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Abstract

This paper presents the application of a new and promising learning algorithm

based on kernel methods, i.e., support vector machines (SVMs), for the control of

injection moulding processes and plasticating extrusion. In particular, the main pur-

pose of this work is to assess the e�ectiveness of the method when applied to such

kinds of industrial processes, characterised by a large number of variables and strictly

correlated by nonlinear relationships. First, we analyse the injection process by devel-

oping a simpli�ed model, then we identify it by using a support vector machine. The

reference of the control system is tracked through the design of a control block based

on the structure of the SVM.
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1 Introduction

The extrusion process of molten polymeric materials is a well{established technique for

the production of a large number of end products or components commonly found in

a multitude of consumer goods. The wide variety of polymer blends and production

techniques makes it quite diÆcult to de�ne theoretically all the possible aspects of the

control of the large number of process variables involved (thermal and mechanical), for a

system with a highly nonlinear behaviour. Each variable (temperature, ow rate, pressure,

etc.), has a great impact on both the �nal quality of a product and the production rate.

Therefore, the choice of the control strategy and the development of new regulation tools

become crucial to have more eÆcient, energy saving and environmentally safe extrusion

processes.

In this paper, we propose the use of a new learning algorithm to develop a framework

(based on intelligent modules), to be inserted in the regulation chain of an extrusion

process. Our main goal is to verify its actual validity on the basis of experiments carried

out by using a simpli�ed thermal and uid dynamic model of the injection process.

The injection moulding process (IMP) is one of the most important and widely used

extrusion processes (Rosato 1995), and several new control approaches have been proposed

in the past few years (Agrawal et al. 1987, Tsai and Lu 1998). In the IMP, the molten

material is injected into the mould cavity at high speed and high pressure by means of an

axially moving screw, activated by a piston moving at a given axial speed (Figure 1).

The quality of the extrudate is highly dependent on the temperature uniformity inside

the polymer during the injection, on the working pressure, on the screw translation velocity,

on the homogeneity of the physical properties obtained by the mixing process in the

metering section, and on the temperature pro�le along the barrel. The temperature,in
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turn, is a complex combination of external heat and heat generated inside the polymer

due to viscous dissipation. Each of these parameters must be carefully controlled to

achieve a satisfactory quality of extrudates. One of the main operating parameters is the

polymer temperature at the nozzle exit; this temperature is a very complicated function of

material properties, process control parameters, screw geometry, durations of the di�erent

stages, residence time, and so on. It is indeed rather cumbersome to develop a global

theoretical model able to describe the extruder behaviour in terms of the input-output

system parameters. Therefore, the application of modern identi�cation techniques based

on neural networks (in a general way), in particular, on support vector machines (SVMs),

seems to be quite attractive, especially for regulation and control purposes. The SVM

module we propose in this paper acts as an identi�cation block in the control loop of the

IMP process.

In general, an identi�cation problem can be de�ned as the process through which an

unknown function, � : <d ! <, describing the behaviour of a dynamic system, is esti-

mated on the basis of some of its samples, Z = f(xi; ti)gi=1:::np . Usually, this problem

can be tackled when the input/output signals of the system considered can be observed,

but the system dynamics (i.e., the structure of �) is not known. Typical applications

include: time{series forecasting, identi�cation and control of nonlinear systems, signal

and image processing, and others. Support Vector Machines (SVMs) (Cristianini and

Shawe{Taylor 2000) are a new paradigm that have recently been proposed to accomplish

pattern{recognition and function{approximation tasks, hence they represent an attractive

approach to solve the injection moulding problem just described. There is a long list of

theoretical and practical advantages of SVMs over other connectionist regression methods

(e.g., Multi-Layer Perceptrons - MLPs (Bishop 1995)). One of the most appealing prop-

erties is certainly the possibility of solving a quadratic programming problem subject to
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linear constraints (without local minima), instead of using a diÆcult nonlinear optimisa-

tion algorithm in the MLP case. Following the early theoretical studies of the properties of

this new learning approach, di�erent applications are starting to emerge, especially in the

�eld of optimal control of nonlinear systems, as described in recent works (e.g., Suykens

et al. 2001).

The �rst step in developing a control system based on an SVM is to assess if SVMs are

capable to identify and reproduce the dynamic behaviour of the IMP. The basic idea of

the present paper is to develop a simpli�ed, thermal, uid dynamic model of the injection

stage, studying the SVM behaviour during the identi�cation of the system for dynamic

control purposes. The paper is organised as follows: the next section describes the thermal,

uid and dynamic model used to test the SVM method, briey outlined in Section 3. In

Section 4, we present the identi�cation{control models and scheme that we have built to

control the polymer temperature. The designs of the SVM and control blocks are also

extensively discussed. In Section 5, we deal with the numerical experiments carried out on

each building block of the whole control system; the performances of the dynamic model,

the SVM and each control block are reported and discussed. Finally, in Section 6, we

summarise the obtained results and propose further lines of research.

In the following text, we shall indicate the vectors and the matrices with lowercase and

uppercase boldface letters, respectively; Tables 1, 2 and 3 give the variables and symbols

used in this paper.

2 Thermal, uid and dynamic model of the injection process

The injection process can be summarised as shown in Figure 2. In the �rst stage, the

polymer is fed by using powder or pellets in the hopper: then it is pushed forward by
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rotating the screw, while the nozzle exit is closed to allow the \charge" material to �ll

the injection chamber. The polymer is molten inside the compression section by electric

heating (barrel heaters) and viscous dissipation. Finally, it reaches a uniform temperature

and thermophysical properties in the metering section. While the molten polymer �lls the

injection chamber, the screw goes slightly back in order to allow the desired quantity of

polymer to accumulate in the nozzle, and new material is fed from the hopper. When the

right polymer charge is ready to be injected, the piston pushes the screw (which behaves

like a ram) axially along the barrel, thus allowing the mould to be �lled with the polymer

melt. A holding pressure is kept on the back of the piston until the whole mould is �lled

and the material inside it starts to solidify owing to external refrigeration systems. After

the polymer at the nozzle exit (i.e., mould entrance) has solidi�ed, the mould is removed

and the cycle starts again. The whole process can be subdivided into three main stages,

after the die removal:

1. Charge �lling

2. Injection (translating { screw)

3. Mould �lling and cooling (holding { screw)

A further, short stage can be added, which includes the removal of the �lled mould and

the insertion of a new, empty mould ready for the next cycle.

Neglecting, as a �rst approximation, the uid compressibility and keeping in mind

that the time-pressure pro�le at the nozzle exit is mainly driven by the cavity{pressure

pattern inside the mould, the outlet pressure has been assumed to be an independent, given

boundary condition, which may vary during the injection stage. For the same reason,

the polymer introduced into the chamber by rotating the screw is assumed to be at a

given, uniform temperature at the screw/polymer interface. The operating parameters
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are the volumetric ow rate of the screw, the polymer and cylinder working temperatures,

the imposed displacement velocity of the screw during the injection stage, and the heat{

transfer coeÆcients between the polymer and the inner cylinder walls, which can be heated

and kept at the desired temperature.

For the present simpli�ed approach, a one{dimensional, thermal, uid dynamic model

has been developed, making an explicit marching{time �nite{volume analysis to calculate,

at each time step, the temperature and pressure distributions inside the screw tip/nozzle

assembly. All the di�erent contributions to the energy balance have been introduced:

conduction, convection, viscous{dissipation e�ects and dynamic behaviour. Furthermore,

all the thermophysical properties have been assumed to vary with the temperature, the

shear{stress and shear{rate, as required by the study of the ow behaviour of polymer

melts, which are strongly non{Newtonian uids.

The ow channel has been subdivided into small �nite{volume elements, with variable

cross sections (ow passages), depending on the channel geometry, as shown in Figure 3.

The mass, momentum, energy, and constitutive equations have been integrated over

time, using di�erent particular solutions in each of the three main steps of the extrusion

moulding process, i.e., injection, holding and mould removal, and �lling of a new charge.

In the injection stage, the ow behaviour has been simulated by the momentum equation,

applied to each volume in the form:

p
j
i+1 = p

j
i +�p

j
i ; i = 1; : : : ; N j ; j = 0; : : : ; J (1)

where p
j
i is the pressure on the left side in the element i, and �p

j
i is the variation in

pressure along the element i during the time interval j, as shown in Figure 4. N j is the

number of space elements, and �Xj is chosen over the time interval j. Depending on the

kind of study being developed (simulation, control, design or optimisation), the pressure
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boundary condition can be given at the nozzle exit (cavity mould pressure) or on the basis

of the screw{tip working conditions (interfacial surface area and pushing force during the

injection stage). If the axial force F
j
s on the screw is given for each time interval j of the

process (as usually happens in given conterpressure{control approaches), the pressure on

the �rst polymer element is:

p
j
1 =

F
j
s

As
(2)

As stands for the frontal surface area of the screw. The evaluation of �p
j
i has been

performed by the simpli�ed method of \representative viscosity," which allows the rela-

tionships derived for Newtonian material ows to be applied also in the case of polymer

melts. As a result, the pressure drop in the channel is given by:

�p
j
i = � _V j �

j
i

~K
j
i fpi

(3)

where fpi is a cross-section coeÆcient that is 1 for a circular cross-section, _V j is the

volumetric ow rate, �
j
i is the local viscosity, and ~K

j
i is the so-called die conductance,

which takes on the form:

~K
j
i =

A3
i

2�XjP 2
i

(4)

for constant cross-section ow passages, and the form:

~K
j
i =

�
A3
i

2�XjP 2
i

�0B@3
�
Rmax

Rmin

� 1
�

1�
�
Rmin

Rmax

�3
1
CA (5)

for converging dies. A and P are the local cross{section area [m2] and the wetted perimeter

[m], respectively. To take into account the possibility that the screw axial velocity, _Xs,

may be varied during the injection for control purposes, following a given velocity{pro�le

in time, the volumetric ow rate is variable over each time interval j, according to the

equation:

_V j = _Xj
sAs

�= _Xj
s

�D2
s

4
(6)
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For the same reason, the axial discretisation too can be varied at each time step j,

according to:

�Xj = �� _Xj
s (7)

The local viscosity can be computed, as described in (Vinogradov and Malkin 1966),

by using the universal temperature and pressure equation calculated as:

� ( _) =

 
1 + a1 ( _�0)

a3 + a2 ( _�0)
2a3

�0 (T; p)

!�1

(8)

where _ [sec�1] is the shear rate, the empirical coeÆcients a1, a2 and a3 are, to a great

extent, constant for each polymer over wide ranges of temperature and pressure values,

and �0 (T; p) is the reference viscosity in the extrapolated viscosity limit at a zero shear

rate. For the particular polymer considered, the following numerical expressions can be

given for the viscosity and shear rate:

Ts = 130ÆC

Ts (p) = Ts + 0:03pb[ÆC]

�0 (Ts) = 4:48 � 106[Pa � sec]

(9)

�0 (T; p) = �0 (Ts) � e
�8:86(Tc�Ts(p))

101:6+(Tc�Ts(p)) [Pa � sec] (10)

where pb is the pressure in bar units, T is the actual polymer temperature in ÆC, and:

_
j
i =

4 _V j

�R3
i

0:815 (11)

The energy equation has been used in its general form as a balance between the internal

variation in the energy of the control volume (on the left) and all possible heat{transfer

and mechanical{work contributions (on the right):

M
j
i cvi�T

j
i =

h
 
j
i � �

j
i

i
�� � �

j
i + �

j
i (12)
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M
j
i = Ai�X�

j
i

 
j
i = hcPi�X

j
�
T
j
pi � T

j
i

�
�
j
i =

~k(T j

i )
2�Xj

h
(Ai +Ai�1)

�
T
j
i � T

j
i�1

�
+ (Ai +Ai+1)

�
T
j
i � T

j
i+1

�i
�
j
i = Ai�X

j�p
j
i

�
j
i = Ai�X

j�
j
i cvi

�
T
j
i�1 � T

j
i

�
i = 1; : : : ; N j � 1

j = 0; : : : ; J

(13)

where, for i = N j, the adiabatic boundary condition at the exit gives:

�
j
i =

~k
�
T
j
i

�
2�Xj

(Ai +Ai�1)
�
T
j
i � T

j
i�1

�
(14)

The variation in the temperature of the element i over the time interval j{j + 1 is

expressed by the explicit marching{time schema:

�T
j
i = T

j+1
i � T

j
i (15)

In the above equations, M [kg] is the mass, cvi
�
J(kgÆK)�1

�
is the constant{volume

speci�c heat, Ai [m
2] is the local duct cross{section, �

�
kg(m3)�1

�
is the polymer density,

 i [W ] is the mean convective{heat ow rate, �i [W ] is the net conductive{heat ow

rate inside the polymer in the axial direction, �i is the compression work, and �i is the

axial energy ow due to the polymer motion. In general, the barrel temperature Tp can

be variable in space and time according to temperature{control strategies; therefore, a

generic T
j
pi has been used in equation 13.

The proposed simpli�ed approach is based on the idea of assuming that the �nite

volume �Xj plays a double role, that is, as both a space interval and a screw displacement

over the time interval �� . Assuming a constant, uniform time interval for the entire ow

simulation, the ow channel is discretised every time with a di�erent space size, depending
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on the actual screw axial velocity. The use of an explicit marching{time algorithm allows

us to calculate a spline approximation for the temperature pro�le at the time j and to

re-evaluate the initial temperature distribution in the new discretised spatial domain over

the time interval j + 1. The solution of the set of equations (1){(15) follows a calculation

schema of the type illustrated in Figure 5, i.e., by giving the temperature and pressure

pro�les along the channel during an arbitrary number of injection cycles.

3 An overview of SVMs for function approximation

Let us outline here the SVM approach to function approximation. Usually, a typical

function{approximation task is de�ned as follows: a set of training points of the unknown

function �(�) to be estimated are given after, for example, a design of experiments. Let

us indicate such a set as: Z = f(xi; ti)gi=1:::np , where x 2 <d is an input vector and

ti 2 < is the corresponding output of �(�). This is also indicated as a regression problem,

and di�erent classic or advanced techniques can be used (most applications adopt B{

splines, polynomial functions or di�erent avours of neural networks, like, for example,

the Multilayer Perceptron). The task in which a function is estimated on the basis of

some of its samples is also called the learning problem. At the end of the '90s, a new

paradigm for learning by examples, called Support Vector Machines, was obtained thanks

to the research work by the Russian mathematician V. Vapnik and his group. SVMs

are based on two di�erent theories developed in the '60s and '70: Statistical Learning

Theory, by Vapnik and Chervonenkis (Vapnik 1998), and the theory for Reproducing

Kernel Hilbert Space (RKHS) (Wahba 1999). The RKHS framework plays a basic role

in the eÆciency of SVMs because it makes possible to obtain nonlinear approximation

functions. Basically, a non{linear SVM can be built by mapping each input pattern x into
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a di�erent high{dimensional feature space (in the RKHS framework) through a nonlinear

transformation � : <d ! <D;D >> d. In that space, the use of Mercer's theorem

permits the interpretation of kernels as inner products, thus bypassing the need for a

direct knowledge of �(�).

SVMs have recently provided very good performances in accomplishing classi�cation

and function{approximation tasks. The advantage of using SVMs over other methods is

twofold. The structure of the optimisation problem, which consists in the resolution of

a constrained quadratic problem (CQP), overcomes many typical drawbacks of classical

neural{network approaches; for example, the plague of local minima that a�ects the back-

propagation algorithm is completely avoided in SVM learning. Furthermore, the intrinsic

properties of the method for controlling the complexity of the model (i.e., the Structural

Risk Minimisation inductive principle (Vapnik 1998)), guarantee considerable generalisa-

tion capacity.

Briey, the main goal of "-SV regression is to �nd a function �̂(�) that has at most an

" deviation from the targets ti for all the points and, at the same time, that is as at as

possible (for more details on the use of SVMs for regression purposes see (Cristianini and

Shawe{Taylor 2000, Sch�olkopf and Smola 1998)). The function �̂(�) is given, in general

form, by:

t̂ = �̂(x;w) =

npX
i=1

(�i � ��i )K (xi;x) + b (16)

where the free parameters are found by solving the dual formulation:

minE(�) =
1

2
�
t
H�+ c

t
� (17)

under the constraints 0 � � � C and �t
y = 0. C measures the tradeo� between the

deviation of each target from the function and the atness of the function itself, and all
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the other matrices and vectors are de�ned as follows:

H =

2
664 Q �Q

�Q Q

3
775 � =

2
664 �

�
�

3
775 c =

2
664 "� t

"+ t

3
775 y =

2
664 1

�1

3
775 (18)

The threshold b is found through the Karush-Kuhn-Tucker conditions at optimality;

qij = qji = K (xi;xj), "i = ";8i, �, c, y 2 <2np , �, �� 2 <np ; 1 is a vector with all ones of

np elements, whereas t is the vector of the targets; K (�; �) is a kernel function in the RKHS.

The use of di�erent kernel functions changes the mapping from the input to the feature

space; therefore, it modi�es the SVM structure and the corresponding approximation

surface. Among available kernels, the most widely used are linear (K (xi;xj) = xi � xj,

where \�" is a simple dot{product), polynomial and Gaussian of the form:

K (xi;xj) = e
�
kxi�xjk

2

2�2 (19)

where � controls the amplitude of the RBF and the generalisation ability of the SVM.

The described CQP can be solved by using traditional optimisation techniques (Bertsekas

1995), or special oriented algorithms (Platt 1999, Joachims 1999).

The models developed so far require the setting of two kinds of di�erent parameters:

1. the vector � and b, called functional variables, which can be selected through the

solution of the CQP;

2. a set of structural variables (C, � and "1).

The process by which one searches for optimal values of the structural variables is also

known as a model{selection task, and di�erent approaches, based on statistical methods,

have recently been suggested (see, for examples, the method described in (Chapelle and

Vapnik 2000). It is known that the most critical parameter is the variance �; here we use

the standard bootstrap technique discussed in (Anguita et al. 1999) for the selection of �.
1Note that, in equation (16), we have indicated the collection of the functional and structural variables

with the vector w.
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4 Identi�cation and control models by using SVMs

In this section, we show how the SVM algorithm described previously can be used for:

1. reproducing the behaviour of the thermal, uid, dynamic model de�ned in Section

2 (design of the SVM{block).

2. generating the command{input to the model (design of the control{block).

Here we use a typical identi�cation + control approach, as sketched in the schema of

Figure 6, where:

� t is the actual temperature (at the nozzle) that, in our case, is generated by the

model (in Section 2 we have indicated it with the symbol T
j

Nj , the temperature of

the last element at the time j); usually, this is also referred to, in system control

theory, as the output of a plant;

� t̂ is the output of the SVM (equation 16);

� ê is the error between the output of the model and the output of the SVM (it is the

identi�cation error, and depends on the approximation capability of the SVM itself);

� r (reference) is the desired temperature at the nozzle;

� e is the control error;

� u is the control signal or the command input to the system; it is the temperature

of the barrel heater at the injection stage (in Section 2, we have indicated it, in a

general way, as T
j
pi).

The control{block provides the command u to the system, on the basis of the structure

of the SVM{block, in order to track the reference temperature r through the minimisation

of the error e. Note that the actual system is supposed to be unknown; therefore, the only

13



way of building the control{block is to refer to the structure of the SVM{block. In the

following, we describe how such a block has been designed.

The thermal, uid, dynamic model presented in Section 2 is a discrete{time description

(�� is the corresponding sample time) of the temporal evolution of the injection moulding

process. In general, the output of a discrete{time system at the time k + 1 can be repre-

sented as a function of n previous samples of the output itself and m previous samples of

the signal input. The relationship is:

t(k + 1) = � (t(k); t(k � 1); : : : ; t(k � n+ 1); u(k); u(k � 1); : : : ; u(k �m+ 1)) = � (x(k))

x(k) = [t(k); t(k � 1); : : : ; t(k � n+ 1); u(k); u(k � 1); : : : ; u(k �m+ 1)]T
(20)

x 2 <d, d = n + m. At the time k + 1, the SVM gives an estimate of t(k + 1), called

t̂(k+1), on the basis of equation (16), that is, t̂(k+1) = �� (x(k);w); this is also known,

in the neural{network literature as an identi�cation{serial{parallel model (Narendra and

Parthasarathy 1990). Note that, as in an on{line process the exact measurement of the

output of a plant, at each sample time, is often a diÆcult task, a parallel identi�cation

model can be alternatively used. In this case, the input to the SVM depends on the

previous samples of its output, rather than on the output of the actual system:

t̂ (k + 1) = ��
�
t̂ (k) ; � � � ; t̂ (k � n+ 1) ; u (k) ; � � � ; u (k �m+ 1) ;w

�
(21)

The former identi�cation model is also preferred to the latter because it guarantees a

more accurate system stability, as stated in (Narendra and Parthasarathy 1990).

In order to design the SVM block (i.e., the setting of w), the following steps have to

be executed in sequence:

1. building a training set Z and setting the parameter vector w, as described in the

previous section (note that functional and structural variables can be selected by

using the same Z, as shown by the procedure used in (Anguita et al. 1999));
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2. building a separated validation set V , to compute the actual error of the SVM.

T build Z, we choose the curves in Figure 7; in this way, we are able to collect dif-

ferent samples, representing the evolution of the process when di�erent operating param-

eters are applied. In other words, we assume a given initial temperature (470 K), and

then we set several values of the barrel heater (i.e., the signal u in our control system

schema). Subsequently, we collect the output t, given by the model, at each sample time:

t(0); t(1); t(2); : : :, etc. The pairs f(xi; ti)g to be given to the training algorithm have been

simply designed in the following way:2

[(t(n� 1); � � � ; t(0); u(n � 1); � � � ; u(n�m)) ; t(n)] = (x1; t1)

[(t(n); � � � ; t(n� n+ 1); u(n); � � � ; u(n�m+ 1)) ; t(n+ 1)] = (x2; t2)

[(t(n+ 1); � � � ; t(2); u(n + 1); � � � ; u(n�m+ 2)) ; t(n+ 2)] = (x3; t3)

...

(22)

and so on.

The job of the controller is to provide the signal control u in such a way to minimise

the control error e on the basis of the SVM{block. The idea is quite simple and based

on the following criteria (given in (Noriega and Wang 1998)). A cost 	 measuring the

quadratic error between the reference and the output of the SVM is de�ned as:

	 =
1

2
e2 (k + 1) =

1

2

�
r (k + 1)� t̂ (k + 1)

�2
(23)

The goal is to minimize 	 by �nding a simple control law for u:

u (k + 1) = u (k)� �
@	

@u (k)
(24)

where � is the control descent step to be properly set in order to avoid undesired oscilla-

tions. If a linear and a Gaussian kernel are supposed to be used, it is possible to obtain,

2Note that, in fact, n and m are unknown parameters; their optimal values have to be established

through experiments.
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by applying equation (24) to equation (16), the following control laws:

Controller 1 (linear kernel):

u (k + 1) = u (k) + �e (k + 1)
X
i

(�i � ��i )xi;n+1 (25)

Controller 2 (Gaussian kernel)

u (k + 1) = u (k) +
�

�2
e (k + 1)

X
i

(�i � ��i ) (xi;n+1 � u(k)) e
�
kxi�x(k)k

2

2�2 (26)

by xi;n+1 we denote the component n+ 1 of the vector xi.

To complete this section, we provide some considerations about the stability of the

proposed control system. Let us observe that the control algorithm just described is based

on an intelligent learning methodology, which can be qualitatively analysed by using the

Lyapunov theory. Basically, nonlinear control systems like the one described in this section

guarantee stable points as long as the following conditions hold true:

� the SVM{block converges to the actual physical system;

� the control law stabilises the SVM{block.

We can proceed as in (Noriega and Wang 1998). This is con�rmed by the fact that

the case of a Gaussian kernel is a special case of RBF neural networks, discussed in that

work. Furthermore, the universal approximation properties of SVMs have been extensively

demonstrated by Vapnik (Vapnik 1998).

5 Numerical results and SVM performances

The experiments described in this section concerned each block in �gure 6. In particular,

here we show the behaviour and the performance of the thermal, uid, dynamic model

de�ned in Section 2, the procedure adopted to train the SVM-block, and the way we chose

the parameters of the control{block.
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A number of calculations were performed with reference to the converging duct shown

in Figure 3; its thermophysical properties, geometrical and operating parameters are given

in Tables 4 and 5. The time history of the outlet temperature is presented in Figure 8 and

some axial temperature pro�les inside the injection chamber are shown in �gure 9. The

time analysis shows clearly that each injection stage was characterised by a sharp increase

in temperature, due to viscous dissipation, while the global trend was a slow decrease in

temperature due to the over{warmed polymer (initially, at 470K), as compared with to

the heater{barrel temperature (Tp = u = 460K). The axial temperature pro�le of the

polymer inside the chamber points out that, as far as the polymer owed slowly in contact

with a lower cylinder temperature, the axial temperature decreased steadily, while only in

the last sharp convergence section did the temperature increase.

In the design of the SVM{block our main goal has been to assess the performances

of the parallel and serial{parallel models, as described in the previous section. In the

�rst experiment, a uniform initial temperature (�xed at 470K) of the polymer inside

the charge was assumed. Then we generated two di�erent pro�les of the outlet polymer

temperature to build the training set Z (training 1 and training 2 respectively, as shown

in Figure 10). In the �rst realisation (training 1), the temperature of the barrel heater

was increased from 462K to 464K, and from 462K to 464K in the second one (training

2). The test was performed by setting the value of the command input at 463K. Figure 10

shows the output of two di�erent SVMs (parallel and serial{parallel), and the output of

the model{plant. Note that we used n = 7 samples of the output and m = 1 sample of the

input. We used a Gaussian kernel with �2 = 0:05 and " = 10�3, following the bootstrap

technique described in (Anguita et. al 1999), to minimise the generalisation error of the

SVM. From Figure 10, it is possible to observe that the output of the model{plant reached

a stationary temperature of 466:3K, and was well{identi�ed by the serial{parallel SVM.
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However, when the SVM was completely uncoupled from the model (parallel SVM), a

worst performance was obtained. In this case, the SVM{block produced a signi�cant

error. Thanks to these experiments, we deduced that only two curves used as a training

set are insuÆcient information about the system behaviour, so the range of operating

temperatures was extended, as shown in Figure 7.

Once the SVM has been designed, it is possible to set up the controller by using

controller 1 or controller 2, as described in the previous section. Figure 11 gives an

example of application of controller 2 based on a parallel{SVM; we set the reference value

to 466.3K and 468K, respectively; we used a sample time of 0:2 [sec] and a descent step

of � = 0:8. We carried out several numerical experiments also for controller 1. From the

obtained results, we deduced that the thermal, uid, dynamic model presented in section

2 can be identi�ed and controlled, to a good approximation, also by using a linear kernel.

Figure 12 shows the responses of the system to di�erent values of � (the reference value was

�xed at 466K), which controls the speed of convergence of the closed loop to the reference

value. Our choice is a good tradeo� between the speed of convergence to a stationary

temperature and the magnitudes of the oscillations.

6 Discussion

In this paper we have reported on a �rst preliminary study of the applicability of machine{

learning methods for the identi�cation and control of injection moulding processes and

plasticating extrusion. The obtained results have shown the eÆciency of the SVM approach

when applied to such kinds of industrial processes. However, it is worth noting that the

actual use of the whole framework must be preceded by the design of e�ective experiments

in order to collect real samples (xi; ti) of the process considered.
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Further work has to be done for each of the building blocks in Figure 6. In the following,

we address some critical points that need to be investigated in detail.

The thermal, uid, dynamic model discussed in Section 2 has been designed under

two basic assumptions: �rst, in all the experiments, we have supposed a uniform initial

temperature (�xed at 470K) of the polymer inside the charge; in other words, we have not

theoretically modelled the very �rst stage in which the solid{state polymer is pushed inside

the extruder and reaches the desired plasticating temperature. This stage is very diÆcult

to de�ne analytically, even by using approximate model. Second, the basic hypothesis

for a correct behaviour of the model is incompressibility property of the polymer. Only

under this strong assumption does a volume variation in the �rst space element, due to

the axial movement of the screw in �� , produce an equal volume variation in the polymer

at the nozzle exit. Both assumptions can be obviously revised by analysing the behaviour

of the injection moulding process in more detail. This would inevitably cause a signi�cant

change in the structure of the whole set of equations and, accordingly, an increase in

their complexity. As a consequence, a simple simulation and an easy interpretation of the

results, which have been our main goals for the development of a general framework based

on an SVM, would be more diÆcult to obtain.

As a �nal remark, related to the SVM{block, we note that, if a reference value not

included in the pre-de�ned range is imposed, the general stability conditions considered

in the previous sections will not be veri�ed any more. This is a typical behaviour of con-

trol systems based on neural approaches. For example, Figure 13 has been obtained by

setting the reference value to 475K. In this case, to improve the system one could proceed

in two di�erent ways: 1) designing a fault{tolerant block (which helps to recover a cor-

rect functionality) through the measurement of the identi�cation error ê, as described in

(Noriega and Wang 1998); 2) training the SVM{block by an on{line recursive algorithm,
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as described in recent works (e.g., Cauwenberghs and Poggio 2001). Note that the latter

approach needs further investigations because up to now many points have not been clar-

i�ed; for example, it is not clear how to keep track of previous samples when a new one

will arrive.
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Table 1: Nomenclature (1).

A cross section

C regularisation constant

Dmax=Dmin max. and min. diameters

D feature{space dimension

E quadratic function

H quadratic function Hessian matrix

F axial force

J No. of discrete{time elements

K(�; �) kernel function (inner product in feature space)

~K die conductance

Lconv=end=tot screw lengths (Figure 3)

N No. of axial elements

P wetted perimeters

Q quadratic function Hessian matrix block

Rmax=min max. and min. radii

T=Tp=T0 polymer/barrel/polymer{extrusion temperatures

_V volumetric ow rate

Xs screw axial co-ordinate

_Xs screw axial velocity

Z training set
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Table 2: Nomenclature (2).

a1=2=3 empirical coeÆcients

b threshold

c quadratic function linear term

cv constant{volume speci�c heat

d input space dimension

e control error

ê identi�cation error

fp cross{section coeÆcient

hc polymer/wall transfer coeÆcient

i=j=k discrete{axial/discrete{time(model)/discrete{time(control loop) counters

~k mean polymer thermal conductivity

m No. of signal{control samples

n No. of signal output (plant/SVM) samples

np No. of training patterns (np = dim(Z))

p pressure

r control loop reference

t plant output

t̂ SVM output

t targets vector

u control{signal in the control loop

w SVM free parameters vector

x SVM input vector

y vector of ones and minus ones
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Table 3: Nomenclature (3).

�(�) the mapping <d ! <D

	 control{loop functional cost

� quadratic function free parameters

� np{dimension component vector of �

�
� np{dimension component vector of �

" loss function insensitivity parameter

�(�) plant I/O relationship

�̂(�) SVM I/O relationship

_ shear rate

� local viscosity

� control{block descent step

� local density

 mean convective heat ow rate

� net conductive heat ow rate

� compression work

� axial energy ow

�2 variance of the Gaussian kernel
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Table 4: Duct geometry (Figure 3).

Dmax 0.05 [m] max. diameter

Dmin 0.008 [m] min. diameter

Ltot 0.39 [m] total charge length

Lconv 0.15 [m] converging section length

Lend 0.02 [m] termination duct length

Table 5: Polymer thermophysical properties and values of the operating parameters.

cv 2000 [J=(kgK)] constant{volume speci�c heat

� 780 [kg=m2] polymer density

k 0.16 [W=mK] mean polymer thermal conductivity

�I 2 [s] injection

�M 2 [s] holding

�R 6 [s] �lling

�� 0.2 [s] time step interval

T0 470 [K] inlet temperature (extrusion screw output)

Tp 465 [K] barrel temperature

_Xs 0.11 [m=s] screw axial velocity

pinit 1.5 108[Bar] polymer/screw interface pressure

hc 100 [W=m2K] polymer/wall heat transf. coe�. (injection)

hcm 30 [W=m2K] polymer/wall heat transf. coe�. (holding)

hcr 30 [W=m2K] polymer/wall heat transf. coe�. (�lling)

28



� � � � � � � � � 	 
 � 
 � � 	 � � �

�  � �
�  � � � �

� � � �

� � � � �

� � � 	  �

Figure 1: The extruder.
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Figure 2: The injection process: injection (or mould �lling) - holding (or packing) - cooling

and die removal - �lling of the charge chamber.
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Figure 3: Screw-channel assembly and �nite volume discretization: i is the discrete axial

co-ordinate; j is the discrete{time co-ordinate.
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Figure 4: Pressure variation in the element i.
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Figure 5: Calculation schema for the thermal, uid, dynamic model.
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Figure 6: A typical identi�cation{control scheme.
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Figure 7: Outlet polymer temperature, used for training, at the nozzle exit for di�erent

settings of the barrel heater.
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Figure 8: Outlet polymer temperature at the nozzle exit.
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Figure 9: Temperature distribution in the chamber for successive injection cycles of the

polymer extrusion temperature (at the chamber inlet) T0 = 470K and the uniform barrel

temperature Tp = 460K.
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Figure 10: Training pro�les (training 1 and training 2) and SVM output for the parallel

and serial{parallel models.
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Figure 11: Closed{loop outlet polymer temperature at the nozzle exit (plant) and at the

SVM{block exit (SVM) for di�erent reference values.
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Figure 12: Closed{loop outlet polymer temperature for di�erent values of the descent step

parameter �.
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Figure 13: Example of system instability; outlet polymer temperature at the SVM{block

exit for a reference value beyond the range.
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