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Abstract
Given an integer o > 1, a vector (d1,09,...,0,—1) of nonnegative integers, and an undi-

rected graph G = (V, E), an L(d1, 09, . ..,d,—1)-coloring of G is a function f from the vertex
set V' to a set of nonnegative integers such that |f(u) — f(v)| > é;, if d(u,v) =14, 1 <i <
o—1, where d(u,v) is the distance (i.e. the minimum number of edges) between the vertices
uw and v. An optimal L(d1,d2,...,d,—1)-coloring for G is one using the smallest range A of
integers over all such colorings. This problem has relevant application in channel assign-
ment for interference avoidance in wireless networks, where channels (i.e. colors) assigned
to interfering stations (i.e. vertices) at distance ¢ must be at least d; apart, while the same
channel can be reused in vertices whose distance is at least o. In particular, two versions of
the coloring problem — L(2,1,1), and L(d1,1,...,1) — are considered. Since these versions
of the problem are N P-hard for general graphs, efficient algorithms for finding optimal col-
orings are provided for specific graphs modeling realistic wireless networks including rings,
bidimensional grids, and cellular grids.

Key Words: Wireless Networks, Channel Assignment, Interferences, Rings, Cellular Grids,
Bidimensional Grids, L(2, 1, 1)-coloring, L(d1,1,. .., 1)-coloring.

1 Introduction

The tremendous growth of wireless networks requires an efficient use of the scarce radio spectrum
allocated to wireless communications. However, the main difficulty against an efficient use of
radio spectrum is given by interferences, caused by unconstrained simultaneous transmissions,
which result in damaged communications that need to be retransmitted leading to a higher cost
of the service. Interferences can be eliminated (or at least reduced) by means of suitable channel
assignment techniques. Indeed, co-channel interferences caused by frequency reuse is one of the

most critical factors on the overall system capacity in the wireless networks. The purpose of
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channel assignment algorithms is to make use of radio propagation loss characteristics in order
to increase the radio spectrum reuse efficiency and thus to reduce the overall cost of the service.

The channel assignment algorithms partition the given radio spectrum into a set of disjoint
channels that can be used simultaneously by the stations while maintaining acceptable radio
signals. By taking advantage of physical characteristics of the radio environment, the same
channel can be reused by two stations at the same time without interferences (co-channel sta-
tions), provided that the two stations are spaced sufficiently apart. The minimum distance at

which co-channels can be reused with no interferences is called co-channel reuse distance o.

The interference phenomena may be so strong that even different channels used at near sta-
tions may interfere if the channels are too close. Since perfect filters are not available, interference
between close frequencies is a serious problem, which can be handled either by adding guard fre-
quencies between adjacent channels or by imposing channel separation. In this latter approach,
followed in the present paper, channels assigned to near stations must be separated by a gap on
the radio spectrum — counted in a certain number of channels — which is inversely proportional
to the distance between the two stations. In other words, the channels f(u) and f(v) assigned
to the stations v and v at distance 4, with ¢ < o, must verify |f(u) — f(v)| > ¢; when a minimum
channel separation J; is required between stations at distance ¢. The purpose of channel assign-
ment algorithms is to assign channels to transmitters in such a way that the co-channel reuse
distance and channel separation constraints are verified and the difference between the highest

and lowest channels assigned is kept as small as possible.

Formally, let the channels be modeled as colors, i.e. nonnegative integers, and let the stations
of the network be modeled as the vertices of an undirected graph G = (V, E) where the edges
correspond to pairs of stations whose transmission regions intersect. Defined the distance d(u,v)
between stations u and v of the network as the number of edges on a shortest path between the
corresponding vertices v and v of GG, and given the co-channel reuse distance o and the channel
separation vector (dy,ds,...,d,_1) of nonnegative integers, an L(d1,ds, ..., d,_1)-coloring of the

graph G is a function f from the vertex set V' to the set A = {0,..., A} of colors, such that



|f(u) — f(v)| > 0; ifd(u,v) =14, fori=1,2,...,0 —1. The channel assignment problem with
separation (CAPS) is defined as the problem of finding an optimal L(61,0s, ...,0,_1)-coloring
of GG, that is one which minimizes the largest color A € A. Note that, since the set A contains
0, the overall number of colors involved by a coloring f is in fact A + 1 (although, due to the
channel separation constraint, some colors in {1,..., A — 1} might not be actually assigned to

any vertex).

Up to now, most works have considered a small reuse distance because cells were made very
large to minimize their number (since site surveys, renting space for the antenna and transceiver,
the antenna and transceiver itself, all added up to a high price.) For example, for the well-
known “Philadelphia” channel assignment instances, realistic values of o are 3 or 4, while actual
separation values are 0, = 2, and 6; = 1 for 2 < i < ¢ — 1 [17]. However, in the next 4th
generation of wireless access systems, due to the decreasing cost of infrastructures and to the
need of wide bandwidth, a large number of small cells, each with significant power, is expected.
In such a scenario, a small re-use distance will not be feasible anymore, and ¢ will be expected
to be much larger [20].

The CAPS problem has been shown to be NP-hard for general graphs, and therefore it is
computationally intractable. When the channel separation vector (di,ds,...,d, 1) is equal to
(1,1,...,1), there is only the co-channel reuse constraint, but no channel separation constraint
[12]. In such a case, the channel assignment problem has been widely studied in the past, e.g. see
the paper by Chlamtac and Pinter [7]. In particular, the intractability of optimal L(1,1,...,1)-
coloring, for any positive integer o, has been proved by McCormick [14]. For o = 3, Battiti,
Bertossi and Bonuccelli [1] found optimal L(1,1)-colorings for rings, hexagonal, cellular, and
bidimensional grids, as well as efficient heuristics for geometric graphs. Optimal L(1,1,...,1)-
colorings, for any positive integer o, have been proposed by Bertossi and Pinotti [3] for rings,
complete trees, and bidimensional grids. Sen et al. [16] provided lower and upper bounds for
L(1,1,...,1)-colorings on cellular grids. However, their solution is optimal only for ¢ = 2 and

o=3.



When the channel separation constraint is present, the problem has been studied only for
small values of 0. The intractability of the L(2,1)-coloring has been shown by Griggs and Yeh
[10] along with bounds on the number of channels for buses, rings and hypercubes. Later,
bounds for this problem on chordal graphs and arbitrary trees have been found, respectively,
by Sakai [15] and Chang and Kuo [6]. Approximated solutions for outerplanar, permutation
and split graphs are presented by Bodlaender et al. [5]. Optimal solutions for the L(d;,d2)-
coloring problem on bidimensional grids and cellular grids have been given by Van Den Heuvel
et al. [19], who provided also an optimal L(2, 1, 1)-coloring for bidimensional grids. An optimal
L(2,1,1)-coloring for complete binary trees has been shown in [4].

As a related case, when o0 = 3 and (d;,02) = (0, 1), the L(0, 1)-coloring problem models that
of avoiding only the so-called hidden interferences, due to stations which are outside the hearing
range of each other and transmit to the same receiving station. Optimal L(0, 1)-colorings have
been provided by Makansi [13] for buses and bidimensional grids. Bertossi and Bonuccelli [2]
proved the intractability of optimal L(0, 1)-coloring, giving also optimal solutions for rings and
complete binary trees. Finally, as another related case, observe that the classical minimum vertex
coloring problem on undirected graphs arises when o0 = 2 and ; = 1. Thus, the minimum vertex

coloring problem consists in finding an optimal L(1)-coloring.

This paper further investigates the L(2,1,1)-coloring problem and starts to investigate also
the L(d1,1,...,1)-coloring problem. Since those problems have been proved to be N P-complete
by Griggs and Yeh [10], optimal solutions for special networks are considered. In particular,
solutions to the L(2,1,1)-coloring problem are exhibited for rings and cellular grids. Finally,
solutions to the L(d;,1,...,1)-coloring problem are also given, when ¢ > 3, for rings, with
1<6 < L%J, and for bidimensional grids, with 1 < §; < L”T_IJ In other words, as it will be
clear later on, given any ¢; > 1, the L(d1,1,...,1)-coloring problem is solved on bidimensional
grids and rings for every o > 24; + 1 using as few colors as the L(1,1,...,1)-coloring problem.

In all cases, optimal solutions are provided by means of efficient channel assignment algo-

rithms. For all networks a channel can be assigned to any vertex in constant time, provided that



the relative position of the vertex in the network is locally known. In the case that the vertices
do not initially know their own relative positions in the network, channels can be assigned in
parallel to the vertices after the execution of simple distributed algorithms for computing the

vertex positions, which require optimal time and number of messages.
Finally, it is also discussed when channel separation, as considered in this paper, is better

than adding guard frequencies between adjacent channels.

2 Preliminaries

The channel assignment problem on a network N with no channel separation constraint and
co-channel reuse distance o, namely the L(1,1,...,1)-coloring problem, can be reduced to a
classical coloring problem on an augmented graph G'n, obtained as follows. The vertex set of
Gn, is the same as the vertex set of N, while an edge [r, s] belongs to the edge set of Gy,
iff the distance d(r, s) between the vertices r and s in N satisfies d(r,s) < o — 1. Now, colors
must be assigned to the vertices of Gy, so that every pair of vertices connected by an edge is
assigned a couple of different colors and the minimum number of colors is used. Hence, the role
of mazimum clique in Gy, is apparent for deriving lower bounds on the minimum number of
channels for the L(1,1,...,1)-coloring problem on N. A clique K for Gy, is a subset of vertices
of G, such that for each pair of vertices in K there is an edge. By well-known graph theoretical
results, a clique of size k in the augmented graph Gy, implies that at least k different colors
are needed to color Gy ,. In other words, the size of the largest clique in Gy, is a lower bound
for the number of channels required to solve the channel assignment problem without channel
separation constraint. Clearly, in the presence of both channel separation and co-channel reuse
distance constraints, at least as many channels are required as in the presence of the channel
separation constraint only. Formally, a lower bound for the L(1,1,...,1)-coloring problem is also
a lower bound for the L(d,1,...,1)-coloring problem, with 6; > 1. In particular, lower bounds
for the L(1,1)- and L(1,1,1)-coloring problems hold also for the L(2,1)- and L(2,1, 1)-coloring

problems.



Let the complement graph G = (V, E) of a graph G = (V, E) be the graph having the same
vertex set V as G and having the edge set E obtained by swapping edges and non-edges in E.

Recall that a Hamailton path is a path that traverses each vertex of a graph exactly once.

Lemma 1 [10] Consider the L(61,1,...,1)-coloring problem, with 6; > 2, on a graph G = (V, E)
such that d(u,v) < o for every pair of vertices v and v in V. Then, A = |V| — 1 if and only if
G has a Hamilton path.

Consider the star graph S, which consists of a center vertex ¢ with degree p, and p ray vertices

of degree 1.

Lemma 2 [10] Let the center ¢ of S, be already colored. Then, the largest color required for an
L(2,1)-coloring of S, is at least:

v P+l i fle)=00rflc)=p+1,
Tl p+2 f0<f(c)<p+1l

In this paper, several network topologies are examined, namely, bidimensional grids, cellular
networks, and rings. Such networks model the regular placement of stations in the Euclidean
plane with no obstacles, when the transmission region of each station is a circle of fixed radius
centered on the transmitter site. Each vertex of the network represents a station, and an edge
corresponds to two stations whose transmission regions intersect. Figure 1 shows how stations
can be placed in the plane in such a way that the transmission region adjacencies are modeled by
some of the above networks. For the sake of simplicity, the cellular networks will be represented
by grids, and optimal channel assignment algorithms will be shown for grids of sufficiently large
sizes.

Note that the cellular network is currently the most important to the radio engineer, since
stations in such a network not only cover the whole plane, but also present the smallest possible
transmitter density. Although the other studied networks may not cover the whole plane, they
will be suitable for future generations of wireless access systems when only certain areas, where
users with extensive bandwidth requirements are expected to be, will be covered. Indeed, since

the required transmitter power increases linearly with the bandwidth, high speed radio access
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will have a very limited range and dense ubiquitous infrastructures (like cellular networks) will
have tremendous costs. As a possible alternative, the “infostation”-concept outlines a sparse
infrastructure of information-kiosks, close to which high data rate communication is feasible. This
infrastructure can be distributed in a Manhattan fashion inside cities (modeled by a bidimensional

grid), or in a loop around a city (modeled by a ring) [8, 20].

The channel assignment algorithms to be presented allow any vertex to self-assign its proper
channel in constant time, provided that it knows its relative position within the network. If
this is not the case, such relative positions can be computed for all the vertices using simple
distributed algorithms requiring optimal time and optimal number of messages. Assume that
each vertex of the network only knows its own geographic position (e.g. by means of its I.D. or
a local geographic position system (GPS)) and the names of its neighbours (which can be easily
obtained by the usual topology-exchange distributed algorithm [18]). The vertices are assumed
to be asynchronous and can communicate by exchanging control messages (e.g. via dedicated
system signals such as SS7 or MAC protocols such as ALOHA). There is only one kind of control
message, which is sent by a vertex to tell its geographic position and its relative position to
its neighbours. The computation is started by a single vertex, which is the only vertex which
initially knows its relative position. When a vertex receives a control message from a neighbour,
it is capable of recognizing whether the sender is a North, South, East, or West neighbour,
by comparing its geographic position and that of the sender (the agreement about the actual
cardinality points can be established and broadcast by the vertex starting the computation, after
knowing the GPS positions of its neighbors). When a vertex receives a control message from a
neighbour, if it has not yet computed its position and some conditions are met, then it computes

its own relative position and in turn sends a control message, otherwise it neglects the message.

3 Optimal L(d1,1,...,1)-coloring for Bidimensional Grids

A bidimensional grid B of size r X ¢ has r rows and ¢ columns, indexed respectively from 0 to r—1

(from top to bottom) and from 0 to ¢ — 1 (from left to right), with » > 2 and ¢ > 2. A generic
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Figure 1: Adjacencies among transmitting regions modeled by (a) bidimensional grids and (b)
cellular networks.

vertex u of B will be denoted by u = (4, j), where 7 is its row index and j is its column index. All
internal vertices, i.e. those not on the borders, have degree 4. In particular, an internal vertex
u = (i,7) is adjacent to the vertices (i — 1,j), (4,7 + 1), (¢ + 1, 7), and (¢,5 — 1).

Optimal solutions for the L(d1,d,)- and L(2,1,1)-coloring problems on bidimensional grids
have been provided by Van Den Heuvel et al. [19]. In this section, the L(d1,1,...,1)-coloring

problem is dealt with.

Lemma 3 There is an L(d1,1,...,1)-coloring of a bidimensional grid B of size r X ¢, withr > o

and ¢ > o, only if X\ > [‘;—TI —1.

Proof  Let first restrict to the L(1,.. ., 1)-coloring problem, with co-channel reuse distance o.
Consider a generic vertex x = (4,j) of B, and its opposite vertex at distance o — 1 on the same
column, i.e., y = (i—o+1,j). All the vertices of B at distance o —1 or less from both x and y are
mutually at distance 0 —1 or less. Therefore, in the associated graph G ,, they form a clique, and
they must be assigned to different colors. In details, such a clique, denoted as Kg(z, o), is defined

as follows: KB(JJ,U):{(fi—a+1+t,j—t),...,(i—a+1+t,j+t) :OStS[”T’lJ} U

(=[] rta= [+ 1), (= [ ni v [ 1) - 1<e< o)



Summing up over ¢, the size of the clique results to be

|Kp(z,0)| = %J(2t+1)+ %ﬂ (2 ([U;W —t> +1) - [%1 .

=0 t=1
Hence, at least |Kp(z,0)| = {%2-‘ colors are required for the L(1,...,1)-coloring problem, and

thus A > [%21 — 1. Therefore, the same lower bound holds also for the L(d;,1,...,1)-coloring

problem. O

In the following, an optimal coloring algorithm for bidimensional grids is exhibited. The

Grid-L(61,1,...,1)-coloring algorithm works for o > 3 and ¢; < ["T_IJ

Algorithm Grid-L(éd1,1,...,1)-coloring (B,r,c,0);
o if ¢ is odd, then assign to each vertex u = (4,j) the color
oc—1 o—1 o?
=((Z=+1)i+ Z—=j) mod | =
f(uw) ((2 +)Z+ 2])mo "2-‘
a

e if gis even and A = L%IJ is even, let ¥/ = ¢ mod ¢ and j' = j mod o, then assign to each vertex u = (4,5) the color

A(%i’+j’)mod§ if0<#<g—-land0<i <§—1,
or 2 <i<g—1land §<j <o-1,
(A(%¢ +4)+1) mod & f0<#<g-land§<j <01,
or Z2<#<g—-1land0<j <g—1

flu) =

e if ¢ is even and A = LGT71J is odd, let ' = ¢ mod ¢ and j' = j mod o, then assign to each vertex u = (i,5) the color

A(Si' + ') mod % fO<i#<%—land0<i' <1,
or $<#<o—-1land <5 <o—1,

u) =
fw) (A(%-1+gi’+j’)) mod & #f0<#<%—land$ <j <o—1,

Before proving correctness and optimality of the above algorithm, a preliminary result is

required.

Lemma 4 Given an even o > 4, let A = "72 —1, and A = ||, If A is even, then kA mod "72

assumes all the even values in the range [0, %2 — 1] while k varies within the interval [0, %2 —1].

If A is odd, then kA mod "72 assumes all the values in the range [0, "72 — 1] while k varies within

the interval [0, %2 —1].



Proof  Since o is even, "2—2 = 2(A +1)%. When A is even, kA mod %2 can be rewritten as

2(£k mod (A +1)?). Consider any value z € [0, (A+1)?—1]. The congruence £k mod (A +1)?
assumes the value z when k = z(A?—3) mod (A +1)2 In other words, (A?—3)2 =1 mod (A+
1)?, or equivalently, A% — 3 is the multiplicative inverse of 2 mod (A + 1)%. Indeed, let £ = ¢

and (A + 1)2 = 4¢? + 4¢ + 1. Hence, (A? — 3)2 = ¢(4¢> — 3), and then
t(4t? — 3) mod (482 +4t+1) =
t(4t2 +1+4t—4t—1—3) mod (4t + 4t + 1) =
t(4t2 + 1+ 4t) — t(4t +4) mod (48> + 4t + 1) =
(—4t? — 4t) mod (4> + 4t + 1) =
1 mod (4% + 4t + 1).

Therefore, if A is even, 2k mod (A + 1) assumes all the values in [0, (A +1)? — 1], and thus

kA mod "2—2 assumes all the even values in the range [0, %2 — 1] while £ varies within the interval

2

0,2 —1].

When A is odd, kA mod ‘72—2 can be rewritten as kA mod 2(A + 1)2. Consider any value
r € [0,2(A + 1)2 — 1]. The congruence kA mod 2(A + 1)? assumes the value x when k =
z (A(A+1) —1) mod 2(A + 1)2. In other words, A (A(A+1)—1) = 1 mod 2(A + 1)?), or
equivalently, A(A + 1) — 1 is the multiplicative inverse of A mod 2(A + 1)%.

Indeed, recalling that AB mod AC = A(B mod C), it holds
(A(A(A+1)—1)) mod 2(A +1)2 =
(A%2(A+1) — A) mod 2(A +1)? =
(A+1) (A2 mod 2(A+1)) — A)mod 2(A +1)? =
(A+1)((A’—A+A)mod2(A+1))—A)mod 2(A+1)2 =
(A+1)(((A+1)(Amod2)—A)mod 2(A+1)) — A) mod 2(A + 1)* =
(A+1)1—A)mod2(A+1)2=
1 mod 2(A + 1)%.

Therefore, if A is odd, then kA mod 2(A+1)? assumes all the values in the range [0, 2(A+1)*—1]

while k varies within the interval [0,2(A + 1) —1]. O

Theorem 1 The Grid-L(61,1,...,1)-coloring algorithm is optimal for c > 3 and 1 < 6; <
L5
Proof When o is odd, consider w.l.o.g. the vertices in B colored 0. By construction a

vertex u = (i, ) gets the color f(u) = 0if i2 + j(§ +1) = 0 mod (A(2A + 2) + 1), where

10



A=%1and AQA+2)+1 = [%TI Solving such a congruence is the same as solving the linear
Diophantine equation

A A
iE +j(5 +1) =c(A(RA +2) + 1),

for any integer c¢. All the solutions of this equation are of the form [9]

oo
i = c(2A+1)

In other words, the coordinates ¢ and j of vertex v must satisfy i +j = ¢(2A +2) = ¢(o +1).
Therefore, the distance between two vertices colored 0 is at least o 4+ 1, which satisfies the co-
channel reuse constraint. The separation constraint is easily satisfied by construction. Finally,
since the algorithm uses as few colors as in Lemma 3, it is optimal for odd values of o > 3 and
01 < A.

When ¢ is even, the algorithm covers the bidimensional grid B with a tessellation of basic
tiles T' of size 0 X 0, each consisting of 4 sub-tiles of size § x 7. Precisely, as depicted in Figure 2,
the left-upper and the right-lower corners of 7" are colored by sub-tile S;, while the left-lower

and right-upper corners by sub-tile Ss.

When o and A are even, as shown in Table 1, both S; and S, are colored row by row,
assigning colors separated exactly by A to any two consecutive vertices. According to Lemma 4,
Si starts from 0 and spans all the even values in the range [0, [%2-‘ — 1], while S, starts from 1
and spans all the odd values in the range [0, [%21 —1].

When o is even and A is odd, as shown in Table 2, both S; and S, are again colored row
by row, assigning colors separated exactly by A to any two consecutive vertices. In this case,
according to Lemma 4, all the consecutive multiples of A mod ["2—21 generate a single sequence
of distinct ["2—21 values in the range [0, [%21 — 1], with the first half of the sequence coloring S,

starting from 0, and the second half of the sequence coloring S, starting from “4—2A mod [%TI

By the construction shown in Figure 2 and the fact that, as proved in Lemma 4, S; and S5
consist of all distinct values, it is easy to see that the same color is reused in two vertices of B

which are exactly at distance o, and therefore the co-channel reuse constraint is verified.

11



Figure 2: A tile T' of size o x o consisting of 4 sub-tiles each of size & x Z.

In order to check that the separation constraint is also verified, note that inside S; and S,

two consecutive vertices on the same row get two colors separated by A, while two consecutive

vertices on the same column are separated by k£ = A(% —1),with A <k < "72, when ¢ > 4. It

remains to show that the separation constraint holds also on the 4 border lines between S; and

S5. Note that since o is even, ["2—21 = "2—2 and A = § — 1. Note also that if A is even then o > 6,

while if A is odd then ¢ > 4.
Let A be even.

W.l.o.g., the separation between the following 4 pairs of adjacent vertices is evaluated:

. u=(%—-1,7) and v = (%, ),

2. u=(5—-1,5+j)andv= (3,5 +J),
3.u=(i,5—1)and v= (4, g),

4.ou=(+%5—1)andv=(i+g,9).

Case 1 Consider u = (§ —1,7) and v = (%, ). Observing Table 1,

(f(u) = f(v)) mod % =
(5 -1)g+5)A = (jA+1)) mod § =



Let k = (”4—24-1) mod 0. When k£ =0, (f(u)— f(v)) mod %2 = (%k - 1) mod "2—2 = ”2—2—1 >
A, and therefore the separation constraint follows. Whereas, when 1 < k < g—1, observing

that $k—1 < % ® it holds (f(u)— f(v))mod%zz(%k—l)mod";:%k—l -1=A

vV
IR

b

and therefore the separation constraint follows.

Case 2 Consider u = (§ — 1,5+ 7) and v = (3, § + j). Observing Table 1

|

(f(u) = f(v)) mod & =

(Z-13% +J)A+1—]A) mod %

(U_ U+1)m0d0)+1)mod"2—25
(5 mod 2) + 1) mod 0)-1-1) mod "2—2

If ¢ is even, then f(u) - fv)=%+1>A.If § is odd, then f(u) — f(v) = ‘1—2 +3+1,
since Z- + +1< % —1. Again, f(u) — f(v) > A if o > 6, and the separation constraint

is verified.

N

Il

2
F—1DA—-(i5A+ 1)) mod Z

2

o
2

Hence, f(u) — f(v) > A, when § —1 > 1, that is, when o > 4.

By similar arguments, observing Table 2, one can show that the separation constraint holds

also on the 4 border lines between S; and Sy when A is odd. O
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j g1 i g+ o1
0 0 in (%—I)A 1 JA+1 (%—1)A+1
i iZA ((i+1)%—1)A iZA 41 ((i+1)%—1)A+1
2 2

g-1 (g-1gA g -1)gA+jA 2 _1pa g-1)gA+1 g _1)ZA+jA+I 2 _pa+1

g 1 JA+1 (%—1)A+1 0 jA (%—1
2 4+ iZA+1 ((i+1)%—1)A+1 igA ((i+1)%—1)A
o—1 | (g-1DgA+1 (£ -DZA+jA+1 2 _1)at1 (g -1gA (2-12A+jA 2 _1a

Table 1: Coloring of tile 7" when o is even and A is even. All the operations are to be considered
2

mod %-
2

0 J g-1 z g+ o1
. o2 o2 R =) -
0 0 ia (3-1)a N (o +9)A (Z+%-DA
2 2

i EIN ((i+1)%—1)A (22 +ig)A (”T+(i+1)%—1)A
z-1] (3-V3A4 3 —D3A+IA (r — 1A (& —3)A T o3 +NA (& — 1A
5 Za (% +0A (7 +5-1A 0 i (5- )

2 2
24i | (% +i)a ("T+(i+1)%—1)A igA ((i+1)%—1)A
o—1 | (2 -2 (% -2 +)A 2 _na z-1ngaA Z_1ZA4jA 22 _1a

Table 2: Coloring of tile T" when o is even and A is odd. All the operations are to be considered
mod %2

Note that, given any 0; > 1, the Grid-L(4y, 1, ..., 1)-coloring algorithm solves the L(d,1,...,1)-
coloring problem for every o > 26; + 1 using as few colors as the L(1,1,...,1)-coloring problem.
In particular, given 6; = 2, the above algorithm solves the L(2,1,...,1)-coloring problem for
every ¢ > 5. The only values of the reuse distance not covered by the above algorithm when
d; = 2 are 0 = 3 and 4. However, in such cases, the L(2,1)- and L(2, 1, 1)-coloring problems had
been solved by Van Den Heuvel et al. [19]. Therefore, the L(2,1,...,1)-coloring problem can be
optimally solved for any value of o.

The coloring algorithms presented above allow any vertex v to self-assign its color in O(1)
time, provided that v knows its relative position (i, 7) within the bidimensional grid. If this is
not the case, the relative positions of all the vertices can be computed by a simple distributed
algorithm as follows (see the end of Section 2 for the proper assumptions).

The computation is started by the upper-left corner vertex in the network, which is the only
vertex knowing its position (0,0). A control message is structured as CM (v, g,,1,7), where g,

and (7, ) are the geographic and relative positions of v, respectively. When a vertex u receives
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CM (v, gy,1,7) from a North neighbour v, then u computes its relative position (i + 1,5) and
sends CM (u, gy,7+ 1,7) so as to propagate the computation downwards along the columns of
the grid. In the first row, however, if v is a West neighbour of u and ¢ = 0, then u computes its
position (0,7 + 1) and sends CM (u, gy, 0,7 + 1).

It is easy to see that the overall number of messages required is O(rc) while the total time is
O(r+c), assuming that a message reaches its destination in O(1) time. Since there are rc vertices
in the grid and the grid diameter is O(r + ¢), the channel assignment for all the vertices can be
performed in a distributed fashion so as to require an optimal time and an optimal number of

messages.

4 Optimal L(2,1,1)-coloring for Cellular Grids

A cellular grid C of size r x ¢, with r > 2 and ¢ > 2, is obtained from a bidimensional grid B of
the same size augmenting the set of edges with left-to-right diagonal connections. Specifically,
each vertex u = (7, j) of C is also connected to the verticesv = (i—1,j—1) and z = (i+1,j+1).
Hence, each vertex has degree 6, except for the vertices on the borders.

An optimal solution for the L(d1,d2)-coloring problem on cellular grids has been provided
by Van Den Heuvel et al. [19]. In the following, an optimal solution for the L(2,1,1)-coloring

problem is presented.

Lemma 5 There is an L(2,1,1)-coloring of a cellular grid C of size r x ¢, with r > 4 and ¢ > 4,

only if A > 11.

Proof  Given the cellular grid C' = (V, E), consider the augmented graph G¢4 = (V, E’) and
the subgraph D of C illustrated in Figure 3. All the 12 vertices of D are mutually at distance 3
or less, and they form a clique in G¢4. Hence, they must be assigned to all different colors, and

A > 11 O

Figure 3 shows how to color the subgraph D in such a way that the channel separation

constraint is verified for every two adjacent vertices. Moreover, Figure 4 shows a complete
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Figure 3: The subgraph D of C' whose vertices form a clique in G¢4, and an optimal L(2,1,1)-
coloring for it.

coloring of a cellular grid C obtained by replicating the coloring for the subgraph D. Note that
the channel separation constraint is verified not only for the vertices belonging to each copy of

D, but also for the vertices belonging to the borders of two contiguous copies of D.

Formally, the coloring of a cellular grid can be described as follows.

Algorithm Cellular-L(2,1,1)-coloring (C,,c);
e If r >4 and ¢ > 4, then assign to each vertex u = (4, j) the color

(0 if (i+7) =2 mod 6,3 is even, and j is even
1  if (¢4 j) =0mod 6,4 is even, and j is even
2 if(i+j)=4mod6,: is even, and j is even

3 if(¢+j)=1mod86,i is odd, and j is even

4 if ({4 j) =3 mod 6,7 is odd, and j is even

Flu) = { 5 if (¢ +7) = 5 mod 6,4 is odd, and j is even

- 6 if (¢+j)=5mod 6,4 is even, and j is odd

7 if(¢+j)=2mod 6, is odd, and j is odd

8 if (i +j) =4 mod 6,17 is odd, and j is odd

9 if (¢+j)=1mod6,i is even, and j is odd

10 if (¢ + j) = 3 mod 6,1 is even, and j is odd

\ 11 if (¢4 j) = 0mod 6,4 is odd, and j is odd

Theorem 2 The Cellular-L(2,1, 1)-coloring algorithm is optimal for cellular grids of size r X c,

with r > 4 and ¢ > 4.

Proof In order to prove that the channel separation constraint is verified, it is useful to
introduce the Manhattan distance m(u,v) between any two vertices v and v, where m(u,v) is
the length of a shortest path between u and v including only horizontal and vertical edges, thus
excluding diagonal edges. Now, any two consecutive colors are considered and it will be proved
that such colors cannot be assigned to two adjacent vertices. For example, consider the pair

of colors 2 and 3. A vertex u = (i,7) gets the color 2 if and only if both i and j are even,
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and i + j = 4 mod 6, while a vertex v = (h, k) is colored 3 if and only if A is odd, k is even,
and h + k£ = 1 mod 6. The vertices v and v might belong to the same column, but to different
rows. In this case, their distance is at least 3. In the case that they do not belong to the same
column, they have Manhattan distance m(u,v) = 3. Hence, the vertex v which is closest to u
and assigned to color 3 is v = (i + 1,7 + 2), as illustrated in Figure 4. Keeping track of the
diagonal edges, the actual distance d(u,v) is 2, and therefore the channel separation constraint
is still verified. An analogous argument can be repeated for any pair of consecutive colors ¢ and
c+ 1, with 0 < ¢ < 10.

To show that the co-channel reuse constraint holds, one notes that two vertices u = (i, j)
and v = (h, k) get the same color if and only if their Manhattan distance m(u,v) = 6, and both
li — h| and |j — k| are even. Due to the diagonal edges, the actual distance d(u,v) is at least
4. Indeed, the actual distance d(u,v) could be 3 when m(u,v) = 6, but in this case |i — h| and
|7 — k| cannot be both even.

The optimality follows from the lower bound shown in Lemma 5. O

Finally, note that, when the vertices do not initially know their relative position within the
cellular grid, a distributed algorithm can again be executed. The computation still starts from

vertex (0,0), but it propagates along the “diagonals” of the grid.
5 Optimal L(2,1,1)- and L(63,1,...,1)-coloring for Rings

A ring R of size n is a sequence of n vertices, indexed consecutively from 0 to n — 1, such that
vertex 7 is connected to both vertices (: — 1) mod n and (i + 1) mod n.

An optimal solution for the L(2,1)-coloring problem on rings has been provided by Griggs
and Yeh [10]. In this section, optimal solutions are exhibited for the L(2,1,1) and L(d,1,...,1)-

coloring problems on rings.
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Lemma 6 There is an L(2,1,1)-coloring for a ring R only if:
2(n — 1) ifn=1,23
4 ifn=4,8, orn>12

3+[%°ﬂ if5<n <11 andn #8
4

Proof Forn <3, Ris aclique. Therefore, vertex ¢« must be colored 2i, for 0 <7 <n—1. For

A>

n = 4, by Lemma 1, there is no L(2, 1, 1)-coloring with A = 3. Hence, A > 4. Forn = 6, 7 and 11,
since any optimal L(2, 1, 1)-coloring uses at least as many colors as an optimal L(1, 1, 1)-coloring,
the lower bound of A derives from the lower bound proved in [3]. Finally, for n = 5, 8, 9, 10
and n > 12, the lower bound of A derives from the lower bound proved in [10] since any optimal

L(2,1,1)-coloring uses at least as many colors as an optimal L(2,1)-coloring. O

Algorithm Ring-L(2,1, 1)-coloring (R, n);

1. if n = 1,2, 3 assign to each vertex ¢ the color f(z) = 2i;

2. if n = 6 assign to each vertex ¢ the color

3. if n = 7 assign to each vertex ¢ the color

i |

7@ |

0
0

N
S
(o]
=
w
ot

4. if n = 11 assign to each vertex ¢ the color

1 2 3 4 5 6 7 8 9 10
2 4 1 3 5 0 2 4 1 3

i |

7@ ]

0
0
5. ifn=4,5,8,9,10 or n > 12, let 6 = 4 (L%J — (n mod 4)), and assign to each vertex ¢ of R the color

0 mod 5 and ¢ > 6

ifi=0mod4 and i < 0, or (i —0)
(!—0)=3mod5andi>¥0

ifi=2mod4 and i< 0, or (i —0)
if (i—0)=1mod5 and i > §

ifi=3mod4 and i<, or (i —0)
ifi=1mod4 and i< 0, or (i —0)

@)=
4mod 5 and 7 > 0
2mod 5 and 7 > 6

W= o

Theorem 3 The Ring-L(2,1,1)-coloring algorithm is optimal for rings.

Proof  The first § vertices are colored repeating [%2| — (n mod 4) times the color sequence

0,4,1,3 of length 4, and the others repeating n» mod 4 times the sequence 0,2,4,1,3 of length
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Figure 5: Optimal coloring obtained by the Ring-L(2,1,1)-coloring algorithm for a ring of size
n = 14, where § = 4 ([%J — (14 mod 4)) = 4.

5 (see Figure 5). Since two vertices ¢ and j get the same color only if they are at distance 4 or
5, and two adjacent colors have a gap of at least 2, the co-channel reuse and channel separation
constraints hold. Observe that the largest color used when n = 6, 7, 11 is, respectively, 5, 6,

and 5 which matches the lower bound given by 3 + [%"]ﬂ-‘. In all the other cases, A = 4. Thus,

n
4

optimality follows by Lemma 6. O

Lemma 7 Consider a ring R of size n and let 0 > 3 and 6; > 1. There is an L(61,1,...,1)-

coloring for R only if

(n—1)& if n<3

n—1 if 4<n<ocandl1 <46 < [5] -1
A>( 0+ 35 if miseven, 4<n <o, and 6 > [§]

26, if nisodd, 5<n <o, and & > [5]

J_1+[MLH§?U-| if n>o

Proof When n < 3, R is a clique, and thus all the vertices must get a color multiple of ¢;.
Therefore, A > (n — 1)4;.

When4<n<gand1<4§ < [%1 — 1, Ggy is a clique. Therefore, all the vertices must get
different colors, and thus A > n — 1.

When n is even, 4 < n < o and 6, > [§], all the vertices must get different colors since
o > n. However n colors are not enough when ¢; > [%], as it is argued below by contradiction.

Suppose, indeed, that n colors are enough and let © and v be the two vertices that get colors
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f(u) =n—1and f(v) =n—3d; —1, respectively. Since n > 4, there is a vertex, say w, connected
with v such that f(w) =1t and |n — §; —t — 1| > ;. This implies that n — d; — ¢t — 1 > 4y, since
the case —(n — d; —t — 1) > 0; would require ¢ > n. As a consequence of n — §; —t — 1 > 4y,
o < "_TH results, which contradicts the hypothesis 6, > 7. It remains to show how many colors
are required. When n is even, the vertices of R can be partitioned in two independent sets S and
T of the same size 5 which consist of all the even vertices and all the odd vertices, respectively.
To use the minimum number of colors, the vertices of S must get colors {0,1,...,% — 1}. Since
any vertex of 7" is adjacent to a pair of vertices in S, the smallest color that can be used in 7T is
01 + 1. Moreover, since all the vertices of T must get different colors, at least the color ; + %
must be used.

When n is odd, 5 <n < o and 6, > [§], n colors are not enough as proved in the previous
case. However, more than ¢; + % + 1 colors are needed. In particular, since n is odd, at least
261 +1 colors are required. To prove this, suppose by contradiction that A = 26; —1 is the largest
used color which is assigned w.l.o.g. to vertex 0. Now, vertex 1 can only be colored by ¢, with
t < d; — 1, to satisfy the separation constraint. By the same token, vertex 2 can get only a color
f(2) not smaller than t+0;. Vertex 3, thus, gets a color f(3) < f(2)—d;. In general, odd vertices
get colors within {0, ...,d; — 1} while even vertices get colors within {6; +1,...,2§; — 1}. Thus,
vertex n — 1, which is even and adjacent to vertex 0, cannot be colored without violating the
separation constraint. Therefore, a contradiction arises and at least one extra color is necessary.
Hence, A > 20;.

Finally, when n > o, each color may appear at most ¢ = [EJ times. Therefore, at least [%1 col-

n
o

ors are needed. Observed that n = [gJ 0+ (n mod o), it follows that at least [%1 =0+ [%-‘

n mod o

colors are required. Therefore, A > o — 1+ [ B 1. a

In the following, an optimal L(dq,1,...,1)-coloring algorithm for rings is exhibited.
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Ring-L(§1,1,...,1)-coloring (R, n,0);
1. if n < 3, assign to each vertex ¢ the color f(i) =61, with 0 < i< n— 1;

2. if4<n<oand1<§; <[F] -1, assign to each vertex ¢ the color

N % ) if ¢ is even
f(i) { [27+1%] ifiisodd

3. ifn is even, 4 <n < o, and §; > [F], assign to each vertex i the color

N 3 ) if ¢ is even
f(’)—{ 81+[41 ifiisodd

4. ifnisodd, 5 <n < o,and§; > [5], assign to each vertex i the color

51 fi=n—1
. 281 ifi=n—-2
f@@) = z ifiiseven andi#n —1

b1+ 741 ifiisodd andi#n—2

5. if n > o and n = 0 mod o, then:

o Let A\=0—1+ [%] =0c—1, A= I_%J, assign to each vertex ¢ the color
Cl

iA mod o if (o is odd ) or ( o is even and A is odd )
f@i) = iA mod o if o is even and Aiseven and i = ¢t mod o, for0<¢t< § —1
(A 4+ 1) mod o if o is even and Ais even and ¢ = ¢t mod o, for T <t <o —1
6. if n > o and n Z 0 mod o, then:
. Let)\:a—1+[%],A:[%J,C:nmod)\,andﬂz HJ ¢
(a) assign to each vertex i, with ¢ > 6, the color
JjA mod (A+1) if ((A+1)isodd ) or ( (A+1) is even and A is odd )
f(i)=< jA mod (A+1) if (A4 1)iseven and Aisevenandi = ¢t mod (A+1), for0<¢< 2L 3
(jA+1)mod (A+1)) if(A+1)isevenand Aisevenandi = t mod (A+1), for 2F2 <t < A
where j =14 — 0X;
(b) assign to each vertex i, with ¢+ < §\ — 1, the color
0 if i = 0 mod A
) (1 4+ 1)A mod (A+1) if ((A+1)isodd ) or ( (A+1) is even and A is odd ) and ¢ Z 0 mod A
F@O=9 (+1)A mod (A+1) if (\+1) is even and A is even and i = ¢ mod A, for 1 <t < 2FL — 1

t mod A, for 2L < ¢ < A

(i +1)A4+1)mod (A+1)) if (A + 1) is even and A is even and i >

It is worth noting that the lower bound on A given in Lemma 7 is not tight when o = 4 and
n = 0 mod 4. Indeed, in this case, Lemma 7 gives A > o0 — 1 + ["t%] = 3, while Lemma 6
provides A > 4.

The Ring-L(dy,1,. .., 1)-coloring algorithm assumes o > 3 and works for any value of §; > 1,

when n < ¢, and for §; < [%J, when n > 0. Note that when o = 4 and n = 0 mod 4, such an

algorithm solves the L(1,1, 1)-coloring problem but not the L(2,1,1)-coloring problem.
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Before proving the correctness and optimality of the Ring-L(d1, 1, ..., 1)-coloring algorithm,

two preliminary lemmas are required.

Lemma 8 Givenn >0 >3, let A\=0—-1+ [%L and A =|3]. If A\ +1 is odd) or (A\+1
is even and A is odd), iA mod (A + 1) assumes all the values in the range [0, \] while i varies

within the interval [0, A].

Proof @ When A + 1 is odd, A and A can be rewritten as A = 2t and A = t. Consider any
value z € [0, 2t]. In the following, it is shown that there is a value of ' = z:(2t — 1) mod (2t + 1),
with ¢ € [0,2¢], such that ¢t = x mod (2t + 1). Indeed such congruence holds because ¢ and
2t + 1 are coprime, and 2¢ — 1 is the multiplicative inverse of ¢ mod (2¢ + 1), as it can be easily
proved observing that (2t — 1)t = ((t —1)(2t+ 1) +1) = 1 mod 2¢ + 1.

When )\ + 1 is even, A and A can be rewritten as A = 2t — 1 and A = ¢ — 1. Consider any
value z € [0,2t — 1]. Since by hypothesis A = ¢ — 1 is odd, it follows that ¢ is even, and A and
2t are coprime integers. As in the previous case, the congruence i(t — 1) = x mod 2¢ holds for
i' = x(t — 1) mod 2t, observed that ¢ — 1 is the multiplicative inverse of ¢ — 1 mod 2¢. In fact,
(t—12?=t*+1-2t=2t() — 2t +1=1mod 2¢.

In conclusion, in both cases, for any value z € [0,..., )], there is a value of 7 € [0, \] such

that 1A =z mod (A + 1). O

Lemma 9 Givenn >0 >3, let A=0—-1+ [”TE?“], and A = |%]. If A+ 1 is even and A

is even), iA mod (A + 1) assumes all the even values in the range [0, A\ — 1| while i varies within

the interval [0, 282 — 1].

Proof If both A+ 1 and A are even, then they can be rewritten as A+ 1 = 4¢ + 2 and
A = 2t. The congruence 2t mod (4t + 2) assumes exactly the same values as the congruence
2(it mod (2t +1)). The congruence it mod (2t + 1) assumes all the values in [0, 2¢], by Lemma 8

since (2t + 1) is odd. Therefore the congruence 2(it mod (2t + 1)) assumes all the even values in
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the interval [0, 4¢]. O

Theorem 4 Given o > 3, the Ring-L(d1,1,...,1)-coloring algorithm is optimal for any value

of 61 > 1, when n < o, and for 6; < L%J, when n > o.

Proof The correctness and optimality is proved following the 6 cases of the algorithm.

Case 1: When n < 3, R is a clique. Therefore, vertex ¢ is colored id;, for 0 <i <mn—1, and
A= (n—1)d.

Case 2: When4 <n<oand1<d < [§] -1, Gg, is a clique. By construction, the colors
of two consecutive vertices of R are at least separated by [§] —1 > d;. Finally, each vertex gets
a different color and, as it is easy to verify, the largest used color is n — 1 which is assigned either
to vertex n — 1 when n is even or to vertex n — 2 when n is odd.

Case 3: When n is even, 4 <n < o and 6; > [§]—1, the largest color used in the algorithm
is f(n—1) =& + [251] = & + 2, which matches the lower bound for A. Moreover, it is easy to

see that the separation between two consecutive vertices is

_ ~ | & if 7 is odd,
f(l"‘l)_f(?’)_{ 61 +1 if i is even,

while f(n —1) — f(0) =01 + 5.

Case 4: When nis odd, 5 <n <o and 6; > [§] — 1, the coloring of the vertices 0,...,n—3
of the algorithm is exactly the same as in Case 3, and therefore the separation constraint holds.
For the remaining two vertices, f(n—2) = 26, and f(n—1) = §;. Therefore, f(n—2)—f(n—1) =
f(n—1)— f(0) = &, while f(n—2)— f(n—3) = 26; — 252 > §; because by assumption §; > [%].
Since the largest color used is 241, the solution is optimal.

Case 5: When n > ¢ and n = 0 mod o, the algorithm solves the L(A,1,...,1)-coloring,
where A = 0 — 1 and A = |Z;1]. Therefore the algorithm solves also all the L(dy,1,...,1)-
colorings with 1 < ¢; < A. The solution proposed is different depending on the parity of o and
A.

In particular, when n > ¢ and n = 0 mod o, and (o is odd) or (o is even and A is odd), vertex

i of R gets color f(i) = ¢A mod 0. In practice, R is colored by repeating 2 times the sequence
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B =0, A, 2A, ..., iA, ..., (6—1)A, where all the operations above are done mod o. Thus the
separation between two consecutive vertices is | f(i+1) — f(i)| = |(i+1)A mod 0 —¢A mod o] >
((# +1)A — iA) mod 0 = A. Moreover, by Lemma 8, B consists of ¢ different colors, and the
same color is reused at distance o.

In contrast, when n > ¢ and n = 0 mod o, and (o is even and A is even), by Lemma 9,
it is known that the vertices of R ¢ = t mod o with 0 < ¢t < 5 — 1 get all the even colors
in the interval [0,0 — 2], whereas the vertices of R i = tmodo with § < ¢ < 0 — 1 get
all the odd colors in the interval [1,0 — 1]. In practice, R is colored by repeating Z times
the sequence B = Beven Boad, Where Bewen = 0, A, 2A, ... iA,..., (§ —1)A and Bygg =
L, A+1, 2A+1, ...;iA+1,..., (3 —1)A+ 1, where all the operations above are mod o.
To check the separation constraint, consider two consecutive vertices of R. Four cases may arise

depending on the position of the vertices in R. Indeed, either both vertices get even (odd) colors

or one vertex gets an even (odd) color and the other vertex an odd (even) color.
both even: |f(i+1)— f(i)| = (i +1)A mod o0 —iA mod o| = A;

both odd: [f(i+1)— f(i)] =|((:+1)A+1) mod o — (iA + 1) mod o| = A;
even-odd: [(§—1)Amodo)—1)modo|=(-A)modo—-1=0-A—-1>A;

odd-even: [((c—1)A+1)modo)—-0/=(-A+1)modo=0c—-A+1>A.

Finally, by Lemma 9, the same color is reused at distance o.

Case 6: When n > ¢ > 3 and n #Z 0 mod o, the algorithm again solves the L(A,1,...,1)-

coloring, where A = 2], and therefore it solves also all the L(1,1,...,1)-colorings with 1 <

91 < A. In this case, as proved in Lemma 7, the largest used coloris A\ = o — 1 + ["moji"]. In

L

practice, the algorithm colors R as follows:

e Build the following two sequences, A and B, of length A and X + 1, respectively, where all
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the operations are mod (A + 1):

(0, 2A,3A, ...,iA,... DA if \+1isodd or (A\+1is even and A is odd)
A=90,28,30, ., i (A 1A, 1, 280413041, .. AL, (AL 1) A+1

{ if A+ 1 is even and A is even

(0, A, 2A, ...iA, ..., AA if (A+1is odd) or (A+1is even and A is odd)
B=9 0822, . ia, . (M -1)A, L A+L 2841, A+, L, (AR -1)A+1

if A+ 11is even and A is even

e Let ( =nmod A, and f = [%J — (; color the vertices of R from 0 up to #A — 1 by repeating
f times the sequence A, and color the remaining vertices of R by repeating ( times the
sequence B. Note that all the vertices of R are colored because the sequences A and B

have length, respectively, A and A +1 and n = A + ( (A + 1).

The proof that the algorithm verifies the separation and reuse constraints, based on Lem-

mas 8 and 9, is similar to that of Case 5. O

It is worth noting that the two algorithms proposed in this section solve the L(2,1,...,1)-
coloring problem for any o > 4. Indeed, the Ring-L(2, 1, 1)-coloring algorithm works for o = 4,
while the Ring-L(d1,1, ..., 1)-coloring algorithm always solves the L(2, 1, ..., 1)-coloring problem
for ¢ > 5. In general, given any §; > 1, the Ring-L(d,1,...,1)-coloring algorithm optimally
solves the L(d1,1,...,1)-coloring problem for every ¢ > 26; + 1, independently on the size n
of the ring and using as few colors as the L(1,1,...,1)-coloring problem. Nevertheless, the
L(61,1,...,1)-coloring problem may be solved for values of o smaller than 26; + 1 for suitable
values of n < (26, +1)2.

Finally, when the vertices of the ring do not initially know their relative positions, a simple
distributed algorithm can again be executed to compute them. The computation is started by
any single vertex, which designates itself as vertex 0. Assuming for simplicity that the ring is
unidirectional, one round along the ring is needed to compute the vertex relative positions and
a second round is required to broadcast n to all the vertices. Both the time and the number of

messages are O(n), which are optimal.
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Network G L) [ L(O,1) | L(1,1) L(2,1) | L(1,1,1) L(2,1,1)

bus (path) 2 2 3 5 4 5

ring (cycle) 2o0r3 2o0r3 3or4 5 4dorbh 5
complete binary tree 2 3 4 5 6 7
bidimensional grid 2 4 5 7 8 9

cellular grid 3 6 7 9 12 12
References folklore | [2,13] | [1, 3, 16] | [4, 6, 10, 19] [3, 16] [4, 19], this paper

Table 3: Minimum number A + 1 of channels used for a sufficiently large network GG, when the
reuse distance varies between 2 and 4, and the channel separations are 0, 1 or 2.

6 Conclusion

Tables 3 and 4 summarize the results for optimal L(d1, s, ..., dy_1)-coloring, known up to now
in the literature. Specifically, such tables indicate, for the most common regular networks, the
minimum number of channels required. In all the cases, there are efficient algorithms to assign
channels to vertices. The channel assigned to any vertex can be computed locally provided
that the relative position of the vertex in the network is known. Such a computation can be
performed in constant time for all the networks, except for binary trees which require logarithmic
time in the number of vertices. In particular, the present paper dealt with the L(2,1,1) and
L(61,1,...,1)-coloring problems which consider a channel separation between adjacent vertices.
The proposed results extend those already known in the literature for the L(2,1), L(1,1,1), and
L(1,...,1)-coloring problems. For the sake of completeness, Table 3 reports also the minimum
number of colors required by the L(1)-coloring problem, which reduces to the classical minimum

vertex coloring of a graph.

It is worthy to note that the optimal solutions presented in this paper for the L(2, 1, 1)-coloring
problem on rings and cellular grids use as few colors as the L(1, 1, 1)-coloring problem on the
same networks. Similarly, the L(4,1,...,1)-coloring problem on rings and bidimensional grids
has been optimally solved in this paper using as few colors as the L(1, ..., 1)-coloring problem on
the same networks. In other words, in the cases above, no extra channels are required when the

channel separation constraint is introduced to avoid adjacent frequency interference. In all such
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Network G L((51,52) L(].,,].) L(él,l,...,l)

bus (path) 201 + 02 o max(a, 251)
ring (cycle) - o+ [2 TL“ET = o+ [2 TL“ET 2] if & < |3]
complete binary tree - oLzt 41 4 o5 — 9 -
bidimensional grid 201 + 302 ["2—2] f";] if 0 < | %]
3((51 + (52) if 61 > 204
cellular grid 96, if %(52 < 81 < 28, [%02] <A+1<o?2-0+1 -
46, + 30, if 6y < 34,
References [19] [3, 16] this paper

Table 4: Minimum number A+ 1 of channels used for a sufficiently large network G for arbitrary
reuse distance or channel separations (note that in [19] channels are cyclic, that is, channel X is
adjacent to channel 0).

cases, using channel separation is always better than adding guard frequencies between adjacent
channels. Indeed, suppose that the bandwidth of a single channel is # and that the bandwidth of
a guard frequency is 7, with 0 < v < 3. Consider a channel assignment problem with co-channel
reuse distance o. If the L(1,..., 1)-coloring problem is optimally solved, say using A + 1 colors,
and then a guard frequency is added between adjacent channels to handle the adjacent frequency

interference problem, then the overall bandwidth used is
Wguard = ()\ + 1)ﬂ + )\’)/.

In contrast, if channel separation is introduced as described by the L(d;,1...,1)-coloring prob-

lem, say using A" + 1 colors, then the total bandwidth used is

Wseparation = ()\I + 1)ﬁ

Clearly, if A = X', then Wieparation < Wguard, Which implies that using channel separation is better
than using guard frequency. This happens for the L(d;, 1,...,1)-coloring problem on rings and
bidimensional grids, as well as for the L(2,1,1)-coloring problem on rings and cellular grids.
In the remaining cases, the channel separation technique may or may not be more appealing

than the guard frequency technique, depending on the values of 7. For example, consider the
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L(1,1,1)- and the L(2,1,1)-coloring problems on a bidimensional grid. By the above reasoning
one obtains

Wguard = 8/6 + 777
Wseparation = 95 )

which implies that using channel separation is better than adding guard frequency when v > % 8.

From a theoretical point of view, it remains as an open question to solve the general
L(61,0s,...,0,-1)-coloring problem, with d; > d, > ... > d,_1, and to fill the empty entries in
Table 4.
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