
desired relation. O

4.6.3 Replication

Starting from the definition of ||: 6% x 6T — &F, we can define ||?: 8T — &% by (||* P) =
P P.
def

Then, inductively, we can define for each k € N, (||¥ P) = (||[F=! P) || P. As a limit it is
possible to define ||*° P, and this state process corresponds to !P.

Proposition 4.16. The following statements are true:
1. STp ||°°= STp || (STp ||>°), STo ||>°= STo.
2. (STp |[*) [[°= STp ||
3. If STp = STq then STp ||>°= STq ||°°.
4. STpiq 1= (STr [|) || (STq ()

Proof. 1. If for STp we have Up UUy4 = {a, 8,7, ...} then for STp ||*° we have UPX UUS =
{a1,as,...01, B2, B3, .71, V2, --C1, 2, (3, ... }. We will consider a state process STy = STp with
U%UUY = {ao, Bos70,---Co}- So, STp || (STp ||*°) =2 STy || (STp ||°°). We can define ¢ such
that for all v € {a, 8,7,...C} and all 7 € {0,1,2,...}, ((v;) = V1. It is easy to verify that this
is a congruence relation.

2. This can be reduced to the definition of a bijective function between N x N and N. This
can be done with Cantor’s diagonal method.

3. Suppose that for STp we have UpUU4 = {ap, Bp, ...(p} and for STy we have UpUUy =
{ag, Bg,..-Co} with ((vp) = vg for all v. Suppose that for STp ||*° we have UP UUF =
{ap,ap,..0p, 0%...0p,0p, ...} and for STy ||>° we have UPUUZ = {ag, agy, -0, 8505505, -}
Then we can establish the congruence between STp ||*° and STg ||* by defining a function
(k) = ViQ. This function is defining a congruence.

4. The proof goes in the same way. O

As a consequence of the previous results we can state the following;:

Theorem 4.17. STp ||*° is the state-process for |P.

4.7 The soundness theorem

The next results prove that the class of ambient calculus processes with the structural equiva-
lence relation is isomorph with the class of state processes with the congruence relation, by the
function that associates to each ambient calculus program the state process constructed for it.

Proposition 4.18. If we use the notation STp for the state-process of P, then the next asser-
tions are true:

15

1. STp =2 STp 9. STimmy.p £ ST p

2. STp =2 STy = STg =2 STp IO.ST(WL)(Vm)p = ST(um)(un)P

3. STP = STQ, STQ = STR = STP = STR JI.ST(Vn)O = ST()

4. STp = STy = ST(Vn)p = ST(Vn)Q IQ.ST(Vn)p‘Q = STP\(WL)Q ifné¢ fn(P)
. ST(yn)(m[P]) = STm[(un)P] when n #m 13.STP|0 =~ STp

6. STp = STg = STu.p = STy 14.5T(p|Q)|R = STP‘(Q‘R)

7. 8Tp =2 STg = ST(,L)_p = ST(n)_Q 15.STP|Q = STQ|p

Proof. 1, 2, 3 these three rules are consequences of the theorem 5.1.

4. Suppose that in the formula (vn)P, n will be replaced by (k,l) (unused before), and
in the formula (vn)Q, n will be replaced by (s,t) (unused before). Because STp = ST, the
function Pr is associating all the new names and name variables of P with the new names and
name variables of Q. We will extend this function by Br((k,l)) = (s,t). With this extension
we have ST(yn)P = ST(Vn)Q

5. Suppose that we have the state-process for P already constructed. The state-process
for (vn)(m[P]) will associate an urelement, «, to m and will replace all the occurrences of n
by (k,l) (unused in STp). The state-process for m[(vn)P] is associating to each occurrence of
n the pair (s,t) (unused in STp) and to m an urelement . Defining ¢ as the identity for all
urelements belonging to the state-process of P and ((«) = (3, and defining Pr((k,1)) = (s,t)
and as identity in rest, we obtain the desired relation.

6. Suppose that {1, g, ...y } is the top-level structure of the process P and that {31, B2, ...0k}
is the same for Q. If Fp({a1,as,...ar}) = (c1, ¢, ...c,) (and, by the definition of bisimulation,
Fo({$1,B2,...Bk}) = (c1,ca, ...cn)), we define Fay p({on, g, ..o }) = (M, c1,¢2,...c). If Fp is
not defined in {1, ag,...a} then we define Fis p({aq, ag,...ax}) = (M,) (and, by definition,
Frro({B1, B2, ...0k}) = (M, €)). Now the requirements of the definition are fulfilled.

7. This proof goes in the same way as the one for the previous rule.

8. This goes immediately from the fact that (cy,...,cx) = (g, ¢1, ..., k)

9. This goes as 6.

10. Suppose that in (vn)(vm)P, n is replaced by (k,) and m is replaced by (k4 1,1), then
in (vm)(vn)P, m will be replaced by (k,l) and n by (k+1,1). We define Pr((k,1)) = (k+1,1)
and Pr((k + 1,1)) = (k,l) and identity in rest. The conditions of the definition of congruence
can be easy verify.

11. Indeed there is no occurrence of n in 0, i.e we will cut (vn) and no modification will be
done more.

12. When the new name will be replaced by (k,[) in the first process the replacement will
be done only inside @) because there is no free occurrence of n in P. We will obtain the same
formula as for the second process. The congruence will be a consequence of the property of
reflexivity

13. The canonical processes for the two programs are identical.

14. We define ¢ such that the urelements corresponding to the same occurrences of the same
ambients or atomical processes in P, () respective R, in the two state-processes, to correspond
each other.

15. idem.

16. If = and y are name variables, then they will be replaced by (k,) respective (s,t), and
all we have to do is to define Pt such that these two to correspond each other. If z and y
are variables over capabilities, then the property is true by the convention we made before:
(C1y e eCly @y Cri 1y eny C) = (Cy e eCty Yy Cot1y ey Ck) O

Theorem 4.19. If we use the notation STp for the state-process of P, then

P=,Q iff STp = ST,

16

Proof. (=) If P =, Q then STp = STy,.
For proving this, it is enough to prove that the dual rules (for state-processes with the congru-
ence operator) of the 22 rules that define the structural congruence over ambient processes, are
true. But all these are already proved. Indeed the dual expressions of the rules 1-4 were proved
in proposition 5.3, 1-4, the dual of the rule 5 was proved in theorem 6.3. The dual of the rules
6,9-11 were proved in the proposition 6.7, the dual of 7 in the theorem 6.6 and the dual of the
rules 8, 12-22 were proved in the proposition 5.3, 5-16.

(<) If STp = STg then P =, Q.
Let STp, STq be two congruent state-processes, Sf; = (Ep, fp, Fp) and S, = (g, fo, Fo) be
the canonical state-processes for them, with €p = (Xp, Ap,ep), Eg = (Xg, Ag,eq).
This proof have to be done by induction on the complexity of the flat systems, and of the
functions F' (i.e. by induction on the structure of the ambient processes involved). We will
try to make the reverse construction, starting from these state-processes, we will identify the
ambient calculus processes that correspond to them, and we will prove that these are structural
congruent.
The function (is associating to each urelement that points to an ambient of STp the urelement
of STy that points to an ambient with the same name, and the same is happening for atomical
processes. Because £p =, £g, we have that STp and ST have the same bozes inside bozes
structure. Using the rules 5, 20 and 21 of structural congruence, we obtain that the structural
congruence is up of the way of arranging objects inside a box. Going up, with the rule 7,
boxes having the same names and containing structural congruent objects are still structural
congruent. Now, using the rules 12, 14 and 15 we can be sure that adding the same lists of
capabilities in the same places of our structures, even for associations of objects (as in situations
when some objects are bounded together by brackets), the processes remain still structural
congruent. The rules 4, 8, 16, 17 and 18 preserve the structural congruence when we identify
the new names of our processes. We will use the function Bt for identifying the new names
that correspond each other in the two processes. Now the rules 13 and 22 allow us to do the
same for input, still preserving the structural congruence. The rules 9, 10 and 11 allow us to
use replication operator still preserving the structural congruence. And last, we can, by adding
the process 0, to go from canonical processes up, preserving, still, the structural congruence.
In this way we can be sure that our processes are structural congruent. O

Corollary 4.20. If STy and STy are two state processes constructed for the same ambient
process, then ST, = STs.

So, the construction of a state process for a given ambient process is unique up to congruence.

Theorem 4.21 (Soundness Theorem). If we denote by SF the class of state-processes, then
(6%,2) is a sound model for Ambient Calculus.

Proof. This result is a direct consequence of the previous proposition. O

5 The Logic

The logic we intend to construct is a branching propositional temporal logic, CTL*?°. The
requirements of such a construction [7] are to organize a structure 9t = (Sy, S, %R, £) where
Sp is an initial state of our model, & is the class of all possible states in our model, R is the
accessibility relation between states, /8 C & x &, and £ : & — P(2p) is a function which will
associate to each state S € & a set of atomical propositions £(S) C P(p) - the set of true
atomical propositions in the state S (2p will be the class of atomical propositions).

We developed the state processes to use them as states in our logic. The choice of the initial
state depends on the purpose of our analysis. If we are interested in the future of an ambient

20we choose C'T'L* because is more expressive then CTL, but a CTL is possible as well

17

calculus process P, then the labeled syntax tree of P will be the initial state. But if P will
interact with another process @, or will become child of an ambient, or both like in m[P|Q],
then, even if we have a particular interest on P, the initial state will be the labeled syntax
tree of m[P|Q] (we can use, for defining this, the computation operations developed for labeled
trees, i.e. || and m@).

Definition 5.1. Assume that STy = (&, fo, Fo) with & = (UJUO°, U, ep) is our initial state.

Then we define & for all state processes ST = (€, f, F) with £ = (Us UO,Up,e) by
def

6 = {ST |Up CUR, OC0y,Us Uy and f = folusuouus}-
The set G consists in all the state processes of all ambient processes that contain the same
ambients and atomical processes as P, with the same identities, but in possible different spatial

structure?’. In extenso we will accept that the possible states have Up = U%, O = Op, and
Ua = U922,

Definition 5.2. Now we consider the set of atomical propositions defined as:
Ap = {zinylx e UpUUAUO and y € Uy UO}.

In our logic ziny will be just an atomical proposition and z, y just letters. The cardinality
of 2Ap will be card(Up) x card(Us) x card(O) which depends (polynomial) on the number of
atomical processes and ambients in the initial ambient process.

Definition 5.3. We define the interpretation function £: & — P(2p) by:

L(S) ={ziny | (x ey if x €Up), or (e; €e, if t € UsUO)}

Definition 5.4. We define the accessibility relation 8 C & x & as it follows:

it STp, STy € G are the state processes for the ambient processes P and @, then (STp, STy) €
Riff P — Q. (i.e. @ can be reached from P in one step of ambient calculus reduction - this
explains why STp, STg € 6).

5.1 Syntax

Following the classic way of introducing CTL* we define a fullpath as an infinite sequence
So, 51, ... of states such that (S;, S;;1) € R for all 522,

Further, we introduce the syntax of the CTL* logic in the usual way [7]. We inductively
define a class of state formulae (formulae which will be true or false of states) and a class of
path formulae (true or false of paths), starting from 2(p. We have the classical logic operators -
A and — - together with the temporal operators X (next time) and U (until). We have, as well,
the path quantifier E (for some futures). From these we can derive the temporal operators G
(always) and F' (sometimes), and the path quantifier A (for all futures). The propositions of
this logic can be satisfied by processes, or by sequences of processes (as a computational path).
The syntactical rules are the classical ones for CTL* [7].

Syntactical rules:

1. Each atomical proposition ainfg € AP is a state formula
2. If p, q are state formulae then so are p A q, —p

3. If p is a path formula then E p, A p are state formulae

21The reduction rules of Ambient Calculus allow the destruction of some complex processes by consuming
capabilities, but do not allow construction of some complex processes.

22We include here also the situations when some ambients were dissolved by consuming open capability; we
consider, in this case, that these ambients still exist in our process, but they have an ”empty position”.

23We use the convention that if z = (Sp,S1,...) denotes a fullpath, then z?! denotes the suffix path
(Si, Sit1,Sit2,--)

18

1.
2’
3.

Each state formula is a path formula
If p, ¢ are path formulae then so are p A ¢, —p

If p, ¢ are path formulae then so are Xp, pUgq

Syntactical conventions:

1.

2
3
4.
)

5.2

Ap abbreviates = E—p.

. EFp abbreviates E(true Up).
. AGp abbreviates " EF—p.

AFp abbreviates A(true U p).

. EGp abbreviates = AF—p.

Semantics

We now define |= inductively. We write 9, Sp = p to mean that the state formula p is true at
state Sy in the model M, and M, = = p to mean that the path formula p is true for the fullpath
x in the structure 9. The rules are:

M, Sp = P iff P e £(Sy), where P € Ap

M, So EpAgiff M, So=pand M, Sy E=gq

M, So | —p iff it is not the case that M, Sy = p

M, Sp = Ep iff 3 fullpath z = (S, S1,...) in M with M,z Ep
M, Sp = Ap iff V fullpath x = (Sp, S, ...) in DM with M,z =p
Mz E=pif M, Sy =p

M EpAqgiff M alE=pand M =g

M, x = —p iff it is not the case that M,z = p

M,z = pUqiff 3i (M, 2° =g and Vj (j < i implies M, 27 = p))
Mz = Xpiff M2t =p

Definition 5.5. A state formula p (resp. path formula p) is valid provided that for every
structure M and every state S (resp. fullpath z) in 9 we have M, s = p (resp. M,z = p).
A state formula (resp. path formula) p is satisfiable provided that for some structure 9t and
some states S (resp. fullpath x) in 9T we have 9, S = p (resp. M, z = p).

The following theorem provides a logical characterization of structural congruence.

Theorem 5.1. Let Py, Py be two ambient processes. Then the next assertions are equivalent:

1.

Pr=. P

2. There are two models 9y, My for the two processes such that the next conditions are

satisfied:

(a) There exists two bijective functions
C:ULUULUO; - U3 UU3UO, and Pr: AUTL — A UL with the properties®:

24As before we write Pr({c1,cz2,...)) for all ¢; € € in order to denote the result of substituting all names
n € AUII that appear in capabilities by Pr(n)

19

i. (Up) =UB, ((Uy) = Uj and ((y) = {((2)] for all x € y};
it. Pr(n) =n for alln € AUIT\ (N x N)

iii. Pr(fi(a)) = f2(¢()) for alla € U UUL U Oy

iv. Pr(Fi(a)) =¢ F2(¢(a)) for alla € U, UUL UO;

(b) The two logics fulfill the conditions:
My, 51 ainf iff M2, S = ((a)ind(3)

Proof. We already proved that 1 < 2. For proving that 2 < 3 we observe that the clauses
of 3 are the same with those from the definition of congruence, excepting the clause b. So,
all we have to prove is that the clause b is equivalent with the fact that the two flat systems
are weak-bisimilar. But this is immediate from the way we define the semantics for atomical
sentences of our logic, starting from the equations of the flat system associated with it. O

<

<

5.3 Applying the logic

We reconsider here the examples discussed on the beginning of the paper to see how the logic
proposed is solving the discussed problems?®.

Consider the ambient process that describes the interaction of a firewall with an agent
knowing the passwords. We have

(vn)(K'[open k.k"[Q]]|n[k[out n.in k'.in n.0)|open k'.open k" .P]) (5.1)

In order to construct the state process for it we will wrap it in a master ambient v and we
replace all the occurrences of the new name n by (1, 1):

ulk'[open k.K"[Q]]|(1,1)[k[out (1,1).in k'.in (1,1).0]|open k".open k".P]] (5.2)

For 5.2 we choose the urelements: « for u, 8 for (1,1), o for 0 « for k, &’ for K/, " for k", p for
P and q for Q with «, 3, k, k', k", p,q,0 € B. So, Us = {a, B, k, k", k"}, Up = {q,p,0}, O =0,
and f is defined by: f(a) = u, f(8) = (1,1), f(0) = 0, f(r) = k, f(s') = k', F(") = k",
flq) =Q, f(p) = P. Following the definition of e we obtain the flat system:

eo = {er e5} —> { ex € eq . { /i'.ina %s true
P eg € eq Bina is true
e = {ewn} = { e €ey = { K'ink’ istrue
ex €€ king is true
es = {ex, 0} = e eﬁﬁ — { pind s truc
ewr = {q} = { g€ey = { q¢ink” s true
e = {0} = { o€e, = { oink s true

In this way we obtained the list of true atomical propositions. In tablel we can see a map of

all set of atomical propositions, 2p, for this state. This matrix has one line for each element of

U4 UQO, one column for each element of Up UU4 U O, and is constructed by setting the entry

of column z and row y to 1, if the proposition xiny is true. All the empty entries are set to 0.
The function F' have the values:

F(a) = {(g,e,...), F(B) = {(eg,&,...), F(o) = {out(1,1),in k' ;in(l,1),e), F (k) = (g,¢,...),

F (k') = (e,e,...), F (k") = (open k,e, ...}, F(q) = {(g,¢,...), F (p) = (open k', open k" ¢, ...).

25For these examples we will construct directly the state processes. We skip the intermediary steps. For a
extended construction can be consulted the Appendix.

20

~
=
N

Tablel

a| Bk | K'|o|p]|aq Table2 | a | p | q | r | {gr}
« 0O|1]0]1 010]01]0 a 011010 1
5 J0]0[1[0]0]0[1]0 {gry [OJO0[1[1] O©
K 0]0]0] 0 0|11]0]0
K ojojolo|1]0][0]O Table3 | o | p | q |7
W 00000]0]0]1 a [0[1]1]1

The property we are interested in could be expressed as
Firewall|Agent = AF (Bina \\ ging A ping)

It says that in all time paths exists at least a reachable state for which n is a child of the master
ambient u = f(a), @ = f(¢) and P = f(p) are children of (1,1) = f(8). Further, for checking
the truth value of this statement, a model checker could be use. Proving that our logical formula
is true it finally means that our mathematical model is a correct one. Vice versa, if is not valid,
the model checker will give us a counter example that will show the conflict in our model?5.

Further we will show how our logic makes the distinction between u[P|Q|R] and u[P|c.(Q|R)].
Suppose that in both cases we choose f(«) =u, f(p) = P, f(¢) = Q and f(r) = R. The first
process will satisfy the logical proposition A, while the second will satisfy B:

A= pina A gina Arina, B := pina A {q,r}ina A gin{q,r} Arin{q,r}.

This difference is possible because in this case for both processes Up = {p,q,r} and Uy = {a},
but for the first one O = () while for the second O = { {¢,r} }. In the Table2 can be seen
the set of atomical propositions for the process u[Plc.(Q|R)]. Observe that in this case, the
elements of O are in the propositions as well. In Table3 the same atomical propositions, but
for the process u[P|Q|R].

6 Conclusions

Our approach to Ambient Calculus opens the perspective of using model checking algorithms
(or software) developed for temporal logics in analyzing mobile computations. This is because
we found a way of implementing the information behind the ambient processes, using the two
matrices, and we constructed the algorithms to calculate the accessibility relation between
states.

Having the description of the states, together with the algorithms for accessibility relation,
all we have to do for having model checking for mobile computations, is to use further the
algorithms for model checking CTL* (a CTL is possible also) and we are investigating now this
possibility.

Our ongoing researches make us confident in the possibility to use NuSMV, together with
an external translator (used to assign to the ambient calculus process its labeled syntax tree)
to model check Ambient Calculus.

References

[1] P. Aczel. Non-Well-Founded Sets. CLSI Lecture Notes Number 14 Stanford: CSLI Publication, 1988.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell. Garland
Publishing, Inc., fourth edition, 2002.

[3] J. Barwise and L. Moss. Vicious Circles. On the Mathematics of Non-Wellfounded Phenomena. CLSI
Lecture Notes Number 60 Stanford: CSLI Publication, 1996.

26We performed this analysis, for our example, in[9] where can be found all the technical information con-
cerning this implementation in the NuSMV software and the resources consumed to perform it

21

(4]
(5]

(6]
(7]

L. Cardelli and A.D. Gordon. Ambient logic. http://www.luca.demon.co.uk/.

L. Cardelli and A.D. Gordon. Anytime, anywhere. modal logics for mobile ambients. Proceedings of the 27th
ACM Symposium on Principles of Programming Languages, pages 365-377, 2000.

L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science, Special Issue on Coordina-
tion, D. Le Mtayer Editor, pages 177-213, June 2000.

E. A. Emerson. Temporal and modal logic. Handbook of Theoretical Computer Science, B: Formal Models
and Sematics:995-1072, 1990.

F. Honsell and M. Forti. Set Theory with Free Construction Principles. Annali Scuola Normale Supeiore di
Pisa, 1983.

R. Mardare and C. Priami. A logical approach to security in the context of ambient calculus. to appear in
Electronic Notes in Computer Science, Elsevier, available at http://dit.unitn.it/ mardare/publications.htm,
2003.

22

inm

ope

Figure 1: Syntax tree of the process A.2.

A The construction of a state process

We present further the construction of a labeled syntax tree first and then of a state process
for a given ambient process.
Consider the ambient calculus process:

mlopen n.Q|slout m.in m.nfopen t.(out s.(open s.P|R)|K)]|] In[P]. (A.1)

As a general rule, we embed our program into a master ambient®” (the master ambient will
have a fresh name). Our program becomes:

u[mlopen n.Q|s[out m.in m.n[open t.(out s.(open s.P|R)|K)] || |n[P]] (A.2)

The syntax tree of this process is in Figure A.

First step is the definition of ¢. We define the identity function id as:

id(u) = a, id(m) = B, id(n) =~ (the child of w), id(s) = ¢, id(n) = p, id(Q) = ¢, id(P) = p’
(the child of that n which have ~ as identity),
id(P) = p (the child of that n which have p as identity), id(R) = r, id(K) = k,
where {a, 8,7, 0, 1,p,¢,p', 7, k} CU.

Observe that in our situation O’ = {e’ "} (see Figure A). The space function sp for PUO’
will be defined starting from the values of id for atomic processes and following the definition
of decoration:

27This is a technical trick that is not disturbing our analysis because of the rule (RedAmb): P — Q = n[P] —
n[Q)], [6], but it helps to treat the processes as a whole from the spatial point of view.

23

sp(u) = {sp(m), sp(n)} (here n is the child of w), sp(m) = {sp(s), ¢}, sp(n) = {p'} (the child
of w), sp(s) = {sp(n)}, sp(n) = {sp(e')}, sp(e’) = {k, sp(e")}, sp(e”) = {p,7}.

For capabilities the identity function have the values:

id(open n) = q, id(out m) = p, id(in m) = p, id(open t) = {k,{p,r}}, id(out s) = {p,r},
id(open s) =p

and the spatial function:
sp(open n) =1, sp(out m) =1, sp(in m) = 2, sp(open t) =1, sp(out s) = 1, sp(open s) =1
Concluding, the function ¢ will be defined as (we will denote sp(z) by sp.):

d)(u) = <Ol, {Spm7 Spn}>’ ¢(m) = <ﬁ7 {SPSa q}>a

o(n) = (v,{p'}),(the child of u) @(P) = (p',p’)(the child of n),
¢(open n) = (¢, 1), o(Q) = (4, q),

¢(s) = (0. {spn}), ¢(out m) = (u, 1),

¢(Zn m) = <:U’72>’ ¢(’I’L = <M?Sp0'>7

p(o') = (0. {sper}), ¢(open t) = ({k,{p,7}},1),
p(o") = (0. {p,7}), O(K) = (k, k),

p(out s) = {{p,7},1), ¢(R) = (r, 1),

¢(open s) = (p, 1), ¢(P) = (p,p),

for all e € O\ O, ¢(e) = (0,0), forall | € O, ¢(|) = (0,0),

ul 1% (a, ‘l{SPﬂ:SPVH
| 2 (0,0)
/ \ o
m[]— <ﬁ|,{sp57q}) n[] = (v, {p'})
¢
/I_) <®’0>\ P (. p)
¢ ¢
e — (0,0) s[] = (3, {spu})
¢ N ¢ ¢ | M
open n — (g,1) Q= (g,9) e — (0,0
PN ,
out m — (u, 1) o — (0,0)
N
inm — {(u,2) n[] 2, (1, {spe})

Figure 2: Labeled syntax tree of A.2.

The labeled syntax tree is in Figure A.
We can define now the functions ur, e, f and F'.

24

ur(u) = a, ur(m) = B, ur(n) = v (the child of u), ur(s) =4, ur(n) = p, ur(Q) = q,
ur(P) = p’ (the child of n), ur(P) Z(p;/;ﬂ‘(]{{) :}r, ur(K) =k, ur(e') = {k,{p,r}},
ur(e”) = {p,r

We can define now the function f:

f(a):u, f(ﬁ):m’ f(7)2n7 f(6)257 f(/’b):na f(Q):Qa f(p):P’ f(p/):P’ f(T)ZR,
f(k) =K, f({p7r}) = <0’O>v f({ka{va}}) = <070>

Note that f is not injective because f(p) = f(p’) and f(v) = f(p).

We define, as before, Uy = {u € U | f(u) € A} and Up = {u € U | f(u) € II}, which in our
example became:

Up ={p.q,7,k,p'}, Ua ={a, 8,7, 6, u} and O = {{k,{p,r}},{p,7}}.
The function e (as before, we denote e(z) by e,):

ea ={ep,eq}, ep ={es q}, e ={p'} s = {en}, e = {eqn b eprtpryy = (ks egpiry)
e{pry = {057}
The function F:
F(a) = (g,¢,...), F(B) = (g,e,...), F(7) = (g,¢,...) F(6) = (e,¢,...) F(u) = {out m,in m,e),
F(q) = (open n,e), F(p) = (g,¢,...), F(p') = {(open s,¢€), F(r) = (g,¢,...), F(k) = (g,¢,...),
F({p,r}) = (out s,¢), F({{p,r}, k}) = (open t,¢).

25

