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ABSTRACT. A rigorous representation of the Feynman-Vernon in-
fluence functional used to describe open quantum systems is given,
based on the theory of infinite dimensional oscillatory integrals.
An application to the case of the density matrices describing the
Caldeira-Leggett model of two quantum systems with a quadratic
interaction is treated.

1. INTRODUCTION

One of the crucial problems of modern physics consists in under-
standing the behaviour of an open quantum system, i.e. of a quantum
system coupled with a second system often called reservoir or enviro-
ment. One is interested in the dynamics of the first system, taking
into account the influence of the enviroment on it. A typical exam-
ple is the study of a quantum particle submitted to the measurement
of an observable. In fact, from a quantum mechanical point of view,
the interaction with the measuring apparatus cannot be neglected and
modifies the dynamics of the particle. On the other hand the evolution
of the measuring instrument is not of primary interest.

A particularly intriguing approach to this problem was proposed in
1963 by Feynman and Vernon ( see [FH65, FV63]) within the path inte-
gral formulation of quantum mechanics. In 1942 R.P. Feynman [Fey42],
following a suggestion by Dirac (see [Dir33, Dir47], proposed an alter-
native (Lagrangian) formulation of quantum mechanics (published in

[Fey48]), that is an heuristic, but very suggestive representation for the
1
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solution of the Schrodinger equation

{m%— — LAY+ Vi )
(0, ) = tho(x)

describing the time evolution of the state ¢ of a d—dimensional quan-
tum particle. The parameter A is the reduced Planck constant, m > 0
is the mass of the particle and F = —VV is an external force. Accord-
ing to Feynman’s proposal the wave function of the system at time ¢
evaluated at the point x € R? is heuristically given as an “integral over
histories”, or as an integral over all possible paths v in the configura-
tion space of the system with finite energy passing in the point x at
time ¢:

W(t, ) = ¢ (/ HOD ”) / eSOy (7(0) Dy 7
{7 @#)==} {7 (@)==}
(2)

where Sy(7) is the classical action of the system evaluated along the
path ~, i.e. :

Si(7) = 5°(7) - / Vi (s))ds. 3)
setyy =2 / [3(5)|2ds, (4)

D~ is an heuristic Lebesgue “ﬂat” measure on the space of paths and
f{'y|'y(t \=2) %) Dy)~1 is a normalization constant.

Feynman and Vernon (see [FH65, FV63]) generalized this idea to the
study of the time evolution of the reduced density operator of a system
in interaction with an enviroment. Let denote p4, pg, respectively, the
initial density matrices of the system and of the enviroment, S4, Sp,
respectively, the action functionals of the system and of the enviroment
and St the contribution to the total action due to the interaction. Then
the kernel of the reduced density operator of the system pg (obtained
by tracing over the environmental coordinates) is heuristically given
by:

pR(t,x,y):“/ve)_x A=A (7,4 p.(1(0),7/(0) DyDY

v )=y

”

(5)
where F is the formal influence functional (IF):
N o w 1 (Sp(M)=Sp()) 7 (Sr(T'y)=S1(I"7))
F7) = [y g eH SISk 6
()=Q (6)
% pp(D(0),I(0)) DI DI'dQ"



FEYNMAN-VERNON INFLUENCE FUNCTIONAL 3

The number of spin-offs originated by the seminal work [FV63] is so
large that it is nearly impossible to give here a complete list, and we
limit ourselves to shortly mention some of them.

Probably the most influential contributions can be found in [CL83a,
CL83b] where Caldeira and Leggett applied the heuristic IF method in
order to study the quantum Brownian motion (QBM) (i.e. the analogue
of Brownian motion of a quantum particle) and the tunneling phenom-
enon in dissipative systems. Latter papers triggered a chain-reaction
which is actually far from its end. In [Leg84] (see also [CL81, Cal83])
Leggett determined the imaginary-time functional which supplies the
tunnelling rate form of a metastable state at zero temperature, in a
formal WKB limit, in presence of an arbitrary linear dissipation mech-
anism. In [CL85] an explicit calculation of the time-dependent den-
sity matrix is given describing the damping on quantum interference
between two gaussian wave packets in a harmonic potential and the
obtained results are in agreement with the quantum theory of mea-
surement, see e.g. [Zur82].

In [HAS85] the decoupled particle-bath initial condition previously
used, was compared with the initial off-diagonal coherence of the re-
duced density matrix, constituting the thermal initial condition.

A wide-range use of the IF approach was given in [LCD*87] where
the authors mixed their previous experiences giving a deep view to the
dynamics of a two-state system coupled to a dissipative environment.

In [CHS87] an application of the IF formalism was given in order
to study the reduced density operator of a particle coupled with a
fermionic environment. Similar applications may be found in [Sch82,
Gui84, Che87, Zwe87, BSZ92|, where the fluctuations in the motion of a
heavy particle interacting with a free fermion gas are studied providing
various type of classical and semiclassical expansion either with and
without weak-potential or linear response assumptions.

Chen’ s approach was extended in the case of a boson bath in [CLL89].

The heuristic IF approach was generalized in [SC87, SC90] to a non-
factorizable initial system-plus-reservoir density operator without spe-
cific symmetry assumptions.

Since heterogeneous problems related to macroscopic effects in quan-
tum system require extensions to the QBM theory, following [CL83a]
various attempts to derive a master-equation (ME) were made in or-
der to include general initial conditions and nonlinear couplings. The
ME for linear coupling and ohmic environment at high temperature
found in [CL83a] was first extended to arbitrary temperature in [UZ89]
and afterwards obtained for more general environments and nonlocal
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couplings, which produce colored noise and nonlocal dissipation, see
[GSI88, HPZ92, Bru93, HPZ93, BG03] and references therein.

A complementary use of the IF approach to the description of Mar-
kovian open quantum systems can be found in [Str97] where the IF
method is used in order to develop the ME of general Lindblad positive-
semigroup (see [Lin76]) and the propagator in a formal stationary phase
approximation is calculated.

Actually the derivation of the ME for the reduced dynamics of quan-
tum system have gained a lot of contributions by the use of mathe-
matical respectively physical path integrals (PI) techniques (see e.g.
[Exn85, JLO2| respectively [Wei99, BP02, Kle04, GZ04] and references
therein).

The IF formalism was also used in parametric random matrices ap-
proach to the problem of dissipation in many-body systems, see e.g.
[BDK95, BDK96, BDK97, BDK98] and reference therein, where the
derived form of the IF differs from the one in [CL83a] and recovers the
latter as the first term of its formal Taylor expansion.

The emerging theory of Quantum Computation is another field of ap-
plication of the IF method since the implementation of real quantum
processors is often hampered by the quantum decoherence phenome-
non, see e.g. [Deu89, Unr95, BDE9S, DS98, PZ99, GJZ103, SH04] and
references therein.

Despite the broad range of its applications, a rigorous mathematical
construction of the IF is still missing.

Our aim is to fill this gap following the ideas introduced in [AHKT6,
AHKT77] in connection with the rigorous mathematical definition of
Feynman path integrals (2) and in order to realize formulae (5) and (6)
as well defined infinite dimensional oscillatory integrals on a suitable
Hilbert space.

Before we go over to a short description of our present work we would
like to outline that there are rigorous works on models of particles in
interaction with heat bath not based on the IF approach, e.g. see
[Dav73, CEFMO00] and references therein.

In Section 2 we recall some known results, extend the definition of infi-
nite dimensional oscillatory integrals and prove some important prop-
erties (see [AGMO03, AGM04, AM05b, AM05a, AM04a, AM04b, AM]
and references therein). In Section 3 the new functional integral is used
in the study of the time evolution of two linearly interacting quantum
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systems. A mathematical formalization of the Feynman-Vernon’s the-
ory of the IF is given in Section 4 The main results of the paper are
Theorems (6) and (7) where a conseguence of the appendix A is used
in order to prove the integrability of certain function. The last section
is devoted to the study of the Caldeira-Leggett model (see [CL83a]) in
the case of a finite dimensional heat bath.

In the second part of this work we shall use our representation of the
IF to study rigorously the limit of an infinite dimensional heat bath and
of various physically relevant limits, partly discussed in above physical
literature’s references.

2. INFINITE DIMENSIONAL OSCILLATORY INTEGRALS

In this section we give the definitions of infinite dimensional oscilla-
tory integrals and prove some important properties which will be used
in the application to the study of the time evolution of a quantum
system.

In the following we shall denote by H a (finite or infinite dimensional)
real separable Hilbert space, whose elements will be denoted by x,y €
H and the scalar product with (z,y). f: H — C will be a function
on H and L : D(L) C'H — H an invertible, densely defined and self-
adjoint operator.

Let us denote by M(H) the Banach space of the complex bounded
variation measures on ‘H, endowed with the total variation norm, that
is:

peMMH), = supz (B,

where the supremum is taken over all sequences {F;} of pairwise dis-
joint Borel subsets of H, such that U;E; = H. M(H) is a Banach
algebra, where the product of two measures p * v is by definition their
convolution:

uxv(E) = /H,u(E — x)v(dx), p,v e M(H)

and the unit element is the vector d.
Let F(H) be the space of complex functions on H which are Fourier
transforms of measures belonging to M(H), that is:

=T f@) = [ ) = ().

F(H) is a Banach algebra of functions, where the product is the point-
wise one; the unit element is the function 1, i.e. 1(z) =1 Va € H and
the norm is given by ||f|| = ||ps]|-
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The study of oscillatory integrals on R™ with quadratic phase func-
tions, i.e. the "Fresnel integrals”,

/62%<M>f(x)dx, h>0, (7)

is a largely developed topic, and has strong connections with several
problems in mathematics, e.g. in the theory of Fourier integral opera-
tors, and physics, e.g. in optics. Following Hormander, the integral in
(7) can be defined even if f(H) is not summable by exploiting the can-
cellations due to the oscillatory behavior of the integrand, by means of a
limiting procedure. More precisely the Fresnel integrals can be defined
as the limit of a sequence of regularized, hence absolutely convergent,
Lebesgue integrals.

Definition 1. A function f : R™ — C is Fresnel integrable if and only
if for each ¢ € S(R™) such that $(0) =1 the limit

lim (2rif) "2 / e3(9) £(2)p(ex)da (8)

e—0

exists and is independent of ¢. In this case the limit is called the Fresnel
integral of f and denoted by

/ 27 £ (2)da (9)

In [ET84] this definition was generalized to the case R" is replaced
by an infinite dimensional real separable Hilbert space H. In fact an
infinite dimensional Fresnel integral can be defined as the limit of a
sequence of finite dimensional approximations:

Definition 2. Let (H,(, )) be a real separable (infinite dimensional)
Hilbert space. A function f : H — C is Fresnel integrable if and only
if for any sequence P, of projectors onto n-dimensional subspaces of
H, such that P, < P,y1 and P, — 1 strongly as n — oo (1 being the
identity operator in 'H), the finite dimensional approximations

i) [ e () i(P,),
nH

are well defined (in the sense of definition 1) and the limit

lim (2mik)~"/2 / e3P Pat) (P 2V (o) (10)
n—oo PuH

exists and is independent of the sequence {P,}.

In this case the limit is called the Fresnel integral of f and is denoted
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/e?ﬁa(z’@f(x)da:.

)

A complete “ direct description ” of the largest class of Fresnel in-
tegrable functions is still an open problem, even in finite dimension.
However it is possible to find some interesting subsets of it, as the
following result shows.

Theorem 1. Let L : ' H — H be a self adjoint trace-class operator,
such that (I — L) is invertible. Let y € H and let f : H — C be
the Fourier transform of a complex bounded variation measure 1y on

H. Then the function e 2 @52 el@) (1) 4s Fresnel integrable and the
corresponding Fresnel integral can be explicitly computed in terms of a
well defined absolutely convergent integral with respect to a o—additive
measure, by means of the following Parseval-type equality:

/ 37 () =3 0.L3) i) f( 1)y

(11)
— (det(I — L))~Y2 / e~ Hletn (-0 o)y (o)

H

where det(I—L) = | det(I—L)|e~™ ™ U=L) js the Fredholm determinant
of the operator (I — L), |det(I — L)| its absolute value and Ind((I —L))
is the number of negative eigenvalues of the operator (I — L), counted
with their multiplicity.

Proof: The result follows directly by theorem 2.1 in [AB93], see also
[ET84], which states that for g € F(H)

i
2h

; 1
\/det(I — L) H

By taking p, := 9, * 15 the conclusion follows. 0

’l‘a —L) (a
o=y (da)

By expression (11) the following result follows easily:

Corollary 1. Under the assumptions of theorem 1, the functional
e FH) — / 3 @009 G9) § ()

is continuous in the F(H)-norm.

Let us introduce now a new type of infinite dimensional oscillatory
integrals on the product space H x ‘H that will be applied in the next
section to the time evolution of open quantum systems.
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Definition 3. Let f : HxH — C. If for any sequence P, of projectors
onto n-dimensional subspaces of H, such that P, < P,y1 and P, — 1
strongly as n — oo (1 being the identity operator in H), the finite
dimensional oscillatory integrals

1
(2mh)"™

/ / 6%<an,Pna;>e—i(Pny,inf(pnm, Py)d(P,x)d(P,y),
nH J PnH

are well defined and the limit

1 Z, i
(2 FL) / / €ﬁ<Pnz,an>6_%(Pny7pny>f(Pnl" Pny)d(an)d(Pny)

(12)
exists and is independent of the sequence {P,}, then it is denoted by:

//eglﬁ(m,x)e—;i(y,y)f(x,y)dxdy.

It is possible to prove a result analogous to theorem 1

Theorem 2. Let L : ' H — 'H be a trace class operator, such that I — L
1s tnvertible. Let f : H xH — C be the Fourier transform of a complex
bounded variation measure py on ' H x H. Then the integral

//6;’1<a:,ﬂf>e_2in<y’y>e_2iﬁ<$_y’L(m+y)>f(x,y)dxdy

1s well defined and is equal to:

1 ih -1
o — 3 {atB,(I-L) " (a=h)) 4 13
T /H/He s (e, ) (13)

where det(I — L) is the Fredholm determinant of the operator (I — L)

Proof: By definition, taking a sequence P, of projectors onto n-dimensional

subspaces of H, such that P, < P,,; and P, — 1 strongly as n — oo

/‘/e;ﬁ(x,x>eQih<y:y>62ih<xy7L(x+y)>f(x7 y)dmdy

1
= lim

Sz —Yn,(In—Ln) (Tn+yn))
e2n f(xm yn)dxndyn
n—00 (27Th)” /PnH /PnH
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where z, := P,x, x € 'H, I, — L, := Ijp,y — P,LP,. On the other
hand, the finite dimensional approximations are defined by the follow-
ing sequence of regularized integrals:

Z

P'H

P, H

- lg% (27Th)" /nH /nH e%@n_yn’(ln_l/")(x"—i_y"))Qﬁ(ex, Ey)f(il?n, yn)dxndyn
with ¢ € S(R" x R™), ¢(0) = 1.

By introducing the new variables z, := x, — ¥, W, = T, + Yn, by
taking n > n and by Fubini theorem, the latter is equal to:

- z+w +’L ﬁ w— z>
E_>0 ) nH nH nH nH

eih zZn,(In— Ln)wn>¢(62 + w, w= )danwn> d,LLn(Oé ﬁ)

. det([,
= lim
e—0 27-[- 2n 2 1
</ / o5 (et B=2e7,(In—Ln) " (a—F~2e0))
P7LH PnH

QBT(%, 6n>d7nd5n> dﬂﬂ(“v 6)

where p,, € F(P,H x P,/H) is defined by: anH O( Ty Yn ) Apon (T, Yn) =
fH Xp, 1 (T, y)o( Pz, Poy)du(z,y) and ¢ € S(P,H x P,H) is defined
by o1 (zn, wy) = ¢(Z+w w=2). In the third line we have used the fact
that if I — L) is invertible, for any sequence {P,},en of projection
operators there exist an i such that for any n > 7 the operator P, (I —
L) Py is invertible, so that by taking n sufficiently large det(1,, — L,,) #
0. By applying Lebesgue’s dominated convergence theorem, and by the
equality

/ Q;T(7n7 5n)d7nd5n - (27T)2n¢T(O7 0)7
P,H H

the latter is equal to:

det(/ / / o= 2H{a+B,(In—Ln) " (a— B»dﬂ (a, )

By taking the limit n — oo and by the convergence of det([l,, — L) to
det(/ — L), we get the final result m

By expression (13) the next result follows easily:
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Corollary 2. Under the assumptions of theorem 2, the functional

feEFHXxH)— //65},,($,$>€—;},,<y7y>€—i(z—y7L(w+y)>f(x’ y)dzdy

is continuous in the F(H x H)-norm.

It is possible to prove the following Fubini type theorem on the
change of order of integration between oscillatory integrals and Lebesgue

integrals.
Let {1 : a € R} be a family in M(H). We shall let [, f1ador denote
the measure defined by

o [ [ ow)dua(o)da
Re JH
whenever it exists.

Theorem 3. Let (H,()) and L : H — H as in the assumptions of
theorem 2. Let ji: RS — M(H x H), a — pia, be a continuous map

such that
/ |fta]da < 00,

Let fo(z,y) = fia(z,y), (x,y) € H X H. Then [z, fada € F(H x 'H)
and

[ Jlokene-simesoosie o i
Rd

— / / e%(aﬁ,x}e—%(y,me—%ﬁ(z—y,L(m—&-y)) fa(x)dadl‘dy (14)
HIH Rd

Proof: By definition of f,

fada = / / ik +ilha) gy, (I h)dor = / itk +ilhs) / dptalk, h)da,
R4 R JHXH HxH R4

so that [p, fada € F(H).
By applying theorem 2 to the Lh.s. of (14), we have:

/d//62h z,z) 7% >67%<x v, L(z+y)) fa<£L‘ y)d.]?dydOé
R
= det(I — L)~} / / / e~ 2 hth(I=D)7 k=) gy (ke h)da
Rd JH JH

By the usual Fubini theorem the latter is equal to:

det(I — L) // g {kth,(I-L) 1<’<h>>/ dpie (K, h)dex
R4
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that, by theorem 2 is equal to the r.h.s of of (14). O

3. THE FEYNMAN-VERNON INFLUENCE FUNCTIONAL

The infinite dimensional oscillatory integrals of definition 2 provide
a rigorous mathematical realization of the heuristic Feynman path in-
tegral representation for the solution of the Schrodinger equation. The
aim of the present section is the extension of these results to the Feyn-
man path integral representation of the time evolution of an open quan-
tum system.
Let U; be the unitary evolution operator on L*(R?) whose genera-
tor is the self-adjoint extension of the operator defined on S(R¢) by
—% + %xQ% + v(x), where m > 0, € is a positive symmetric con-
stant d x d matrix with eigenvalues Q;, j = 1...d, and v € F(R?),
0(@) = fiu(2).
The heuristic Feynman path integral representation (2) for the solution
of the Schrédinger equation (1) is given by:

—~—

(U(t)ho)(x) = “/() o3 (M fo ()2 ds— [5 ()22 (s)ds) ,— 7 fo v s))ds¢0(7(0))d7n
v(t)=x

Let us assume for notation simplicity that m = 1 (this condition will
soon be relaxed) and let us introduce the Cameron-Martin space Hy,
i.e. the Hilbert space of absolutely continuous paths v : [0,¢] — R, such
that v(t) = 0, and square integrable weak derivative fot ]"y s)|?ds < oo

endowed with the inner product (71, 7y2) fo A (s s)ds. Let L :
‘H; — H; be the trace class symmetric operator on Ht glven by:

t s’
:/ ds'/ v(s")ds", v € H,. (15)
s 0

Let Hd = @d 1Ht and let Lg : Hd — Hd be the trace class symmetric
operator on H¢ given by:

(Lay)(s /ds/ (Q2y)(s")ds", v e HL

One can easily verify that (yi, Lovys) fo 71(8)Q2v2(s)ds. Moreover
if ¢t # (n+1/2)7/Q;, n € Z and Q; any eigenvalue of Q, (I — Lg) is
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invertible with:
t
(I = Lo) (s) = 1(s) — Q / sinfQ2(s’ — 8)ly(s')ds'+

+ sin[Q(t — s)]/o [cos Q] ' Q cos(Qs')y(s)ds', (16)

and
det(I — Lg) = det(cos(Qt))

see [ET84]. Thanks to these results and under suitable assumptions it
is possible to realize the heuristic Feynman path integral representation
for the solution of the Schrodinger equation as a well defined infinite
dimensional oscillatory integral on the Hilbert space HY.

Theorem 4. Let ¢y € F(R?). t # (n+1/2)1/Q;, n € Z. Then the
vector ¢(t) := Uy is given by x — ¢(t)(x), with:

. th%t/de%(%(l—mv e 7 Jo 2P (s)ds = fy o YEFD g (4(0)+a)dy
M
(17)

For a detailed proof see [ET84].
This result can be generalized to the Feynman path integral represen-
tation of the time evolution of a mixed state:

Theorem 5. Let p be a density matriz operator on L*(RY), such that
p admits a regular kernel p(x,y), ¥,y € RY. Let us assume moreover
that p admits a decomposition into pure states of the form p(x,y) =
> Aiei(m)es(y), with Ny >0, 2, i = 1, (€, €5) r2(ray = 035, and e;(x) =
fii(z), satisfying:

Let t # (n+1/2)7/QY, n € Z. Then the density matriz operator at
time t admits a smooth kernel p,(x,y) which is given by the infinite
dimensional oscillatory integral:

—_~—

e‘?ih(m%_ymy)t/ / e2r (HI=L)7) o= 55 (V. (I=L)Y')
Hm,d Hwn,d

t t
o b [ @92(5)~y02 (3))ds 1 [ v(y(s)+a)ds

e Jo O/ H9)s 5 (0) + 2./ (0) + y)dydy (19)



FEYNMAN-VERNON INFLUENCE FUNCTIONAL 13

Proof: By decomposing p into pure states, by corollary 2 and condition
(18) the integral (19) is equal to:

—_—~—

Z/\ (e—ﬁxQ act/ de2ih<y,(]—L) e L[t 2Q2y(s)ds _E JEw( V(s)+a)ds (’y(())—i—:t)d’)/)
i "

t

—_~—

(e [ st ch G s 610 3 0) 4 )
My

_ Z)\i<€2ihxﬂzxt/ eih(ﬂf (I-L)y Ve + Ozﬂ ~(s)d se~ hfo v(y(s)+z)ds (7(0)—0—1‘)6[’)/)
i Hy
(e / RO kO s 00 (7<O>+y)dv>*
H"
(20)

By theorem 5 the latter line is equal to ), \;Use; (x)(Ure;)*(y) = pu(z, ).
m

Remark 1. Heuristically expression (19) can be written as

// 7 (St G+2)=5:("9) (0 + 2,7/ (0) + y)dydy

where Sy(7y) is the classical action of the system evaluated along the
path defined in (3).

Let us consider now the time evolution of a quantum system made
of two linearly interacting subsystems A and B. Let us assume that
the state space of the system A is L?(RY) while the state space of
the system B is L?(RY). Let the total Hamiltonian of the compound

systems be of the form Hyp = Hx + Hg + Hinp, with Hy = —% +
Le0%z 4+ va(z), € RY, Hp = =55 4+ LROZR + vp(R) R € RY,

Hinr = 2CR, with C : RV — R is a lmear operator and )4, resp.
Qp, is a symmetric positive d x d (resp. N x N) matrix. Let us
assume that the quadratic part of the total potential, i.e. the function
z,R— 120%x 4+ L RO%LR 4+ zCR is positive definite (so that the total
Hamlltonlan is bounded from below). Let us assume moreover that
the density matrix of the compound system factorizes pap = papp and
has a smooth kernel pap(z,y, R, Q) = pa(z,y)pp(R,Q). We want to
prove an infinite dimensional oscillatory integral representation for the
reduced density operator at time ¢, namely [(U;papU;")(z,y, R, R)dR
where the unitary operator U; := exp (—%H t), heuristically:
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/ / / 4 (Sa() S5 HS v (1) S () =S5 () ~Srvr(v.I")

F(t) R
x pa(7(0),7'(0))ps(I'(0), F’(O))dvdv’dFdF’dl(% |
21

where v and I" represent the generic path in the configuration space
of the system, respectively of the reservoir, and:

1

54+ S () + Sivr(1:T) = [ (G4%(6) = 575020 (9) = vy ()ds

tm . 1 t
—l—/ (%lﬂ(s) - QF(s)QQBF(s) —vp(T'(s))ds —i—/ 7(s)CT(s)ds
0 0
(22)
By the transformations in the path space, given by:

v — y/VMandT' — T'/\/m (23)

formula (21) becomes:

2
/ o L3 (5)=1(5) S (5) —va (L)
7/(t )=y

% g3 Jy(F2(s)-T(s) 22 (s)—w(%?)dsef%;fgws)ﬁr(s)dsX

) . 2 2 ’
o= 25 o (02 (5) =7 () S (9)—va (52 )ds =g JS ()2 (0)=T"(5) BT (5) —vs (s o

Ll et (V(0) A(0)y L TO) TO)N s s
e () (e )0 1)

By transformations in (23) it is possible to take unitary masses m and
M in order to fulfill the hypotheses of theorems 4 and 5.
Let us consider the two Hilbert spaces:

Hf:Ht@@Ht and HiV:HtGB@Ht
—_— — ——— —
d—times N—times
We shall denote an element of H¢, respectively of HY, by «, respectively
I'. Let L : Ht — H, be the symmetric bounded operator on H;, defined
by: Lv(s f ds' fo s")ds". Let La:HE — HE Lp: HY — HY
and Lp : Hd ®HN — Hd ® HY be the self adjoint operators defined
by:

Lay = LYQ% M~y (25)
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Lgl = LNQym™'T (26)

1 1
Wﬁor, LpD + WLNCTV) (27)

where, for all k € N, L* denotes the operator on H¥ defined by:
LF = M ® L®) R---® L%

Lap(v,T) = (Lay +

and:

(k) .—
L'V =1®1®---®1®w L, 6 ®1---®1

kthelement
Lemma 1. Let ¥y € L*(R"") N F(R"™) and let va € F(RY), vp €
F(RN). Lett # (n+1/2)n/);, wheren € Z and X}, j =1,...d+ N,

are the eigenvalues of the matrix:

QIQ C/ , , )
(C«/I% Q/é) A= QA/W,QB = QB/\/E,C = C/va

(28)
Then the solution of the Schriodinger equation evaluated at time t:
U(0,7, R) = Vo(z, R), (r,R) € RT x RN

1s a smooth function and is represented by the infinite dimensional
oscillatory integral:

—~

/ e2i (D) (Taen=Lap) WD) Gy T, 2. R) W) (v(0)+2, T'(0)+R)d~dl
HIDHN

(30)
where we have defined the functions:
(o, R) = Wo(w/V M, R/v/m)
and:
G(v,T,z,R) = o~ 3r P23 w— 5 ROGR—oC Rt o
X e~ % Jo 23y (s)ds— [ ROET(s)ds— 4 [; 2C'T(s)ds—4 [o 7(s)C'Rds (31)

x e~ Jo va(r(9)+a)ds—j fg v (D(s)+a)ds

while v’y and vy are defined as follows:

Wy(2) = vale/ V) 5 vis(R) = vp(R/\/m)

Proof: Let &, ... &4 n be a system of normal coordinates in R4, with
(x, R) = U(&, ... 4n), UT = UL, the quadratic part of the action is
diagonalized and it is possible to apply theorem 4. The result follows
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by the invariance of the infinite dimensional oscillatory integrals under
unitary transformation on paths space [AHK76], and by the infinite
dimensional oscillatory integral representation for the solution of the
Schrédinger equation with a potential of the type “ harmonic oscillator
plus Fourier transform of measure” (see [ABHKS82, ET84, AB93] for
more details). m

Lemma 2. Let f € F(HE D HY), f = . Let t satisfy the following
imequalities

t# (n+1/2)m/Qf, nez, j=1...4d, (32)
t# (n+1/2)m/QF, ne€Z, j=1...N, (33)
t# (n+1/2)1/);, neZ, j=1...d+ N, (34)

where Q4. j =1...d, QF, j=1...N, and \;, j = 1...d+ N are
respectively the eigenvalues of the matrices V4, Q' and of the matriz
given by (28). Let La,Lp,Lap be defined respectively by (25), (26)
and (27). Then the function:

v eH! - / e (TUN=LB)D) o= (LENCT) p () 1YL
HY

1s Fresnel integrable and:

—~

/ y HNegz«mr),uMLAB><7,F>> (3, T)dydl’ =
tDH;

:/ ez’ﬁw(IdLAM(/ €%<F’UN*LB)F>67%<F’LNCIT”>JC(%F)dr>dfy
Hd HY

(35)

Proof: By condition (33) the operator Iy — Lp is invertible and by
theorem 1 we have:

/ 3 (IN=Lp)) = H(L.LYC™) £ T
HY

. N ~1T N ~1T
—det(ly — L) V2 [ O e S g )
Ht

= det(IN — LB)_1/26—2%(W,C’LN(IN_LB)ALNC/TW

/HN 6—%<F7(1N—LB)*1F>62‘(770’LN(IN—LB)*1F>dM(p) (36)

t
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where i, is the measure on HY defined by:
[ o= [ gt auy.).
HN HIxHN

One can also easily verify that the operator on H{ defined by:
v - (LA + C/LN(_[N . LB)_ILNC,T)’Y

is trace class and, if conditions (32),(32) and (34) are satisfied, the
operator defined by:

i (Ig— La+ C'LN(Ix — L) 'LNC )y
is invertible. Moreover the function defined by
~ 6—%<F,(IN—LB)*1F>61'<%C’LN(IN—LB)*lI‘)de(F)
HY

is the Fourier transform of the bounded variation measure v on H;

defined by
/ g(7)dv(v) = / g(y+C' LN (Iy—Lg)~'T)e= 2 TN =Le) "D gy (4 T)
H HEXHN

By applying theorem 1 we have:

—~ —~

H Y

=det(I;— Ly — C'LN(Iy — L) " LNCT) Y2 det(Iy — L)~/

/ e—% (y+C'LN(IN—Lp) ' T,(I4—La—C'LN (IN—Lp) ' LN C'T) =Y (y+C’'LN (In—Lp)~'I))
HESHY

e It Day(y, 1) (37)
On the other hand the oscillatory integral:

/ 3 (1D x~La) 0D £ (. Tyl
HISHY
is equal, again by theorem 1, to:
det(I—LAB)_1/2/ 6—%<(%F)7(Id+N—LAB)*1(%F)>du(%p) (38)
HioHN
Where Lp is defined by (27), so that an element (7/,I") € H¢ & HY
is equal to (Igon — Lag) *(7,T), (7,T) € Hé @ HY if and only if

(Ig — La)y — LC'T = v (39)
(In — L)' — LNC'Ty/ =T



18 S. ALBEVERIOY?+3 L. CATTANEO", L. DI PERSIO?, S. MAZZUCCHI?"*

and one can easily verify that the solution is:

’Y/ — (Id _ LA _ C/LN(.[N _ LB)_lLNC,T)_1’7+
+(Ig— La) 'L (Iy — Lp — LNC'(Iy — L)' LC)~'T

["=(In — Lp) ' LyC" (14— La — LC'(Ix — Lp) "' LyC™") "'yt
+(Iny—Lp— LNC™(Iy— La)'LC")7'T (40)

As a consequence the exponent in the integral (38) is equal to:

(7, T) (Tasn = Lap) ™ (0 D)) pgamy =
= (v,(lg = La — C"L¥(Iy — L) ' LY O™ ) 7'y )y
+ (v, (Ia = La) ' LC (Iy — L — LYC'(Ia — L) ' LIC") 7' T+
+ (0, (Iyn — Lp — LNC (I — La) ' LYC") " 'T)gyn
+ (0, (Iy = Lp) "Ly C'"T (I — La — LC'(Iy — L) ' LyC'T) g
(41)

As one can easily verify that:

(In — L — LNC™"(I; — Lo) ' L4C") ™ = (Iy — Lp) ™"
+(In—Lg) ' LNCT(I—La—C' LN (In—Lp) ' LNC™) ' C' LN (I-Lp) ™,

and analogously:

(Ig— La—C'LN(Iy — L) ' LNC™Y ' C' LN (Iy — Lp)™"
=(Iy— Lo)'LC'(Ixy — L — LNC™" (I, — L)' L4C") 7,

from which we conclude that the integral (38) is equal to the integral
(37).
Equality (35) follows by the following relation:

det(I — Lap) =det(ly— Ly —C'LYN(Iy — Lp) "LYC'") det(Iy — Lp),
(42)
that can be verified by writing the operator I;, v — L4 in block form,

. _(In—-Lp LNC7T . . )
ie. Iyyny — Lap = L0 I,— L) by taking the finite dimen-

sional approximation of both sides of equation (42) and by the analo-
gous equality valid for finite dimensional matrices. O



FEYNMAN-VERNON INFLUENCE FUNCTIONAL 19

Lemma 3. Let 5 € L*(R?) N F(RY), P € L2RY) N FRY). Let
t satisfy assumptions (32),(33) and (34). Then the solution of the
Schridinger equation (1) is equal to:

/ o (1L a)) / o DIy —L)T) = (OLLN C'T)
H{ HY

(43)
X Gy, R 4(1(0) + ) 5 (T(0) + R)dr) &

where G(v, T, x, R) is given by (31) and iy 4(x) := Vi (z/vV M), Vo p(R) =
Ui (R/V/m).

Proof: The result follows by lemma 1 and lemma 2 with 1y = ¥5' @¢F.
O

Theorem 6. Let pi' and p§ be two density matriz operators on L?(R?)
and L*(RY) respectively. Let us assume that they have smooth kernels,
denoted by pit(x,2') and pB(R, R'). Let us assume moreover that they
decompose into sum of pure states

i =D wiPys, a0 =D wPPs. W=t oP =), (44)
i J
with pt € F(RY), p? € F(RY), and:

> wiwl |t Pl ? < +oo. (45)
(2%]

Let t satisfy assumptions (32), (33), (34).

Then the kernel p(z,x’, R, R') of the density operator of the system
evaluated at time t is given by the following infinite dimensional oscil-
latory integral (in the sense of definition 3):

/ / o3 (D), Ly ~Las) (D)) = (0 T). (g v~ L) (7'.I)
HIoHNJ HIOHY

G(v, Lz, R)G(, T",2', R)pj o (7(0) + 2,7 (0) + ')
ph 5(T(0) + R, T'(0) + R)dydldy/dl"  (46)
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where G(%F,x, R) is given by (31). It is also equal to:

Lh (a=La)v) o= 35 (Vs (la—La)v Lh (I(In=Lp)T)
'Hd Hd HN HN

e—gFL NCTx) —2L<r (In=Lp)l") (I, LN CT) v,F T R)GW F',x’,R’)

phs(D(0) + R,T(0) + R)TdT ) oy 4(1(0) + 2,7/(0) + @')dydy' (47)

where py 4(7,y) = pit(x /M, y/vV M) and po.5(R, Q) == pg (R/\/m,Q//m).

Proof: If pg' and pf are pure states, the result is a direct consequence
of lemma 1 and lemma 3.

For general p{' and pf satisfying assumptions (44) and (45) the result
follows by the continuity of the infinite dimensional oscillatory integral
as a functional of F(RN*?) (corollary 2). m

Theorem 7. Let pi' and p§ be two density matriz operators on L*(R)
and L*(RY) respectively. Let us assume that they have regular kernels
as assumed in theorem 5, denoted by pi(z,2') and p¥ (R, R'). Let p¥ €
S(RY x RN). Let us assume that t satisfies assumptions (32), (33),
(34) and that t is such that the determinant of the d x d left upper block
of the n X n matriz cos(Qt), QO being the matriz (28), is non vanishing.
Then the kernel pr(t, z,y) of the reduced density operator of the system
A evaluated at time t is given by:

it )2, L RN _ /
pR(t) x, y) —e Qﬁ,*TQ 62}5 / / ﬁ >€ oh <'7 a(Id LA)’V >
HY 'Hd

e~ + fo zQ'2y(s)d Seﬁ fo 24'(s) ds -4 v%('y(s +z)ds+4 f ~'(s)+y)ds
F(y, 7 2,9)p0,4(3(0) + 2,7'(0) + y)dvdv’ (48)

where F(v,7,x,y) is the influence functional is given by:

/ L _it 'R +7'tyC’R i (s C'Rds
F(’Ya%%y) —/ e h e’ n rfo (s) ()
RN

/ / e2r TUN—LB)T) =55 (U, (In—Lp)T") = 4 (T,LN C"Ty) £ (D ,LN C'T)
HY S HY
o= Js RO3(D(5)=T"(5))ds ;1 [3 (20T (s)+yC'T(s))ds

6—% fg vgg(r(s)-i-R)dS-‘r% . (f ’U'B(F'(S)-‘rR)dspE)’B(F(O) _|_ R, 1—\/(0) ‘I’ R)dFdF/dR
(49)
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Proof:

Let us assume for notation simplicity that m = M = 1. The result in
the general case can be obtained by replacing Q4, Qp, C,va,vs, pi, p&
by :MQlBaclavhavéap{),Aap{),B‘

First step: Let us prove first of all that the functional (yy') — F(v,7,z,y)
is well defined for any v, € H?, z,y € R? and it is Fresnel integrable
in the sense of definition 3.

By decomposing the mixed state p5 into pure states according to the
formula (44), the influence functional can be written as:

/RN Y wl @y R (y. s R)AR
J

where @Z)f" (x,7) is the solution of the Schrédinger equation with initial

datum ¢ and Hamiltonian H = —3Ar + RO’BR+ (z +~(t))CR +

vp(R). In particular, by the unitarity of the evolution operator, [|¢f (z, )| 2@®y) =
1 for any z € R? v € H?. As, by Schwartz inequality:

> wf /RN ¥f (x,7; R)Y{ (y,7'; R)dR

< Z@U}BH%B(%’Y)HLz(RN)WJB(?/a7’)HL2(RN) =1
j

we can conclude that F(v,v,z,y) is well defined for any z,y € R?
7,7 € HE. Moreover, by Lebesgue’s dominated convergence theorem,
we have:

F(’Y,’}//,.T, y) — lim 676R267%xCR€+%yCR67%fot('y(s)f'y’(s))CRds

/ / o (TN =L)T) = (U (In—Li)T") = £ (DLN CT) (I LN CT )
HY S HY
e b JE RO%(D(s)-T"(s))ds . [{(@CT(5)+yCT (s))ds

e~ Jo vn )+ RYst5 Jvn (D) -R)As 5B (1) + R, TV(0) + R)dTdIdR
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By theorem 2 we have:

F(777,7x7y) |det(-[N - LB)| 1 hm dRe_ER26_%xCR

e—0t ]RN

J'JhtyCR h fo(’Y s)—7'(s))CRds i m
¢ >yt (GG

n=0 m=0

/Ot.../ot/ot.../otgdsiﬁdrj/m.../RN/RN.../RNiljduv(ki)Jﬁlduv(h)

/ / dlodhofi ko, ho)e R0+ Sl kT, )
RN JRN

) N T NeT vap,R
o (- - BB G ko Go I ki) (I — L) (- B - B G ko Go+ I kiG,))
. NA~T_ 1 v . NAT 1 v
o (G - R I g Go— Y, =1y G ) (I — L) (= G - R G o Go— YT By Gry)

where vg(R) = [on €™ dpy(R), pp(R, Q) = [on [pn €*F10C9 pp(ko, ho)dkodho,
Vau.R, Vo, Gs € HY | s € [0,t], are defined by

t
(v, 1 T) = / ROLT(s)ds,
0

(vox, ') = /Ot xCT (s)ds,

(Gs,T) =T(s).
By Fubini theorem we have:
/ 1 Lym
F(3,7/,y) = |det(Iy — Lg)| " lim, ZmZ S (G)G)

/ot”'/ot/ot"'/otﬁds"ﬂdrj/ﬂw'”/RN/RN"AdeMki)ﬁd“”(hj)

/ / dkodho pu(ko, ho) 91(Y)G1(7)g2(7, ho, —h, v, 4)G2(7, ko, k, s, )
RN JRN
/ dRe~F o= Jo (1(s)+a—/(s)=y)CRds ,iR(ko—ho+321=y kit 372 hj)

]RN

—LiR[;Q3(I-Lp) ' LNCT (v(s)— (s))ds)einOtQQB(IfLB)—l( —Z4 hy+(k0 ho)Go+327 1 kiGs;+3270 1 hiGr))

e

(50)

where, for every paths v,7/, x € R", vy € R and vectors v = (vq,...,0,),
w = (wy, ..., w,) we have defined the functions:

o (’Y) — ot ~(LNCTy,(In—Lp) ' LN CT) (51)
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and

+ 2 (woGo+3 7 viGu, — Ucﬁ’z JUn—LB) Y woGo+3 T viGuw; — Uch’z

92(77U0>V7W7$) =e )>X

—i(LNCty,(INn—Lp) " (voGo+> 7 v G, — ”Ch,x )

X e (52)

By integrating with respect to R we have that (50) the latter is equal
to:

1 AN
| det(Ixy — L) |~ Eligizzn'm'( ) <ﬁ)

n=0 m=0

/ // /HdslHdrj/RN.../RN/RN.../RNiliduv(ki)]ﬁlduv(hj)

N/2 ) ) )
/N /N e 46) po(ko, ho) g1 (V) g1 (7)g2(7 ho, —h, v, 9)G2(7, ko, k, s, x)dkodhg
RN JR

(53)
1 1 AT 1 —1g T
w:i=|— ﬁ/o (I —Lg)""C"(v(s) — (s))ds—ﬁ(QBcosQBt) sin(Qpt)C* (x — y)+
+ (cos Qpt) (ko — ho + Z cos(Qps;)k; + Z cos(Qprj)h;) i
=1 7j=1 (54)

By introducing the new integration variables:

with:

1 t
a —ZCOS (Qpsi)k; +Zcos Qpr;)h; — COS(QBt)i—i/ (I — Lp) 'CT (v(s)+
0

7'(s))ds) — ﬁ(QB) 'sin(Qpt)CT (z — y))

where:

/0 (I=Lg) €7 (7(5)=(s))ds = cos~ (2t) / c0s(Q5)CT ((5)—(s))ds
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the integral in (53), with ko = \/ekj + hi — § and hyg = hj + §, can be
written as:

N/2 _ 3 "
T ’det([N LB 162%22 n! ml (h)

n=0 m=0

/Ot.../ot/ot.../oﬂdsijl_lldrj/ﬂw /RN/RN /RNHd“” i)]ﬁldu”(h)

/ / dkhdhypy(/ekly + hly — a ho + 5 )91(7 )1 (7)

RN JRN

92(’7/7 h6 + g’ —h,I‘, y)g2(’7, \/Ek‘é) + h{) _ 57 k.s x)e—%\(cosQBt)*lké\z
By letting e — 0 and using dominated convergence, the integral reduces
to the following form:

F(y,+,z,y) = K(z,y, t)e” 2 {07A0) =5 nCLY (I =Lp) ™ ve.r)

i T(Z‘ y) f(;: sin(Qpt) sin(Qp (t— s))CT( (s)—f—w'(s))ds

et (V. CLN(In—Lp) lvc,y) 2 02, cos(Qt)
3w [ [ [ [

d / /
/]RN /RN /'Lv Z) ]Hl ILL@(h/J) / hopb<h0 2@, ho + 5@)

ik b sm(QB(tfsiVSj))cos(QB(siASj))k. iR m .sin(QB(tf'ri\/'rj))cos(QB(ri/\rj))h'
e 2 hy=1" Qg cos(Qpt) Je 2 1,j=1"" Qpcos(Q2pt) 3J
ZZ cos(QBs )—cos(Q2pt) CT ZZ cos(QBrj)fcos(QBt)
QE cos(Q2pgt) e ] QBQ cos(Q2pgt)

. _ay l—cos(Qpt) ~1 . 1—cos(Qpt) T
Z(ho )Q2 cos(QBt)C xe Z(h()-‘r )QQ cos(QBt)C

— 1 Jy BB CT ()4 () ds(20y cos(Qp s kit Y2 J cos(Rpri)hy)

sin(Qp (t— r]))

’Lﬁh/ sinQpt a —ih(h{)—a/Z) n sin(Qpg(t— $1>>k _ (h/+a/2)Z] | Ty

0QpcosQpt i=1 Qpcos(Qpt) h
eN%Z?ﬂ CLN(IN*LB)_lkiGsﬁei(“/'aZ;":l CLN(IN_LB)ilthrj>eih’*’Yl:CLN(IN*LB)_1h6G0>

(55)
where we have defined:

C t __sin(Qpgt) )CT _
G =

K(x,y,t):=aV2Ne 2
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and
e~ {( =) A+ . o3 (CT (=) LN (In—Lp) T LN CT (v 7)) o
% et ar cos(QBt)(CT (v(s)=v'(s),(In—Lp) " LN (In—Lp) "' Go,CT (v(s)+7/(5))) _
o JLOTG) Q1 fi sin(@p(s—r)CT (v4+)(r)drds

(56)

with v(s); := t2582, i=1...N,sel0,t].

As we have assumed that the determinant of the d x d left upper
block of the n x n matrix cos(2t) (2% being the matrix (28)) is non
vanishing, it is possible to prove (see appendix A) that the operator
I — Ly — A is invertible. As F(v,7,z,y) is of the form F(v,v) =
e~ 2 {O0=7AGH) £y o)) with f € F(HE @ HY), we can conclude that
the influence functional is a Fresnel integrable function.

Second step Let us prove that the reduced density operator pg(t,x,y)
is given by the infinite dimensional oscillatory integral (48).

Let p(t,x,y, R,Q) be the (smooth) kernel of the density operator of
the compound system evaluated at time ¢t. Then the integral giving the
kernel of reduced density operator pr(t,z,y) := [ p(t,x,y, R, R)dR is
absolutely convergent and by Lebesgue’s dommated convergence theo-
rem we have pg(t, z,y) = lim._o [ p(t,z,y, R, R)e_ERZdR.

On the other hand the influence functional can be written as F'(v,7') =
e~ 2 {077 AGHD) £y o)) with f: HE @ HE — C defined as follows:

f = lim £, (57)
and where:
n,b\m
fe(v,7) = 7TN/2| det(Iy — Lp)|™" eh%}r Z Z n! ml ﬁ)

[l f el [ /RN/RN /RNH% L0

/ / d/{:/ hopb \/—k:/ + h/ h, + a)
RN RN 2
(7 h/ + L N r7y>92(% \/_k‘/ 4 h/ 2,k,S,I)6_Z‘(C°SQBt)

with @’ := a+cos(Qpt)+ fo (I —Lg) *CT(y(s)—+/(s))ds) and the limit
(57) is meant in the ]:(Hd ® HY) sense.

By the continuity of the infinite dimensional oscillatory integral as a
functional on F(H{ & HE) (see corollary 2) we have that the r.h.s of

_lk()‘Q
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equation (48) is equal to:

e—0

o~ 37247 35 YAY Jim o5 (hUa=La)y) =55 (v s(la=La)Y')
Hd Hd
e & fo 2Q%y(s)d Seﬁ fo 7' (s )dse—ﬁ fot UA(’Y(S)-FI)dS'*‘% fJ va(y'(s)+y)ds

e’ﬁ“”’”"’f‘”””fe(% Y)pa (7(0) + 2,7'(0) + y)dydy'  (58)
On the other hand the latter is equal to:

e—0

e~ :inzeﬁyﬂAyhm o3r (1 Ta=La)y) g =55 (7, (Ia—La)y")
Hd Hd
o= Jo ¥ 3(9)ds o1 o yQ3y (s)ds o= fy va(y(s)+a)ds+i [5 va(y (s)+y)ds

( / dRe— € ¢~ #CR+HYCR =1 [y (v(s)=7' () CRds

/ / o3 (TUN=Lp)T) =55 (T (In=Lp)I') o= 5 (L.LN CTy) £ (T .LNCT)
HYS HY
o1 Jo ROLIT(s)=1"(s))ds ,— 7[5 (xCT(s)+yCT" (s))ds

e n MO RS Jenll (0404 B (1 (0) 4R, T(0) 4+ R)AD A dR)pi (1(0) 2, 7' (0)+ )y

By Fubini theorem (see theorem 3) and by the infinite dimensional
oscillatory integral representation or the kernel of the density operator
it is equal to [ dRe*ERQp(t, z,y, R, R). By letting ¢ — 0 the conclusion
follows. O

Remark 2. [t is typical of the difficulties in handling rigorously Feyn-
man path integrals (as infinite dimensional oscillatory integrals) that
the passages to the limit cause mathematical problems, because of the
lack of the dominated convergence and limited avalability of Fubini-type
theorems. Qur e-cut-off trick was instrumental to perform such type of
computation.

4. APPLICATION TO THE CALDEIRA-LEGGETT MODEL

Let us compute now the influence functional F'(,~/, z,y) in the case
v =0, pP(R,Q) = H§V=1 pg)(Rj, Qj,0), where:

mw

() R; - 0) = mawj 7(Whi]/m((R +Q2)cosh —2R,; Q]))
pB ( ]7@]7 ) . \/ﬂ'hCOth(hwj/Qk‘T)e
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wj, 7 = 1...n being the eigenvalues of the matrix {2z. By notation
simplicity we put m = 1, the general case can be handled by replacing
QAa QB: Ca VA, VB, Pf)47 Pg} with Q:4> QlBa Cla 'Uan UE%? Pf),m p{J,B'

By inserting this into the general formula (55) the influence func-
tional becomes:

F(y,7sa,y) = K(z,y, t)e 07104010 = LN L) e

) T t sin(Qpt)sin(Qp(t=s)) ~T /
L0 OV (Iy—Lp)~wey) o 1€ W0 Tg g O e () s

e

- 1 1 i(ho— “)BL(QB”CT;C —i(h0+2)1;Lm13’5>0T
/ dhgpb(h,o — 5&7 h,6 + 5@)6 Q7 cos(pt) 2 Qf cos(Qpt)
RN

sinQpt _
Zhh’{)QBcosQBt 6<7_7/70LN(1N_LB) lh/OGO> (59)

where

o (e Lisin(QBw)CT‘%
K(w,y,1) = ¥2Vem o sy Jorem

e~ 2 {(=7)AGHY)) o (CT (=), LN (In—Lp) T LN CT (y+91)
6+2Lﬁ cos(Qpt)(CT (v(s)—7'(s)),(IN—Lp) " o) (LN (IN—LB) "' Go,CT (v(s)+7'(s)))
= 3 Jo OT )@ [ sin(@p(s=m)CT (v )(n)drds ()

0=~ cos(t) / <J—LB>-10T<v<s>—v'<s>>ds>—%mgrl sin(Qp1)C7 (z—y)

By direct computation, we obtain:

F(y, 7,2, y) = et Js CT O+ () =y 05" [ sin(@ (s=)OT (1) bk () by)drds

e 2h fo T(y(s)+z—+'(s)— )QB coth h;;g fo cos(Qp(s—r))CT (y(r)+z—+'(r)—y)drds

(61)
which yelds the result heuristically derived in [FV63].

APPENDIX A. KERNEL OF THE OPERATOR [ — L, — A

A vector v € H¢ belongs to the kernel of the operator I — Ly — A,
if it satisfies the following equation:

t s/ S//
_|_/ ds’/ ds”/ CQ5 sin(Qp(s” —1))CT vy (r)dr+

/ds/ Py (s"ds" =0 s€10,1

(62)
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with v(¢) = 0. Equation (62) is equivalent to:

F(s) + Q%4v(s) — /08 CQg sin(Qp(s — r)CT(r)dr = 0 (63)

with the conditions: v(¢) = 0,4(0) = 0.
By differentiating equation (62), it is easy to see that its solution, if
it exists, is a C'*™ function and its odd derivatives, evaluated for s = 0,
vanish, while the even derivatives satisfy the following relation
N
PO (0) + 059204 0(0) - Y (ORI (0) =0 (64)
k=0
By induction it is possible to prove that 42¥(0) = (—1)N[Q22V]4a7(0),
where [Q*V] ;.4 denotes the d x d left upper block of the N-th power
of the n x n matrix Q% (where ? is given by equation (28)). One
can conclude that the solution of equation (62) is of the form ~(s) =
[cos(£2s)]axay(0). By imposing the condition y(¢) = 0, one concludes
that if det([cos(£2s)]axq) # 0 then equation (62) cannot admit nontrivial
solutions and the operator I — L4 — A is invertible.
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