
CHOOSING THE RIGHT DESIGN PATTERN:

AN IMPLICIT CULTURE APPROACH.

Aliaksandr Birukou, Enrico Blanzieri and Paolo Giorgini

February 2006

Technical Report # DIT-06-007

CHOOSING THE RIGHT DESIGN PATTERN: AN IMPLICIT CULTURE
APPROACH

Aliaksandr Birukou
Enrico Blanzieri
Paolo Giorgini

Department of Information and Communication Technology
University of Trento

via Sommarive 14, 38050 Povo (Trento), Italy
e-mail: {aliaksandr.birukou, enrico.blanzieri, paolo.giorgini}@dit.unitn.it

KEYWORDS
Design patterns, implicit culture, design pattern selec-
tion, multi-agent system, information agents

ABSTRACT

Design patterns represent solutions to problems that
have been proved to be useful in different contexts and
can be reused. An experienced programmer can choose
a suitable pattern for a given problem effectively. How-
ever, for an inexperienced programmer this is a very
hard task. We propose a multi-agent system that sup-
ports programmers in choosing the design pattern suit-
able for the given problem. Personal agents in our sys-
tem produce knowledge transfer among users, allowing
for the reuse of experience in choosing design patterns.

INTRODUCTION

“With more than 20 design patterns in the catalog to
choose from, it might be hard to find the one that ad-
dresses a particular design problem, especially if the cat-
alog is new and unfamiliar to you.” This sentence is
taken from (Gamma et al., 1995) and shows that select-
ing a design pattern was a problem even ten years ago.
Since the number of proposed design patterns is contin-
uously increasing, the selection problem becomes more
and more difficult. For instance, Walter F. Tichy’s cata-
logue of design patterns (Tichy, 2006) contains over 100
patterns. In particular, for an inexperienced program-
mer the problem of choosing the right design pattern is
very hard and tools assisting in this process become of
utmost importance.
Unfortunately, there is still a lack of systems that guide
a programmer in the selection of design patterns. To
the best of our knowledge, only one example of such
a system was reported in the literature (Kung et al.,
2003). Most of the current approaches, dealing with the
patterns suppose that it is the programmer who makes
the choice of the pattern (Albin-Amiot et al., 2001; Ó
Cinnéide and Nixon, 2001).
In this paper, we address the problem of pattern se-

lection and we propose an approach that considers the
problem from a social point of view. We propose to use a
multi-agent system based on the Implicit Culture frame-
work to help programmers in selecting patterns. To help
a person to make a decision about the pattern selec-
tion, getting suggestions from the group is important.
In our system the problem faced by the programmer is
compared with those faced previously by colleagues and
suggestions about the most suitable design patterns are
provided.

IMPLICIT CULTURE

This section presents an overview of the general idea of
Implicit Culture and Systems for Implicit Culture Sup-
port (SICS). For a more thorough description we refer
the reader to our previous work (Blanzieri and Giorgini,
2000; Blanzieri et al., 2001).
“Only experienced software engineers who have a deep
knowledge of patterns can use them effectively. These
developers can recognize generic situations where a pat-
tern can be applied. Inexperienced programmers, even
if they have read the pattern books, will always find it
hard to decide whether they can reuse pattern or need
to develop a special-purpose solution.” (Sommerville,
2004). The difference between two programmers is that
the experienced programmer uses the implicit knowl-
edge (in particularly that which is referred to as his/her
experience) about the problem. Knowledge is called im-
plicit when it is embodied in the capabilities and the
abilities of the community members. It is explicit when
it is possible to describe and share it through documents
and/or information bases. In learning how to select
suitable design patterns the inexperienced programmer
faces the problem of acquiring the implicit knowledge of
more experienced programmers.
We argue that it is possible to shift the behavior of in-
experienced programmers in design patterns selection
towards the behavior of experienced programmers by
means of suggesting them patterns which are more suit-
able for the current design task. We call the behavior
of experienced programmers related to the pattern se-

lection a community culture. When inexperienced pro-
grammers start behaving similarly to the community
culture we can speak about knowledge transfer. In our
architecture it is a SICS which performs this knowledge
transfer. The relationship characterized by this knowl-
edge transfer is called “Implicit Culture”.
For example, let us consider a programmer that needs
to define an interface for creating an object, but let sub-
classes decide which class to instantiate. Let us suppose
that for an experienced programmer the use of Factory
Method design pattern in this case is obvious. If the
system is able to use previous history to suggest the
novice to use Factory Method pattern and he/she actu-
ally uses it, then it is possible to say that he/she behaves
in accordance with the community culture and that the
Implicit Culture relation is established.
The general architecture of SICS (Blanzieri et al., 2001)
consists of the following three components:

• The observer is the part of SICS that stores in a
database of observations information about actions
executed by the user;

• The inductive module analyzes the stored observa-
tions and implements data mining techniques to
infer a theory about actions executed in different
situations;

• The composer exploits the information collected by
the observer and analyzed by the inductive module
in order to suggest actions in a given situation.

In terms of our problem domain, the observer saves
information about the problem, which patterns were
proposed as solution and which pattern was actually
selected. The inductive module discovers problem-
solution pairs by analyzing the history of users’ inter-
action with the system. A set of problem-solution pairs
is a theory and it shows which patterns are selected for
what problems. The goal of the composer is to compare
a new problem faced by the programmers with the prob-
lem part of the theory mined by the inductive module
and to suggest the corresponding solution part. If this
step fails, the composer just tries to match the problem
with the solution by calculating similarity between its
description and the descriptions of patterns.

PATTERN SELECTION

In this section we formalize the problem faced by a com-
munity member when choosing a design pattern satis-
fying some pre-specified requirements. In order to for-
malize the problem of pattern selections for a commu-
nity of programmers we need to answer the following
questions: How to describe patterns? How to describe
requirements? How to match requirements with a pat-
tern?

General Model

(Gamma et al., 1995) define the following four parts of
a design pattern:

• The name serves as a reference to the pattern and
allows for higher-level design.

• The problem describes where and when to apply the
pattern. It can contain a list of conditions which
should be satisfied to apply pattern.

• The solution contains the description of the design
elements, their relations and functions.

• The consequences summarize the previous applica-
tions of the pattern and possible compromises.

The most interesting part for us is the problem, since it
contains the description of the task solved by the pat-
tern. The system should match this description with
a description of the problem to be solved. We as-
sume there exists semiformal or formal description of
the problem faced by the programmer and of the prob-
lem solved by the pattern. In terms of Implicit Culture
these problems constitute situations. The goal of SICS
is to find the most similar situations, based on a similar-
ity function. The similarity function takes two problem
descriptions as arguments and returns a similarity value
(let us assume it ranges from 0 — completely dissimi-
lar to 1 — completely similar). In the next subsection
we propose a concrete way of describing problems and a
similarity function which we have chosen for the forth-
coming implementation.
(Gamma et al., 1995) propose to describe a pattern us-
ing several sections. “Intent” section can be used in
our problem description. According to (Gamma et al.,
1995) “Intent contains a short statement that answers
the following questions: What does the design pattern
do? What is its rationale and intent? What particular
design issue or problem does it address?”
Besides abstractions of situations we need to introduce
several terms. We consider programmers as agents
which execute actions on objects. We suppose actions
have attributes, which are features that can be useful for
the analysis of the actions. In Implicit Culture frame-
work, actions are assumed to be executed in situations,
therefore we can speak of situated actions. In our ap-
plication, the SICS analyzes the actions presented in
Table 1. Since all the actions are executed by pro-
grammers, we omit agents in the table. Every action is
recorded being executed in a context of a certain project,
characterized by an optional attribute project name. We
introduce this attribute, because project that has some
specific requirements can influence the choice of pat-
terns.
We explain the information contained in the table in
detail. A programmer requests the system to find pat-
terns that are suitable for implementation of his/her

Table 1: The actions that can be observed by the system
action objects attributes

request problem description project name
apply pattern, problem description project name
reject pattern, problem description project name

task. The request contains a description of the prob-
lem faced by the programmer.
A programmer applies the pattern when he/she imple-
ments it in the code. To observe this action we can either
assume explicit feedback from the programmer or the
existence of a case tool which serves for selection of the
patterns and their subsequent (semi)automatic imple-
mentation. As an example of this tool we can mention
the system that refactors existing code using a design
pattern selected by a designer (Ó Cinnéide and Nixon,
2001).
The system should be able to observe that some pat-
terns were offered to the user, but not selected. These
patterns therefore can be considered as rejected as un-
suitable (or not very suitable) for the current task. Al-
ternatively, we can provide an opportunity to specify
inapplicability of a pattern to the task explicitly, mark-
ing them as rejected only in this case.

Concrete Implementation

To specify the problem faced by the programmer and
to describe design patterns, we propose to use a notion
of a precursor : “[...]a precursor is a design structure
that expresses the intent of a design pattern in a sim-
ple way, but that would not be regarded as an example
of poor design. This is not a formal definition,[..]” (Ó
Cinnéide and Nixon, 2001). In other words, we assume
that there exists a textual description of the problem
faced by the programmer and a textual description of
the design pattern. The following precursor is proposed
for the Factory Method pattern (Ó Cinnéide and Nixon,
2001): the Creator class must create an instance of the
Product class. In case precursor is too specific we can
specify the description more extensively, using e.g. in-
tent of the pattern. As for Factory Method pattern,
the intent is as follows: “Define an interface for creat-
ing an object, but let subclasses decide which class to
instantiate. It lets a class defer instantiation to sub-
classes.” (Gamma et al., 1995).
To illustrate the use of the textual description of a design
problem we can imagine a programmer realizing that
in some place in the code he/she needs to create an
instance of a class without knowing its exact type. Thus
he/she can specify his/her need like “a set of subclasses
deal with their instantiation” and to request the system
to find a suitable pattern.
In order to relate two descriptions we propose to use
“bag of words” approach, also referred to as the vector-
space model (Baldi et al., 2003). More precisely, a tex-

User n

IS1−API

ISk−API

IS1−API

SICS

ISk−API

IS1−API

Source 1

Information

User 1

 ARB

User 2

ISk−API

AMS

Source k

Information

External platform

 . . .

DF

User interface

Agent 2

Agent 1

User interface User interface

Agent n

Figure 1: The architecture of the general Implicit Cul-
ture Multi-Agent platform.

tual description is represented as a sequence of terms,
d = (t1, t2, . . . , tn), where n is the length of the descrip-
tion and ti ∈ T, i = 1, n. T is a vocabulary of terms,
containing all the terms. The simplest vector-space rep-
resentation is Boolean, i.e. x is |T |-dimensional vector
which components xj ∈ {0, 1} indicate correspondingly
the absence or the presence of the j-th vocabulary term
in the description.
Having a vector-space representation of the problem de-
scription it is possible to use cosine similarity (Baldi
et al., 2003) as a similarity function. This measure is
simply the cosine of the angle formed by two vectors x
and x′ corresponding to two descriptions d and d′. It is
calculated as follows:

sim(d, d′) =
xT x′

||x|| · ||x′|| .

APPLYING IMPLICIT CULTURE MULTI-
AGENT PLATFORM TO PATTERN SELEC-
TION

In this section we describe the architecture of the multi-
agent system for design pattern selection.
We start from the description of a general Implicit Cul-
ture Multi-Agent platform. This platform was previ-
ously applied to the problem of web link recommenda-
tion for a community of users (Birukov et al., 2005) and
to the scientific publication search (Birukou et al., 2006).
The platform is implemented using Java Agent DEvel-
opment framework (JADE) (Bellifemine et al., 2001)
which is a FIPA-compliant (FIPA, 2006) and widely ac-
cepted framework for the development of multi-agent
systems.
The general architecture of Implicit Culture Multi-
Agent platform is depicted in Figure 1 and it consists of

the following components:

• A user accesses the system using an interface on the
client side. He/she submits requests to the system,
specifying the description of the problem requiring
the use of a design pattern.

• A personal agent is a software agent running on
the server side. The task of the personal agent
is to assist the user in choosing a suitable design
pattern. It uses dedicated API to access several in-
formation sources, which contain information about
design patterns. The information in these sources is
selected according to the request submitted by the
user. The agent contacts directory facilitator to re-
ceive recommendations about previous experience
of the users, namely about actions that were taken
in similar situations. Information about users’ ac-
tions is also sent to the directory facilitator.

• A Directory Facilitator (DF) holds the list of ser-
vices offered by agents and provides a set of agents
that offer a specific service. In our case, it sim-
ply provides agents with the IDs of other personal
agents. Moreover, in our system the DF also con-
tains SICS module. This module receives users’
requests redirected to the DF by personal agents
and it sends back suggestions about patterns which
seem to be suitable for a given problems, contain-
ing in the request. The SICS module processes past
actions of the users in order to find a suitable pat-
tern. The SICS module also receives information
about users’ actions, namely about their requests
and (not) accepted patterns.

• By an information source we mean any database
containing information about design patterns and
offering some kind of API to access it.

• An Agent Management System (AMS) exerts a su-
pervisory control over the platform. It provides the
registration, the search, the deletion of agents and
other services. It is an internal JADE agent run-
ning on every platform.

• An Agent Resource Broker (ARB) provides a link
between the platform and other platforms. Using
this link, the agents can propagate requests of their
users to different platforms.

There is a difference in our platform with respect to
the general Implicit Culture Multi-Agent platform: in
our case SICS module is moved to the DF, while in
the general architecture it is included in each personal
agent. We redirected recommendation creation process
to the DF because we do not see the need for SICS
being distributed in the case all the users are working in
the same company and the tasks of selecting a suitable
pattern does not depend on a particular user. Rather,

we assume that all the programmers are willing to share
their experience and to store it in a common database.
A typical usage scenario is as follows: a user submits a
request, expressing his/her design need. The personal
agent contacts the DF. The DF stores the request action
in the database of observations and uses SICS module
in order to find similar descriptions of problems (sit-
uations) faced previously. The suggestions about pat-
terns chosen in similar situations are sent to the per-
sonal agents. This list of patterns is shown to the user.
Moreover, it is also possible to show descriptions of the
discovered similar design problems, because it can help
the user to make a decision. Finally, being able to see
a list of similar problems faced by his/her colleagues,
the programmer can just have a short talk with them in
order to share the experience.

EVALUATION

Since we do not expect that specified requirements will
match exactly one design pattern, it is necessary to show
to the user as many potentially suitable patterns as pos-
sible (perhaps, even including some unsuitable ones). In
information retrieval there exists the measure called re-
call which shows which fraction of the relevant items
we retrieve in response to an information need (Baldi
et al., 2003). In terms of choosing a design pattern it
means that we show not only patterns which have ex-
actly the same behavior as requested (which are not
always available) but also the patterns which have com-
parable behavior. Moreover, having an alternative in
the choice allows the programmer to make more quali-
tative decision, since looking at several patterns he/she
can suddenly recognize that a pattern meets his/her re-
quirements, including implicit ones, which were not ex-
pressed in the query.
We are currently working on the implementation of in-
formation sources which uses Apache Lucene (Lucene,
2006). Apache Lucene is a full-featured text search en-
gine library. It is an open source java project. In our
system we use it to create index of the patterns reposi-
tory and to provide search of pattern descriptions using
this index. Currently we have built a repository of 23
design patterns from (Gamma et al., 1995). Personal
agents use API to access Lucene searching capabilities.
We have not performed the system evaluation with real
users yet. However, in Birukov et al. (2005) we pre-
sented numerical results obtained using simulator de-
veloped for the application of Implicit Culture Multi-
Agent Platform to web search. The aim of the experi-
ment was to understand how adding a new user affects
the relevance, in terms of precision and recall, of the
links that were produced for users by SICS. In this ex-
periment, the interaction between agents and users was
replaced with the interaction between agents and user
models that contain user profiles. User profile deter-
mined search keywords sequence and acceptance of the

results. The recall was among the measures we used to
evaluate the quality of the suggestions.
The results have shown that the increase of the number
of users causes the increase of the recall of the sugges-
tions produced by personal agents. We think that the
problem we are dealing with in this paper is much re-
lated to the problem of selecting web links relevant to
keywords and that our approach will prove to be useful
also for the selection of design patterns.

RELATED WORK AND DISCUSSION

The closest work is presented in the paper of (Kung
et al., 2003). The authors propose a methodology for
constructing expert systems which suggest design pat-
terns to solve problems faced by designers. They also
present a prototype — the Expert System for Suggest-
ing Design Patterns (ESSDP) which implements the
methodology. ESSDP selects a design pattern based on
the user’s requirements. A user interacts with the sys-
tem in a question-answer manner, which helps to narrow
down the selection process. At the end of the interac-
tion, a suitable design pattern is suggested to the user.
There are several significant differences between our ap-
proach and ESSDP. At first, ESSDP assumes the knowl-
edge acquisition as the primary step of the methodology.
In this step human experts fill in the system knowledge
base with some pre-defined rules. Differently, in our
system the SICS learns from the interaction with users,
without any initial knowledge base. It allows for contin-
uous improvements of suggestions. Moreover, we exploit
interactions with inexperienced users as well, offering to
novices patterns that were chosen in similar situations
not only by experts but also by other novices. Thus we
support sharing users’ experience with others. At sec-
ond, our architecture is not restricted to the use of rule-
based knowledge base assuming that different learning
techniques can be adopted in suggesting suitable pat-
terns.
Several approaches were proposed to automate transfor-
mation of the old code to the new one which implements
patterns. For instance, (Ó Cinnéide and Nixon, 2001)
report on a methodology that allows changing the de-
sign of the program so as to make it amenable to the
new requirements, without changing the behavior of the
program. The automated tool support is provided to
apply a selected pattern to the old code. However, the
choice of the design pattern is still remaining with the
designer. The same assumption is used in the Patterns-
Box tool presented in (Albin-Amiot et al., 2001). This
tool assists in choosing patterns only by providing ac-
cess to the design pattern repository where each pattern
is annotated with a shortcut.
Our approach can be used in tools similar to the two
mentioned at the stage of selecting the pattern: a pro-
grammer can be provided with suggestions about pat-
terns used in similar situations previously.

For the description of design problems/design patterns
in our system it could be useful to adopt a formal
framework, such as non-functional requirements (NRM)
framework (Gross and Yu, 2001). A semiformal code
representation of the design problem, e.g. class dia-
grams, activity diagrams, etc. could also be adopted.
We also think that the problem we address is related to
the problem of web service composition, where in order
to solve a sub-problem it is necessary to find a web ser-
vice which suits some design need (Lazovik et al., 2006).
The comparison of the requirements with the service de-
scription seems to be similar to the comparison of the
requirements with the pattern description.

CONCLUSION

The system that helps programmers in choosing design
patterns suitable for a given task is considered. The
system takes into account the social part of the problem,
providing users with suggestions from other community
members about patterns that were used to solve similar
problems.
As future work we would like to conduct several exper-
iments with real users.

REFERENCES

Albin-Amiot, H., P. Cointe, Y.-G. Gueheneuc, and
N. Jussien. 2001, November. Instantiating and de-
tecting design patterns: Putting bits and pieces to-
gether. In 16th Annual International Conference on
Automated Software Engineering (ASE), 166 – 173.

Baldi, P., P. Frasconi, and P. Smyth. 2003. Modeling
the internet and the web: Probabilistic methods and
algorithms. Wiley.

Bellifemine, F., A. Poggi, and G. Rimassa. 2001. Devel-
oping multi-agent systems with a fipa-compliant agent
framework. Software - Practice and Experience 31 (2):
103–128.

Birukou, A., E. Blanzieri, and P. Giorgini. 2006. A
multi-agent system that facilitates scientific publica-
tions search. In AAMAS ’06: Proceedings of the fifth
international joint conference on Autonomous agents
and multiagent systems. To appear.

Birukov, A., E. Blanzieri, and P. Giorgini. 2005. Im-
plicit: An agent-based recommendation system for
web search. In AAMAS ’05: Proceedings of the fourth
international joint conference on Autonomous agents
and multiagent systems, 618–624: ACM Press.

Blanzieri, E., and P. Giorgini. 2000. From collabora-
tive filtering to implicit culture: a general agent-based
framework. In Proceedings of the Workshop on Agents
and Recommender Systems. Barcellona.

Blanzieri, E., P. Giorgini, P. Massa, and S. Recla. 2001.
Implicit culture for multi-agent interaction support.
In CooplS ’01: Proceedings of the 9th International
Conference on Cooperative Information Systems, ed.
C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella,
Volume 2172 of Lecture Notes in Computer Science
(LNCS), 27–39. London, UK: Springer-Verlag.

FIPA 2006. Foundation for intelligent physical agents.
http://www.fipa.org/.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides.
1995. Design patterns: elements of reusable object-
oriented software. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc.

Gross, D., and E. S. K. Yu. 2001. From non-functional
requirements to design through patterns. Require-
ments Engineering 6 (1): 18–36.

Kung, D. C., H. Bhambhani, R. Shah, and G. Pan-
choli. 2003. An expert system for suggesting design
patterns: a methodology and a prototype. In Soft-
ware Engineering With Computational Intelligence,
ed. T. M. Khoshgoftaar, Volume 731 of The Interna-
tional Series in Engineering and Computer Science,
376. Kluwer International.

Lazovik, A., M. Aiello, and M. Papazoglou. 2006. Plan-
ning and monitoring the execution of web service re-
quests. Journal on Digital Libraries. To appear.

Lucene 2006. The apache lucene project. http://
lucene.apache.org/.

Ó Cinnéide, M., and P. Nixon. 2001. Automated soft-
ware evolution towards design patterns. In IWPSE
’01: Proceedings of the 4th International Workshop
on Principles of Software Evolution, 162–165. New
York, NY, USA: ACM Press.

Sommerville, I. 2004. Software engineering (7th ed.).
Boston, MA, USA: Addison-Wesley.

Tichy, W. F. 2006. Essential software design patterns.
http://wwwipd.ira.uka.de/tichy/patterns/
overview.html.

BIOGRAPHY

ALIAKSANDR BIRUKOU is currently a PhD can-
didate at the University of Trento, Italy. He received
degree with distinction in Applied Mathematics and
Computer Science from the Belarusian State University,
Minsk, Belarus in 2002. His current research interests
are in Data Mining, Multi-Agent Systems and Recom-
mendation Systems. Previously, he worked and carried
out research on Queueing Systems publishing about 10
scientific papers on the topic.

ENRICO BLANZIERI is currently Assistant Pro-
fessor at the University of Trento, Italy where, since
2002 he is within the Faculty of Engineering. Since 2004
he is the coordinator of the Data Mining and Learning
Systems research program at the Department of Infor-
mation and Communication Technology. Between 2000
- 2002 he worked as researcher at the Faculty of Psy-
chology of the University of Turin. In 1997 - 2000 he
was researcher at ITC-IRST of Trento. He received a
laurea con lode in Electronic Engineering from the Uni-
versity of Bologna, Italy in 1992 and a PhD in Cogni-
tive Science in a joint program between Polytechnic and
University of Turin, Italy in 1998. His present major
scientific interests are Data Mining, Machine Learning
and Bioinformatics, and in the past he devoted atten-
tion to Statistical Reasoning and Cognitive Science. His
research focuses on Instance-Based Learning techniques
such as Nearest Neighbour, Radial Basis Function Net-
works and more recently SVMs. He also contributes to
the application of Machine Learning techniques to var-
ious fields. He published more than 40 scientific pub-
lications in journals and referred conferences. He is a
member of the scientific committee at the International
and European conferences of Case-Based Reasoning.
PAOLO GIORGINI is researcher at University of
Trento. He received his Ph.D. degree from Computer
Science Institute of University of Ancona (Italy) in 1998.
Between March and October 1998 he worked at Univer-
sity of Macerata and University of Ancona as research
assistant. In November 1998 he joined the Mechanized
Reasoning Group (MRG) at University of Trento as pos-
doc researcher. In December 1998 he was researcher vis-
iting at the Computer Science Department of University
of Toronto (Canada) and more recently he was visit-
ing professor at the Software Engineering Department of
University of Technology in Sydney. He has worked on
the development of requirements and design languages
for agent-based systems, and the application of knowl-
edge representation techniques to software repositories
and software development. He is one of the founder
of Tropos, an agent-based oriented software engineering
methodology. His publication list includes more than
100 refereed journal and conference proceedings papers
and five edited books. He has contributed to the orga-
nization of international conferences as chair and pro-
gram committee member, such as CoopIS, ER, CAiSE,
AAMAS, EUMAS, AOSE, AOIS, and ISWC and he is
Co-editor in Chief of the International Journal of Agent-
Oriented Software Engineering (IJAOSE).

