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Abstract

The protection of customer privacy is a fundamental issue in today’s corporate marketing strate-
gies. Not surprisingly, many research efforts have proposed new privacy-aware technologies. Among
them, Hippocratic databases offer mechanisms for enforcing privacy rules in database systems for
inter-organizational business processes (also known as virtual organizations). This paper extends these
mechanisms to allow for hierarchical purposes, distributed authorizations and minimal disclosure sup-
porting the business processes of virtual organizations that want to offer their clients a number of
ways to fulfill a service. Specifically, we use a goal-oriented approach to analyze privacy policies
of the enterprises involved in a business process. Based on the purpose hierarchy derived through a
goal refinement process, we provide algorithms for determining the minimum set of authorizations
needed to achieve a service. This allows us to automatically derive access control policies for an
inter-organizational business process from the collection of privacy policies associated with different
participating enterprises. By using effective on-line algorithms, the derivation of such minimal infor-
mation can also be done on-the-fly by the customer wishing to access a service.

Keywords Privacy Protection, Minimal Disclosure, Private Data Management, Information Security,
Access Control, Virtual Organizations, Delegation

1 Introduction

In the last few years data and privacy protection have become critical issues in the development of infor-
mation systems. This reflects the growing attention of customers to their personal information and the
increasing number of laws, policies, and regulations that are intended to safeguard it. The US Privacy Act
of 1974 and the EU Directives on Privacy in 1995 (and later regulations) define privacy as the right of data
subjects to determine how their personal data are used. Several proposals [5, 7, 10, 17, 20, 28] introduce
the concept of purpose in order to capture this definition where purpose represents the intended usage of
information.

Together with the notion of purpose, current privacy legislations also define the privacy principles that
an information system has to meet in order to guarantee customer privacy. At the basis of the exchange
between enterprises and customers, there is the principle of transparency: enterprises should disclose to
customers which data are collected and for what purpose. Another important principle is the notion of
minimal disclosure: enterprises should maintain only such information about an individual as is necessary
to fulfill the purpose for which it was collected.



The transparency principle should aid customers to verify whether or not enterprises implement the
minimal disclosure principle correctly. For transparency, enterprises should declare in their privacy poli-
cies the purpose for which data are collected, who can receive them, the length of time the data can be
retained, and the authorized users who can access them. Looking at such policies customers would be able
to understand how their personal data will be used and, in case they agree, disclose them. Obviously, if an
enterprise requires more data than some customers feel needed for the desired service, they can get their
services elsewhere.

In general, it is up to customers to decide on a strategy of how to get a service fulfilled on the basis of
their personal feeling of trust for any one enterprise. However, this decision can be very difficult when an
enterprise provides many ways to achieve a service. It gets worse when we do not have a single enterprise
that delivers the service by itself, but rather a set of collaborating organizations participating in a single
business process (virtual organization [16]).

Virtual organizations offer services that can be dynamically customized in at least two different ways:

1. different service components are dynamically chosen for fulfilling the same high level goal, but
possibly using different data;

2. different partners (sub-contractors) are chosen for fulfilling the same goal, but possibly with differ-
ent service level agreements or trust levels.

The choice of service customization has significant impact on the privacy of individual customers. Dif-
ferent customizations may require different data for which privacy considerations vary; there might be
trusted and untrusted partners offering the same service. Consider an example. Mississippi, an on-line
book company, notifies the status of the order to its customers through email or Short Message Service
(SMS). Customers are not interest in a generic process; rather, they want the process that best protects
their privacy based on their preferences. Depending on the preference of the customer, Mississippi needs
either an email address or a mobile phone number. Alice, a professor plagued by spam, may treasure
her email address and give away her business mobile phone number. Bob, a doctor whose mobile phone
is always ringing, may have the opposite preference. The partners chosen by Mississippi might also be
trusted differently by its potential customers. Bob may be unwilling to give his email to a professional
delivery company, because last time he did, he got dozens of emails notifying him unwanted personalized
services.

We are interested in solutions that support customers and companies alike, so that companies can
publish comprehensive privacy policies involving hierarchies of purposes, possibly spanning multiple
partners. Moreover, we want our solution to allow customers to personalize services they want on the
basis of their own privacy sensitivities and their trust of partners who might contribute to the delivery of a
requested service.

1.1 Contribution of the paper

This paper proposes enhancements to Hippocratic database systems [2] in order to deal with inter-organizational
business processes managed by virtual coalitions. In particular, we present a flexible framework for auto-
matically deriving the minimum set of authorizations needed to achieve a service from enterprise privacy
policies when a host of partners participating in the business process provides different ways to achieve
the same service.

Our work is grounded on modeling and analysis of purposes for Hippocratic databases, using goal-
oriented approaches [6]. Our models organize purposes into AND/OR tree hierarchies. The framework



allows customers to express their preferences in the form of privacy penalties associated with each personal
data item and each partner of the business process. Thus, the process for fulfilling a purpose can be
customized at run-time and guarantees maximal privacy protection because it was selected with criterion
of the smallest privacy penalty.

Similar approaches have already been used in Requirements Engineering in order to represent software
requirements and reason about their fulfillment by adopting different solutions. In this context, Sebastiani
et al. [25] presented a formal framework for reasoning with goal models in a qualitative and quantitative
way. In particular, they proposed algorithms to find the minimum cost assignment of labels to leaf goals
which satisfies root goals. However, their solutions are not adequate for our purposes since they are
designed for off-line analysis by the system designer and do not allow customers to set their preferences
on-line. Accordingly, we propose to model hierarchies using hypergraphs [3, 4] since this data structure is
suitable for studying reachability and minimum weight traversal problems and efficient algorithms already
exist. We use these data structures to represent the privacy policies of each partner of a business process as
a weighted directed acyclic graph (weighted DAG). Then, we merge such DAGs in order to build a DAG
representing the privacy policies governing the entire business process where edges across DAGs are seen
as delegations of customer information among the partners of the business process. Weights (or privacy
penalties) are specified by customers and represent the cost of disclosed information.

Based on this data structure, we provide algorithms for finding the minimal decomposition path that
represents the process with the smallest privacy penalty. To support the dynamic customization of the
process, we also give algorithms for efficiently updating it when customers change the cost of data items
or choose among the alternatives that an enterprise offers for achieving a required service. Then, this
decomposition path is used to build the minimal privacy authorization table that represents the minimum
set of authorizations necessary to achieve a service according to customer preferences.

1.2 Outline

The remainder of the paper is structured as follows. Section 2 introduces a scenario that is used as a
running example throughout the paper. Section 3 presents a brief description of Hippocratic database
systems. Section 4 introduces purpose DAGs in order to represent purpose hierarchies, while Section 5
discusses how to build a purpose DAG from a Hippocratic database system. Section 6 shows how to
derive the minimal privacy authorization table and Section 7 describes the data structures used to represent
purpose DAGs. Sections 8 and 9 present respectively algorithms for finding and updating the minimum
cost path, and a comparison between the minimal privacy authorization table and the privacy authorization
tables derived using Agrawal’s approach. Finally, Section 10 discusses related work, and Section 11
concludes the paper with some directions for future work.

2 A Running Example

This section presents a scenario used throughout the paper. The scenario is a revised version of the case
study proposed by Agrawal et al. [2].

Mississippi is an on-line book store and its offerings include an on-line catalogue to its customers
where they can search for the items they wish to buy. Customers can add selected items to their shopping
basket. Once customers have completed their selection, they need to create a new account or login to their
existing account in order to enter their delivery and payment details, since Mississippi needs to obtain



Table 1: Database Schema

table attribute
customer  purpose, customer-id, name, address, email, mobile-number, credit-card-info
order purpose, customer-id, transaction, book-info, status
Table 2: Privacy Metadata Schema
table attributes
privacy-policies purpose, table, { attribute }, { external-recipients }, retention
privacy-authorizations  purpose, table, { attribute }, { authorized-users }

certain personal information from customers in order to perform purchase transactions. This information
includes name, shipping address, and credit card number.

Mississippi views a purchase, its ultimate purpose, as a three-step process: credit assessment, delivery,
and notification. Mississippi delivers books through either a delivery company or the post office. Notifica-
tion is used to communicate the status of the order to the customer, and it is accomplished by Mississippi
either through email or Short Message Service (SMS). Depending on the method, Mississippi needs either
email or mobile phone number information about each customer.

For shipping books, Mississippi relies on Worldwide Express (WWEx). WWEXx is a delivery company
that offers a global network of specialized services — transportation, international trade support and supply
chain services. WWEX needs to obtain customer information to deliver books. This information includes
customer name and shipping address. WWEX is usually not able to complete a delivery on its own, but
depends on local delivery companies for door-to-door delivery. To this end, WWEXx delegates customer
information to them. In the remainder of the paper, we call LDC1, ..., LDC,, the local delivery companies
responsible to deliver books in the zone where the customer lives.

Furthermore, Mississippi relies on the Credit Card Company (CCC) for credit assessment. CCC needs
some customer information as well to provide its service. This information includes customer name
and credit card number, and the transaction between Mississippi and the customer. For making credit
decisions, CCC needs a credit rating! for which it depends on the Credit Rating Company (CRC). CRC
uses statistics to summarize past experience so that predictive analysis can be used to generate a rating
for the customer. Based on the rating, CCC decides to accept or not the customer transaction and then
communicates its decision to Mississippi.

3 An Overview of Hippocratic Databases

Based on current US and EU privacy legislation, Agrawal et al. identified the privacy principles an infor-
mation system should meet in order to enforce privacy and data protection: purpose specification, consent,
limited collection, limited use, limited disclosure, and limited retention. Based on such principles, the au-
thors propose Hippocratic databases [1, 2] which were designed to support them. In the remainder of

!Credit rating is a method for interpreting the content of a credit report. Credit rate represents the probability of a fail-to-pay
event happening in the future, but does not indicate that such an event will happen.



Table 3: Mississippi’s Privacy-Policies Table

purpose table attributes external-recipients retention
purchase customer  {name, address, email, mobile-number, credit-card-info}  empry 1 month
purchase order {transaction, book-info, status} empty 1 month
delivery customer  {name, address} empty 1 month
direct delivery customer  {name, address} { delivery-company } 1 month
delivery by post customer  {name, address} { post-office } 1 month
credit assessment customer  {name, credit-card-info} { credit-card-company } 1 month
credit assessment order {transaction} { credit-card-company } 1 month
notification customer  {name, email, mobile-number} empty 1 month
notification order {book-info, status} empty 1 month
notification by email ~ customer  {name, email} empty 1 month
notification by email  order {book-info, status} empty 1 month
notification by SMS  customer  {name, mobile-number} empty 1 month
notification by SMS  order {book-info, status} empty 1 month

Table 4: CCC’s Privacy-Policies Table

purpose table attributes external-recipients retention
credit assessment  customer  {name, credit-card-info}  empry 1 month
credit assessment  order {transaction} empty 1 month
credit scoring customer  {credit-card-info} { credit-reference-agency } 1 month
credit resolution  customer  {name, credit-card-info}  empty 1 month
credit resolution  order {transaction} empty 1 month

the section, we give an overview on Hippocratic databases looking at how this system enforces privacy

principles.

Hippocratic databases use purpose as a central concept. Purpose is stored in the database as a “special”
attribute occurring in every table of the database. This attribute specifies the purpose (reason/goal) for
which a piece of information can be used.

Example 1 Table 1 shows the schema of tables customer and order that store the information collected
by Mississippi. In particular, table customer stores personal information about customers, and table order

stores information about the transaction between Mississippi and its customers.

In the sequel we will use the term user to denote an employee of a company, that is, a user of the
database (rather than a customer of the company). In the terminology of privacy legislation, a user is
called data processor, while the customer is called data subject.

Then, for each purpose and for each data item stored in the database, the following fields are defined:

e external-recipients, i.e. the actors to whom the data item is disclosed;

e retention-period, i.e. the period during which the data item should be maintained in the database;

e authorized-users, i.e. the users entitled to access the data.




Table 5: WWEX’s Privacy-Policies Table

purpose table attributes external-recipients retention
direct delivery customer  {name, address}  empty 1 month
door-to-door delivery  customer  {name, address}  { local-delivery-company } 1 month

Table 6: Mississippi’s Privacy-Authorization Table

purpose table attributes authorized-users
purchase customer  {name, address, email, mobile-number, credit-card-info}  { Mississippi }
purchase order {transaction, book-info, status} { Mississippi }
delivery customer  {name, address} { Mississippi }

direct delivery customer  {name, address} { Mississippi, WWEx }
delivery by post customer  {name, address} { Mississippi, Post Office }
credit assessment customer  {name, credit-card-info} { Mississippi, CCC }
credit assessment order {transaction} { Mississippi, CCC }
notification customer ~ {name, email, mobile-number} { Mississippi }
notification order {book-info, status} { Mississippi }
notification by email ~ customer  {name, email } { Mississippi }
notification by email  order {book-info, status} { Mississippi }
notification by SMS ~ customer  {name, mobile-number} { Mississippi }
notification by SMS  order {book-info, status} { Mississippi }

Purpose, external recipients, authorized users, and retention period are stored in the database on the
basis of the metadata schema defined in Table 2 [2]. Specifically, the above information is split into
separate tables: external-recipients and retention period are in the privacy-policies table, while authorized-
users are in the privacy-authorizations table. The purpose is stored in both. The privacy-policies table
contains the privacy policy of an enterprise.

Example 2 Mississippi’s privacy-policies table is shown in Table 3, CCC'’s privacy-policies table in Ta-
ble 4, and WWEX’s privacy-policies table in Table 5.

The privacy-authorizations table contains the access control policies enforcing privacy policies. Privacy-
authorizations tables are derived from privacy-policies tables by instantiating each external recipient with
the corresponding authorized users. Thus, these tables represent what information is actually disclosed.

Example 3 Tables 6, 7 and 8 show Mississippi, CCC and WWEX’s privacy-authorizations tables, respec-
tively. In particular, Table 6 shows that Mississippi can access both email address and mobile phone
number for notifying the status of an order, and that WWEXx and Post Office can access customer data
for direct delivery and delivery by post, respectively. Notice that these authorizations match exactly the
policies stated in the corresponding privacy-policies table. Moreover, looking at Table 8, we can see that
all local delivery companies are authorized to access customer personal data.

The consent principle is enforced by Hippocratic systems through the Privacy Constraint Validator.
This module verifies whether customer preferences match the privacy policies of the enterprise before the



Table 7: CCC'’s Privacy-Authorization Table

purpose table attributes authorized-users
credit assessment  customer  {name, credit-card-info} { CCC }

credit assessment  order {transaction} {cce}

credit scoring customer  {credit-card-info} {CCC,CRC}
credit resolution  customer  {name, credit-card-info}  { CCC }

credit resolution  order {transaction} {cce}

Table 8: WWEX’s Privacy-Authorization Table

purpose table attributes authorized-users
direct delivery customer  {name, address} { WWEx }
door-to-door delivery ~ customer  {name, address} { WWEx, LDCy,...,LDC, }

customer discloses his information. If it is the case, the privacy authorization table is created; otherwise,
the information about the customer is not collected.

When a user submits a query to the database, the system not only verifies that the user is authorized
to access the required data items, but answers only queries for which the purpose is equal to that for
which the information has been collected. Further, Hippocratic databases do not disclose information for
purposes other than those for which the owner of the information has previously given consent. Thus,
Hippocratic databases implement, respectively, the limited use and disclosure principles. Hippocratic
databases enforce the retention principle using the Data Retention Manager. Essentially, this module
deletes data items when their retention period is expired.

The limited collection principle requires that enterprises collect only the information strictly needed to
fulfill the purpose for which data are stored. Hippocratic databases implement the principle through three
components: Access Analysis, Granularity Analysis, and Minimal Query Generation. The first module
identifies for each purpose which data items never occur in query answers. The second determines the
granularity of the required information. Finally, Minimal Query Generation designs queries that disclose
the minimum set of information needed for fulfilling a certain purpose. Notice that Access Analysis can
only detect those data items that are never used. Therefore, it is sufficient that Mississippi notifies the
status of the order to different customers using both methods (SMS and email), so that Access Analysis is
not able to detect the redundant information required by privacy policies from single customers. Moreover,
Access Analysis works only on data items, and it cannot prevent disclosure of customer information to all
local delivery companies.

4 Hierarchy and Delegation of Purposes

The approach proposed by Agrawal is elegant and simple, but does fare well with dynamic situations often
encountered in eCommerce-related contexts. First, enterprises generally provide their services in different
ways. Then, enterprises might need to decompose a generic purpose into more specific ones since they are
not completely able to fulfill it by themselves, and so they may delegate the fulfillment of sub-purposes
to third parties. This is the case for a business process where different partners explicitly combine their



efforts into one process in order to provide a service to customers. These issues mainly affect the creation
of the privacy authorization table since the privacy policy table cannot be directly mapped to it without
introducing authorizations unnecessary for fulfilling a service.

As a partial solution Agrawal et al. [2] propose to decompose purposes into multiple sub-purposes and
then store them in the database. Based on this, customers can opt in or out of making personal information
available. However, using this simple notion of purpose/sub-purpose hierarchy we lose the logical relation
between a purpose and its sub-purposes. In particular, this notation does not distinguish whether a sub-
purpose is derived through an AND- or OR-decomposition. Consequently, it does not allow reasoning
about the fulfillment of the root purpose. For example, a customer might opt out of providing information
necessary to fulfill a sub-purpose that, however, is necessary to fulfill the root purpose. Therefore, the
enterprise may collect from the customer information for sub-purposes that is altogether insufficient to
fulfill the root purpose. Yet, by adopting Agrawal’s proposal the enterprise has no automatic mechanisms
for detecting such situations.

Following goal analysis approaches [21], we propose to decompose purposes into sub-purposes through
an AND/OR refinement. Essentially, AND/OR refinement combines AND- and OR-decompositions of
purposes into sub-purposes, modeling a logical purpose structure. Then,

e if purpose p is AND-decomposed into sub-purposes pi, ..., Pn, then all of the sub-purposes must
be satisfied in order to satisfy p,

e if purpose p is OR-decomposed into sub-purposes p1, ..., pn, then at least one of the sub-purposes
must be satisfied in order to satisfy p.

In essence, AND-decomposition is used to define the process for achieving a purpose, while OR-decomposition
defines alternatives for achieving a purpose.

Once we have built such a hierarchy, we need a data structure to represent it in order to design algo-
rithms for reasoning about the fulfillment of root purposes. Our choice for this is hypergraphs [3, 4], where
AND- and OR-decompositions can be represented as hypergraph edges. In the remainder of the paper, we
call the hypergraph representations of purpose hierarchies purpose directed acyclic graph (purpose DAG).
Next, we define it formally.

Definition 1 A purpose DAG P is a pair (P, D) where P is a set of purposes and D is a set of decom-
position arcs. Each decomposition arc is an ordered pair (S,t) from an arbitrary nonempty set S C P
(source set) to a single node t € P (target node).

If a purpose DAG P is represented by adjacency lists, the size of its description is [P| = p+a + d
where p is the number of purpose nodes, d is the number of decomposition arcs, and a = ) g |S| is the
source area, that is, the sum of cardinalities of all source sets where S = {S|(S,t) € D for some t € P}
denotes the set of source sets.

Purpose DAGs can be used to represent goal models in goal-oriented Requirements Engineering ap-
proaches [6]. For our purposes, they represent the entire set of alternative ways for delivering a service
required by customers. Such representations can also be used to model the delegations of tasks and au-
thorizations in the security modeling methodology proposed by Giorgini et al. [15]. Actually, the privacy
policies of each partner of a business process can be represented in terms of a purpose DAG. Merging all
these DAGs allows us to get a new purpose DAG representing the privacy policies governing the entire
business process.



Definition 2 Let P = (P, D) be a purpose DAG. A purpose DAG P’ = (P', D' such that P' C P and
D’ C D and, for each (S,t) € D', S C P’, is called a sub-purpose DAG of P. This is denoted by P’ C P.

An enterprise could provide different methods to achieve a service or rely on different partners to
achieve the same part of the service. Consequently, different processes can be used to fulfill the required
service. To capture this insight, we introduce the notion of decomposition path. Roughly speaking, a
decomposition path is a particular sub-purpose DAG representing a possible solution through which an
enterprise can fulfill a purpose.

Definition 3 Let P = (P, D) be a purpose DAG, Z C P be a non-empty subset of purposes, and t be a
purpose in P. A decomposition path Dy, is a set of decomposition arcs D' C D such that either t € Z
or there exists a decomposition arc (S,t) € D' and there are decomposition paths Dz, € D' for each
x€S.

Since our reference business model is that of virtual organizations, we assume that there will often be
more than one way to deliver a service, i.e., different decomposition paths that fulfill the same purpose (or
sub-purpose). Yet, they may differ in an important aspect, notably they may require different private data
items. Thus, depending on each customer’s individual preferences, the same decomposition path might
have a significantly different privacy “cost” for different customers. Hence a key issue is to determine the
“minimal” decomposition path through a quantitative analysis. To this end, we introduce the notion of
weighted purpose DAGs.

Definition 4 A weighted purpose DAG P = (P, D) is one where each decomposition arc (S,t) € D has
associated with it a weight w g y.

Purpose DAGs can have a complex structure, and different cost functions can be used to evaluate
the cost of a decomposition path. Depending on the choice, the problem of computing such cost can be
polynomially tractable [14] or NP-hard [8, 11, 23]. Specifically, the problem of finding the minimal cost
hyperpath in a directed hypergraph has been shown to be NP-hard when the cost of a hyperpath is the sum
of the weights of its hyperarcs [3, 4]. In contrast, polynomial time algorithms exist if the cost function is
additive [3, 4, 19]. For additive cost functions, the cost of one edge may be counted as many times as it is
used. Essentially, additive cost functions work on the unfolded representation of the hypergraph.

The choice of the cost function depends on the application. In our application the choice between two
mathematical functions can be transformed into a choice between two philosophical approaches to the
disclosure of private data: if we care whether data are disclosed at all, then the mathematical functions
that determine the privacy penalty of a decomposition path is the sum of the weights of its arcs. If we
also care for the number of times that our private data are used or for the number of business partners that
have access to them, then the mathematical cost function that we should use is additive. For our purposes,
we choose the second standpoint because we argue that, the more a piece of data is used, the more it is
likely that it might be misused. Therefore, additive measures are the ones that capture best one’s intuitions
on the protection of privacy. In order to implement an additive cost function, we associate the cost of a
decomposition path Dz ; to the node ¢.

Definition S Let Z be a source set, t be a purpose node, and Dz be a decomposition path from Z to
t. The disclosure penalty (or privacy penalty) to reach t starting from Z, dp(t), is inductively defined as
follows:



e For each supplier privacy policy table, purposes are analyzed
through a goal refinement process.

e Once a DAG for each supplier is defined, the DAG repre-
senting the privacy policies of the entire business process is
built by merging them.

e Each purpose is associated with the data items directly
needed to achieve it.

e A privacy penalty is associated with each decomposition arc.

Figure 1: Mapping Hippocratic DB into Purpose DAGs

1. ift € Z, then dp(t) = 0;

2. if path Dz has root (S,t) with subpaths Dz z,, ..., Dz, then dp(t) = wis sy + D .5 dP(Ti).

S From Hippocratic DB to Purpose DAGs

We want to determine the process by which a service can be delivered with minimal privacy costs. This
section proposes a procedure for building the purpose DAG representing the privacy policies of a business
process consisting of many different partners from the Hippocratic database system of each partner.> A
sketch of the procedure is given in Fig. 1.

Firstly, purposes stored in the privacy policies table of each supplier are analyzed through a goal
refinement process based on AND- and OR-decompositions. Graphically, these purpose DAGs are cir-
cumscribed by a broken line and labeled with the name of the partner.

These DAGs allow customers to select alternatives proposed by single partners of the business process,
but they do not help in determining the minimum cost process for fulfilling the full service. Therefore, once
we have a purpose DAG for each supplier, we build the purpose DAG representing the privacy policies of
the entire business process by merging them. The merge is done by looking at the external-recipients field
stored in every privacy policies table: when the external-recipients field is not empty, we join its purpose
with the corresponding purpose (with the same name) occurring in the DAG associated with the partner
that is an instance of some external recipient. The purpose node is associated only with the purpose DAG
representing the partner. Arcs linking nodes across DAGs are called delegation arcs. If there is more
than one instance for the same external recipient, we create a number of “copies” of that purpose equal
to the number of instances. Every such purpose node is linked to the upper level purpose. Essentially,
this process corresponds to an OR-decomposition of a purpose into all the possible alternatives that can
be used to achieve it. This solution is also used when there are multiple external suppliers for the same
purpose.

This approach supports complex enterprise strategies and, at the same time, allows customers to di-
rectly choose a certain supplier whenever the choice is available. Notice that building the purpose DAG
representing the privacy policies of the entire business process requires a common ontology among all

2We assume knowledge of the complete business process. This is actually closer to reality than one may think: privacy
legislations require that every enterprise declares and enforces its own privacy policies and is responsible for the privacy policies
of its sub-contractors.
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Figure 2: Purpose DAG

partners involved in the business process.?

Finally, in order to determine the process that discloses the minimum cost set of information, we
extend purpose DAGs with the data items needed to satisfy a purpose and the privacy penalty assigned to
each data item by customers. The idea is to create a node for each data item and link it to the purposes
that require it. To accomplish this, we add to the purpose DAG n + 1 nodes where n is the number of data

items occurring in the database schema. Then, each purpose is associated with the data items needed to
achieve it, minus data items needed to achieve its sub-purposes:

e if a purpose node has no incoming decomposition arcs, we link to the purpose the data items needed
to fulfill it with decomposition arc (X, t) where X is the set of data items and ¢ the purpose node;

e if node ¢ has already an incoming decomposition arc (X", t), this is replaced by the decomposition
arc (X U X', t).

Then, each data item node is linked to the last node, source node, with a decomposition arc ({L},1),
where L is the source node and ¢ is a data item node.

Example 4 Fig. 2 shows the purpose DAG extended within data items corresponding to the running ex-

ample. Each node is composed of two parts: a purpose and the list of data items needed to fulfill it. Broken
lines partition the purpose DAG in sub-purpose DAGs, and each of them represents a policy of a single

3This assumption is also necessary for traditional Hippocratic databases.



partner involved in the business process. The sub-purpose DAG labeled with Mississippi corresponds
to Table 3. In particular, Mississippi AND-decomposes purchase into delivery, credit assessment whose
execution is delegated to CCC, and notification. This means that all sub-purposes have to be reached in
order to reach the root purpose. Then, the book store OR-decomposes delivery into direct delivery for
which it depends on WWEX, and delivery by post for which it depends on Post Olffice. Notice that these
purposes are the roots of the DAGs associated with WWEXx and Post Office, respectively. Finally, Missis-
sippi achieves notification either by SMS or by email. These purposes are not decomposed further and
are linked instead to the data items needed to fulfill them.

The last step of the process is to assign a weight to each decomposition arc. In our model, every
decomposition arc is associated with a disclosure penalty equal to 0, except the decomposition arcs linking
source node to data item nodes, and delegation arcs. The first case represents the privacy penalty to
disclose data items. The latter amounts to the privacy penalty of delegating information to sub-contractors
and represents the level of trust customers have towards sub-contractors. Both these assignments are given
by data subjects based on their own preferences.

6 Finding a Minimal Authorization Table

When customers require a service, they are willing to disclose only information that is relevant to the
service, and only to those who need it to perform their duties. In other words, customers want the process
that delivers the desired service with the smallest privacy penalty. This corresponds to find the minimal
decomposition path from the source node to the root purpose. Based on this path, we can build the
minimal privacy authorization table that represents the minimum set of authorizations needed to fulfill the
root purpose.

However, each customer may associate a different privacy penalty with the same data item. To cope
with this requirement, we distinguish two separate phases: Requirements Capture and Privacy Assess-
ment. The first phase is performed by the enterprise when it is designing a new business process. It needs
to analyze the effect of its marketing strategies. The privacy assessment phase requires that data struc-
tures are maintained and that operations are performed on-line. This consists of dynamically maintaining
reachability and minimal decomposition path when arcs are deleted, or arc weights are updated.

We list the operations required by each of these phases:

e Requirements Capture phase by business process designers: (a) initialize; (b) delete arcs, (c) add
arcs, (d) adjust weights.

e Privacy Assessment phase by customers: (a) delete arcs, (b) adjust weights.

Initialization involves finding the minimum cost decomposition path of a new business process, to
be suggested to customers. An enterprise could use different metrics for optimizing minimal disclosure.
For example, enterprises could compute privacy penalties through statistical evidence over the customer
base or could choose specific strategies depending on the different relationships with its partners. Once
the enterprise has chosen a metric, algorithm MinimumCost (Fig. 3) is used to determine the minimal
decomposition path. The other operations are performed by companies during the requirements capture
phase, and customers during the privacy assessment phase through algorithms InsertOrDecrease (Fig. 6)
and Increase (Fig. 7).



Table 9: Data Structures

Data Structure | Type Description

PRED[y| node Pointer to the predecessor node in the minimal decomposition path from source
node to simple node y.

DISCLOSE]y] | integer Privacy penalty from the source node to node y.

NEEDED]y] data item list | Data items needed to fulfill node y.

TODOJy] integer For simple nodes, it says if node y is reachable.
For compound nodes, it is the number of simple nodes (that compound y) which
are not reachable from the source.

Table 10: Algorithms for initializing and updating the minimal decomposition path

Phase | Name Input Description
I MinimumCost Find the minimal decomposition path for a purpose
DAG.
U InsertOrDecrease | (S, t): decomposition arc Update the minimal decomposition path when arcs are
w: weight inserted or weight is decreased.
8] Increase (S, t): decomposition arc Update the minimal decomposition path when arcs are
w: weight deleted or weight is increased.

We do not include an operation for adding arcs in the privacy assessment phase. Actually, the presence
of a decomposition arc corresponds to a business choice on the part of the enterprise, such as using a certain
supplier or introducing additional options for delivering a service. A customer may decide not to use a
particular supplier or a company’s alternate option by simply ticking a check-box on a webpage.

Next, we present algorithms for finding and updating minimum cost decomposition paths and the
data structures they use. A summary of the data structures is given in Table 9, while the algorithms are
presented in Table 10 where I and U are respectively used for initialization and update.

7 Data Structures

In order to design efficient algorithms, we use FD-graph [4]. A FD-graph is essentially a labeled graph
with two kinds of nodes and two kinds of edges where decomposition arcs are mapped into nodes and the
two types of arcs are connecting the decomposition node to the original nodes. The following definition is
based on [4].

Definition 6 Given a purpose DAG P = (P, D), let S be the set of source set, i.e., S = {Z| there exists
a decomposition arc (Z,i) € D}. The FD-graph of P is a labeled graph G(P) = (Ps U P,., Ay U Agna),
where:

1. P; = P is a set of simple nodes;

2. P, is the set of compound nodes which is in a bijective relationship with S. If Z € S is a source
set then z will denote the corresponding compound node, and any simple node x; in the source set
Z will be called a component node of the compound node z;



3. Aor € P. X Py = {(2,z)|(Z,x) € D} is the set of edges referred to as OR-edges, in a bijective
relationship with D;

4. Agna C Ps X P. = {(z4,2)|z € P.and x; € Z} is the set of edges referred to as AND-edges,
connecting any compound node to its components.

In the sequel, we will use x and ¢ for simple nodes, 2z and s for compound nodes, and y for either simple
or compound nodes.

A decomposition arc is represented by a compound node with an outgoing OR-edge and one or more
incoming AND-edges. Essentially, OR-edges represent a choice in selecting a decomposition arc, while
AND-edges identify purposes belonging to the source set of a decomposition arc.

There is a one-to-one correspondence between the decomposition arcs of a given purpose DAG P and
OR-edges of the corresponding FD-graph G(P). Consequently, if a decomposition arc of P has weight,
this is associated with the corresponding OR-edge. We represent FD-graphs as adjacency lists where
all OR-edges outgoing from a node z are stored in OUT ,.(z) and all AND-edges outgoing from z in
OUT 4nq(x). We will also need a list of all incoming AND-edges IN ,,,4(z) into a compound node z and
the list of incoming OR-edges IN . (x) into a simple node x.

Next, we present the data structures used in the algorithms. A summary is shown in Table 9.

PREDI[z]: is used to retrieve the minimal decomposition path. The idea is to store for each simple node
z, the incoming OR-edge belonging to the minimal decomposition path (predecessors [12]), i.e.,
which OR choice has been made for each node. Essentially, variable PRED|z] points to the last
node in the minimal decomposition path from source node L to simple node z, otherwise, if there
is no path from L to z, it is equal to nil.

DISCLOSE(y]: represents the privacy penalty of the minimal decomposition path from L to node y.
For every node, the privacy penalty is initialized to infinity (co) except for L that is initialized to O.

NEEDED(y]: maintains the data items needed to fulfill purpose y. At the beginning, for every node y,
NEEDED(y] = () except for the nodes associated to a data item where it contains the data item
itself. In the algorithms we use W to indicate multi-set union.

TODOJy]: indicates how far we have progressed in the construction of the hibernator from L to y. A
node y is visited if the value of TODO|y] is equal to 0. For any simple node x, TODO|x] is
initialized to 1, and for any compound node z (with components z1, ..., x,), TODO[z] = q.

8 Algorithm

The MinimumCost algorithm (Fig. 3) is based on ideas from [4] and is essentially a variant of Dijkstra
classical minimum spanning tree algorithm [12]. It constructs the minimum cost decomposition path to
the root purpose by working bottom up from the L node.

Algorithm MinimumCost uses a priority* queue P(Q whose elements have the form (cy, iy, {s,t))
where (s,t) is an OR-edge, and ¢; and i; denote, respectively, the privacy penalty and the list of data
items that would be associated with the node ¢ if the minimal decomposition path from 1 would reach
t through the edge (s,t). The queue PQ is used to sort the nodes that should be analyzed with respect

“Lowest data required in, first out.



Algorithm MinimumCost
Output:
DISCLOSE]y] : integer;
NEEDED]y] : data_item_multi-set;
TODOly] : integer;
PRED|z] : node;
begin
make- PQ)-empty;
for each {OR-edge} (L,z) € OUTo(L) do
PQ-insert(wy 5y, {z}, (L, z));
while not PQ-isempty do begin
PQ-extract(cy, it, (s,1));
if TODO[t] # 0 then begin
TODOIJt] := 0;
DISCLOSE]t] := ¢;
NEEDEDI[t] := is;
PREDIt] := s;
for each {AND-edge} (¢, z) € OUT ¢na(t) do begin
decrement(TODO|z]);
if TODO|z] = 0 then begin
DISCLOSE[Z] = 3 4 yew. () DISCLOSE[z]
NEEDEDI[2) =W, .1y, () NEEDEDIq]
for each {OR-edge} (z,z) € OUT or(z) do
if TODOJz] # 0 then
PQ-insert(w. », + DISCLOSE|z], NEEDEDI2], (2, z));
end
end
end
end
end

Figure 3: Algorithm MinimumCost

to the cost for reaching them. The algorithm starts by adding to the priority queue all initial data nodes
with the corresponding privacy penalty and the node itself as identifier of the data item. The weight of the
edges, i.e. the privacy penalty, is specified by the customer in his preferences (column 1 of Table 11). The
algorithm extracts from the queue PQ the node ¢ with minimum priority c; which is assumed to be the
privacy penalty of the minimal decomposition path from L to ¢. This is the shortest path for ¢. Thereby,
all AND-edges (t, z) are analyzed. For each compound node z, TODO|z] is decreased, and, if it is equal
to 0, we have computed the minimal decomposition path for all nodes of the source set. Then, we can
compute the privacy penalty of z and add all OR-edges outgoing from z to PQ. The algorithm terminates
when PQ is empty.

The output of the MinimumCost algorithm (DISCLOSE and NEEDED) allows to build the mini-
mum cost decomposition path, including the list of data items required by the corresponding process.

Example 5 Table 11 reports the value of data items and delegation steps that Mississippi uses to initialize
the business process. It prefers to deliver books using a delivery company because this method is safer
and faster. Further, it prefers to notify via SMS because most customers are unwilling to disclose their
email. Fig. 4 shows the purpose DAG presented in Fig. 2 where the discarded alternatives and data



Table 11: User Preferences
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items unnecessary for delivering the service are shaded. The white nodes belong to the minimum cost
decomposition path derived from the preferences of the customer. Essentially, this path represents (in
form of purpose DAG) the process with the smallest privacy penalty for achieving purpose purchase.

The following results are parametric over the data structure used for managing multi-sets and priority
queues. So in the sequel, we indicate by ¢ 17 (7) the cost for performing a multi-set union over a domain
with at most ¢ elements and by ¢ pg(|P|) the cost of managing insertion and deletion of elements in a
priority queue with at most | P| elements. Efficient algorithms exists for both structures [9]. For example,
one can use Fibonacci heaps which have an amortized costs of O(1) for insertion and other operations.

Theorem 1 Let i be the number of private data items. The algorithm terminates in O(|P| X ¢y (i) X

trq(|P))).



A: source node
B, C: data item nodes
D, E, F, G, H, I, L: purpose nodes

Figure 5: Concatenation of lists

Proof. First we note that each simple node is processed only once by the main algorithm because of the
TODOIt] # 0 test. Also the privacy penalty of all compound nodes is computed only once (otherwise
there would be a simple node in the corresponding source set that has been computed twice).

Therefore, the corresponding insertion and extraction of each outgoing OR-edge is only done once.
This will amount to a O(d + p) cost which must be multiplied by the amortized cost of managing the
priority queue, i.e., tpg(d + p). The calculation of the disclosure penalty of compound nodes requires
to access the source set and this would amount to an overall cost of O(a) because the penalty is only
computed once. However, each operation requires to perform a multi-set union and therefore as a result
the algorithm has a cost O(|P| x t i (7) X tpg(|P))). O

Unfortunately, there are pathological cases of purpose DAG where using a simple concatenation of
lists would not be adequate as it would lead to an exponential blow up of NEEDED. Figure 5 shows one
of such cases.

Fortunately, such cases make no sense from a business perspective (and a customer should be wary of
such an entangled business decomposition).

Therefore, we can conclude that

1. in the general case one must use an efficient data structure for multi-sets such as those listed in [9];

2. in all practical case the structure of a purpose DAG is essentially a tree if we do not consider data
item layer. In that case a simple list concatenation is sufficient thus yielding the cost of O(a-). Even
this upper bound is largely meaningless from practical cases as we obtain it in the case of a purpose
DAG (actually tree) only made of AND-edges, whereas our working assumption is that companies
wants to provide the same service in many ways (and therefore their purpose has significantly) many
OR-edges.

Theorem 2 The algorithm computes correctly the minimal privacy penalty from L to any other node in
the purpose DAG.

Proof. The proof is by induction on the construct of the minimal decomposition path.



Table 12: Default Privacy-Authorizations Table

purpose table attributes authorized-users
purchase customer {name, address, mobile-number, credit-card-info} { Mississippi }
purchase order {transaction, book-info, status} { Mississippi }
delivery customer {name, address} { Mississippi }
direct delivery customer {name, address} { WWEx }
door-to-door delivery customer {name, address} {LDC, }
credit assessment customer {name, credit-card-info} {cce}
credit assessment order {transaction} {cce}
credit scoring customer {credit-card-info} {CRC}
credit resolution customer {name, credit-card-info} {ccc}
credit resolution order {transaction} {cce}
notification customer {name, mobile-number} { Mississippi }
notification order {book-info, status} { Mississippi }
notification by SMS  customer {name, mobile-number} { Mississippi }
notification by SMS  order {book-info, status} { Mississippi }

Base case The nodes reachable by the source node in 1-step are nodes representing data items. They are
all inserted in the priority queue at the beginning and, since the purpose DAG is acyclic, their value
is actually equal to the cost of the edge which is the minimum possible.

Ind. case When a node ¢ is extracted from PQ for the first time, the privacy penalty associated with it is
smaller than the privacy penalty associated with any node actually occurring in PQ since PQ extracts
the element with the smallest cost. Suppose now that there is a minimal hyperpath from _L to ¢ that
does not pass through (s, t) but has a smaller privacy penalty. By inductive hypothesis every node
y with TODO[y] = 0 has been reached by a minimum decomposition path so the “better” path for
t must necessarily pass through some node y with TODO[y] = 0. So let (s’,t’) be an edge of the
minimal hyperpath for ¢ that starts from a nodes with TODO|s| = 0. This arc has been inserted
in the PQ but the privacy penalty of ¢ must be smaller than ¢, contradiction. This of course works
because all edges have a non-negative privacy penalty. U

A similar result can be proved for the set of needed data items.
The minimal decomposition path is then used to build the minimal privacy authorization table where
external recipients are instantiated by the corresponding authorized users. This ensures that

1. customers disclose information only if a path exists, and
2. granted authorizations are the minimum cost set necessary to fulfill the service.

If an enterprise has already defined a privacy authorization table, this latter table can be compared with
the new one to verify whether it does not disclose more information than needed.

Example 6 Table 12 shows the privacy authorization table derived from minimum cost path in Fig. 4.
For example, Mississippi will notify the status of the order by SMS. Therefore, Mississippi is authorized
to access customers’ mobile phone numbers (but not their email addresses) for this purpose (line 11).
LDCy can access data only for door-to-door delivery, and so WWEXx for direct delivery. Mississippi is
also entitled to access those data in order to guarantee the delivery (essentially because it needs them to



pass them onwards to LCD1 and WWEXx). CRC is authorized to access only the data needed for credit
scoring, while CCC can only access data needed for credit resolution and credit assessment.

Differently from Hippocratic systems, we define a privacy authorization table for each customer. We
argue that, by using the same authorization table for every customer, one does not properly implement the
notion of minimal disclosure since such table does not take into account individual customer preferences.

Example 7 Mississippi requires both email address and mobile phone number for notifying the status of
the order (Table 3). Thus, if a customer wishes to buy a book, he has to authorize the book store to access
such information (Table 6) when just one of these data items is necessary and sufficient to achieve the
purpose of notification (Table 12).

Moreover, Agrawal’s proposal introduces additional unnecessary authorizations into privacy autho-
rization tables (Tables 6 and 7). Actually, it allows a supplier to access data for fulfilling a purpose
the supplier has already delegated to some sub-contractors. On the other hand, the notion of minimal
disclosure implies that only those able to deliver a service should be entitled to access the data. This
corresponds to the need-to-know principle for which data subjects want to ensure that their data are not
delegated to recipients that do not need it. Therefore, in our scenario, Mississippi should not be entitled to
access credit card information for credit assessment or shipping address for direct delivery as the minimal
privacy authorization table shows (Table 12). In practice, these data should be channelled directly to the
corresponding partners. A sub-optimal solution would be that this information is forwarded by Mississippi
to the appropriate partners and then immediately deleted.

9 On-the-fly Updates

When a customer changes his preferences, we would like to avoid re-computing the minimum cost de-
composition path from scratch after each change, but rather reuse the old solution as much as possible.

The problem of dynamically updating the purpose DAG can be essentially divided in two distinct
classes:

e adding a new decomposition arc or decreasing the privacy penalty of an existing decomposition arc;

e deleting an existing decomposition arc or increasing the privacy penalty of an existing decomposi-
tion arc.

In the remainder of the section, we present the algorithms for updating the minimal decomposition
path for each class of operations.

One problem of on-line procedures is to represent the FD-graph corresponding to the purpose DAG.
In the case of off-line procedures, all simple and compound nodes are known a priori. On the contrary, in
on-line procedures one has to take into account that new compound nodes can be inserted. Thus, when a
decomposition arc is considered, one has to check whether the source set of the decomposition arc to be
introduced corresponds to an existing compound node in the FD-graph. To this end, we use the function
Compound that (1) returns the compound node s corresponding to source set S, if such compound node
already exists, and (2) otherwise creates it and performs any necessary initialization such as computing the
DISCLOSE value and the NEEDED multiset of data items from the corresponding values of the simple
nodes in S. Once again efficient algorithms for finding a set from a pre-defined domain are well known

[9].



Procedure InsertOrDecrease((S, t): decomposition arc, w: weight);
begin
s := Compound(S);
if there exists no OR-edge (s,t) € OUT o, (s)
then insert (s, t) into OUT or($);
Wisty = W5
make-PQ-empty;
PQ-insert(w s ) + DISCLOSE|s], NEEDEDs), (s, t));
while not PQ-isempty do begin
PQ-extract(ct, it, (s, t));
if ¢; < DISCLOSE]|t] then begin
DISCLOSETt] := ¢
NEEDEDIt] := is;
PREDI[t] :=s;
for each {AND-edge} (¢, 2z) € OUT qna(t) do begin
DISCLOSE[z2] := 3, .yern,, 4(x) PISCLOSE[z]
NEEDED[2] := W, .scx. () NEEDED]z]
for each {OR-edge} (z,z) € OUTor(2) do
PQ-insert(w . », + DISCLOSE|z], NEEDEDIz], (2, z));
end
end
end
end

Figure 6: Procedure InsertOrDecrease

9.1 Insert or Decrease

The procedure InsertOrDecrease (Fig. 6) maintains the minimum cost decomposition path when new
decomposition arcs are inserted or the cost of an existing decomposition arc is decreased.

Such changes can introduce a new minimal path and therefore we propagate them bottom-up until
a root of some subpath remains unchanged. This algorithm exploits the observation that the previous
minimal decomposition path does not change its value (if a new arc is inserted or the decreased arc is not
in that path), or even improves it (if the decreased arc is in the current minimal path). Accordingly, we can
use the value of DISCLOSE to separate the useful from the not useful computation in the same way that
we used the TODO variable in the off-line algorithm for the minimum cost.

Firstly, the procedure takes as input a decomposition arc (S, ¢) and its privacy penalty and determines
the compound node s corresponding to the source set S using function Compound. If such a node already
exists, its penalty is updated; otherwise, the new decomposition arc and its penalty are inserted in the DAG.
Notice that the first case corresponds to decreasing the penalty of existing decomposition arcs, while the
second corresponds to adding a new decomposition arc. The idea is to verify whether the decomposition
arc yields a decomposition path that improves the old penalty. If it is the case, the decomposition arc is
considered; otherwise the algorithm terminates since the minimum cost path does not change.

9.2 Increase

When the customer increases the privacy penalty of decomposition arcs we use the algorithm Increase
(Fig. 7) to build the new minimal decomposition path. It can also be used for arc deletions by setting the



Procedure Increase((S, ¢): decomposition arc, w: weight);
begin
s := Compound(S);
0= W — W ys
Wis,t) = W;
if PRED|t] = s then begin
DISCLOSE]t] :== DISCLOSE]t] + ¢;
for each {OR-edge} (z,t) € IN,.(t) do
PQ-insert(w, 4y + DISCLOSE[z], NEEDED|z], (z,t));
while not PQ-isempty do begin
PQ-extract(ct, it, (S, t));
if ¢, < DISCLOSE[t] then begin
DISCLOSELt] := ¢
NEEDEDI[t] := iy;
PREDI[t] := s;
for each {AND-edge} (t,z) € OUT 4n4(t) do begin
DISCLOSE[Z] := Yy s cn. 1oy DISCLOSE[z]
NEEDED[2) =W, v o) NEEDEDIz]
for each {OR-edge} (z,z) € OUTor(z) do
if PRED[z] = z then begin
DISCLOSE[z] := DISCLOSE|[z] + w(: ay;
for each {OR-edge} (s, z) € INo.(x) do
PQ-insert(w s 5y + DISCLOSE[s], NEEDEDs], (s, x));
end
end
end
end
end
end

Figure 7: Procedure Increase

weight equal to infinity (co).

The idea behind the algorithm is that if the decomposition arc whose weight has been increased does
not belong to the minimum cost decomposition path, the minimum path does not change. Here the tricky
bit is the following: if the modified arc belongs to the current minimum path before the increase then it
might no longer be in the minimum path after the increase. Therefore, we must update also the value of the
DISCLOSE variable to take into account the fact that this is no longer the best-value but the best-so-far.

The procedure takes as input an existing decomposition arc (.S, t) and its updated value and determines
the compound node s corresponding to the source set S by using function Compound.’ If the arc belongs
to the decomposition path, the value of the DISCLOSE penalty is updated to take into account that it has
“worsened”. Then, the siblings of the arc (s, t) — the arcs having node ¢ as head — are examined in order
to check whether one of them might improve the best-so-far DISCLOSE value. When one of those arcs
yields a decomposition path that improves the best-so-far penalty, all its AND-edges (t, z) are analyzed,
because they must have changed (at least node ¢ in the source set has changed DISCLOSE value). Then,
we start analyzing the outgoing OR-edges and check whether some of those also belong to the previous
minimal decomposition path. In this case, we apply the same reasoning that we applied before: we update

SWe assume that the compound node exists since we are considering only weight increase and arc deletion.



Table 13: Alice’s User Preferences
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Figure 8: Minimum Decomposition Path (dark areas are not considered)

the DISCLOSE variable to the best-so-far value that we have just computed and insert in the PQ all the
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siblings of the selected node to check whether any of them can improves the current tentative path.

Example 8 Alice wants to buy some books, but she does not agree with the default customer preferences
offered by Mississippi. In particular, she prefers to receive books by post because she does not trust to
give her address to delivery companies after a bad experience with a local delivery company. To this
end, she defines the cost of delegating information to WWEXx and to local delivery companies equal to
infinity® (00). Further, she does not have a business mobile phone and she would prefer to not give her
personal mobile phone number. In contrast, she has a very good anti-spam filter and is therefore willing
to communicate her email address. Thus, she sets the cost of providing her mobile phone number equal

®This corresponds to deleting the decomposition arc.



Table 14: Alice’s Privacy-Authorizations Table

purpose table attribute authorized-users
purchase customer {name, address, email, credit-card-info} { Mississippi }
purchase order {transaction, book-info, status} { Mississippi }
delivery customer {name, address} { Mississippi }
delivery by post customer {name, address} { Post Office }
credit assessment customer {name, credit-card-info} {ccce}
credit assessment order {transaction} {cce}
credit scoring customer  {credit-card-info} {CRC }
credit resolution customer {name, credit-card-info} {cce}
credit resolution order {transaction} {cce}
notification customer {name, email } { Mississippi }
notification order {book-info, status} { Mississippi }
notification by email customer {name, email} { Mississippi }
notification by email order {book-info, status} { Mississippi }

to 20 and the cost of providing her email address equal to 4. Table 13 summarizes Alice’s preferences
and Fig. 8 shows the purpose DAG representing the business process where the discarded alternatives
and data items unnecessary for delivering the service are shaded. The white nodes represent the minimal
decomposition path computed with respect to Alice’s preferences.

As mentioned earlier, the minimal decomposition path is used to build the minimal privacy authoriza-
tion table.

Example 9 Table 14 reports the privacy authorization table corresponding to the minimal decomposition
path in Fig. 8. It shows that Mississippi cannot access Alice’s mobile phone number for notification and
that WWEx and local delivery companies cannot access any data; only the Post Office is entitled to access
her data for delivering the purchased books.

10 Related Works

The last years have seen an increasing attention on privacy-aware technologies and mechanisms for the
negotiation of private information between customers and companies. These are particularly critical for
transactions carried out over the web [13] where the “customer” negotiating the private information might
not be a human but rather a software system.

Among work centered on the notion of purpose, LeFevre et al. [18] enhance Hippocratic databases
with mechanisms for enforcing queries to respect privacy policies stated by an enterprise and customer
preferences. In essence, they propose to enforce the minimal disclosure principle by providing mecha-
nisms to data owners that control who can access their personal data and for which purpose.

To support the negotiation of private information, the World Wide Web Consortium (W3C) proposed
the Platform for Privacy Preferences (P3P) [10]. This standard provides mechanisms that allow customers
to check web site privacy policies before they disclose their personal data to the site. Another mechanism
for negotiation is presented by Tumer et al. [27]. Enterprises specify which information is mandatory
for achieving a service and which is optional, while customers specify the type of access for each part of
their personal information: free (i.e., the access is granted without conditions), limited (i.e., the access is



granted only if the enterprise has defined as mandatory that part of information), or not given (i.e., the
access is never granted). Then, the framework matches enterprise policies with customer preferences. If
mandatory information is not given by a customer, the framework verifies if alternative strategies stated
by the enterprise match customer preferences in order to reach an agreement with the customer.

Mechanisms for enforcements are proposed by Karjoth et al. [5, 17]. The Enterprise Privacy Autho-
rization Language (EPAL) [5] enables an enterprise to exactly formalize the privacy policies that shall be
enforced within the enterprise itself. However, these proposals do not provide mechanisms for enforcing
the minimal disclosure principle. In Byun et al. [7], the Role-Based Access Control model is extended
by introducing the notion of purpose and a purpose management model. Similarly to our approach, they
introduce purpose hierarchies in order to reason on access control. However, their hierarchies are based
on the principles of generalization and specialization and are not expressive enough to support complex
strategies defined by enterprises.

An alternative approach proposed by Thuraisingham [26] introduced the notion of privacy constraints.
In this proposal, every role that users can play is associated with a privacy level. A role at a certain
privacy level can access only data at or below that privacy level. Hence, the privacy problem focuses on
determining whether individual privacy can be violated given a set of constraints which assign a privacy
level to data. Yusuda et al. [28] define a purpose-oriented access control model for controlling information
flow. Essentially, an information flow is defined as “legal” only if such information are used for a certain
purpose.

A policy itself may be sensitive because from the analysis of the disclosed policies an unauthorized
user may infer sensitive information. Following this observation, some approaches propose to protect not
only personal information, but also policies themselves [24].

11 Conclusion

This paper presents a framework for supporting the management of privacy-sensitive data within business
processes provided by virtual organizations. In this setting, a company can deliver a service to a customer
in many ways and by relying on many different partners. The selection of the partners and the identification
of a particular plan to fulfill a purpose can potentially be done on-the-fly. Yet, such selection should so be
driven by the customer’s desire to minimize the exposure of privacy sensitive data.

In particular, our approach improves Hippocratic database systems by providing (1) a framework to
model business processes that span across multiple partners and make use of AND/OR purpose decompo-
sition hierarchies, (2) efficient algorithms and data structures to select during the design phase the business
plan and the business partners that fulfill the desired purpose while minimizing the private information that
is requested from customers, (3) modified on-line algorithms that allow a customer to change its privacy
preferences and penalties on-the-fly and to recompute the selection of the business plan and the business
partners according the customer’s own criteria for minimal disclosure.

There are clearly open issues. First, one may wish to describe the internal structure of organizations in
order to have a fine grained model that could also capture the number of units and the number of individuals
accessing the information. Second, there is the need to extend current transaction models for virtual
organizations [22] in order to ensure that no information is disclosed until all partners have committed to
the delivery of their part of the business plan using only the information that the customers are willing to
make available to each of them. Our algorithms guarantee that the business process can be completed but a
certified and transactional commitment may be desirable in some cases. The (global) commitment should



ensure that if the customer provides the requested personal information then the virtual organization can
actually deliver the service. These issues are left as future work.
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