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Abstract. Our goal in this paper is to study the problem of the interaction 
among databases in a peer-to-peer (P2P) network. We propose a new approach, 
that we call  “data (base) coordination”,  that  rejects the assumption, made for 
instance in data integration, that the involved databases act as if they were a 
single (virtual) database, modeled as a global schema. From an operational 
point of view, the distinguishing feature of data coordination is that many of the 
parameters (metadata) influencing the interaction among peer databases are 
decided at run time. For any given query, the involved databases interact using 
the most “appropriate” (virtual) schema. This is crucial for dealing with the 
strong dynamics of a P2P network. We provide four basic architectural notions 
and hint how they are the building blocks of a possible distributed 
implementation capable of coordinating databases in a P2P network. 

1. Introduction 

“Peer-to-peer is a class of applications that take advantage of resources – 
storage, cycles, content, human presence – available at the edges of the 
Internet. Because accessing these decentralized resources means operating in 
an environment of unstable connectivity and unpredictable IP addresses, peer-
to-peer nodes must … have significant or total autonomy of central servers.” 
(Quote from Clay Shirkey [20]) 

Among many others, the definition given above is the one providing quite a 
suggestive view or peer-to-peer (P2P) computing.  Many examples of P2P computing 
already exist; take for instance Napster [16], a shared directory of available music and 
client software which allows, among other things, to import and export files; Gnutella 
[7], a decentralized group membership and search protocol, mainly used for file 
sharing; or Groove [9] a system which implements a secure shared space among 
peers. In this context, JXTA [11] is an important project which aims at creating a 
common platform that makes it simple and easy to build a wide range of distributed 
services and applications in which every device is addressable by a peer. 

In such an application domain, the question which  arises is whether there is a role for 
peer databases, also called P2P databases, by which we mean a database able to 
operate in a P2P environment, and therefore to interact with its peers, with a modality 
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coherent with the spirit of P2P computing. Very little work has been done on this 
problem, see for instance [8], mainly concentrating on data placement. It is still an 
open issue whether the development of P2P databases is simply a new problem 
domain where we can apply existing database technology, and in particular that 
developed for data integration [10], or whether the solution of this problem requires 
the development of new ideas, new theory, and new technology.   

We believe that the development of P2P databases does require such new 
developments.  Our goal in this paper is to argue in favor of this thesis, discuss 
domain characteristics and solution desiderata, and to provide the first guidelines of a 
possible architecture. We propose a new approach, that we call data (base) 
coordination,  that  rejects the assumption, made in previous approaches, most 
noticeably in data integration, that the involved databases act as if they were a single 
(virtual) database, modeled as a global schema. We talk of coordination, very much in 
the spirit of [15], as further elaborated in [17], meaning that ... 

“... Coordination is managing dependencies between interacting databases.” 
 

From an operational point of view, the distinguishing feature of data coordination is 
that many of the parameters (metadata) influencing the interaction among peer 
databases are decided at run time.  The involved databases are not integrated to 
implement an a priori defined global schema, but, for any given query, they 
coordinate in order to define and use the most “appropriate” (virtual) schema. This is 
the crucial feature which allows us to deal with the strong dynamics of a P2P 
network.     

The paper is structured as follows. In Section 2, we articulate the database 
coordination problem as four related but orthogonal subproblems: database 
integration, database coordination, providing good enough answers, and tuning 
coordination over time. In Section 3 we hint at a possible architecture implementing 
data coordination and introduce its four basic notions, namely: interest groups, 
acquaintances, coordination rules, and correspondence rules. In Section 4 we provide 
the highlights of a query answering  algorithm. In Section 5 we develop an example. 
We conclude with a description of some of the many open research problems (Section 
6) and with some final remarks (Section 7). 

Two observations. First, while we believe that the ideas described in this paper apply 
to both query answering and update propagation, this paper mainly focuses on the 
former problem. The latter problem is discussed only sporadically, and never 
thoroughly. Second, in this paper, after providing the basic intuitions, we concentrate 
on the issues concerning a possible implementation architecture.  As also discussed 
later, our proposed architecture can be seen as an implementation of the Local 
Relational Model (LRM), a new model and proof-theoretic framework which provides 
a foundations to the coordination of P2P informat ion sources [19].   
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2. The database coordination problem 

We articulate the database coordination problem in four steps, starting from data 
integration up to the issue of how to tune coordination over time. 

2.1 Database integration 

Let us consider the following example scenario. Consider the situation where John, a 
person living in Toronto, is described in the database F of his family doctor, in the 
database P of a pharmacy, and also in the database H of the hospital where he once 
received medical treatment. 

In the scenario hinted above the databases are completely autonomous and 
independent of one other.  They are independent in their language, contents, in how 
they answer queries, … They may be incomplete, overlapping, semantically 
heterogeneous, mutually inconsistent, … . Nevertheless it is definitely worthwhile to 
integrate their information and to exchange queries and updates. Consider the 
following examples. 

Example 2.1: John is admitted to the hospital. As a consequence, H becomes 
“acquainted” with F for the purpose of retrieving his case history, and also for 
updating F with a new record corresponding to the medical checkup or aid taken 
when the treatment is over. 

Example 2.2: The pharmacist administrating P prescribes a drug to John and, as a 
result, a new record is added to P. A new corresponding record should appear in F as 
well. Therefore, P gets acquainted with F  and F can be updated. 

We can suppose that John always goes to the same pharmacy and hospital. In this 
case, once the databases get acquainted, it is possible to reuse the same data 
integration mechanisms for query and update exchange. If one can also predict what  
F, P, and H are, as it can be the case, then one can decide that it is worthwhile, at 
design time, once for all, to implement the integration among these three databases.  
For this kind of problems existing technology, for instance in data integration [10], 
may suffice. 

 
2.2 Database Coordination 

In a P2P environment things can get much more complicated. Consider the 
following further  example. 

Example 2.3: John goes to a ski resort in another country, for instance Trentino in 
Italy. Unluckily, here he has an accident; for instance, he breaks a leg, and he must 
get medical aid to the resort's medical office. This office, in turn, has its own database 
M which now needs to get involved. M may need to query H for the purpose of 
retrieving treatment details of a similar past accident. Furthermore, when John returns 
home, a new record from M should appear in F. However the acquaintance between 
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M and F does not need to be maintained for ever, since the two databases will 
probably not need to coordinate again, and can eventually be dropped. 

In situations like that described in Example 2.3 the design and development of data 
integration mechanisms for randomly acquainted databases which may need to 
communicate only a few times, becomes impractical. 

We have (at least) three kinds of unpredictable run time factors, which influence the 
answer to a given query in a P2P network, namely: 

1. Network (dependent) variance: the network changes over time. This may 
happen for many reasons, for instance: there is a different set of peers; due 
to their autonomy, some databases change their interaction with their 
peers; or, the interaction mechanisms change. 

2. Database (dependent) variance:  for any given P2P network, different 
databases, even if asked the same query, and at the same time, will 
provide different answers. While trying to provide a “global” answer, a 
dat abase queries other peer databases. However each database queries the 
network from “its point of view”. It may involve different databases (a 
subset of those available) or, even keeping the same set of databases, it 
may activate a different form of interaction with, as a result, different data 
passed around. 

3. Query (dependent) variance: different queries, even if posed to the same 
database, will impose different points of view on the network. As above in 
item 2, depending of the specific query, we may cause different databases to 
be involved or different forms of interaction among databases. 

In our opinion, network, database and query variance, are the three fundamental 
elements of variability which must be considered in a P2P scenario. In order to 
solve these kinds of problems we need new and extremely flexible mechanisms 
for database interaction, that we collect under the heading of database coordination. 

Notice that, in this context, it makes very little sense to speak of a global schema, as it 
is commonly done in the data integration literature [10]. The main conceptual reason 
for rejecting this notion is that we cannot think of a set of P2P databases just as a 
particular implementation of a single (virtual) database, this being the underlying 
assumption which motivates the definition of a global schema. Consider the effects of 
the three kinds of variance defined above on a global schema. Network variance 
forces us to assume that the global schema changes over time. Database variance 
forces us to assume that we have a global schema for each database (access point?) in 
the P2P network. Query variance forces us to assume that we have a global schema for 
each distinct query. That is, if we make the global schema assumption, we are able to 
explain how any specific query posed to a specific database in a specific instant in 
time will be answered. However, we cannot explain how the dynamics influence the 
answer to a query, this being the main issue in a P2P network. 

From a foundational point of view, any theory developed under the assumption of a 
global schema, and under the implicit assumption that the global schema is fixed, 
prevents us from the studying the dynamics of a P2P network. As far as we know 
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these two assumptions have never been relieved, in particular in the data integration 
literature, see for instance [10, 12]. Rejecting this hypothesis requires a new kind of 
semantics. It is no longer possible to see the global schema as a view of the local 
database (global-as-view approach) or, vice versa, the local databases as views of the 
global database (local-as-view approach). For instance, we can no longer assume that 
there is a unique universe containing all the elements of the single databases. The 
mappings among elements may change over time, or may be different depending on 
the query or on the database answering the query. This topic is not discussed in this 
paper. A new semantics, called the Local Relational Model, based on the Local 
Models Semantics [6, 4], which provides the foundations for the coordination of P2P 
databases is given in [19, 1]. 

From an implementation point of view, we believe that the previous work on data 
integration can be partially re-used in this framework. Once one fixes the query, the 
database it is posed to, and the P2P network, then it should be possible to implement 
coordination using some variation of the existing data integration algorithms. 
However, for this to happen, two steps must be taken: 

1. a specific set of parameters (metadata) must be defined which can be used to 
model network, database and query variance; 

2. the   existing   algorithms   for   data   integration   must   be   modified   and 
parameterized as functions of the defined metadata. 

2.3 Good Enough Answers 

Moving from data integration to data coordination, it becomes hard to maintain a 
high quality level in the answers that the P2P network is able to provide. By high 
quality level we mean the fact that data can flow among the databases preserving (at 
the best possible level of approximation) soundness and completeness. In this 
context, soundness means that the data provided by the local databases satisfy the 
global schema (but they are not necessarily complete, some of them can get lost in 
the coordination). Completeness has the dual meaning. In the data integration 
literature, completeness is  often given up, still maintaining the request of 
soundness. In a P2P environment, completeness and soundness  will be very hard to 
achieve. This will happen in limit cases, for instance with low dynamics , simplified 
interaction among the databases, and if and when there will be interest in investing a 
substantial amount of money in the solution of the problem. 

One area where there will often be interest in getting very high quality data 
integration is the medical care domain. There are however many other application 
domains where this is not the case. One such example is tourism. This domain, is not 
life critical, and in many cases the small dimension of a single business (hotel, 
campsite, …) does not justify big investments. Consider the following example. 

Example 2.4: When planning his vacation in Trentino, John goes to a local agency, 
which unluckily can not offer John anything from their own database. Instead the 
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agency searches for single operators in the Trentino region (hotels, ski resorts, etc), 
starts communication sessions with some of them, and queries for the necessary 
information (e.g., prices, conditions, availability). 

 
Compared with the medical care example, the dynamics will have a much higher 
impact on the quality of the answer. We have network variance: the relevant 
databases are much more unstable in their being active and coordinated in the 
network, nodes come and go (for instance depending on the season),  and so on. We 
have database variance: John travels around and queries different databases. The 
same query will get different results since each database will implement different 
degrees of coordination with the others, and so on. Thus, for instance, a query 
about hotels made to a hotel database will likely get an answer that is better than 
the answer obtained from a campsite database. We also have query variance: if 
you ask a query about campsites to a campsite database you will likely get a 
better quality answer than if you ask this database a query about hotels, and 
dually for the hotel databases. Depending on the query, certain coordination 
mechanisms may or may not be activated. However, in this application,  the agency 
doesn't need the best possible answer. It simply needs some answer. As long as, for 
instance, it   gets a hotel John likes, this is good enough. Compared to the previous 
example,   much lower quality data coordination will probably suffice. 

The medical care and tourism domains are just examples. Things can get even more 
radical and complex when one thinks of applications where some of the nodes are 
mobile and where coordination happens on an even more occasional basis, for 
instance due to the physical proximity of two mobile peers. (As from the quote in the 
introduction, these kinds of situations should be quite usual in a P2P network.) In 
these situat ions, and for certain kinds of applications, almost any answer will 
suffice, as long as there is one. In a P2P environment, in terms of quality of answers, 
it is possible to go from one extreme to the other. On one extreme, it may be   
usual to get poor quality answers. This may happen because the databases interact   
partially or do not interact at all or, even worse, they pass around data which are 
wrong (for instance because of unsolved problems of semantic heterogeneity). On the 
other extreme, there will be a tight coordination and it will be possible to achieve or, 
at least, approximate soundness and completeness. Between these two extremes 
there is a continuum of answers of different quality. 

The problem of the quality of the answers must be dealt with by developing the 
notion of "good enough answer". The intuition is that an answer will be good enough 
when it will serve its purposes given the amount of effort made in computing it. A 
lot of research needs to be done on this topic. Here it is worth pointing out that, 
when trying to get good enough answers, one can work to produce the best 
infrastructure but also, for any given infrastructure, to spend a lot of time in the run 
time query answering. A theory of what it means to be a good answer should take 
into account both these factors and relate them to how the query results are used. 
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2.4 Tuning Coordination Over Time 

In order to implement database coordination, a lot of metadata needs to be produced 
and maintained. Due to the strong dynamics of a P2P network, this is a crucial and   
hard task to perform. A node will never know the full list of its peers, it will never 
know everything about them, and its knowledge will be hard to maintain and will 
easily become obsolete. There will likely be a need of tuning and sometimes 
improving, on each single peer, the quality of the interaction (for instance, with the 
help of learning algorithms, metadata editors, and so on. See later). There is an 
obvious trade-off between the quality of the answers and the effort made in 
maintaining coordination. 

 

 

3. Hints of a Possible Architecture  
 

A P2P network consists of an open-ended number of nodes (or peers), where each 
peer is uniquely  identified by its id or address. In our approach each peer has a local 
database, and an extra layer, called the P2P layer, or, also, the LRM layer.  The LRM 
layer interacts with the local database and interfaces it with the P2P network. The 
resulting architecture, first published in [1], is shown in Figure 1. 

 

 
Fig. 1. First level architecture 

The LRM Layer is the P2P functionality layered on the Local Database (LDB). User 
Interface allows the user to submit queries which will then be answered by the local 
database and the peer databases, to receive results and messages from the other nodes, 
and to control the other modules of the LRM Layer. Query Manager  (QM) and 
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Update Manager  (UM) are responsible for query and update propagation.   Wrapper  
is a translation layer between QM and UM, and LDB. Peers communicate through 
QM and UM using XML messages (white arrows). Inter-module communication is 
also XML-based, as shown again by the white arrows. The communication language 
between Wrapper and LDB is LDB-dependent (it could be SQL, for example). 

The main functionalities for coordinating P2P databases are implemented within QM 
and UM. These functionalities are implemented using four basic notions, described 
below. 

Interest Groups . In most cases, nodes know very little of the other nodes of the P2P 
network, and in particular about the topics about which their peers are able to answer 
queries. Intuitively, medical care, tourism, tourism in Trentino, are all possible topics. 
A topic could be formalized as keywords, a schema, an ontology, or as a context [5], 
as used in [2]. We introduce the notion of (interest) group and define it as a set of 
nodes which are able to answer queries about a certain topic. A node can belong to 
multiple groups. The notion of group is introduced with the main goal of  computing, 
for any given input query, the Query Scope (QS) – the set of nodes a query should be 
propagated to. The definition of a group must satisfy two complementary 
requirements. First, groups help deal with the complexity and the high number of 
nodes of a P2P network. Instead of searching for single nodes which could answer its 
input query, a node looks for one or more groups according to their topic. This, of 
course, means that the input query must be associated with a topic (this could be done 
by the user or by the system itself). Second, groups are used to compute a bound on 
the number of nodes in the query scope, therefore guaranteeing termination. Thus,  
topics should be general enough to capture most of the “relevant nodes”, but not too 
general, to avoid inefficient query answering. At the moment we are supposing that 
each group will have a node, called the Group Manager (GM) which is in charge of 
the management of the metadata needed in order to run the group. 

Acquaintances. Acquaintances are nodes that a node knows about and that have data 
that can be used to answer a specific query. A node is an acquaintance of another 
node only with respect to (possibly, a schematic representation of) a query. 
Acquaintances can therefore be thought of as links from one node to another, labelled 
by a (schematic) query. If a node is an acquaintance, then there must be a way to 
compute how to propagate a query, to propagate results back, and to reconcile them 
with the results coming from the other acquaintances. Crucial for these tasks are 
coordination rules , and correspondence rules , as defined below.  

The schematic representation of queries used in acquaintances is conceptually 
different from the topic associated with a group. A node can be part of a group 
without being an acquaintance of all the nodes in that group.  One example is the case 
where a node gets a query about hotels in Italy and chooses the group with topic 
“tourism in Italy”. However one of the nodes in that group is a campsite. Conversely, 
we may have a node which is acquainted with the node that gets a user query  asking 
about hotels, but it belongs to the group with characteristic topic “tourism in Austria”.  

The intuition is that a node will try to propagate a query to the acquaintances in QS. 
This is in turn may activate the recursive propagation of the query to the 
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acquaintances of the acquainted nodes. This will happen until the query is propagated 
to all reachable acquaintances. In general not all the nodes in QS will be queried, this 
happening when there is node which cannot be reached by the transitive propagation 
of queries along acquaintance links. 

Coordination rules . Each acquaintance may be associated with one or more 
coordination rules.  At run time, nodes use coordination rules which specify under 
what conditions, when, how and where to propagate queries or updates. One possible 
implementation of coordination rules is as ECA rules [3]. A triggering Event can be 
an update or a query coming from the user or from another node; Condition refers to 
properties of the update or query (e.g., the type of query and/or which data items are 
referenced by the query), and Action can be the translation and propagation of a given 
update or query to a particular acquaintance.  

Consider Example 2.3 and suppose that M has a schema “Accidents”. Then one 
possible coordination rule, relating M   to H, is as follows: 

Event:  “Query to ‘M:Accidents’”  
Condition:    “Value of First Name  attribute in the body of the query is ‘John’”  
Action:   “Translate that query using Correspondence Rules and send it to H” 

(1) 

 
(1) is a simple coordination rule which launches query propagation to H when a query 
posed to M contains ‘John’ as a search criterion. It is easy to think of  more complex 
coordination rules, for instance, rules which can selectively extract information from 
one of two databases, or rules which do some filtering, and so on. 
 
Correspondence rules .  Each acquaintance is associated with one or more 
correspondence rules.  Correspondence rules take care of the semantic heterogeneity 
problem. They are implemented as rewrite rules and are called by coordination rules, 
in the body of the code implementing their action and condition components. 
Correspondence rules are used for the translation of queries and query results.  They 
can be used, for instance to translate attribute or element names. In this latter case we 
also call them Domain Relations [19].  

Consider the coordination rule in (1). Then we may have the following rewrite rules 
concerning attributes: 

Address_Reason �  Disease 
Treatment_Taken �  Treatment_Desc 
Prescription_Given �  ‘None’ 
Date  �  In 

(2) 

Where “None” means that there is no corresponding attribute. Similarly, the following 
domain relations are applied for rewriting element names: 

Value (Address_Reason) �  Value (Disease) 
Value (Treatment_Taken) �  Value (Treatment_Desc) (3) 

 



10      Fausto Giunchiglia and Ilya Zaihrayeu 

In the above example values are translated without modifications, but it is easy to 
think about more complex translations when, for instance, dates are converted to 
different formats, currency conversion, and so on. In practice, this is a very hard task 
which involves a lot of data scrubbing and transformation and which occupies a 
substantial amount of all the data integration projects. 

4. Answering Queries 

Reconsider Figure 1. The process starts when a node, let us call it n1, receives a user 
query with an indication that this is a global query, namely a query whose answer 
should be computed asking not only the local database but, also the “reachable” peers 
in the network. Below a list of problems which must be dealt with to answer a global 
query.   

1. n1 computes the query topic, maybe with the help of the user; 
 
2. n1 matches the query topic with the topics of the known groups and, as a result, 

computes one or more groups that could provide meaningful answers; 
 
3.  n1, with the help of QM, computes QS; 
 
4. n1 may not be acquainted with any of the nodes in QS, or, more in general, the 

acquaintances graph may not be connected enough. In order to solve this, a 
Getting Acquainted Protocol needs to be activated whose main goal is to learn 
coordination and correspondence rules between n1 and the nodes in QS, or 
between any two nodes in QS. The getting acquainted protocol will presumably 
involve database schema exchange, schema matching [18], coordination and 
correspondence rules derivation from the results of matching, and, probably, 
some other phases.  

 
5. Exploiting coordination and correspondence rules, n1 sends the query to the 

acquaintances in QS. For efficiency reasons, this should be done in parallel. Here, 
various non trivial issues arise. In particular: 

 
a. Not all the nodes in QS are acquaintances of n1. To maximize the query 

results, and exploiting the fact that coordination and correspondence 
rules tell us how to propagate queries forwards and results backwards, 
the acquaintances of the acquaintances of n1 can be transitively queried. 
This originates a propagation mechanism on the graph of acquaintances. 

b. The acquaintances graph may be a DAG, namely have multiple paths 
between two nodes. As a consequence, a node can be queried more than 
once. This requires the implementation of mechanisms for avoiding 
multiple answers and multiple query propagations. 

c. The acquaintances graph may have cycles. Loops must be avoided. 
d. Not all the nodes in QS may be reachable by the acquaintances graph. 

We have to stop for one of two reasons: we have reached all the nodes in 
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QS, or the nodes in QS which have not been reached yet cannot be 
reached.  

Problem a. can be dealt with by implementing, inside each node, automated 
query propagation mechanisms. The implementation of coordination rules as 
ECA rules is one possible solution (see example above). Problems b. and c. 
can be dealt with by associating  each query with a unique identifier. Any 
node receiving the same query twice will discard it. Problem d. can be dealt 
with by supposing that a node, for instance GM, knows QS and which nodes 
have been involved by the propagation mechanism (for instance because they 
send this information to it). GM seems a good choice as it is the node with 
the most information about its peer nodes, and all the nodes know about it; 
 

6. All the nodes involved send their results back to n1. This is applied recursively 
until all the results have been propagated back to n1; 

  
7. Reconcile all the results and answer the user query. 
 
The basic algorithm hinted above can be made more efficient. Some of the possible 
extensions are listed below. QS can be recursively computed, for instance by the 
nodes answering the query; this may lead to better answers. It is possible to use 
intermediate nodes that are not part of QS but that, via the appropriate coordination 
and correspondence rule, can propagate the query; this may allow to reach otherwise 
unreachable nodes. Data reconciliation can be done at the intermediate nodes; among 
other things this can make the process faster, for instance by avoiding the propagation 
of duplicate information coming from different nodes. And so on.  

5. A Medical Care Scenario 

Let us instantiate the intuitions described above to Example 2.3 above. For simplicity 
we assume that all databases are relational, each consisting of one relation, and that 
SQL is the language used.  

 
5.1  The three databases 

 
Let us suppose that the relations of the databases F, H  and M are as follows: 

F:  Prescription (PatID, P_Name, Illness_Desc, StartDate, RecoveryDate, Treatment, Type, 
Prescriptions); 
H: Patients (PID, Name, Disease, Treatment_Desc, In, Out); 
M: Accidents (P_id, FN, LN, Address_Reason, Treatment_Taken, Prescription_Given, Date); 

 
PatID, PID and P_id are the patients’ identifiers; P_Name and Name are their full names;  
FN and LN are their first and last names; Illness_Desc, Disease and  Address_Reason are 
their medical problems; Treatment, Treatment_Desc and Treatment_Taken are 
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descriptions of the prescribed treatments; Prescriptions and Prescription_Given are the 
descriptions of prescribed drugs; StartDate , In and RecoveryDate , Out are the start and 
end dates of a treatment; Date states when certain treatment was given; and, finally , 
Type specifies where a treatment was conducted, a value from the set {“Home”, 
“Hospital”}. The three databases are heterogeneous. They use different relation and 
attribute names to represent similar concepts, different formats for patients’ ids and 
dates, and they also contain different data.  

Let us assume that the databases keep the following items: 

F:Prescription 
PatID P_Nam

e 
Illness_D
esc 

StartDate RecoveryDate Treatment Type Prescr
iptions 

8 John Flu  Mar 13, 02 Mar 15, 02 None Home  Nasol 
2 Eric 

O’Neill 
Headache Jan 06, 02  Jan 06, 02 None Home  Aspirin 

8 John Leg 
fracture 

Nov 11, 01 Dec 23, 01 Leg put in 
plaster 

Hospi
tal 

Rest at 
home 

 
H:Patients 

PID  Name Disease Treatment_Desc In Out 
P12 John Abscess Surgical operation Mar 7, 2002 Mar 14, 2002 
P10 Mary Arm fracture Plastering Feb 12, 2002 Feb 17, 2002 
P12 John Forearm 

dislocation 
Bandage Jan 08, 2002 Jan 13,  2002 

 
M:Accidents 

P_id FN LN Address_
Reason 

Treatment_
Taken 

Prescription_Given Date 

A12 Paolo  Traverso Back injury None Heating ointment  01.22.02 
 

5.2 The acquaintances graph 
 
Let us now suppose that the following query is asked to M, where ‘A13’ is the new id 
for John in M : 

QM =  Select FN, LN, Address_Reason, Treatment_Taken, Prescription_Given, Date 
 From  “M:Accidents” 
 Where Address_Reason Like (‘%Fracture%’ Or ‘%Dislocation%’) And PID = 

‘A13’ 

(4) 

with the indication that this is a global query and that its topic is  
 

T= “Medical care in Canada” 
 
The intuitive meaning of query (4) is that the search should be propagated to some 
nodes presumably in Canada which are supposed to store information on John’s case 
history. Note that QM is stat ed in the language of M. 
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Let us further suppose that, after some search (possibly guided by the user), T is 
matched with the topic “Medical care in Toronto” of the interest group G = {F, H, 
P}, with H being G’s GM. Notice that M is not part of G. However this is irrelevant 
to our purposes. We can further suppose that H is acquainted with F and that P is 
acquainted with F. This situation is reported in Figure 2 below. 

 
Fig. 2. Initial state 

The dashed lines between H and F, H and P stand for the network connections used 
for the propagation of the metadata needed in order to manage the group and its 
services. As from Section 4, these connections can, for instance, be used to propagate 
to H all the data needed in order to guarantee termination for any set of nodes QS 
which is a subset of G. 

Let us suppose that GM computes and sends back to M a query scope QS = G = {F, 
H, P}. To start the coordination session, M must get acquainted with one of the nodes 
in G. We can reasonably assume that it is decided that M must get acquainted with H.  
 
At this point the Getting Acquainted Protocol is activated. The schemas of  
M:accidents and  H:patients are matched. They both have the structure of a depth 1 tree. 
The two structures can be easily matched once the elements are matched, for instance 
by applying, among others, linguistic techniques.  
 
As a result a set of coordination rules are learned. They are: 
COOR#1 

Event:  M:Q 

Condition: Q: (Address_Reason ∈ Select OR Treatment_Taken ∈ Select)  
AND (PID = ‘A13’ ∈ Where) 

Action:  Q = Apply (Q, Corr#1); 
Q = Apply (Q, Corr#2); 
Q = Apply (Q, Corr#3); 
Q = Apply (Q, Corr#4); 

(5) 
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Q = Apply (Q, Corr#5); 
Q = Apply (Q, Corr#6); 
Q = Apply (Q, Corr#7);  
Q = Delete_not_Mapped (Q); 
Send (Q, H). 

COOR#1 is the rule identifier. COOR#1 propagates the input query to H. It triggers 
when a query Q is submitted to M. In the condition part we check whether the select 
part of Q refers to Address_Reason or Treatment_Taken (these attributes are shared with 
H), and whether the patient id is used in the query condition part and it is equal to 
John’s id (a possible shared patient between M and H). The action part of the 
coordination rule defines the sequence of query modification operations, and it 
concludes by sending the modified query to H.  Apply (Q, Corr_rule) returns Q after 
applying the correspondence rule Corr_rule. Delete_not_Mapped (Q)  eliminates those 
attributes which are not referred by any of the correspondence rules. 

COOR#2 

Event:  M:RH 

Condition: None  

Action:  RM = Null; 
RM = Apply (RH, Corr#8); 
RM = Apply (RH, Corr#9); 
RM = Apply (RH, Corr#10); 

(6) 

COOR#2 propagates results back from H to M. There is no need to apply domain 
relations. COOR#2  calls correspondence rules which indicate which value should be 
assigned to which attribute in M . 

A set of correspondence rules are also learned. Below is a set of rules for translating 
attribute names in a query: 

Corr#1:  P_id �  PID 
Corr#2:  FN �  Name 
Corr#3:  LN �  Name 
Corr#4:  Address_Reason �  Disease 
Corr#5:  Treatment_Taken �  Treatment_Desc 

(7) 

The following translate object and schema names: 

Corr#6:   ‘M:Accidents’  �  ‘H:Patients’ 
Corr#7:   ‘A13’ �  ‘P12’ (8) 

Note that the matching between H and M is not perfect, and, in particular, that the 
attribute date is not translated. We expect that the getting acquainted protocol will not 
be able to produce the best possible match in many cases. 

Finally, a set of rules needed for the translation of results are also learned. Note again 
that there is also no mapping of date related attributes. 
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Corr#8:  Name  �  FN 
Corr#9:  Disease �  Address_Reason 
Corr#10:  Treatment_Desc �  Treatment_Taken 

(9) 

 

5.3  Query propagation 

Finally, when an “appropriate” acquaintances graph has been built, the propagation 
algorithm can be started. The resulting data flow is given in Figure 3 below. 

 
 Fig. 3. Query answering 

According to the rules given above QM gets translated to QH as follows: 

QH =  Select Name, Disease, Treatment_Desc 
 From “H:Patients” 
 Where  Disease Like (‘%Fracture%’ Or ‘%Dislocation%’) And PID = ‘P12’ 

(10) 

H computes the following answer to  QH   

ResH = <’John’, ‘Forearm dislocation’, ‘Bandage’> (11) 

which is then sent unmodified to M (even if at M the same values are related to 
different attributes). 

Following the transitivity mechanism described in $ection 4, H translates QH and 
propagates it to F as QF. Since H and F are from the same group  we can suppose that 
we have correct and complete coordination and correspondence rules. Let us suppose 
that QH is translated to QF as follows: 

QF =  Select  P_Name, Illness_Desc, Treatment 
 From “F:Prescriptions” 
 Where Illness_Desc Like (‘%Fracture%’ Or ‘%Dislocation%’) And PID = ‘8’ 

(12) 

F returns to H  the following query answer: 

ResF = <’John’, ‘Leg fracture’, ‘Leg put in plaster’> (13) 

These results are translated at H, propagated back to M, where all the results are 
reconciled and presented as: 

ResH
M =  <’John’, ‘Forearm dislocation’, ‘Bandage’> (14) 
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ResFH
M =  <’John’, ‘Leg fracture’, ‘Leg put in plaster’> 

 

5.4  Variance and good enough answers 

Consider the results in (14). They are incomplete and some fields (LN and Date) 
present in QM are missing in the answer. Nevertheless, these results are good enough 
since they still serve the needs of M. LN and Date are not critically important for M for 
treatment purposes, moreover John can likely provide approximate dates. 

Let us now consider an example of network variance. Suppose that F is down and 
cannot answer queries.  The results produced are even more incomplete due to the fact 
that ResFH

M is not present. Whether they are good enough, it depends on what it will 
be possible to do with only ResH

M. Since, in Example 2.3  John breaks a leg, much it 
will depend on whether it is the same leg as in ResH

M . John will be able to produce 
this information. 

Let us now consider an example of database variance. Recall Figure 3 and suppose 
that M gets acquainted with F  (instead of H). The database variance is caused by the 
change in the acquaintance path (F, instead of H, is queried). M poses, in the 
language of F, a query QF  which requests the same data as QH. However,  the answer 
is different since F has a different ‘vision’ of the world. More concretely, it is not 
acquainted with H. We have: 

ResF
M =  <’John’, ‘Leg fracture’, ‘Leg put in plaster’> (15) 

Very likely this answer will be good enough. 

Let us conclude with an example of query variance. Let us suppose that we ask QM as 
above with  “John” substituted with “Mary”. Mary is not a shared patient between H 
and F  and, therefore, there are no coordination rules for her and there is no query 
propagation to F.  Notice that a value in an attribute changes the query propagation 
tree. We have the following answer: 

ResF
M =  <’Mary’, ‘Arm fracture’, ‘plastering’> (16) 

 This will likely be a good enough answer.  

 

6. Research Problems 

The ideas described in this paper are very preliminary. A lot of work needs to be 
done to make these ideas concrete and to be able to evaluate their usefulness. In this 
section we articulate, at the current state of the art, some of the open and relevant 
research problems. We do not consider the many  issues which need to be dealt with 
at the theoretical level, and in particular, what we consider crucial future developments 
of the LRM. For a preliminary discussion about this, see [19]. 

Groups. A lot of issues need to be dealt with. Some of them are as follows: we need 
to verify the role of the group manager,  to define what a topic is, and to define the 
services associated to a group, we need techniques for group discovery, for 
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associating a node to a group, for maintaining the group metadata, for propagating 
(part of) them in the P2P network and/or to the member nodes, ..., and so on. At the 
moment we are evaluating whether the JXTA group mechanisms can be reused, at 
least in part, to implement our own interest groups. 

Query answering and update propagation. This is still open space. As from above, 
an interesting issue is how much of the existing technology in data integration, and in 
particular of the LAV/GAV technology [10], we will be able to reuse and to adapt to 
the P2P problem domain. Similarly, concerning the implementation of coordination 
rules, we should be able to leverage the existing work on active databases and ECA 
rules, see for example [3]. 

Maintaining coordination metadata. We foresee two basic mechanisms for 
maintaining and developing metadata. The first is by (semi) automatically learning 
them from navigating the network. We will need to develop sophisticated matching 
techniques capable of computing the most appropriate group topic and the query 
scope, and to learn coordination and correspondence rules. Most of the time the match 
will be only partial and not perfect. The general area of matching is definitely not 
mature. However a lot of material can be found in the literature, see for instance [18, 
13, 14]. The second is the development of (graphic) editors which should allow a 
user to develop, in a computer supported way, the desired metadata. To this extent, it 
is important to notice that coordination and correspondence rules are the procedural 
implementation of coordination formulas, as defined in [19]. Coordination formulas 
are indexed first order formulas and are the declarative specification of 
coordination and correspondence rules. Also topics, if we take them to be labeled 
graphs, can be developed using an editor similar to that described in [2]. 

 

7.   Conclusion 
This paper is a first investigation of the problem or how to make databases interact in 
a P2P network. P2P networks are characterized by high dynamics and by the fact that 
nodes are autonomous. We have characterized the problem as having four main 
dimensions: 
 

1. We must integrate data coming from autonomous, most often 
semantically heterogeneous databases. This problem is very similar to 
the data integration problem widely studied in the literature; 

2. We must deal with network, database, and query variance. This requires 
us to define a new set of metadata and to define algorithms whose 
behavior changes in dependence on these data. This is why we talk of 
data coordination, as distinct from data integration; 

3. We will almost never get correct and complete answers. We must be 
content with answers which are good enough; 

4. There is a need to tune metadata. This is requires in order to cope with 
the dynamics of a P2P network. 
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We have provided the guidelines of an architecture which supports coordination 
among peer databases. This architecture is based on four basic notions: interest 
groups, acquaintances, coordination and correspondence rules. We have listed what we 
consider to be the most relevant research problems in this domain. The theory 
underlying and motivating the architecture and notions discussed in this paper is 
described in [19]. 
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