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Ontology M atching

Fausto Giunchiglia and Pavel Shvaiko and Mikalai Yatskevich !

Abstract. Semantic matching determines the mappings between the
nodes of two graphs (e.g., ontologies) by computing logical relations
(e.g., subsumption) holding among the nodes that correspond seman-
tically to each other. We present an approach to deal with the lack of
background knowledge in matching tasks by using semantic match-
ing iteratively. Unlike previous approaches, where the missing ax-
ioms are manually declared before the matching starts, we propose a
fully automated solution. The benefits of our approach are: (i) saving
some of the pre-match efforts, (ii) improving the quality of match via
iterations, and (iii) enabling the future reuse of the newly discovered
knowledge. We eval uate the implemented system on large real-world
test cases, thus, proving empirically the benefits of our approach.

1 INTRODUCTION

Match is a critical operator in many applications, e.g., Al, Seman-
tic Web, WWW, e-commerce. It takes two graph-like structures, e.g.,
lightweight ontologies, such as Google and Looksmart?, or busi-
ness catal ogs, such asUNSPSC and eCl@ss®, and produces amap-
ping between the nodes that correspond semantically to each other.

Many various solutions of match have been proposed so far, see
for recent surveys [17, 3, 13, 9, 16]*. We focus on a schema-based
solution, namely a matching system exploiting only the schema in-
formation, thus not considering instances. We follow the so-called
semantic matching approach [6]. This approach is based on the two
key ideas. Thefirst isthat mappings are cal culated between ontology
entities by computing logical relations (e.g., equivalence, subsump-
tion), instead of computing coefficients rating match quality in the
[0,1] range, asit isthe case in the other approaches, e.g., [14, 5, 15].
The second ideaisthat the relations are determined by analyzing the
meaning which is codified in the elements and the structures of on-
tologies. In particular, labels at nodes, written in natural language,
aretrandlated into propositional formulas which explicitly codify the
labels' intended meaning. Thisallowsto transate the matching prob-
lem into a propositional unsatisfiability problem, which can then be
efficiently resolved using (sound and compl ete) state of the art propo-
sitional satisfiability (SAT) deciders, e.g., [2].

Recent industrial-strength evaluations of matching systems, see,
e.g., [4, 1], show that lack of background knowledge, most often do-
main specific knowledge, is one of the key problems of matching
systemsthese days. In fact, most state of the art systems, for the tasks
of matching thousands of nodes show low values of recall (~30%),
whilewith toy examples, the recall they demonstrated was most often
around 90%. This paper addresses the problem of the missing back-
ground knowledge by using semantic matching iteratively. The con-
tributions of the paper are: (i) the new automatic iterative semantic

1 Department of Information and Communication Technology, University of
Trento, Povo, Trento, Italy. email: {fausto, pavel, yatskevi }@dit.unitn.it

2 See, hitp://www.google.com/Top/ and http://www.looksmart.com/

3 See, hitp://www.unspsc.org/ and http://www.eclass.de/

4 See, www.OntologyM atching.org for a complete information on the topic.

matching algorithm, which provides, such benefits as a better qual-
ity of match (recall), saving some of the pre-match efforts, enabling
the future reuse of the newly discovered knowledge; (ii) the quality
evaluation of the implemented system on large real-world test cases.

Therest of the paper is organized asfollows. The semantic match-
ing agorithm is briefly summarized in Section 2. Section 3 intro-
duces the problem of the lack of background knowledge in matching
and its possible solutions. Section 4 presents the iterative semantic
matching algorithm and its details. Section 5 discusses experiments
with matching lightweight ontologies. Section 6 reports some con-
clusions and outlines the future work.

2 SEMANTIC MATCHING

Wefocus on tree-like structures (e.g., Google, Looksmart, Yahoo!).
Concept of a label isthe propositional formula which stands for the
set of documents that one would classify under a label it encodes.
Concept at a node is the propositional formulawhich represents the
set of documents which one would classify under a node, given that
it has acertain label and that it isin acertain positionin atree.

The following relations can be discovered among the concepts at
nodes of two ontologies: equivalence (=); more/less general (4, C);
digointness (). When none of the relations holds, the special idk
(I don’t know) relation isreturned. The relations are ordered accord-
ing to decreasing binding strength, i.e., from the strongest (=) to the
weakest (idk). Semantic matching is defined as follows: given two
trees T1, T2 compute the N1 x N2 mapping elements, (I D; ;, C1;,
C2;, R'), where I D;; is a unique identifier of the given mapping
element; C1; € T1; i=1,...,N1; C2; € T2; j=1,...,N2; R’ isthe
strongest relation holding between the concepts at nodes C'1;, C2;.

Let us summarize the semantic matching algorithm via a running

example. We consider ontologies O1 and O2 shown in Figure 1,
which are small parts of Google and Looksmart. The algorithm in-
puts two ontologies and outputs a set of mapping elements in four
macro steps. The first two steps represent the pre-processing phase,
whilethe third and the fourth steps are the element level and structure
level matching respectively.
Step 1. For all labels L in two trees, compute concepts of labels.
Labels at nodes are viewed as concise descriptions of the documents
that are stored under the nodes. The meaning of a label at a node
is computed by inputting a label, by analyzing its real-world se-
mantics, and by outputting a concept of the label, Cr,. For exam-
ple, by writing Crobbics_and_Interests We move from the natural
language ambiguous label Hobbies_and_Interests to the concept
CHobbies_and_Interests, Which codifies explicitly itsintended mean-
ing, namely the documents which are about hobbies and interests.
Technically, based on WordNet (WN) [12] senses, concepts of [abels
are codified as propositional logical formulas, see[10] for details.

From now on, it is assumed that the propositional formula encod-
ing the concept of label is the label itself. Numbers ”1” and "2” are
used as subscripts to distinguish between trees in which the given
concept of label occurs, e.g., TOP; (belongsto O1) and TOP; (be-
longsto O2).
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Figurel. Partsof Google and Looksmart and some of the mappings

Step 2. For all nodes N in two trees, compute concepts at nodes.
We analyze the meaning of the positions of labels at nodes in atree.
By doing this concepts of labels are extended to concepts at nodes,
Cn. Thisisrequired to capture the knowledge residing in the struc-
ture of atree, namely the context in which the given concept at |abel
occurs. Technically, concepts at nodes are written in the same propo-
sitional logical language as concepts of labels. For example, C2s =
TOP, N Entertainments M Musice stands for the concept de-
scribing all the documents about a particular kind of entertainment
which ismusic.

Step 3. For all pairs of labels in two trees, compute relations
among concepts of labels. Relations between concepts of labels are
computed by using alibrary of element level matchers, see Table 1.
Thefirst column contains the names of the matchers. The second col-

Tablel. Element level semantic matchers (Part 1)

Matcher Execution Approxi- Matcher Schema
name order mation level type info
WordNet 1 1 Sense-based | WordNet senses
Prefix 2 2 String-based Labels
Suffix 3 2 String-based Labels
Edit distance 4 2 String-based Labels
Ngram 5 2 String-based Labels

umn lists the order in which they are executed. The third column in-
troduces the matchers’ approximation level. The relations produced
by a matcher with the first approximation level are always correct.
For example, Beveragesi can be found less general than Foods.
In fact, according to WordNet, beverages is hyponym (subordinate
word) to food. Notice, in WordNet beverages has 1 sense, while
food has 3 senses. Some sense filtering techniques are used to dis-
card the irrelevant senses for the given context, see [10] for details.
The relations produced by a matcher with the second approximation
level are likely to be correct (e.g., net = network, but hot = hotel by
Prefix). The WordNet matcher has two WordNet senses in input and
computes equivalence, generality, and digjointness relations. String-
based matchers have two labels as input. These compute only equiv-
aence relations (e.g., equivalence holds if the weighted distance be-
tween the input strings is lower than a threshold), see [7]. String-
based matchers are used iff WordNet failsto find arelation. Theresult
of step 3isamatrix of relations holding between atomic concepts of
labels. A part of it, for the example of Figure 1, isshown in Table 2.

Table2. clLabsMatrix: relations holding among atomic concepts of labels
Gamesy Board_Games, Beveragesi
Gamessa = | idk
Foods2 idk idk |
Wines 1dk idk [

Step 4. For all pairs of nodes in two trees, compute relations
among concepts at nodes. The tree matching problem is reformu-
lated into a set of node matching problems, see Algorithm 1.

Algorithm 1 The tree matching algorithm

1 Node: struct of

int nodel d;
Srring label;

String cLabeI

Sring cNode;

Node parent;
AtomicConceptOfLabel[ ] ACOL;
8 AtomicConceptOfLabel: struct of

9:

0N O R W

itid;
10: Srmg token;
11: String[ ] wnSenses;
12: Sring[ ][ ] cLabsMatrix, cNodesMatrix;

30: Sringl[ ][ ] treeM atch(Tree of Nodes source, target)
31: Node sourceNode, targetNode;

32:inti, j;

33: Sring[ ][ ] relMatrix;

34: Sring axioms, context, contexts;

35: cLabsMatrix = fillCL abM atrix(source, target);

50: for. each sourceNode € source do

51: i =getNodel d(sourceNode);

52:  context; = getCnodeFor mula(sourceNode);
53: for each targetNode € target do

54: j = getNodel d(targetNode);

55: context, = getCnodeFor mula(targetNode);

80: relMatrix = extractRelMatrix(cLabsMatrix, sourceNode, targetNode);
81: axioms = mkAxioms(relMatrix);

82: cNodesMatrix[i][j] = nodeM atch(axioms, context 1, contexts);

110:  end for

111: end for .
150: return cNodesMatrix;

In line 30, the treeMatch function inputs two trees of Nodes
(source and target). Two loops are run over all the nodes of source
and target treesin lines 50-111 and 53-110 in order to formulate all
the node matching problems. Then, for each node matching prob-
lem, apair of propositional formulas encoding concepts at nodes and
relevant relations holding between concepts of labels are taken by us-
ing the getCnodeFormula and extractRelMatrix functions respec-
tively. The former are memorized as context; and contexts in lines
52 and 55. The latter are memorized in relMatrix in line 80. In order
to reason about relations between concepts at nodes, the premises
(axioms) are built in line 81. These are a conjunction of atomic con-
cepts of labelswhich are related in relMatrix. Finaly, in line 82, the
relations holding between the concepts at nodes are calculated by
nodeMatch and are reported in line 150 (cNodesMatrix). A part of
this matrix for the example of Figure 1 is shown in Table 3.

Table3. cNodesMatrix: relations holding among concepts at nodes*

Cls Cly Cls Clg Clio Clyy
C219 = idk idk | = |

nodeMatch trans ates each node matching problem into a propo-
sitiona validity problem. Thus, we have to prove that axzioms —
rel(contexty, contexts) isvalid. axioms, context:, and contexts
are as defined in the tree matching algorithm. rel isthe logical rela-
tion that we want to prove holding between context; and contexts.
nodeMatch checks for sentence validity by proving that its negation
is unsatisfiable. Thus, the algorithm uses, depending on a matching
task, either ad hoc reasoning techniques, see [8], or standard DPLL-
based SAT solvers, e.g., [2]. From the example in Figure 1, trying
to prove that C'ly is less general than C2,¢, requires constructing
the following formula: (TOP, — TOP,) A (Games, — Gamess) A
(Games, « Entertainments)® A (Board-Games, — Gamess)) —
((TOP1 A Games1 A Board-Gamesi) — (TOP> A Entertainments A
Gamesz)). As it turns out, this formula is unsatisfiable, hence, the
less generality holds.

5 Notice, by applying element level matchers of Table 1 we can only deter-
mine the idk relation between games and entertainment. For example, in
WordNet there is no direct lexical relation between games and entertain-
ment. However, to simplify the presentation, we assume that it has been
already determined that Games; = FEntertainments. See Section 4
for the details of how the equivalence between the given concepts can be
discovered.



3 LACK OF KNOWLEDGE

Recent industrial-strength eval uations of matching systems, see, e.g.,
[4, 1], show that lack of background knowledge, most often domain
specific knowledge, is one of the key problems of matching systems
these days. In fact, for example, should PO match Post Office, Pur-
chase Order, or Project Officer? At present, most state of the art
systems, for the tasks of matching thousands of nodes, perform not
with such high values of recall (~30%) asin cases of toy examples,
where the recall was most often around 90%. Also, amounting to
this problem, [11] shows that complex matching solutions (reguir-
ing months of algorithms design and development) on big tasks may
perform as bad as a baseline matcher (requiring one hour burden).

In order to realize better the above observations, let us consider a
preliminary analytical comparative evaluation of some state of the art
matching systems together with a baseline solution® on three large
real-world test cases. Table 4 provides some indicators of the test
cases complexity.

Table4. Someindicators of the complexity of the test cases

relation (e.g., generality) should have taken place. We attack critical
points by exploiting sophisticated element level matchers which use
the deep information encoded in WordNet, e.g., itsinternal structure.
Then, taking into account the newly discovered information as ad-
ditional axioms, we re-run SAT solver on a critical task. Finaly, if
SAT returnsfalse, we save the newly discovered knowledge, thereby
enabling its future reuse.

4 |TERATIVE SEMANTIC MATCHING

We first discuss how the tree matching algorithm should be modi-
fied in order to suitably enable iterations. Then, we present the main
building blocks of the iterative tree matching algorithm, namely, al-
gorithms for critical points discovery and critical points resolution.

4.1 Iterative Tree Matching Algorithm

The iterative tree matching algorithm is shown as Algorithm 2. The
numbers on the left indicate where the new code must be positioned

These test cases were taken from the OAEI-2005 ontology match-
ing contest’. As match quality measures we focus here on recall,
which is a completeness measure. It varies in the [0,1] range; the
higher the value, the smaller is the set of correct mappings (true posi-
tives) which have not been found. The summarized evaluation results
for al the three matching tasks are shown in Figure 2. Notice, there-
sultsfor such matching systemsas OMAP, CMS, Dublin20, Falcon,
FOAM, OLA, and ctxMatch2, were taken from OAEI-2005, see[4],
while evaluation resultsfor the baseline matcher and S-Match were
taken from [1]. As Figure 2 shows, none of the considered matching
systems performs with a value of recall, which is higher than 32%.
Recall, %
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Figure2. Analytical comparative evaluation

There are multiple strategies to attack the problem of the lack of
background knowledge. One of the most often used methods so far, is
to declare the missing axioms manually as a pre-match effort. Some
other plausible strategies include (i) extending stop word lists, (ii)
expanding acronyms, (iii) reusing the previous match results, (iv)
querying the web, (v) using (if available) domain specific sources
of knowledge, and so on.

In this paper, we propose afully automated solution to address the
problem of the lack of knowledge by using semantic matching itera-
tively. The ideais to repeat Sep 3 and Sep 4 of the matching ago-
rithm for some critical (hard) matching tasks. In particular, the result
of SAT is anayzed. We identify critical points in the matching pro-
cess, namely mapping elementswith theidk relation where astronger

6 This matcher does simple string comparison among sets of labels on the
paths from nodes under consideration to the roots of the input trees, see[1].
7 See for details, http://oaei.ontol ogymatching.org/2005/

#nodes max depth | #labelsper tree in Algorithm 1.
Googlevs. Looksmart | 706/1081 11/16 1048/1715
Googlevs. Yahoo 561/665 1711 7221945 Algorithm 2 A vanilla iterative tree matching algorithm
Yahoo vs. L ooksmart 74/140 8/10 1017222 13: Boolean[ ][ ] cPointsMatrix;

100: if (cPointsDiscovery(sourceNode, targetNode) == true) then

101: cPointsMatrix[i][j] = true;
102: ResolveCpoint(sourceNode, targetNode, context 1, contexts);
103: end if

In line 13, we introduce cPointsMatrix which memorizes criti-
cal points. Semantic matching algorithm works in a top-down man-
ner, and hence, mismatches among the top level classes of ontologies
imply further mismatches between their descendants. Thus, the de-
scendants should be processed only after the critical point at those
top level nodes has been resolved. Thisis ensured by suitably posi-
tioning the new functions (enabling iterations) in a double loop of
Algorithm 1. Hence, in line 100, we check with the help of cPoints-
Discovery function if the nodes under consideration are the critical
point. If they indeed represent the critical point, they are (memorized
and) resolved by using the ResolveCpoint function (line 102). In
the example of Figure 1, critical points which are determined are, for
@(ample, <C].2, 023>, <C].3, 023>, <Cl4, C24>.

An updated cNodesMatrix, after running the iterative tree match-
ing algorithm, is presented in Table 5. Comparing it with the non-
iterative matching algorithm result, which is further reported in Ta-
ble 7, we can see that having identified and resolved the (C'13, C23)
critical point, we also managed to discover the new correspondences,
namely between C235 and C'lg, Cl19, C'l1;1.

Table5. Recomputed cNodesMatrix: relations among concepts at nodes

Cly Cl, Cl3 Cly Cls Clyg Clio Cl1
| |

idk idk

C2,
C23

u

I
I i

i
i

3

Iminll

Having computed all the mapping elements for a given pair of
ontologies, the identified critical relations are validated by a human
user. In particular, user decides if the type of relation determined
automatically isappropriate for the given pair of ontologies (e.g., isit
appropriatethat Games: < Entertainments or aweaker relation,
namely Games1 — Entertainments, should have taken place ?),
(s)he decides either to use this relation once (only for this pair of
ontologies) or to save it in adomain specific oracle in order to enable
its future reuse.

Finally, it is worth noting that iterative semantic matching algo-
rithm amounts to robustness of the semantic matching. In fact, even
if non-iterative semantic matching determines a (false) top level mis-
match, this can be discovered and resolved by applying Algorithm 2.
Thus, avoiding afurther propagation of possible mismatches between
the descendants of the initially mismatched top level nodes.



4.2 TheCritical Points Discovery Algorithm

The algorithm for discovering critical points is based on the follow-

ing intuitions:

e each idk relation in cNodesMatrix is potentially a critical point,
but it is not always the case;

e since critical points arise due to lack of background knowledge,
the clue is to check whether some other nodes located below the
critical nodes (those representing acritical point) are related some-
how. In case of a positive result the actual nodes are indeed the
critical point; they represent afalse alarm otherwise.

Algorithm 3 Critical points discovery algorithm

1: Boolean cPointsDiscovery(Node sourceNode, targetNode)
2: Node] ] sDescendant, tDescendant;
3. ACOL sACOL, tACOL;
4 |f (cNodesM atrix[ sourceNode.nodel D][targetNode.nodel D]=="idk”)

5: sDescendant getSubTree(sourceNode);
6. tDescendant = getSubTree(targetNode);

7. for each SACOL ¢ sDescendant. ACOL do
8: for each tACOL tDescendant. A

9: |chabsMaIr|x[sACOL |d][tACOL |d] 1="idk” then
10: return true;

11 end if

12 end for

13:  endfor

14. else

15: return false;

16: end if

Algorithm 3 formalizes these intuitions. In particular, the first
condition mentioned above is checked in line 4. Verifying the sec-
ond condition is more complicated. We call a relation holding be-
tween descendants of the potentially critical nodes a support rela-
tion. The support relation holds if there exists atomic concept of la
bel (sSACOL) in the descendants of sourceNode which isrelated in
cLabsMatrix (by any semantic relation, except idk) to any atomic
concept of label (tACOL) in the descendants of targetNode. This
condition is checked in a double loop in lines 7-13. Finaly, if both
conditions are satisfied, the cPointsDiscovery function concludes
that the nodes under consideration are the critical point (line 10).
Under the given critical points discovery strategy, performing such
alook up over the cLabsMatrix makes sense, obviously, only when
sourceNode and targetNode are non-leaf nodes.

For example, suppose we want to match C'13 and C'23. Parts of
cLabsMatrix (notice, the relations in this matrix were computed by
applying element level matchers of Table 1) and cNodesMatrix with
respect to the given matching task are shown in Table 6 and Table 7.

Table 6. cLabsMatrix: relations holding among atomic concepts of labels
TOP; Gamesy Board_Games,
TOP, = idk idk
Entertainments idk idk idk
Gamesa idk = |
Table7. cNodesMatrix: relations holding among concepts of nodes
C11 012 C13 014 C15 Clg Cllo C111
C2, = J - - J - J -
C23 C idk idk idk idk idk idk idk

In cNodesMatrix (Table 7) the relation between C'13 and C23 is
idk. In cLabsMatrix (Table 6) there is a support relation for the
given matching problem, e.g., Board_-Games; £ Gamessz. There-
fore, relation between C13 and C23 represents the critical point
and we should reconsider the relation holding between Games; and
Entertainments in cLabsMatrix.

Finaly, it is worth noting that this algorithm also properly han-
dles nodes, which are indeed dissimilar, e.g., C15 and C2; are de-
termined not to be the critical point.

4.3 TheCritical Points Resolution Algorithm
Let us discuss how the critical points are resolved, see Algorithm 4.

Algorithm 4 Critical points resolution agorithm

1: ResolveCpoint(Node sourceNode, targetNode, Sring context 1, contexts)
2. Sring cRel;

3: Sring[ ] ExecutionList;

4: ACOL sACOL, tACOL;

5. for each SACOL ¢ sourceNode. ACOL do
for each tACOL € targetNode.ACOL do

6:

7. cRel = GetM LibRel(ExecutionList, SACOL .wnSenses, tACOL .wnSenses);
8: cLabsMatrix[SACOL.id][tACOL.id] = cRel;

9: end for
10:
11:

NodesM atrixUpdate(sourceNode, targetNode, context 1, contexts);

The ResolveCpoint function determines relations (cRel) for the
critical points. Also, by exploiting the cNodesMatrixUpdate pro-
cedure, it updates accordingly cNodesMatrix. In particular, Re-
solveCpoint executes sophisticated element level matchers, see Ta-
ble 8, over the atomic concepts of labels by using the GetMLI-
bRel function (line 7). Matchers are applied following the order
(ExecutionList) given in the second column of Table 8. These
matchers have the third approximation level, which means that the
relations they produce depend heavily on the context of the matching
task. Also, execution times of them are much longer than of those of
Table 1. Thus, they can not be applied in all the cases.

Table8. Element level semantic matchers (Part 2)

Matcher Exec. | Approx. Matcher Schema
name order level type info
Hierarchy Distance 1 3 Sense-based | WN senses
WN Gloss 2 3 Gloss-based | WN senses
Extended WN Gloss 3 3 Gloss-based | WN senses
Gloss Comparison 4 3 Gloss-based | WN senses
Extended Gloss Comparison 5 3 Gloss-based | WN senses

For example, a Hierarchy Distance (HD) matcher computes the
equivalence relation if the distance between two input senses in the
WordNet hierarchy is less than a given threshold vaue (e.g., 3) and
returns idk otherwise. According to WordNet, games and entertain-
ment have a common ancestor, which is diversion. The distance be-
tween these concepts is 2 (1 more general link and 1 less generd).
Therefore, the HD matcher concludes that Games; is equivalent to
Entertainments. If the HD matcher fails, which is not the case
in our example, we apply a set of gloss-based matchers. These also
have two WordNet senses in input and exploit techniques based on
comparison of textual definitions (glosses) of the words whose senses
aretaken in input. They compute, depending on a particular matcher,
the equivalence, more/less general relations. Due to lack of space,
we give here only hints on how some gloss-based matchers work.
For example, WN Gloss (WNG) counts the number of occurrences
of the label of the source input sense in the gloss of the target in-
put sense. If this number is lower than (equal to) a threshold, the
less generality (due to acommon pattern of defining termsin glosses
through a more general term) is returned. Gloss Comparison (GC)
counts the number of the same words in the glosses of the source
and target input senses. If this number (of shared words) exceeds a
threshold, the equivalence is returned. Extended gloss matchers are
build in astraightforward way, by also considering glosses of the par-
ent (children) nodes of the input senses in the WordNet is-a (part-of)
hierarchy, see for details[7].

In line 8, we update cLabsMatrix with the critical relation, cRel,
such that in al the further computations and for the current pair
of nodes this relation is available. Finally, given the new axiom
(Games, — Entertainments) we recompute (line 11)8, by re-
running SAT, the relation holding between the pair of critical nodes,
thus determining that C'15 = C23.

8 cNodesMatrixUpdate performs functionalities identical to those of lines
80-82 in Algorithm 1.



5 EVALUATION

In this section we present the quality evaluation of the iterative se-
mantic matching agorithm. Due to lack of space we report here only
what we have realized to be the most important findings.

Evaluation set-up. In our evaluation we have used three large real-
world test cases, which were introduced in Table 4. As expert map-
pings for these test cases we used 2265 mappings acquired in [1].
By construction those expert mappings represent only true positives,
thereby alowing to estimate only the recall with them. To the best
of our knowledge, at the moment, there are no large datasets as, for
example, that one of Table 4, where available expert mappings a-
low measuring both precision” and recall. Thus, in the following we
focus mostly on analyzing the recall.

Two further observations. First is that higher values of recall can
be obtained at the expense (lower values) of precision. Thus, in order
to ensure afair recall evaluation, before running tests on the match-
ing tasks of Table 4, we have analyzed behavior of the iterative se-
mantic matching on a number of test cases, e.g., course university
catalogs™®, where expert mappings allowed measuring both precision
and recall. Matchers, decreasing precision substantialy in these tests
were discarded from the further evaluation. In fact, for thisreason we
exclude from the further considerations the Extended Gloss Compar-
ison matcher. The second observation isthat using matchers of Table
8 exhaustively for all the tasks, hence, omitting the critical pointsdis-
covery agorithm, also leads to a significant precision decrease, thus
justifying usefulness of the cPointsDiscovery algorithm.

Evaluation results. The summarized evaluation results for all the
three matching tasks of Table 4 are shown in Figure 3. In particu-
lar, it demonstrates contributions to the recall of matchers of Table
8 aswell as of their combinations. The Extended WN Gloss matcher
performed very poorly, i.e., contributing less than 1% to the recall,
hence, we do not report its results in Figure 3. By using a combi-
nation of the HD, WNG, GC matchers we have improved S-Match
recall results (29,5%) up to 46,1% within the iterative S-Match?.
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Figure 3. Evauation results (absolute values)

Let us now consider relative characteristics of the iterative S-
Match with respect to the non-iterative version, see the first row of
Table 9 for a summary. The highest recall increase by using only a
single matcher of Table 8 within the iterative S-Match was achieved
by the GC matcher, namely 34% over the non-iterative S-Match. The
best, in this sense, combination of two matchers is being that of the
HD and GC matchers: recall increased by 54%. Finally, a combina-
tion of the HD, WNG and GC matchers resulted in the 56% recall
increase with respect to the non-iterative S-Match.

Table 9 aso reports values of thresholds used within the evalua-
tion. These values were obtained based on the rationale behind de-
signing matchers of Table 8 and their evaluation results.

9 Precision is a correctness measure; the higher the value, the smaller is the
set of false positives which has been computed, see for details, e.g.,[4].

10 See, http://dit.unitn.it/~accord/Experimentaldesign.html for a repository
of test cases, expert mappings we have used.

11 Note, thisresult should be considered as acomplimentary oneto the results
of S-Match++ reported in [1], since they address separate problem spaces.

Table9. Some element level matchers and their evaluation results

HD | GC | HD+GC | HD+WNG +GC
Recall increase (relative), % | 20 34 54 56
Threshold value 4 2 4\ 2 4\ 1\2

Evaluation summary. The evaluation we have conducted shows
that the problem of the lack of background knowledge is a hard
one. In fact, as it turns out, not all the designed element level
matchers can perform always well in real-world applications, as it
might (mistakenly) seem from the toy evaluations. Also, new match-
ers are till needed, since, for example, we could discover that
(C14,C24) is the critical point, however, we were unable to re-
solve it with the matchers of Table 8, namely to match Home; and
Hobbies_ AN D_Interestss.

6 CONCLUSIONS

We have presented an automated approach to attack the problem of
the lack of background knowledge by applying semantic matching
iteratively. We implemented the proposed approach and evaluated it
on large real-world (lightweight) ontology matching tasks with en-
couraging results. Future work proceeds at least in the following di-
rections: (i) adapting the iterative semantic matching agorithm for
handling leaf-node critical points, (ii) design and development of the
new element level matchers, (iii) involving user within the match-
ing process, where hig’her input is maximally useful, (iv) conducting
further large and extensive real-world evaluations.
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