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The Local Relational Model: Model and Proof Theory

Luciano Serafini∗ Fausto Giunchiglia∗,† John Mylopoulos†,‡ Philip A. Bernstein§

Abstract

In this paper we identify desirable data management mechanisms for peer-to-peer (P2P) computing. P2P
networks have to remain open and dynamic, while peers remain autonomous and need only be aware of their
immediate acquaintances. In such a setting, we argue that one cannot assume the existence of a global schema
for all the peer databases. Instead, one needs a data model which views the space of data being managed
within the P2P network as an open collection of possibly overlapping and inconsistent databases. Accordingly,
the paper proposes the Local Relational Model and offers a formal semantics for coordination between peer
databases. Our result generalizes Reiter’s characterization of a relational database in terms of a first order
theory, by providing a syntactic characterization of a relational space in terms of a multi-context system.

1 Introduction

Peer-to-peer (hereafter P2P) computing consists of an open-ended network of distributed computational peers,
where each peer can exchange data and services with a set of other peers, called acquaintances. Peers are fully
autonomous in choosing their acquaintances. Moreover, we assume that there is no global control in the form of a
global registry, global services, or global resource management, nor a global schema or data repository. Systems
such as Napster and Gnutella popularized the P2P paradigm as a version of distributed computing lying between
traditional distributed systems and the web. The former is rich in services but requires considerable overhead to
launch and has a relatively static, controlled architecture. The latter is a dynamic, anyone-to-anyone architecture
with little startup costs but limited services. By contrast, P2P offers an evolving architecture where peers come
and go, choose whom they deal with, and enjoy some traditional distributed services with less startup cost.

We are interested in data management issues raised by this paradigm, where each peer may have data to
share with other peers. For simplicity, we assume that each peer’s database is relational. Since the data residing
in different databases may have semantics inter-dependencies, we allow peers to specify coordination formulas
that explain how the data in one peer must relate to data in an acquaintance. For example, the patient database
of a family doctor and that of a pharmacy may want to coordinate their information about a particular patient,
the prescriptions she has received, and the dates when these prescriptions were filled. Coordination may mean
something as simple as propagating all updates to the Prescription and Medication relations, assumed to exist
in both databases. In addition, we’d like a query expressed with respect to one database to be able to use
relevant databases at acquaintances, acquaintances of those acquaintances, and so on. To accomplish this, we
expect the P2P data management system to use coordination formulas for recursively decomposing the query into
subqueries that are evaluated with respect to the databases of acquaintances. Coordination formulas may also
act as soft constraints or guide the propagation of updates. In addition, peers need an acquaintance initialization
protocol where two peers exchange views of their respective databases and agree on levels of coordination
between them. The level of coordination should be dynamic, in the sense that acquaintances may start with little
coordination, strengthen it over time with more coordination formulas, and eventually abandon it when tasks and
interests change.

In such a dynamic setting, we cannot assume the existence of a global schema for all databases in a P2P
network, or even those of all acquainted databases. Moreover, peers should be able to establish and evolve
acquaintances, preferably with little human intervention. Thus, we need to avoid protracted tasks by skilled
database designers and DBAs required by traditional distributed and multi-database systems [15, 1]. In [2] we
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introduce the intuitions underlying our proposed data-management model in P2P environment. In this paper
we introduce the Local Relational Model (LRM) as a data model specifically designed for P2P applications.
LRM assumes that the set of all data in a P2P network consists of local (relational) databases, each with a set
of acquaintances, which define the P2P network topology. For each acquaintance link, domain relations define
translation rules between data items, and coordination formulas define semantic dependencies between the two
databases. Two of the main goals of the data model are to allow for inconsistent databases and to support
semantic interoperability in the absence of a global schema.

The paper is structured as follows. Section 2 presents a motivating scenario. In Section 3 we characterize
the LRM semantically in terms of relational spaces. A relational space is a pair consisting of a set of databases
(the peers) and a domain relation which makes explicit the relations among the domains of the databases. The
LRM semantics is a variation of the semantic of distributed first order logic [7], which itself is an extension
of the Local Models Semantics, proposed in [8, 6]. Section 4 introduces coordination formulas that relate the
contents of peer databases and define what it means for a coordination formula to be satisfied (with respect to a
relational space). The crucial step in this definition is the quantification across the distinct domains of different
databases. This section also illustrates the use of coordination formulas as deductive rules and it defines what
it means to give a global answer to a query with respect to a relational space. The intuition is to compute the
union of all the answers of the peer databases, taking into account the information carried by domain relations.
Finally, Section 5 contains the main technical result in this paper. The section first proposes a calculus for
handling coordination formulas which is proved correct and complete with respect to the semantics introduced
in the previous sections. In [17], Reiter proves that any partial relational database can be uniquely represented
by a generalized relational theory. We generalize this result by showing that a relational space is uniquely
represented by a new kind of formal system called a multi-context system, consisting of a set of generalized
relational theories (one per database) and a set of coordination rules. An important corollary of this result is the
syntactic characterization of the notion of global answer to a query. This result can serve as foundation for sound
and complete implementations of a query answering mechanism in a P2P environment.

2 A motivating scenario

Consider, again, the example of patient databases. Suppose that the Toronto General Hospital owns the Tgh
database with schema:

Patient(TGH#,OHIP#,Name,Sex,Age,FamilyDr,PatRecord)
PatientInfo(OHIP#,Record) Admission(AdmID,OHIP#,AdmDate,ProblemDesc,PhysID,DisDate)
Treatment(TreatID,TGH#,Date,TreatDesc,PhysID) Medication(TGH#,Drug#,Dose,StartD,EndD)

The database identifies patients by their hospital ID and keeps track of admissions, patient information obtained
from external sources, and all treatments and medications administered by the hospital staff.

When a new patient is admitted, the hospital may want to establish immediately an acquaintance with her
family doctor. Suppose the view exported by the family doctor DB (say, Davis) has schema:

Patient(OHIP#,FName,LName,Phone#,Sex,PatRecord) Visit(OHIP#,Date,Purpose,Outcome)
Prescription(OHIP#,Med#,Dose,Quantity,Date) Event(OHIP#,Date,Description)

Figuring out patient record correspondences (i.e., doing object identification) is achieved by using the patient’s
Ontario Health Insurance # (e.g., OHIP# = 1234). Initially, this acquaintance has exactly one coordination for-
mula which states that if there is no patient record at the hospital for this patient, then the patient’s record from
Davis is added to Tgh in the PatientInfo relation, which can be expressed as:

∀ f n.∀ln.∀pn.∀sex.∀pr.(Davis : Patient(1234, f n, ln, pn,sex, pr) →
Tgh : ∃tghid.∃n.∃a.(Patient(tghid,1234,n,sex,a,Davis, pr)∧n = concat( f n, ln)))

(1)

When Tgh imports data from Davis, the existentially quantified variables tghid, n and a must be instantiated
with some concrete elements of the domain of Tgh database. This amounts to generating a new TGH# for tghid,
inserting the Skolem constant <undef-age> for a (which will be further instantiated as the patient’s age) and
generating name n by concatenating her first name f n and last name ln contained in Davis. Later, if patient 1234
is treated at the hospital for some time, another coordination formula might be set up that updates the Event
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relation for every treatment or medication she receives:

∀d.∀desc.(Tgh : ∃tid.∃tghid.∃pid.∃n.∃sex.∃a.∃pr.(Treatment(tid, tghid,d,desc, pid)∧
Patient(tghid,1234,n,sex,a,Davis, pr)) → Davis : Event(1234,d,desc)

(2)

∀tghid.∀drug.∀dose.∀sd.∀ed.(Tgh : Medication(tghid,drug,dose,sd,ed)∧
∃n.∃sex.∃a.∃p.Patient(tghid,1234,n,sex,a,Davis, pr) →

Davis : ∀d.(sd ≤ d ≤ ed →∃desc.(Event(1234,d,desc)∧desc = concat(drug,dose,”atTGHDB”))))
(3)

This acquaintance is dropped once the patient’s hospital treatment is over.
Along similar lines, the patient’s pharmacy may want to coordinate with Davis. This acquaintance is initiated

by Davis when the patient tells Dr. Davis which pharmacy she uses. Once established, the patient’s name and
phone are used for identification. The pharmacy database (say, Allen) has the schema:

Prescription(Prescr#,CustName,CustPhone#,DrugID,Dose,Repeats)
Sales(CustName,CustPhone#,DrugID,Dose,Date,Amount)

Here, we want Allen to remain updated with respect to prescriptions in Davis:

∀ f n.∀ln.∀pn.∀med.∀dose.∀qt.(Davis : ∃ohip.∃date.∃sex.∃pr.(Prescription(ohip,med,dose,qt,date)∧
Patient(ohip, f n, ln, pn,sex, pr)) →

Allen : ∃cn.∃amount.(Prescription(cn, pn,med,qt,dose,amount)∧ cn = concat( f n, ln)))
(4)

Of course, this acquaintance is dropped when the patient tells her doctor that she changed pharmacy. Suppose
the hospital has no information on its new patient with OHIP# 1234 and needs to find out if she is receiving any
medication. Here, the hospital uses its acquaintance with an interest group of Toronto pharmacies, say TPhLtd.
TPhLtd, is a peer that has acquaintances with most Toronto pharmacists and has a coordination formula that
allows it to access prescription information in those pharmacists’ databases. For example, if we assume that
Tphh consists of a single relation

Prescription(Name,Phone#,DrugID,Dose,Repeats)

then the coordination formula between the two databases might be:

∀ f n.∀ln.∀pn.∀med.∀dose.(Davis : ∃ohip.∃qt.∃date.∃sex.∃pr.(Prescription(ohip,med,dose,qt,date)∧
Patient(ohip, f n, ln, pn,sex, pr)) →

Tphh : ∃name∃rep.(Prescription(name, pn,med,dose,rep)∧name = concat( f n, ln)))
(5)

Analogous formulas exist for every other pharmacy acquaintance of TPhLtd. Apart from serving as information
brokers, interest groups also support mechanisms for generating coordination formulas from parameterized ones,
given exported schema information for each pharmacy database. On the basis of this formula, a query such as
“All prescriptions for patient with name N and phone# P” evaluated with respect to Tphh, will be translated into
queries that are evaluated with respect to databases such as Allen. The acquaintance between the hospital and
TPhLtd is more persistent than those mentioned earlier. However, this one too may evolve over time, depending
on what pharmacy information becomes available to TPhLtd. Finally, suppose the patient in question takes a trip
to Trento and suffers a skiing accident. Now the Trento Hospital database (TNgh) needs information about the
patient from DavisDB. This is a transient acquaintance that only involves making the patient’s record available
to TNgh, and updating the Event relation in Davis.

3 Relational spaces

Traditionally, federated and multi-database systems have been treated as extensions of conventional databases.
Unfortunately, formalizations of the relational model (such as [17]) hardly apply to these extensions where
there are multiple overlapping and heterogeneous databases, which may be inconsistent and may use different
vocabularies and different domains. We launch the search for implementation solutions that address the scenario
described in the previous section with a formalization of LRM.

The model-theoretic semantics for LRM is defined in terms of relational spaces each of which models the
state of the databases in a P2P system. These are mathematical structures generalizing the model-theoretic
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semantics for the Relational Model, as defined by Reiter in [17]. Coordination between databases in a relational
space is expressed in terms of coordination formulas that describe dependencies between a set of databases. Let
us start by recalling Reiter’s key concepts.

Definition 3.1 (Relational Language). A first order language L is a relational language if:

1. L contains a finite set of unary predicates A;
2. for each A ∈ A, L contains a finite set of constant symbols domA; we suppose that for each A 6= B, domA

and domB are disjoint sets;
3. L does not contain functional symbols;
4. L contains a finite set of predicate symbols R.

A is the set of attributes, domA is the domain of attribute A and R is the set of relations of L. Furthermore,
there is a mapping α : R → A∗, such that, for each n-ary predicate symbol R, α(R) = 〈A1, ...,An〉 is an n-tuple
of attributes, called the attributes of R. We use the following notation: dom = ∪A∈AdomA is called the domain
of L; for each R ∈ R, with α(R) = 〈A1, . . . ,An〉, domR = domA1× . . .×domAn ; x denotes a sequence of variables
〈x1, . . . ,xn〉; d denotes a sequence of elements 〈d1, . . . ,dn〉, each of which belongs to some domain; φ(x) is a
formula with the free variable x, and φ(x) is a formula with free variables in x. For instance, the language of Davis
contains the constant symbol 1234, the relational symbols such as Patient, the unary predicates OHIP#, FName,
LName, Phone#, Sex, and PatRecord; α(Patient) = 〈OHIP#,FName,LName,Phone#,Sex,andPatRecord〉.

Definition 3.2 (First Order Interpretation). A first order interpretation 〈D,m〉 of a relational language L is a
pair composed of a non empty set D, called its domain, and a function m that maps every constant d of L into an
element m(d) ∈ dom, and every n-ary predicate R in L into an n-ary relation m(R) ⊆ domn.

Definition 3.3 (Relational Database). A first order interpretation 〈D,m〉 of a relational language L is a relational
database if:

1. D is equal to dom;
2. for each A ∈ A, m(A) = domA;
3. for each d ∈ dom, m(d) = d;
4. m(=) = {〈d,d〉 |d ∈ dom};
5. for each R ∈ R, m(R) ⊆ domR.

Since the domain of a relational database on L is fixed (i.e., the set of constants of L), a relational database on
L is uniquely identified by the interpretation function m. Notice that the term “database” is used informally while
the corresponding (semantic) formal notion is that of “relational database”. In the following, when no confusion
arises, we use the term “database” meaning also its formalization in terms of relational databases.

A complete database is one which does not contain null values or partial tuples. Notice that if m is a relational
database, then, for any formula φ, either m |= φ or m |= ¬φ (where “|=” stands for “first order satisfiability”).
In many cases, however, we have to deal with incomplete databases. A common approach is to characterize an
incomplete database as a set of first order structures, also called a state of information. We follow this approach,
and formalize an incomplete database on a relational language L as a set of relational databases on L. Notice that
the set of relational databases corresponding to an incomplete database all share the same domain, consisting of
the set of constants contained in the database. The partiality, therefore, concerns only the interpretation of the
relational symbols.

Since we are interested in modelling P2P applications, we take a further step and consider multiple, possibly
incomplete, possibly (partially) overlapping, and possibly inconsistent databases. We call such of these databases
a local database when we want to stress that it is a member of a set of (coordinated) databases. We model this by
assuming that there is a non-empty set I of indices/names of databases, and that, for each i ∈ I, Li is the relational
language associated with the local database i. Then, we associate to each Li a set dbi of relational databases on
Li. We call each element of dbi a local relational database. Each local database is therefore characterised by a
set of local relational databases, as follows.

Definition 3.4 (Sets of local relational databases). Given a family of relational languages {Li}i∈I , db is a total
function which associates to each i ∈ I a set dbi of local relational databases on Li. db is called a set of local
databases (defined on {Li}i∈I).
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In LRM, there is no notion of global consistency for a set of local databases. However, we do retain a notion
of local consistency. Each local database can be in a (locally) consistent or inconsistent state, and consistent and
inconsistent databases can coexist in a single relational space. For instance the local databases dba = {m1},dbb =
{m2,m3},dbc = /0 are respectively, complete, incomplete, and inconsistent Generally, dbi is complete if |dbi|= 1,
incomplete if |dbi| > 1 and inconsistent if dbi = /0.

In a relational space, overlapping databases represent information about a common part of the world. This
overlap has nothing to do with the fact that the same constant appears in both databases. For instance, the fact
that the constant Apple appears in a database describing computers and another describing Italian agricultural
products does not imply that these databases overlap. Rather, overlap is determined by the meaning of constants,
i.e., when the entities denoted by constants in different databases are related. To represent the overlap of two
local databases, one may use a global schema, with suitable mappings to/from each local database schema. As
argued earlier, this is not feasible in a P2P setting. Instead, we adopt a localized solution to the overlap problem,
defined in terms of pair-wise mappings from the elements of the domain of database i to elements of the domain
of database j.

Definition 3.5 (Domain relation). Let Li and L j be two relational languages, with domains domi and dom j

respectively; a domain relation ri j from i to j is any subset of domi × dom j. If ri j is a domain relation, then
ri j(di) = {d j|

〈

di,d j
〉

∈ ri j}.

The domain relation ri j represents the ability of database j to import (and represent in its domain) the ele-
ments of the domain of database i. In many cases, domain relations are not symmetric, for instance when ri j

represents a currency exchange, a rounding function, or a sampling function. In a P2P setting, domain rela-
tions need only be defined for acquainted pairs of peers. Domain relations between databases are conceptually
analogous to conversion functions between semantic objects, as defined in [18].

Example 3.1. Let us consider how domain relations can represent different data integration scenaria. The situ-
ation where two databases have different but equivalent representations of the same domain can be represented
by taking ri j and r ji as the translation function from domi to dom j and vice-versa, namely ri j = r−1

ji . Likewise,
disjoint domains can be represented by having ri j = r ji = /0. Transitive mappings between the domains of three
databases are represented by imposing r13 = r12 ◦ r23.

Suppose instead that domi and dom j are ordered according to two orders <i and < j. A relation that satisfies
the following property:

∀d1,d2 ∈ domi,d1 <i d2 ⇒ ∀d′
1 ∈ ri j(d1), ∀d′

2 ∈ ri j(d2). d′
1 < j d′

2

formalizes a mapping which preserves the orders, such as currency exchange.
Finally, suppose that a peer with database i doesn’t want to export any information about a certain object ds

in its database. To accomplish this, it is sufficient to ensure that the domain relations from i to any other database
j, do not associate any element to ds, namely ri j(ds) = /0.

Definition 3.6 (Relational space). A relational space is a pair 〈db,r〉, where db is a set of local relational
databases on I and r is a function that associates to each i, j ∈ I, a domain relation ri j.

Example 3.2. A relational space modeling the states of the database described in Section 2, is a pair 〈db,r〉,
where the first component is a tuple 〈dbTgh,dbDavis,dbAllen,dbTphh,dbTNgh〉 containing five sets of interpretations
of the relational languages associated to Tgh, Davis, Allen and Tphh and TNgh, respectively; and the second
component, r, is the tuple 〈rDavisTgh, rTghDavis, rDavisAllen, rDavisTphh〉 containing four domain relations between
those databases which have to coordinate according to constraints (1–5).

To represent the fact that 〈1234,”Pippo”,”Inzaghi”,444,M,Rec 23〉 is a row of the relation PatRecord of
the Davis database, we impose 〈1234,Pippo,Inzaghi,444,M,Rec 23〉 ∈ m(PatRecord) for each interpreta-
tion m ∈ dbDavis,

To represent the fact that 〈TG64,1234,”PippoInzaghi”,M,<undef-age>,Davis,Rec 23〉 is a row of the
relation Patient of Tgh database, we impose that, for each natural number n, with 0 ≤ n ≤ MaxAge, dbTgh

contains a model a model m, with 〈TG64,1234,”PippoInzaghi”,M,n,Davis,Rec 23〉 ∈ m(Patient).
To represent the fact that the TGH# 1234 uniquely identifies a patient in both Tgh and Davis, we impose that

rDavisTgh(1234) = rTghDavis(1234) = {1234}.
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4 Coordination in relational spaces

Semantic inter-dependencies between local databases are expressed in a declarative language, independent of
the languages supported by local databases. The formulas of this language describe properties of schemas as
well as the contents of local databases in a relational space. This language is a generalization of interpretation
constraints defined in [7].

Definition 4.1 (Coordination formula). The set of coordination formulas CF on the family of relational lan-
guages {Li}i∈I is defined as follows:

CF ::= i : φ | CF →CF | CF ∧CF | CF ∨CF | ∃i : x.CF | ∀i : x.CF

where i ∈ I and φ is a formula of Li, and x is an individual variable of Li
1.

We use Greek letters φ, ψ, to denote formulas of any languages Li i ∈ I, and Latin capital letters A, B, and
C to denote coordination formulas. The basic building blocks of coordination formulas are expressions of the
form i : φ, also called atomic coordination formulas which means “φ is true in database i”. Connectives have the
usual meaning, while quantifiers require further consideration. The formula ∀i : x.A(x) should be read as “for all
elements of the domain domi, A is true”. Likewise, ∃i : x.A(x), is read as “there is an element in the domain domi

such that A is true”. Notice that a variable x in the scope of a quantifier ∀i : x or ∃i : x can occur in an atomic
coordination formula j : φ(x) with i 6= j, allowing quantification across domains. Specifically, we allow that
within the scope of a domi formula, one can quantify over another domain dom j exploiting the domain relations
ri j and r ji. We say that an occurrence of a variable x in a coordination formula is a free occurrence, if it is not in
the scope of a quantifier

Example 4.1. Consider the coordination between Davis and Tgh (5). Its reformulation in terms of coordination
formula is:

∀Davis : f n.∀Davis : ln.∀Davis : pn.∀Davis : sex.∀Davis : pr.(Davis : Patient(1234, f n, ln, pn,sex, pr) →
Tgh : ∃tghid.∃n.∃a.(Patient(tghid,1234,n,sex,a,Davis, pr)∧n = concat( f n, ln)))

(6)

The issue now is to provide an interpretation of coordination formulas in terms of relational spaces. Let us
start by considering Definition 4.1 in detail. Item 1 states that coordination formulas are defined on the basis of
atomic formulas of the form i : φ, where φ is any formula of Li. i : φ intuitively means “φ is true in database i” and
its interpretation follows the standard rules of first order logic. Thus, in particular, if φ is of the form ∀x.ψ(x) or
of the form ∃x.ψ(x) then its interpretation is given in terms of the possible assignments of x to elements of domi.

The crucial observation for the evaluation of quantified formulas is that a free occurrence of a variable can be
quantified in four different ways: by ∀x, ∃x within an atomic coordination formula (as from Item 1), and by ∀i : x
or ∃i : x, within a coordination formula. In the two latter cases the index i tells us the domain where we interpret
x. Thus, the formula ∀i : x.A(x) (where A(x) is a coordination formula and not a formula!) must be read as “for
all elements d of the domain domi, A is true for d”. Likewise, ∃i : x.A(x), must be read as “there is an element
in the domain domi such that A is true”. The trick is that A, being a coordination formula, may contain atomic
coordination formulas of the form j : φ(x), with j 6= i. One such case can be found in Example 4.1, where, for
instance, the variables f n and ln occur free in the consequence of the implication of (6 within a coordination
formula with index Tgh, while they are bound by the quantifiers ∀Davis : f n and ∀Davis : ln.

The intuition underlying the interpretation of quantified indexed variables is that, if x is a variable being
quantified with index i and occurring free in a coordination formula with index j, then we must find a way to
relate the interpretation of x in domi to the interpretation of x in dom j using the mapping defined by ri j. More
precisely, the coordination formula ∀i : x. j : P(x), means, “for each object of domi, the corresponding object
w.r.t. the domain relation ri j in dom j has the property P”. Thus, for instance, in order to check whether the
coordination formula

∀i : x.(i : P(x) → j : Q(x)∧ k : R(x)) (7)

is true in a relational space, one has to consider all the assignments that associate to the occurrence of x in
i : P(x) any element of d ∈ domi, and to the occurrences of x in j : Q(x) and k : R(x) any element of ri j(d) and

1The following precedence rules apply: i : . . . has the highest precedence, followed by quantifiers, then ∧, then ∨, and finally →. For
instance, ∀i : x.i : φ∧ j : ψ → k : θ∨h : η, stands for: ((∀(i : x).(i : φ))∧ ( j : ψ)) → ((k : θ)∨ (h : η)).
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rik(d), respectively. Dually, the coordination formula ∃i : x. j : P(x), means “there is an element in dom j that
corresponds w.r.t. the domain relation r ji to an element of domi with property P”. Thus, for instance, in order to
check whether the coordination formula

∃i : x.(i : P(x)∧ j : Q(x)∧ k : R(x)) (8)

is true in a relational space, one has to find an assignment that associates to the occurrence of x in i : P(x) an
element d of domi, and to the occurrences of x in j : Q(x) and k : R(x) two elements d ′ ∈ dom j and d′′ ∈ domk,
respectively, such that d ∈ r ji(d′) and d ∈ rki(d′′).

Notice that in our explanation of the universal quantification we used ri j, while for existential quantification
we used r ji. This asymmetry is necessary to maintain the dual intuitive readings of existential and universal
quantifiers. Indeed, the intuitive meaning of the formula ∀i : x. j : P(x) is “for all d ∈ domi, if d′ ∈ ri j(d) then d′

is in P”, which can be rephrased in its dual existential statement “there does not exist any element d ′ ∈ ri j(d),
which is not in P”. Notice that in this last sentence, the quantification is on the elements of dom j, namely on the
elements in the codomain of the domain relation ri j, just like in the explanation of Equation (8) above.

To formalize the intuitions given above concerning the interpretation of coordination formulas, we need two
notions. The first is coordination space of a variable x in a coordination formula. Intuitively this is the set of
indexes of the atomic coordination formulas that contain a free occurrence of x. The coordination space is the
set of domains where x must be interpreted. Thus, for instance, the coordination space of x in the i : P(x)∧ j :
Q(x)∧ k : R(x) is {i, j,k}.

Definition 4.2 (Coordination space). The coordination space of a variable x in a coordination formula A is a
set of indexes J ⊆ I, defined as follows:

1. the coordination space of x in i : φ is {i}, if x occurs free in φ according to the usual definition of free
occurrence in a first order formula, and the empty set, otherwise;

2. the coordination space of x in A◦B (for any connective ◦) is the union of the coordination spaces of x in A
and B;

3. the coordination space of x in Qi : y.A (for any quantifier Q) is the empty set, if x is equal to y, and the
coordination space of x in A, otherwise.

The second notion is that of assignment for a free occurrence of a variable in a coordination formula. To
evaluate a formula A quantified over x with index i, an assignment must consider domi but also all the domains
in the coordination space. To understand how assignments work, look at Equations (7), (8). In Equation (7) we
proceed “forward” from domi to reach dom j and domk, by applying ri j and rik. In this case we say that we have
an i-to-{ j,k}-assignment. Instead, in Equation (8), we proceed “backward” from dom j and domk to reach domi

by applying r ji and rki. In this case we say that we have an i-from-{ j,k}-assignment. If J is a coordination space,
i-to-J-assignments take care of the assignments due to universal quantification, while i-from-J-assignments take
care of those due to existential quantification.

Definition 4.3 (Assignment, x-variation i-to-J-assignment, i-from-J-assignment). An assignment a = {ai}i∈J

is a family of functions ai, where ai assigns to any variable x an element of domi. An assignment a′ is an x-
variation of an assignment a, if a and a′ differ only on the assignments to the variable x. Given a set J ⊆ I and
an index i ∈ I, an assignment a is an i-to-J-assignment of x if, for all j ∈ J distinct from i,

〈

ai(x),a j(x)
〉

∈ ri j.
An assignment a is an i-from-J-assignment of x if, for all j ∈ J distinct from i,

〈

a j(x),ai(x)
〉

∈ r ji.

Definition 4.4 (Satisfiability of coordination formulas). The relational space 〈db,r〉 satisfies a coordination
formula A under the assignment a = {ai}i∈J , in symbols 〈db,r〉 |= A[a], according to the following rules:

1. 〈db,r〉 |= i : φ[a], if for each m ∈ dbi, m |= φ[ai];
2. 〈db,r〉 |= A → B[a], if 〈db,r〉 |= A[a] implies that 〈db,r〉 |= B[a];
3. 〈db,r〉 |= A∧B[a], if 〈db,r〉 |= A[a] and 〈db,r〉 |= B[a];
4. 〈db,r〉 |= A∨B[a], if 〈db,r〉 |= A[a] or 〈db,r〉 |= B[a];
5. 〈db,r〉 |= ∀i : x.A[a], if 〈db,r〉 |= A[a′] for all assignments a′ that are x-variations of a and that are i-to-J-

assignments on x, where J is the coordination space of x in A.
6. 〈db,r〉 |= ∃i : x.A[a], if 〈db,r〉 |= A[a′] for some assignment a′ that is an x-variation of a and that is an

i-from-J-assignment on x, where J is the coordination space of x in A.
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A coordination formula A is valid if it is true in all the relational spaces. A coordination formula A is a logical
consequence of a set of coordination formulas Γ if, for any relational space 〈db,r〉 and for any assignment a, if
〈db,r〉 |= Γ[a] then 〈db,r〉 |= A[a].

Item 1 states that an atomic coordination formula is satisfied (under the assignment a) if all the relational
databases m ∈ dbi satisfy it. Items 2–4 enforce the standard interpretation of the boolean connectives. Item 5
states that a universally quantified coordination formula is satisfied if all its instances, obtained by substituting
the free occurrence of x in the atomic coordination formulas with index i with all the elements of domi, and the
free occurrences of x in the atomic coordination formulas with index j different from i, with all the elements of
dom j, obtained by applying ri j to the elements of domi, are satisfied. Item 6 has the dual interpretation.

Finally, notice that the language of coordination formulas does not include negation. The addition of negation
with the canonical interpretation “¬A is true iff A is not true”, implies the possibility to define the notion of
”Global inconsistency”, i.e., there are sets of inconsistent coordination formulas (e.g., {i : φ,¬i : φ}). These sets
are not satisfiable by any relational space. On the other hand, we have that the relational space composed of all
inconsistent databases, is the “most inconsistent object that we can have (not allowing global inconsistency), we
therefore should allow that this vacuous distributed interpretation satisfies any setxte of coordination formulas.
Indeed we have that, in absence of negation, if db0

i = /0 and r0
i j = /0,

〈

db0,r0
〉

|= A for any coordination formula
A.

Coordination formulas can be used in two different ways. First, they can be used to define constraints that
must be satisfied by a relational space. For instance, the formula ∀1 : x.(1 : p(x)∨2 : q(x)) states that any object
in database 1 either is in table p or its corresponding object in database 2 is in table q. This is a useful constraint
when we want to declare that certain data are available in a set of databases, without declaring exactly where.
As far as we know, other proposals in the literature for expressing inter-database constraints can be uniformly
represented in terms of coordination formulas.

Coordination formulas can also be used to express queries. In this case, a coordination formula is interpreted
as a deductive rule that derives new information based on information already present in other databases. For
instance, a coordination formula ∀i : x.(1 : ∃y.p(x,y) → 2 : q(x)) allows us to derive q(b) in database 2, if p(a,c)
holds in database 1 for some c, and b ∈ r12(a).

Definition 4.5 (i-query). An i-query on a family of relational languages {Li}i∈I , is a coordination formula of
the form A(x) → i : q(x), where A(x) is a coordination formula, and q is a new n-ary predicate symbol of Li and
x contains n variables.

Definition 4.6 (Global answer to an i-query). Let 〈db,r〉 be a relational space on {Li}i∈I . The global answer
of an i-query of the form A(x) → i : q(x) in 〈db,r〉 is the set:

{d ∈ domn
i | 〈db,r〉 |= ∃i : x.(A(x)∧ i : x = d)}

Notationally x = d stands for x1 = d1 ∧ . . .∧ xn = dn, and ∃i : x stands for ∃i : x1 . . .∃i : xn. Intuitively,
the global answer to an i-query is computed by locally evaluating in db j all the atomic coordination formulas
with index j contained in A, and by recursively composing and mapping (via the domain relations) these results
according to the connectives and quantifiers that compose the coordination formula A. For instance to evaluate
the query

(i : P(x)∨ j : Q(x))∧ k : R(x,y) → h : q(x,y)

we separately evaluate P(x), Q(x) and R(x,y) in i, j and k respectively, we map these results via rih, r jh, and rkh

respectively obtaining three sets si ⊆ domh s j ⊆ domh and sk ⊆ dom2
h. We then compose si, s j and sk following

the connectives obtaining (si × s j)∩ sk, which is the global answer of q.
Notice that the same query q has different answers depending on the database it is asked to (because of the

quantification over i : x). Notice also that Definition 4.6 reduces to the usual notion of answer to a query when
A is an atomic coordination formula i : φ (case of a single database i). Finally, but most importantly, queries
can be recursively composed. Indeed, a recursive query can be defined as a set of queries {qh := Ah(xh) → ih :
qh(xh)}1≤h≤n such that Ah(xh) can contain of an atomic coordination formula ik : qk(xk) for some 1 ≤ k ≤ n.
The evaluation of a query qh in the ih-th database is done by evaluating its body, i.e., the coordination formula
Ah, which contains the query qk. This forces the evaluation of the query qk in the ik-th database, and so in P2P
network. We can prove the following theorem
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i : φ1 . . . i : φn

φ1 . . . φn.... i-rules
φ
i : φ

i : x = y∨ i : x 6= y
(=∨)

∃i : x.i : x = t
(domi)

A B
A∧B

(∧I)
A/B
A∨B

(∨I)

[A]
B

A → B
(→ I)

A∧B
A/B

(∧E) A∨B
[A]
C

[B]
C

C
(∨E) A A → B

B
(→E)

[
∧n

k=1∃ik : y.i : y = x]
Ax

xi→

∀i : x.A
(∀iI)

Ax
x→i/Ax

xi→

∃i : x.A
(∃iI)

∀i : x.A
∧n

k=1∃ik : y.i : y = x

Ax
x→i/Ax

xi→

(∀iE) ∃i : x.A
[Ax

x→i ]

C
C

(∃iE)

Notation:
i-rules: If φ can be derived from
φ1, . . . ,φn by applying ND rules
for classical logic, then i : φ can be
inferred from i : φ1, . . . i : φn.
X/Y stands for both X and Y .
Square brackets around formulas
represent assumption discharging.
For each connective and quantifier
there is an introduction and an
elimination rule denoted by the
connectives or quantifier followed
by I and E respectively.

Restriction: In (∀iI) and (∀iE),
J is the coordination space of
x in A. (∀iI) is applicable only
if x does not occur free in any
assumption Ax

xi→ depends on.
(∃iE) is applicable only if x does
not occurs free in C, nor in any
assumption, different from Ax

x→i C,
depends on.

Figure 1: Inference rules for Coordination Formulas.

Theorem 4.2. Let 〈db,r〉 be a relational space and rq = {qh := Ah(xh)→ ih : qh(xh)}1≤h≤n be a recursive query.
If A(x) does not contain any → symbol, then there are n minimal sets ans1, . . . ,ansn, such that each ansh is the
global answer of the query qh, in the relational space

〈

db′,r
〉

, where db′ is obtained by extending every relational
database m ∈ dbik with m(qk) = ansk, for each k 6= h.

5 Representation theorems

Let us now provide a proof-theoretic (deductive) account of coordination among databases. We define the deriv-
ability relation ` in terms of a Natural Deduction (ND) system [16] with rules as described in Figure 1. To define
the calculus we need to introduce a new set of variables, called arrow variables. For any variable x, the expres-
sion x→i and xi→ is an arrow variable. Intuitively, the variable x→i occurring in an atomic coordination formula
with index j denotes any element of dom j that is the pre-image (via r ji) of the element of domi denoted by x.
Analogously the variable xi→ occurring in an atomic coordination formula with index j, denotes any element of
dom j that is the image (via ri j) of the element of domi denoted by x.

Definition 5.1 (Universal and existential substitution). Let A be a coordination formula and x a variable. The
from-i-substitution of x in A, denoted Ax

xi→ , is the formula obtained by replacing each free occurrence of x in
an atomic coordination formula with index j distinct from i with xi→. Likewise, the to-i-substitution of x in
A, denoted Ax

x→i , is obtained by replacing each occurrence of x in an atomic coordination formula with index j
distinct from i with x→i.

Examples of deductions will be given in the final version of the paper.

Theorem 5.1 (Soundness and completeness). A coordination formula A is a logical consequence of a set of
coordination formulas Γ if and only if there is a deduction of A from Γ.

Proof outline. The proof is a standard soundness and completeness proof for a deduction system. Soundness
is proved by induction by showing that each rule preserves satisfiability under assignments. Completeness is
proved by showing that an i-consistent set of formulas Γ, i.e., i : ⊥ is not derivable from Γ, has a canonical
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relational space. A similar construction, restricted to the propositional case is given in [8, 6]. Details of the proof
will be provided in the full paper.

The completeness result given above allows us to generalize Reiter’s syntactic characterization of relational
databases to relational spaces. We start by recalling Reiter’s result (in a slightly different, but equivalent, formu-
lation).

Definition 5.2 (Generalized relational theory). A theory T on the relational language L is a generalized rela-
tional theory if the following conditions hold.

Domain closure: if dom = {d1, . . .dn}, then T contains the axiom ∀x(x = d1 ∨ . . .∨ x = dn).

Unique names: For any d,d′ ∈ dom, T contains the axiom d 6= d′.

Predicate extension: For any relational symbol R ∈ R, there is a finite number of finite sets of tuples E1
R, . . . ,En

R
(the possible extensions of R) such that T contains the axiom:

∨

1≤k≤n

(

∀x
(

R(x) ↔
∨

d∈Ek
R

x = d
))

Reiter proves that any partial relational database can be uniquely represented by a generalized relational
theory. The generalization to the case of multiple partial databases models each of them as a generalized rela-
tional theory, and “coordinates” them using an appropriate coordination formula which axiomatizes the domain
relation.

Definition 5.3 (Domain relation extension). Let ri j be a domain relation. The set of coordination formulas for
the extension of ri j is a set Ri j that contains the following coordination formulas for any d ∈ domi:

1. if d′ ∈ ri j(d) the coordination formula ∃ j : x.(i : x = d ∧ j : x = d ′);
2. if d′ 6∈ ri j(d) the coordination formula ∀i : x.(i : x = d → j : x 6= d ′)

Definition 5.3 axiomatizes ri j as a relation between the domains i and j.

Lemma 5.2. Let Ri j be the set of coordination formulas for the extension of ri j. For any relational space 〈db,r′〉
with dbi and db j different from the empty set, 〈db,r′〉 |= Ri j if and only if ri j = r′i j.

Lemma 5.2 states that, when dbi and db j are consistent databases, the only domain relation from i to j that
satisfies the coordination formulas for the extension of ri j (i.e., Ri j) is ri j itself. This means that Ri j uniquely
characterizes ri j. With this lemma we can state the main representation theorem (Theorem 5.3). A corollary of
this theorem (Corollary 5.4) provides a proof-theoretic characterization of a global answer to a i-query.

Definition 5.4 (Relational multi-context system). A relational multi-context system for a family of relational
languages {Li} is a pair 〈T,R〉, where T is a function that associates to each i, a generalized relational theory
Ti on the language Li, and R is a set that contains all the coordination formulas for the extension of a domain
relation from i to j for any i, j ∈ I.

Theorem 5.3 (Representation of relational space). For any relational multi-context system 〈T,R〉 there is a
unique (up to isomorphism) relational space 〈db,r〉, with the following properties:

1. 〈db,r〉 |= i : Ti and 〈db,r〉 |= R.
2. For each i ∈ I, dbi is different from the empty set.
3. 〈db,r〉 is maximal, i.e., for any other relational space

〈

db′,r′
〉

, satisfying condition 1 and 2, db′i ⊆ dbi, and
ri j = r′i j for all i, j ∈ I.

Vice-versa, for any relational space 〈db,r〉, there is a relational multi-context system 〈T,R〉 such that the maximal
model of 〈T,R〉 is 〈db,r〉. We say that 〈T,R〉 is the multi-context system that represents 〈db,r〉.

Proof outline. The proof is a composition of the previous lemma on Ri j and Reiter’s result on Ti. Details of this
and the previous proofs will be provided in the final version of the paper.

Corollary 5.4 (Syntactic characterization of queries). For any relational space 〈db,r〉, let 〈T,R〉 be the re-
lational multi-context system that represents 〈db,r〉. Then, for any i-query q := A(x) → i : q(x), the n-tuple d
belongs to the global answer of q, if and only if

{i : Ti}i∈I ,R ` ∃i : x(A(x)∧ i : x = d)

Corollary (5.4) provides us with the basis for a correct and complete implementation of a query answering
mechanism in a P2P environment.
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6 Related work

The formalism presented in this paper is an extension of the Distributed First Order Logics formalism proposed in
[7]. The main improvements concern the language of the coordination formulas, their semantics and the calculus.
In [7] indeed, relation between databases were expressed via domain constraints and interpretation constraints.
These latter correspond to particular coordination formulas: namely domain constraints from i to j corresponds
to the coordination formulas ∀i : x∃ j : yi : x = y and ∀ j : x∃i : yi : x = y, while interpretation constraints can be
translated in the coordination formulas ∀i : x.(i : φ(x) → j : ψ(x)). This limitation on the expressive power, does
not allow to express in DFOL the fact that a table, say p, of a database i is the union of two tables, say p1 and
p2 of two different databases j and k. This constraint can be easily expressed by the following coordination
formula:

∀i : x.(p(x) ↔ j : p1(x)∨ k : p2(x))

As far as the query language is concerned, our approach is similar in some ways to view-based data integration
techniques, in the following sense. The process of translating a query against a local database into queries against
an acquaintance would be driven by the coordination formulas that relate those two databases. If one thinks of
our coordination formulas as view definitions, then the translation process is comparable to ones used for rewrit-
ing queries based view definitions in the local-as-view (LAV) and global-as-view (GAV) approaches ([12, 13].
Although standard approaches cannot be applied directly to LRM, due to our use of domain relations and context-
dependent coordination formulas, we expect it is possible to modify LAV/GAV query processing strategies for
LRM. For example, one could define a sublanguage of LRM whose power is comparable to a tractable view def-
inition language used for LAV/GAV query processing. One could then apply a modified LAV/GAV algorithm to
that language. Or perhaps one could translate formulas and queries from the LRM sublanguage into the standard
(non-LRM) language and apply a conventional LAV/GAV query processing algorithm. In any case, such query
processing issues are beyond the scope of the current paper, whose main focus is the formal definition of LRM
and a proof of its soundness and completeness.

Finally our approach provide a general theoretical reference framework where many forms of inter-schema
constraints defined in the literature, such as [3, 4, 5, 14, 19, 11, 10, 9]. For lack of space we briefly show only
one case. Consider for instance directional existence dependences defined in [5]. Let T1[X1,Y1] and T2[X2,Y2] be
two tables of a source database (let’s say 1), and that T [C1,C2,C3] is a table of the target database (let say 2). An
example of directional existence dependence is:

T.(C1,C2) ⇐ select X1,X2 from T1,T2 where T1.X1 ≤ T2.X2 (9)

The informal semantics of (9) is that for each tuple of value 〈V1,V2〉 produced by the RHS select statement, there
is a tuple t in table T such that t projected on columns C1,C2 has the value 〈V1,V2〉. The existence dependence
(9), can be rewritten in terms of coordination formulas as

∀1 : x1x2(1 : ∃y1y2(T1(x1,y1)∧T2(x2,y2)∧ x1 ≤ x2) →
∃2 : c1c2(1 : x1 = c1 ∧ x2 = c2 ∧2 : ∃c3.T (c1,c2,c3)))

(10)

When the domain relation are identity functions, (10) capture the intuitive reading of (9).

7 Conclusion

We have argued that emerging computing paradigms, such as P2P computing, call for new data management
mechanisms which do away with the global schema assumption inherent in current data models. Moreover,
in a P2P setting the emphasis is on coordinating databases, rather than integrating them. This coordination is
defined by an evolving set of coordination formulas which are used both for constraint enforcement and query
processing. To meet these challenges, the paper proposes, the paper proposes the local relational model, LRM,
where the data to be managed constitute a relational space, conceived as a collection of local databases inter-
related through coordination formulas and domain relations. The main result of the paper is to define a model
and proof theory for the LRM, and prove the latter sound and complete with respect to the former. The paper
also generalizes an earlier result due to Reiter which characterizes a relational space as a multi-context system.
The results of this paper offer a sound springboard in launching a study of implementation techniques for the
LRM, its query processing and constraint enforcement.
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