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Abstract. Enormous progress has been achieved in the last decade in the
verification of timed systems, making it possible to verify significant real-world
protocols. An open challenge is the identification of fully symbolic verification
techniques, able to deal effectively with the finite state component as well as
with the timing aspects.

In this paper we propose a new, symbolic verification technique that extends
the Bounded Model Checking (BMC) approach for the verification of timed
systems. The approach is based on the following ingredients. First, a BMC
problem for timed systems is reduced to the satisfiability of a math-formula,
i.e., a boolean combination of propositional variables and linear mathematical
relations over real variables (used to represent clocks). Then, an appropriate
solver, called MATHS AT, is used to check the satisfiability of the math-formula.
The solver is based on the integration of SAT techniques with some specialized
decision procedures for linear mathematical constraints, and requires polyno-
mial memory. Our methods allow for handling expressive properties in a fully-
symbolic way. A preliminary experimental evaluation confirms the potential
of the approach.

1 Introduction

The verification of timed systems is a very important and challenging problem. In
the last decade, it has being devoted a lot of interest, and significant results have
been achieved, making it possible to verify real protocols with limited computational
resources (see e.g. [LPY95,DY95]). The verification of timed systems combines the
challenge of finite-state variables with the problems related to time: a state can be
seen as an assignment to propositional variables and to real variables, called clocks.

The verification of timed systems is traditionally based on the use of Difference
Bound Matrices (DBMs) [Dil89], that compactly represent a region associated with
an assignment to the clocks that are compatible with a specific assignment to propo-
sitional variables. Despite their efficiency, such techniques are basically explicit-state:
a complete assignment to propositional variables is associated with a complete region,
and the amount of required memory is the most limiting factor in the verification pro-
cess. Recently proposed techniques, such as DDD [MLAHO01], CDDs [LWYP98], and
RED [Wan00], provide symbolic representations for the search space. Also in this case,
however, the memory requirements can be substantial, because of the inheritance of
the properties of Binary Decision Diagrams.

In this paper, we propose a new symbolic technique for the verification of
timed systems. The approach is a generalization of Bounded Model Checking
(BMC) [BCCZ99], that is gaining increasing interest for the verification of finite state
systems [Sht00,CFG*01a]. The approach consists on encoding the BMC problem of



timed systems into the problem of deciding the satisfiability of math-formulas, i.e.
boolean combinations of boolean variables and linear (in)equalities over real variables,
representing clocks. The resulting problems are then tackled with MATHS AT, a solver
combining an efficient procedure for propositional satisfiability (SAT) [DLL62] with
mathematical constraint solvers of increasing deductive power.

The approach is rather general, since it allows to express specifications in full LTL,
such as fairness properties. Furthermore, the approach is fully symbolic: it allows us
to tackle the digital component of timed systems with symbolic technologies as in the
untimed case, while the timed component is tackled by means of specialized mathe-
matical constraint solvers. Finally, the math-formulas generated are polynomial w.r.t.
the size of the representation of the input system and the maximum path length %,
and are solved by a solver requiring a polynomial amount of memory. Although pre-
liminary, our experimental analysis confirms the potentials of the proposed approach.

The paper is organized as follows. In Section 2 we give some background: we
recall the basics on timed automata [Alu99], and we describe the MATHSAT prob-
lem [ABC*02]. In Section 3 we describe the idea of BMC for timed automata, and we
show how to reduce the problem to the satisfiability of a math-formula. In Section 4
we discuss some optimizations to the encoding. In Section 5 we discuss some related
approaches. In Section 6 we present some preliminary empirical results. In Section 7
we draw some conclusions, and outline the future directions.

2 Background
2.1 Model Checking Timed Automata

In this section we briefly recall timed automata [Alu99]. An atomic clock constraint
is any expression in the form (z > ¢), 1 € {<,>, <, >}, z being a clock variable with
values in R and ¢ € Z being a constant; a clock constraint is any conjunction of atomic
clock constraints. (To this extent, notice that every clock constraint is convex.)

A timed automaton A is a tuple (L,,LY, ¥, X;, 11, E) where L; is a finite set
of locations, LY C L, is the set of initial locations, X; is a finite set of labels for the
possible events, X; is a finite set of clock variables, I; is a map labeling every location
s € L1 with a clock constraint on X7, and E is the set of switches. Every switch T =
(si,a,p, A, s;) is characterized by its source and target locations s;,s; € Ly, an event
a € X1, a clock constraint ¢ on X;, and a set of clock reset conditions A in the form
(.’17 = 0), x € X1. If A1 = <L1, L(1)7 21, Xl, Il, E1> and A2 = <L2, Lg, 22, Xg, _[2, EQ), s.t.
X, and X are disjoint, then the product A = A;||Az is defined as (L,L° ¥, X I, E),
with L = Ly X Ly, L® = L0 x LY, & = 5, U %5, X = X, UX,, I st. I(sy,s0) =
I(s1) A I(s2), and E is defined as follows:

1.if a € Ty N Xy, (s15,8,01,\1,815) € Er and (s2i,a, 92,2, 825) € Ey, then
((s145520), @, 01 A P2, A1 U g, (814, 525)) € E;

2.if o €  I\X (sua,¢1,A1,815) € Ey and t € Ly, then
<(31i7t)5a7 9017/\1; (Sljat» € E7

3.if a €  IH\X, (s2i,a,92,A2,825) € Ep and t € Li, then
<(t: SQ,’),G, (PZJ)‘QJ (t: S2j)> € E.

The dynamics of the timed automaton A; is given by means of a transition system
Sa,- A state of Su, is a pair (s,v) s.t. s € Ly and v : X1 — Rt is a clock evaluation



satisfying I(s). (s,v) is an initial state iff s € LY and v(z) = 0, Vz € X;. S4, can
evolve into two different ways. With time elapse, if § > 0, then (s,v) N (s,v+9),
v + ¢ being the evaluation such that (v + §)(z) = v(z) + 6, Vx € X3, and v + &'
satisfies I, V&' s.t. 0 < ¢' < 6. With switch, if (s;,a,p,A,s;) € E; and v satisfies ¢,
then (s;,v) = (sj,v[A = 0]), [\ = 0] being the evaluation assigning z = 0 Vz € X
and agreeing with v for the other clocks in Xj.

Let A =(L,L° XY, X,I,E), and let ®(X) and A(X) be the set of all possible
atomic clock constraints and clock reset conditions on X. Let ®4(X) be the set of
all atomic clock constraints on X occurring in the automata A. We see as atomic
propositions the locations s € L (meaning “A is in location s”), the elements of
®,4(X) and A(X). The timed automaton A induces a Kripke structure (S, S°, R, L),
with a finite set of states S, a set of initial states S® C S, a transition relation
R € S x S and a labeling function £ : S — Pow(L U ®4(X) U A(X)). L is such
that, for every o € S, exactly one s € L is in £(o) —we denote s as location(o)—
and the elements of ®4(X) U A(X) in £(0) have an evaluation in (R+)IXI, SO is
the set of 0 € S s.t., for every z € X, (z = 0) € L(0), location(c) € L° and
I(location(o))[X := 0] C L(0). R is such that, for every o;,0; € S, R(0;,0;) holds
if and only if either (i) one switch (s;,a, ¢, A, s;) in X' is such that s; = location(o;),
I(s;) C L(03), sj = location(c;), I(s;) C L(oj), ¢ C L(o;), A C L(o;) for some
a € E; (ii) for some § > 0, s := location(o;) = location(o;) is such that I(s) C L(o;),
I(s)[X := X 4+ §'] C L(o;) for every &' € [0,0].

We use Linear Temporal Logic (LTL) with its standard semantics [Eme90] to spec-
ify properties of timed automata. Basic propositions are atomic propositions, atomic
clock constraint in @ 4(X), and clock reset conditions in A(X); a propositional literal
(i-e., a basic proposition or its negation) is a LTL formula; if & and g are LTL formu-
las, then hA g, hV g, h & g, Xg, Gg, Fg, hUg and hRg are LTL formulas, X, G, F,
U and R being the standard “next”, “globally”, “eventually”, “until” and “releases”
temporal operators respectively. In order to encompass the case of a property f in-
cluding atomic clock constraints not in ® 4(X), it is possible to extend the labeling
function of the Kripke structure to £ : S +— Pow(L U ®4(X) U @;(X) U A(X)),
where ®;(X) is the set of atomic clock constraints in f.

2.2 Satisfiability of math-formulae

We call math-formula a boolean combination of boolean variables and linear con-
straints over numerical variables. We call an interpretation a map 7 which assigns real
and boolean values to real and boolean variables respectively and preserves constant
values, arithmetical and boolean operators. For instance, Z((x — y>4) A (A1 V (z =
y) = (Z(x) —Z(y) > 4) A (—Z(A1) V (Z(z) = Z(y))). We say that Z satisfies a
math-formula ¢, written Z = ¢, iff Z(¢) evaluates to true. We call MATHSAT the
problem of checking the satisfiability of a math-formula. It is easy to see that the
general MATHSAT problem is NP-complete.

We call a truth assignment for a math-formula ¢ a truth value assignment p to (a
subset of) the atoms of ¢. We say that u propositionally satisfies ¢, written u =, ¢, iff
it makes ¢ evaluate to true. We represent truth assignments as sets of literals, with the
intended meaning that positive and negative literals represent atoms assigned to true
and to false respectively. Z satisfies p iff it satisfies all its elements. For instance, the



boolean MATHSAT (formula ¢, interpretation & I)
=0
return MATHDPLL (p, 4, Z);

boolean MATHDPLL (formula ¢,assignment & p,interpretation & T)
if (p==T){ /* base */
Z = MATHSOLVE(p) ;
return (Z # Null) ; }

if (p==1) /* backtrack */
return False;

if {a literal ! occurs in ¢ as a unit clause} /* unit propagation */
return MATHDPLL(assign(l, ), p U {l}, Z);

l = choose-literal(p); /* split */

return (MATHDPLL(assign(l,),pU{l},Z) or
MATHDPLL(assign(-l, ), p U {~l},7) );

Fig. 1. Pseudo-code of the basic version of the MATHSAT procedure.

assignment {(z —y > 4), A} propositionally satisfies (x —y > 4) A (041 V (z = y)),
and it is satisfied by Z s.t. Z(z) = 6, Z(z) = 1, Z(A;) = L.

To solve the MATHSAT problem, we have implemented MATH-
SAT [Seb01,ABC*02], a solver based on a variant of the DPLL SAT proce-
dure [DLL62]. The basic schema of such a procedure is reported in Figure 1.
MATHSAT takes as input a math-formula ¢, expressed in CNF, and (by reference)
an empty interpretation Z, and returns a truth value asserting whether ¢ is satisfiable
or not, Z being respectively an interpretation satisfying ¢ or Null. MATHSAT invokes
MaTHDPLL passing as arguments ¢ and (by reference) an empty assignment p and
the interpretation Z. MATHDPLL tries to find a truth assignment p propositionally
satisfying ¢ which is satisfiable from the mathematical viewpoint.

Basically, MATHDPLL is a variant of DPLL, modified to work as an enumerator
of truth assignments, whose satisfiability is recursively checked by MATHSOLVE. (The
function assign(l, ) assigns [ to T in ¢ and propositionally simplifies the result.) The
key difference w.r.t. standard DPLL is in the “base” step. Standard DPLL needs
finding only one satisfying assignment p, and thus simply returns True. MATHDPLL
instead also needs checking the satisfiability of u, and thus it invokes MATHSOLVE(u).
Then it returns T'rue if a non-null interpretation satisfying u is found, it returns False
and backtracks otherwise.

MATHSOLVE takes as input an assignment g and returns either an interpretation
T satisfying p or Null if there is none. In our implementation, MATHSOLVE first
performs all the substitutions allowed by the equalities in u. Then, if only inequalities
with two-variable are left, then a variant of Bellman-Ford minimal path algorithm is
invoked, a linear programming procedure otherwise.

Notice that MATHSAT works in polynomial space. In [Seb01,ABC*02], the proofs
of correctness and completeness of MATHSAT are reported, as well as the description
of some improvements on the procedure of Figure 1 (e.g. preprocessing and sorting,
intermediate assignment checking, triggering, math-driven backjumping and learning)
which we have implemented.
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Fig. 2. A simple automaton example

3 Bounded Model Checking for Timed Automata

Bounded Model Checking (BMC) is a recent approach to symbolic model check-
ing [BCCZ99]. The starting point is an existential model checking problem M | Ef,
for an LTL formula f, and a Kripke structure M. The idea is to solve the problem
by looking for a witness to the property that can be presented within a bound of k
steps. Given k, the problem is reduced to the satisfiability of a propositional formula
[M, fll- I [[M, f]], is satisfiable, the propositional model provides a witness of k
steps to f. The method is not complete: if [[M, f]], is unsatisfiable, then nothing can
be said about the existence of solutions for M = f models with higher bound. Thus,
the typical technique is to generate and solve [[M, f]], for increasing values of &, until
either a counter-example is found, or a given time-out is reached. (Completeness can
be in principle achieved when k reaches the diameter of the problem. Unfortunately,
such value is typically hard to compute, and very big. A somewhat partial solution is
the use of inductive techniques [BCC199].)

Despite this limitation, BMC is being increasingly accepted as an effective and
practical technique, in particular in the process of falsification, i.e. bug finding. The
problem is tackled by refutation, looking for witnesses of bound k to the negation
of the property being analyzed. The technique relies on the use of efficient SAT
solvers (e.g. based on DPLL procedures) for checking the propositional satisfiabil-
ity of [[M, f]]- As shown in [CFG101b], BMC avoids the blow-up in memory that
can occur with model checking based on Binary Decision Diagrams, and is therefore
able to tackle much larger circuits. Furthermore, SAT-based techniques appear to re-
quire less tuning to be effective, and are therefore more amenable to the introduction
in industrial settings.

In this paper, we address the problem of BMC for M = f for the case of timed
systems, where M is a Kripke structure induced by a timed automaton, and f is an
LTL formula. The encoding [[M, f]], is a math-formula, where real variables are used
to represent the temporal part of the state space and its evolution. The encoding is
a combination of a characterization of the paths of the automaton (described in sec-
tion 3.1) with a characterization of the paths that satisfy the specification (described
in section 3.2).

3.1 Encoding Paths and Loops of Timed Automata
In the following, we assume that A; and A,, with A; = (L;, LY, %;, X;, I;, E;), and
A = A||As = (L,L° ¥, X, 1, E), are given. For explanatory purposes, we use the
simple automaton depicted in Figure 2.

Boolean Variables In order to represent the status and the evolution of the
system A, we introduce the following propositional variables. For locations, we in-
troduce an array s of [log2(|L1])] boolean variables. The intended meaning is that



V s N\ @=2) S

s,-EL(l) rEX1

N = A w), (2)

8; €L, YeI(s;)

Fig. 3. Encoding Initial Conditions and Invariants for A;

s; holds if and only if the system is in the location s;. By “(s; = s;)” we mean
“An(si[n] <+ s;[n])”, n € {1,...,[log2(|L1|)]}. To represent each event a € Xy, we
introduce a boolean variable a, with the intended meaning that a holds if and only
if the system executes a switch of event a. For each switch (s;,a,p,A,s;) € E; we
introduce a single boolean variable (e.g., T'), with the intended meaning that T holds
if and only if the system executes the corresponding switch. Finally, we introduce two
boolean variables T5 and T} ,;, with the intended meaning that Ts holds if and only if
time elapses by some § > 0, and that 7', ,, holds if and only A; does nothing, respec-
tively. For instance, in the example of Figure 2, we have the variable s for the state,
while for transitions we have the variables Ts, 115,751, T (Since both transitions

null*
are labeled by the same event, no variables for events are needed.)

Real Variables The clocks in the automaton are represented by means of real
variables in the encoding, as follows. We introduce a real variable z, called “absolute
time reference”, whose negated value represents the time elapsed from the beginning
of the path being analyzed. Then, for each clock z in the automaton, we introduce
an “offset” variable ox whose negated value is the absolute time when the clock was
last reset. In general, the value of a clock z is obtained as oz — z. In the following, we
write 7' for the value of the real variable r after a transition of the automaton. In this
setting, when the automaton performs a delta transition, and time advances, we have
that 2z’ < z. Otherwise, time does not elapse, and 2z’ = z. Every condition or operation
over a clock z can be encoded by means of the difference between the absolute time
z and ozx. This trivially applies to state constraints and transition constraints of the
form (z > c¢), with 1 € {<,>, <, >}, with ¢ € Z being a constant, that are reduced
to (ox’' — 2’ < c¢). We encode the fact that transition resets a clock by means of the
constraint ox' = 2'. Similarly we impose that clocks have non-negative values by
means of the constraint oz’ < 2'. In the example of Figure 2, the clock z in the
automaton on the left is represented by the difference between ox and z on the right.
When clear from context, in the following we write x for ox.

Paths and Loops A path of length & in the (Kripke structure associated with
the) automaton is encoded by replicating the propositional and real variables from
0 to k, and the label and transition variables from 0 to k — 1. (We use the suffix ()
to indicate the step index of a variable: e.g., Tg(i) and Tiu(l? indicate T5 and Tf;u” at
step ¢ respectively.) A path is obtained by constraining the values of the state vectors
at 4,7 + 1 via the transition relation of the automaton. Notice that, z(it1) < ()
oz > 2" and, by induction, ozt < 0z() as z can either be reset or keep its
value. For the example automaton, we depict in Figure 2, on the right, the variables
needed to encode a path of bound k& = 4. The vertical squares represent the state
vector at the different steps, where thick squares enclose values for real variables,
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Fig. 4. Encoding Transitions for A;

while the corner-rounded squares represent the propositional values of transitions
(from top to bottom T, Ti2, To1, T, )

A set of implicitly conjoined constraints is needed to make sure that the assign-
ments to the variables represent a legal path of the automaton. The initial condi-
tions, holding over the first state vector, state that the system can be only in one of
the initial locations (Figure 3, Eq. 1, left), and that the clocks are all zero (right). The
invariants (Figure 3, Eq. 2), state that if the system is in a location s;, then all the
associated clock constraints must hold, and must be replicated for all state vectors.
The constraints in Figure 4 describe the effect of switches, delta and null transitions,
and must be replicated from steps 0 to k — 1. At step ¢, the current and state vectors
are substituted with the state vector at step ¢ and ¢ + 1, respectively.

Equation 3 encodes switches (s;,a, ¢, A, s;) € E;. Intuitively, if (s;,a, @, A, s;) is
being fired, then: (i) before the switch, the automaton is in location s;, the event a
occurs and the constraints ¢ are verified; (i) after the switch, the automaton is in
location sj, all clocks in A are reset, and the values of the other clocks are the same
as before the transition; (#4¢) as no time elapse can occur when switching, the value
of z is the same before and after the transition.

The formula (4) encodes delta transitions: (i) time elapse must be strictly greater
than 0, (i7) in the next state the system must be in the same location as in the current
state, (447) the values of all clocks must be identical to those of the current state, and
(iv) no event in Xy can occur together with time elapsing. (The invariants I(s) are
conjunctions of linear inequalities, and represent convex regions; thus, if ' = z, 2’ < z
and both z — z and 2’ — 2’ verify I for every z € X, then 2" — 2" s.t. 2" € [2/, 2] and
z!" = x verifies I for every z € X1.)

The formula (5) encodes the null transition, enforcing that (¢) time elapse must
be equal to zero, (i7) in the next state the system must be in the same location as in
the current state, (ii¢) the values of all clocks must be identical to those of the current
state, and (iv) no event in Xy can occur.

The remaining formulae (6-7) express the relation between the different transitions.
Formula (6) states that at least one variable among the variables T in E;, T5 and



L F [ [fIk |1 ]

P p® p®

e p—c) 5@
hag | [[A]li A [lglli [~]]i A i[lgl]i
hvg | [[A]li v [lg]li [[P]]i v i[lg]k

xg | Mol if i<k ol if i<k

L otherwise. lglli  otherwise.

Gy 1 ' /\?:min(z’,l) z[[g]]?c
Fg | Vi [l Vi—mincn ol

nog | Vs (el AN (D) | Ve (Glloll AN el ) v

Vizt (gl A NS IRl A NSZS IRTR)
Ry | Vi (IR AN T90R) | Afmingiy gl v

Vi~ (IR A NG llglli) v

Vizh (GlIRI A AR llgllE A Ny llsli)
Table 1. Recursive definition of [[f]]; and [[f]]%.

T} . must hold, i.e. in system A; either a switch shoots, time passes, or stuttering
occurs. The formula (7) states mutual exclusion between events, that is, two different
events in X; cannot occur at the same time. The formulas (7) state the mutual
exclusion between two switches in the (rare) case they share the same event, source
and target locations. In every other case, the mutual exclusion between two switches
is a consequence of (3) and the mutual exclusion of states and of events (7).

An infinite, cyclic behaviour can be encoded as a path of length k& with a loop
back at I, with 0 < [ < k. For the propositional part of the state vector, this can
be expressed by imposing that each variable has the same value at [ and k. For each
clock z, we impose that (oz(®) — 2(F) = oz — »()), Notice that it is not possible to
express this condition simply by means of equalities between (0z(®) = 0z("), since ox
decreases monotonically. Given M and an integer k > 0, we write [[M]], for (the
math-formula representing) a path of bound k for the Kripke structure M, ;Lj for
the loopback condition from & to I.

Product construction The encoding for the product automaton A = A;||A4y
follows almost directly from the encodings of A; and A,, by conjunction. (Notice that
Ts is common to all systems A;.) The only addition is the following constraint:

(may V —a,). (8)
AN
needed to prevent two different events a; € X1\ X3 and ay € X5\ X to occur at the
same time. It is clear that our approach meets the requirement that the combinatorial
explosion due to the product construction is not present when generating the encoding.
Rather, it is deferred to search time, where it can be tackled by mean of symbolic
techniques.

3.2 Encoding LTL specifications of Timed Automata
The existential BMC problem M |y Ef, read “there exist an execution path of M
of bound k satisfying the LTL property f”, is equivalent to the satisfiability problem
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Fig. 5. Formulas for the boolean propagation of mathematical constraints.

for the math-formula [[M, f]], defined as [[M]], A [[f]];, where [[f]], is [[f]]%V

;:01 ( 1Lk A 131[[f]]%) [CPRSO02]. Table 1 describes, in the cases without loopback
( [[f11}) and with loopback (;[[f]]%), the bounded tableau, depending on the structure
of the formula. (Without loss of generality we assume that f is in extended negative
normal form.) The table encodes the necessary conditions for the existence of a path
satisfying the formula. For instance, in the case of an eventuality formula Fg, it
requires that g must hold in at least one of the steps within in the bound. Notice
that, in the case of a globally formula Gg, an infinite behaviour is required in order
to be able to provide a witness. The encoding of LTL formulae is very similar to the
encoding proposed in [BCCZ99], apart from two differences. First, in the specification,
constraints over clocks are also possible as atomic propositions, so that [[M, f]], is a
math-formula. Second, we define loopback as an equivalence between the state vectors
at [ and k, while in [BCCZ99] a transition from step k to step [ is required.

4 Improvements and extensions to the encodings

The encoding described in previous section can be improved and extended in various
ways, in order to best exploit the features of the solver. Here we consider some opti-
mizations, and show how they can be implemented in our approach. (Care must be
taken since some of them may change the semantics of “next state”, and consequently
the validity of some LTL properties, in particular those with “X” operators.)

Deterministic propagations of real values. We exploit the fact that the truth
value of some mathematical constraint may derive deterministically from those of
other mathematical constraints. By making such information explicit in the encoding,
the SAT solver deterministically propagates the truth values without investigating the
mathematical constraint, and may avoid branching on the truth value of mathematical
constraints. This is done by adding the formulas reported in Figure 5 to the encoding.
The formulas (9), (10) and (11) make explicit the facts that 2’ < z, z > z and
' < z, as observed in Section 3.1, and the fact that equalities and strict inequalities
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Fig. 6. Two processes in Fischer’s mutual exclusion protocol.

are mutually incompatible. We also propagate the positive and negative values of
equalities. If so, for every = € X; we add the formulas (12), (13), (14), (15), (16) and
(17). Moreover, we may propagate the positive and negative values of atomic clock
constraints when time does not elapse and clocks are not reset, by adding the formulas
(18) and (19).

Exploiting parallelism. The formula (8) imposes a mutual exclusion constraint be-
tween the two switches T and T5, since they are labeled by different events. Consider
however that 77 and T5 do not interfere with each other, since they belong to differ-
ent automata. Therefore we may want to release such a constraint, by dropping the
formula (8) from the encoding, thus allowing them to shoot in parallel. This amounts
to allowing the product system A —though not to forcing it— to collapse both se-
quences (Ty AT2,;) - (TE uATe) and (T, AT2) - (Ty AT?,;,) into one single transition
(Ty A T3). This results into more compact formulas, and, more importantly, may sig-
nificantly shorten the length of the minimum counterexample for a given formula,
which is essential in the BMC approach. The resulting encoding of A;||As is exactly
the conjunction of the encodings of A; and As.

Forcing System Activity and Compacting Time elapse. Assume that the sys-
tem is given by the product of the automata Ay, ..., Ax_1. The encoding allows situa-
tions in which all the systems do nothing, that is, all systems A; execute a transition

' (This corresponds to a time elapse with = 0.) To prevent the search engine

T .
null
from considering this situation, we add the formula:

N-1 '
\/ _'Tr]wll‘ (20)
=0

Furthermore, we avoid two consequent time elapsing transitions to occur by col-
lapsing s NN s, s Wy s into s % 5. To do this we add the constraint:

~T5 v L. (21)

Adding global variables. Our encoding can be straightforwardly extended to han-
dle global variables v on discrete domains. The intended meaning is that a switch
T can be subject to a condition ¢ (v) on the variables v’s, and can either assign to
v a value n or maintain its value; 75 maintain the value of v, and T, impose no



constraints on v. These facts are encoded respectively as
T%@b(y)a T_>Ql =n, T— (Ql =Q)7 T5s — (Ql :Q), (22)

v being a boolean representation of v preserving the mutual exclusion of its values.
(Here we assume that (20) is part of the encoding, to make sure that at least one
transition states the value of the global variable.)

Exploiting symmetries Assume that the system is the product of the au-
tomata Ag,..., AxN_1. We say that the model checking problem is symmetric w.r.t.
Ao, ...,An_1 if, for every permutation ¢ = {kg = 0,...,kn—1 = N — 1} of the au-
tomata indexes, the permutation of a solution is a solution for the permuted problem.
A sufficient condition for symmetry is that the automata Ag, ..., Axy_; are identical
and that both the initial conditions and the property to be verified are symmetric. If
Ag, ..., AN_1 are symmetric, we can simplify the search by imposing that, at step i,
one of the processes with index 0 < j < i is forced to fire a transition. We substitute
equation 20 with

min(i,N—1)
Vo -T (23)
3=0
that is, if i < N —1, then we drop the disjuncts _‘T:Llel @y.. .vﬂTTJL\;l_ll () Notice that,
while equation 20 is replicated “as is” for the different time steps, the equation above
changes with the step 7, so that the i-th instance constraints the possible transitions
that can be fired at step i.
It is easy to see that the new encoding does not lose any interesting models. Indeed,
let [[M, f]];¥™™ be the formula obtained from [[M, f]], by substituting equation 20
with equation 23, for every i. Every solution for [[M, f]];¥™™ is trivially also a solution
for [[M, f]], and, for every solution u for [[M, f]],, there exists a solution oy for
[M, f11;¥™™ which is obtained by applying to u a permutation o on the index names
of the automata Ag,...,Ay_1. It is also clear that a significant amount of search
is avoided. The idea is that exponentially-many symmetric executions are collapsed
into one. In fact, using [[M, f]];¥™™ rather than [[M, f]], reduces the space of truth
assignments for MATHSAT of up to a 2V—12V=2 2 = 2N(N-1)/2 factor.
Given the compositional nature of our encoding, the idea can be generalized to
the case in which only subsets of {4y, ..., Axy_1} are symmetric. For instance, if only
Ao, ..., Ak _1 are symmetric, K < N, then we replace (20) with

min(i,K—1)

N-1
\/ _'Trg,u(l? v \/ _'Trjzull‘ (24)
j=0 =K

5 Related Work

Our work proposes a new way to tackle the verification of timed systems. In this
field, several approaches have been proposed. In [HNSY94], a symbolic approach for
formally checking whether a system modeled as a product of timed automata meets
its requirements is presented. A product is built from components which can com-
municate each other through synchronization events. The associated tool KRONOS,



is able to perform both backward and forward exploration of the state space, with
a symbolic representation combining DBMs ([Dil89]) and BDDs [BDM198]. UpPPAAL
([LPY95]) is a tool for verification of real-time systems. It is appropriate for systems
that can be modeled as a collection of non-deterministic processes with finite con-
trol structure and real-valued clocks, communicating through channels and/or shared
discrete variables. The description language is a non-deterministic guarded command
language with simple data types (e.g. bounded integers, arrays, reals). The model
checker is able to check invariants, reachability and some liveness properties by ex-
ploring the state space of a system in a symbolic way. To represent the state space,
UPPAAL can use Clock Difference Diagrams (CDDs) [LWYP98], or DBMs. Difference
Decision Diagrams (DDDs) [MLAHO1] are BDD-like data structures to handle bool-
ean formulas over inequalities of the form z —y < ¢ and z —y < ¢, and can be used to
represent and explore sets of states of a timed system. The associated tool can verify
a real time system modeled as a timed guarded command program in a fully symbolic
way, by performing reachability analysis and model checking of TCTL formulas using
standard fixed-point iteration algorithms. RED [Wan00] is a tool for the verification
of real time systems modeled as a set of concurrent processes expressed as timed au-
tomata equipped with a clock, discrete variables and pointers. RED is based on the
efficient Region Encoding Diagram (RED), a data structure which can be used for
fully symbolic model checking of TCTL over timed systems. RED is able to exploit
symmetries between processes, and is currently one of the most efficient verification
tools in the field.

Our approach differs from the above techniques in several respects. On one side, it
is limited to the bounded case. On the other side, it allows for the analysis of specifica-
tions expressed in LTL, and is therefore able to express general forms of fairness. Fur-
thermore, our approach is based on (an extension of) propositional satisfiability tech-
niques, that are increasingly accepted as an efficient and complementary alternative to
the use of Decision Diagrams, for their limited memory requirements. Finally, we use
specialized solvers that are able to deal efficiently with different classes of mathemat-
ical constraints: equalities (by substitution), binary inequalities (by Bellman-Ford),
and arbitrary inequalities (by Symplex).

6 Some preliminary empirical results

In this section, we report some preliminary experimental results, where our approach
is used to tackle a case study, and compared with the systems described in previous
section. The evaluation is carried out on Fischer’s mutual exclusion protocol [Lam87].
N identical processes (described in Figure 6) try to gain access to a critical section
C'S. The synchronization relies on a global variable id where each process P; writes
its identifier ¢ when entering the waiting state C. Other processes P; can enter the
waiting state C' in the same way. If after a certain delay § still id = i, then P; can enter
the critical section C'S, from which it eventually exits resetting id to 0; otherwise, as
soon as id is reset, it can go back to B, from where it can subsequently retry. This
protocol is interesting for many reasons: it is very simple to describe and understand,
it contains several elements of interest (e.g. time advance, synchronization, mutual
exclusions), it is scalable, so that we can increase its complexity at will by increasing
N, and it is symmetric. Despite its simplicity, investigating non-obvious properties is
non trivial even with small N’s.



MATHSAT|MATHSAT,Sym| DDD Uppal Kronos Red Red,Sym
N [Time| Size||Time Size||Time|Size|| Time|Size|| Time|Size|| Time|Size|| Time|Size
3| 0.05| 2.9|| 0.04 2.9]| 0.11]106(| 0.01| 1.7|| 0.01| 0.8 0.23| 2.0|| 0.19]| 2.0
41 0.09] 3.0|| 0.08 3.0(| 0.14| 106|| 0.02| 1.9|| 0.02| 2.2|| 1.00| 2.1|| 0.70| 2.1
51 0.20] 3.2{ 0.16 3.2|| 0.24|106|| 0.21| 1.9( 0.09| 19| 3.70| 2.2|| 2.00| 2.4
6| 0.60| 3.7|| 0.23 3.7(| 0.47) 106|| 3.44| 6.7|| 0.39| 236/(12.00| 2.7|| 5.20| 3.1
71 3.20] 4.2{ 0.36 4.2]| 1.30| 106|| 153| 54 - 38| 4.0 12| 4.7
8 29| 4.9|| 0.52 4.9|| 3.96| 106 - 121| 7.6 26| 7.8
9| 343| 5.9|| 0.75 5.9 14| 106 416|16.6 49(13.3
10| 3331| 6.5|| 1.01 6.5 62| 106 1382| 39 90| 23
11 - 1.39 7.0 691|106 - 157 38
12 1.89 7.5 - 266| 63
13 2.44 8.2 439| 100
14 3.24 8.9 709| 155
15 4.11 9.7 1118 225
16 5.10 10.7 1717| 342
17 6.30 11.7 2582| 492
18 8.00 12.9 -

19 9.50 14.2

Table 2. Fischer’s protocol — reachability (time in seconds, size in MB).

To analyze our example, for increasing values of N and increasing values of
the bound k = 1,2,3, ..., we encoded the given problems into math-formulas and
we tackled the resulting math-formulas with our implementation of MATHSAT.
The experiments were run under Linux RedHat 7.1 on a 4-processor PentiumIII
700MHz machine with more than 6.5GB RAM. The time limit was fixed to 1
hour (only one processor is allowed for each run), while the memory was lim-
ited to 1GB for each run. All the math-formulas investigated here are available
at http://www.science.unitn.it/"rseba/Mathsat.html, together with our imple-
mentation of MATHSAT.

As a first example, we have considered the reachability problem “Is there a state
in which all the processes are in the wait state C”, formalized as:

M =, EF /\ P;.C
K3
For every N, the math-formulas are unsatisfiable for k¥ < N and satisfiable for £ > N.
In fact, the shortest solution path —all processes pass from A to B, and then from B
to C one at a time— has length N + 1.

We have compared MATHSAT —without and with the symmetry-exploiting en-
coding described in Section 4— with the DDD package, with UPPAAL (version 3.2.4),
with KRONOS (version 2.4.4), and with RED (version 3.1) —without and with its own
symmetry exploitation techniques. The results are collected in Table 2. MATHS ATwas
run with the default splitting heuristic, i.e. the one of SATZ [LA97]. Times are ex-
pressed in seconds and size in megabytes. “-” denotes that the system reached the
time or size limit. For MATHS AT, the reported times are sums of the times needed to
analyze the (unsatisfiable) instances with bound k£ = 1,..., N and to the (satisfiable)
instance k = N + 1.

Although the property is extremely simple, we see that the complexity of the
problem blows up quickly with N. Without using the symmetry-exploiting encoding,



MATHSAT MATHSAT with Boehm heuristic

E\N| 2| 3 4 5 6 2 3| 4 5 6
2(0.01(0.01| 0.01] 0.01 0.02{(0.01{0.01|0.01| 0.01 0.02
3(0.01{0.02| 0.01] 0.01 0.03(|0.01|0.01{0.02| 0.03 0.04
410.01/0.02| 0.02| 0.02 0.04/({0.01]0.02|0.04| 0.07 0.17
5(0.02({0.03| 0.05| 0.09 0.18((0.01]0.03|0.09| 0.3 1.16
6/0.03| 0.1] 0.21| 0.54 1.35(|0.02{0.07({0.31| 1.52 7.74
710.04(0.26| 0.97 3.2 9.83(|0.02|0.18(1.19| 7.14 45
8 0.65| 4.8| 19.72 70.7 0.06| 4.7| 33.5 242
9 5.55(112.17 478 0.61(165.9 1348
10 303.17| 3086 9.92 7824
11 5002 252
3710.12]1.08(11.62(438.93|8648.15(|0.07|0.37(6.98|218.4 9720.13

Table 3. Fischer’s Protocol — fairness (time in seconds).

MATHSAT is better than UPPAAL and KRONOS, slightly worse than RED, worse
than DDD and much worse than RED with its symmetry-exploiting technique. With
the symmetry-exploiting encoding, MATHSAT runs dramatically better than DDD,
UppPAAL and KRONOS, which have no symmetry-exploiting technique, and even better
than RED with symmetry-exploiting technique. As memory consumption is concerned,
we see that MATHSAT behaves much better than all the other systems.

As a second example, we have considered the following fairness property: “if the
i-th process gets infinitely often in B, then it accesses infinitely often in the critical
section C'S”. We look for a counterexample, i.e. we tackle the following problem:

M i E~(GFP,.B - GFP,.CS).

For every N, the math-formulas are unsatisfiable for ¥ < N + 4 and satisfiable for
k > N + 4. In fact, the shortest solution path containing a loop has length N + 5: all
processes pass from A to B, and then from B to C one at a time; time elapses of a
quantity greater than ¢; then the last process arrived in C' passes alone into C'S and
then into A; finally they all pass into B again.

To the best of our knowledge, there is no direct way to encode this problem in
DDD, UppaAL, KrONOS and RED. With MATHSAT instead, we can encode it by
forcing a loop from step k to each step | < k. (We report here only the “interesting”
case where [ = 1). Notice, that the property above is not symmetric, so that this time
we cannot use the symmetry-exploiting encoding. The results are collected in Table 3.
To emphasize the effects of different splitting heuristics, we run MATHSAT not only
with the SATZ heuristics (left), but also with BOEEM’s (right). Thus, we notice that
SATZ heuristic gives better results with unsatisfiable instances, and worse results for
satisfiable ones (last entries of each column).

The analysis is clearly preliminary in several respects. First, we are comparing
a SAT-based bounded model checker with fixpoint-based unbounded model checkers,
which were not specially conceived for a bounded search. However, as we are not
aware of any other bounded model checker for timed system currently available, this
is not a matter of choice. Second, the analysis can be biased by the fact that we
are considering only one case study. Notice however that the case study was not
tuned toward SAT-based techniques. (It would indeed be quite easy to find a problem



where the data structures for the representation of regions blow up, simply because
of the inheritance of the properties of BDDs.) On the contrary, we are tackling an
asynchronous system, while so far SAT-based BMC methods have proved particularly
effective for synchronous systems. It would be interesting to extend the comparison on
synchronous applications such as real-time embedded controllers. It is also important
to notice that we are comparing mature approaches, that have been optimized over the
years, with a new encoding technique and solver. Having said this, the above results
show that our approach as extremely promising. First, as CPU times are concerned,
our approach can be comparable with other well-established ones. Second, MATHSAT
has much more limited memory requirements. Third, even a very simple exploitation
of symmetries can significantly reduce the verification times (and we believe that there
are several directions of improvements). Fourth, although bounded, our technique can
be used to falsify properties that can not be directly handled by the other approaches.

7 Conclusions and Future Work

In this paper, we have presented a new approach for symbolic model checking of
timed systems. We have shown how to encode a BMC problem for timed systems into
that of deciding the satisfiability of boolean combinations of boolean variables and
atomic linear (in)equalities, which we can solve efficiently by the MATHSAT solver.
The approach is fully symbolic, and is not limited to simple reachability, but allows for
(Bounded) Model Checking of LTL formulas. Furthermore, the solver can be rather
efficient in terms of run-times, even with its limited memory requirements. As BMC
in the propositional case, our new technique is intended to be complementary rather
than alternative to the current ones, in particular because of its ability of finding
(counter)examples, of its expressiveness and of its reduced memory requirements.

In the future, we plan to extend and improve our work along the following direc-
tions. First, we want to improve and test new kinds of encodings. In particular, we will
investigate alternative representations of locations, events and transitions; we will look
for new propagation axioms and invariants to prune search, in particular taking into
account more powerful forms of symmetry reduction. Then, we will investigate the
customization of MATHSAT for encoded timed automata, by defining splitting heuris-
tics that take into account the different semantics of the variables [GMS98,Sht00] and
new mechanisms for propagating and exploiting equalities between real values. Fi-
nally, we want to perform an extensive experimental evaluation, also on synchronous
domains, to identify the bottlenecks and the strengths of the approach.
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