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On time observables in thermal theories.
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Abstract. We study the the existence of an observable representing time in thermal theories at thermo-
dynamical limit. That observable turns out to be described, as usual, by a selfadjoint operator that, with
the energy of the system, forms a representation of the Weyl-Heisenberg group. This situation is different
from the extent of standard quantum mechanic where, because of the semi boundedness of the energy
spectrum and due to Pauli theorem, such selfadjoint time operator does not exists. In the thermal case,
because of the presence of the reservoir, the energy is not bounded from below and thus Pauli theorem
does not apply. We work in an abstract framework where the thermal properties are translated into
modular properties of particular von Neumann algebras. As practical example, the thermal theories we
have in mind arise, as in the case of Bisognano Wichmann theorem, considering vacuum sectors of global
algebraic quantum theories restricted to some particular bounded region of the global spacetime. In these
cases the time operator acquires a particular meaning in terms of some global spacetime properties. Fi-
nally, forcing the energy to be positive, the spectral representation of the time operator can be described
by a positive-operator-valued measure, in accordance with known quantum mechanical situations.

1 Introduction

In ordinary quantum mechanics observables are described by selfadjoint operators, or equiva-
lently, by their corresponding spectral measures. This description seems to be not completely
satisfactory in fact, due to Pauli theorem [1], it is not possible to describe the time coordinate
by means of a selfadjoint operator if its conjugate energy is bounded from below. In general
relativistic theory the situation is even more complicated, indeed the same problem arises in
measuring coordinates of events, the joint spectrum of conjugate momenta being contained in
the upper half cone. On the other hand that kind of observables should be present in a quantum
theory, in fact more or less every measuring process deal with localization in time (for example
when a detector click). It appeared clear that the definition of observable in therms of selfad-
joint operators must be generalized. A generalized observable is described in therm of positive
operator valued measures (POVM) instead of ordinary spectral measures [2, 3, 4, 5]. With this
tool both the time observable in quantum theory and the quantum coordinate of an event in
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Minkowski spacetime were defined [3, 6, 7, 8, 9, 10, 11, 12, 13, 14]. This new tool is not a merely
mathematical generalization, but sometimes it carries also new physical description. We recall
that an observable represented by a POVM on a given Hilbert space ' becomes selfadjoint in
a bigger Hilbert space §). The meaning of the states orthogonal to $’ in § is sometime obscure,
sometime it was related with the Hilbert space describing the apparatus of measurement [5].
Notice that there is not a unique way to do the embedding £’ — §). On the other hand there are
physically reasonable situations in which the energy spectrum is not bounded from below, as for
example systems in thermal equilibrium with some reservoir. In the cases a selfadjoint “time”
should be found, where negative energy part can be interpreted as the energy of the reservoir
gained in a process. Moreover studying these cases it can put in evidence some new physical
interpretation of the POVM. We assume that a theory is thermal if it satisfies the Kubo Marting
Schwinger (KMS) condition, moreover, since we would like to have a continuous spectrum for
the energy, we consider theories at thermodynamic limit. This setup is translated, in a more
abstract way, requiring the presence of a von Neumann algebra of observables in “standard”
form. In relativistic theories thermal theories arises for example considering the vacuum sector
of quantum theories restricted in some particular subspace of the manifold as for example in the
Bisognano Wichmann theorem [15] were thermality comes from the choice of a different time
evolution. In this paper we study the presence and the properties of a time operator in these
cases. To this end we make use of the standard modular theory of Tomita and Takesaki and
some remarkable generalizations of Bisognano Wichmann theorem due to Borchers [16]. A con-
sequence of finding the time operator is that some subspace of the manifold we are considering
arises as target space of some measuring process, that is for example the case presented as an
example in section 3 concerning two dimensional Minkowski spacetime. Remarkably that should
be true also in de Sitter spacetime, where a particular vacuum sector appears thermal in static
coordinate. Moreover we shall show that restricting to the positive-energy sub Hilbert space
produces the well known situation. That is a sort of inverse Neumark theorem. Notice that in
this case the initial Hilbert space has a clear physical meaning. In the next section we present
the abstract framework in which the theory is developed: Tomita Takesaki modular theory and
some Borchers results for von Neumann algebras of observables. Then, in section 3 we present
two concrete examples where the time operator arises. Finally, in section 4 some conclusions
are given.

2 Algebraic approach

To build up a copy of conjugate observables representing “energy” and “time” in a thermal
theory, we seek for two groups of *-automorphisms of a suitable von Neumann algebra repre-
senting the observable of the system, generated respectively by “energy” and “time”. Moreover
in the natural Hilbert space, the two automorphisms must give rise to a representation of the
Weyl-Heisenberg group. Since thermality is cast by the KMS condition, the presence of a *-
automorphisms generated by the “energy” is assured. It then remains to fix that generated by
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could start our considerations also in terms of a C*-algebra 2 equipped with an algebraic KMS
state w. Then the GNS representation 7, (2) of 2 on the Hilbert space $, produces a von
Neumann algebra 9 := 7, (A)” on §,, with the cyclic vector Q. For this reason it seems not
so restrictive to consider KMS state on von Neumann algebras. The first important point to
stress is that for defining a KMS state we need a one-parameter group of automorphisms, usu-
ally interpreted as the natural time evolution of the system. Tomita-Takesaki [17] theorem says
that, given a von Neumann algebra 9t on the Hilbert space ), in standard form (i.e. there is a
cyclic and separating state  in §)), there exists a one-parameter group 7 of *-automorphisms
of M, called group of modular automorphisms, such that €2 is a 7-KMS state at inverse temper-
ature 2. 7 is constructed as follows: there is a linear operator S from 91 to 9 such that
SAQ = A*Q for every A in M. Since S is closeable, the polar decomposition S = ngAgln/f is
unique. Agy, called modular operator, is a selfadjoint positive operator, while Joy, represent-
ing a linear conjugation, is an anti-unitary operator. The *-automorphisms 7 are generated by
D := log Agn/(27): in $) the automorphisms 7 are represented by the one parameter group of
unitary operators V (t) := Al%,. The inverse theorem is also valid. Given an algebraic state w on
a C*-algebra which is KMS with respect to a *-automorphism 7, let ($),,, 7, (), Q) be its GNS
triple, then the von Neumann algebra M := m,(2()" is in standard form on ), w.r. to the cyclic
and separating state {1,. Moreover the x-automorphisms 7 are represented by unitary operators
V(t) := A;’;{(QW) which admit D as generator [18] [19].

2.1. Two dimensional Weyl group as conjugate observables. In this context we are
ready to introduce a time operator T that, if exists, should be the conjugate momentum to D.
In a more precise formulation, there should be another unitary group of transformation W (a)
on § such that W(a) and V(¢) form a representation of the canonical commutation relations in
Weyl form: W (a) and V (¢) should be strongly continuous representation of R and

V)W (a) = €9W (a)V (2). (1)

It is nothing but a projective representation of the abelian R? group:

Ult,a) == V()W (a); Ut,a)U(t,a") = @)Ut + t',a + o') called Weyl-Heisenberg group.
Working with the Weyl-Heisenberg unitary group instead of using generators avoids problems
with domains. Up to unitarities and in a separable Hilbert space, there is only one irreducible
representation of Weyl-Heisenberg group by Stone-von Neumann theorem.

2.2. Borchers framework. There are cases were the group of automorphisms generated by
time we are looking for arises naturally [20]. Let us recall the following meaningful theorem due
to Borchers [16].

Theorem 2.1.  (Borchers) Let MM be a von Neumann-algebra on $) a separable Hilbert space
and Q a cyclic and separating vector, if there is a unitary one-parameter group U(a) leaving Q)
inwvariant, and generated by a positive operator then:

(a) if U(a)MMU (—a) C M for every positive a then

(B1) ARU(a) Ayt = U(e *™a)Vt,a € R (B2) JU(a)J =U(a)*;
(b) if instead U(a)IMU (—a) C M for every negative a then
(B1)  ALU(a)Ay' =U(e’™a)Vt,ae R (B2)  JU(a)J =U(a)%;



Notice that the theorem casts in an abstract form the content of Bisognano Wichmann theorem
[15], or of the result of Hislop and Longo [21] on conformal theories. In the case of Minkowski
spacetime, as we shall remind later, U(a) arises as the translation along a particular light
coordinate.

2.3. Time and energy in Borchers theory. We introduce the following result as a corollary
of Borchers theorem 2.1, but with some interesting physical implications we discuss shortly.
Theorem 2.2. Let 9 be a von Neumann-algebra on a separable Hilbert space $ and Q a
cyclic and separating vector, if there is a unitary group of transformation U(a) leaving Q0 in-
variant, and generated by a positive operator H and such that U(a)MU(—a) C M for every
positive a, then, on a certain closed subspace K, two strongly continuous one parameter group of
transformation V (t), W (a) exist, satisfying the one-dimensional Weyl-Heisenberg commutation
relations (1).

Proof. First of all notice that V(t) := Ag{(%) acts as a one-parameter group of unitary
transformations on $, Agy being the Tomita Takesaki modular operator that exists since 2
is cyclic and separating. To find W (a) we study the properties of H. From (B1) in theorem
2.1 ALHAL! = e 2™ H, it implies o(H) = e 2o (H) thus the positive spectrum o(H) of H
has at most two disjoint orbits {0} and (0,+o00). If 0 € o.(H) (the continuous spectrum) we
define R := §. If 0 € 0,(H) (the point spectrum of H) the Hilbert space §) can be decomposed
in two orthogonal invariant subspace $) := ) ® & where H on $) has the spectrum {0} while
on K the spectrum is continuous due to separability. Since {0} is invariant for the action of
V(t), & := {0} is also invariant for the action V(¢). If the spectral decomposition of H on
Ris H := [z ME()), consider the self-adjoint operator T := log(H) = [+ log(A\)dE(X). As
W(a) := €'l from (B1) descends that V (t)W (a) := €"*W (a)V (t) on &. They form a projective
unitary representation of Weyl-Heisenberg group. O

Remark: (a) We call D “energy” and T “time”, in fact D generates the automorphisms 7 of
the KMS condition for . Moreover [D,T] := ¢ holds in a dense domain & C K. The spectrum
of both T and D is the whole line R so that the energy D is not bounded from below. This fact
is not surprising because we are describing thermal states.

(b) The Heisenberg uncertainty relations ((D?) — (D)?)((T?) — (T?)) > 1/4 holds on &.

(c) Since the reference state 2 is invariant under the action of W(a), the averaged value of the
time operator 7" on it has no particular meaning. Instead it can be used to compute the time
coordinate of the “fluctuation” over the reference state Q. If ¢ € & then (T'),, := (¢, T4), where
1) € R represents some particular fluctuation on 2.

(d) Borchers hypotheses may descend from the following more geometrical requirement as found
by Wiesbrock [22, 23] ( see also [24] ) who proved that if 9 C 9t are two von Neumann algebras
for which Q is cyclic and separating, there exists a unitary group of transformation U(a) on 9,
generated by a positive operator H (which is the selfadjoint closure of the essentially selfadjoint
operator log(Amn) — log(Agr)) satisfying (B1) in theorem 2.1, whose action is invariant for 9 if
a is positive.

(e) In practical examples, see below, both U(a) (generated by H) and V(t) arise as geomet-
ric groups of translations in particular coordinates. It is remarkable that W (a), that should



represent “energy” translations, is generated by a modification of a time translator log(H).

(f) Since £ plays the role of “vacuum” with respect to H, it is not surprising that a repre-
sentation of the Weyl-Heisenberg group do not exist on §(. In fact also for a free particle in
some Fock spaces there is no way to define meaningful canonical commutation relations on the
vacuum subspace, position and impulse form a Weyl-Heisenberg group only in the subspaces
orthogonal to the vacuum.

2.4. The interplay with POVM. Suppose to have a von Neumann algebra 9 on a Hilbert
space $) with the hypotheses of theorem 2.2. We can then find a subspace & C $ on which
acts the two unitary group of transformation V(¢) and W (a) satisfying the Weyl-Heisenberg
commutation relations and generated respectively by D and 7. Being &, C & such that D on
A, has positive spectrum, if P : & — R, is the orthogonal projector, T' := PTP turns out to
be a generalized observable (POVM). If E : B — L(R) is the projector valued measure (PVM)
from Borel sets B of R to operators in &, such that T' := [;log(A)dE()), F(X) := PE(X)
defines a POVM from the same Borel sets B to operators in &1 and

T = / log(\)dF()).

Notice that, because of Pauli theorem, F' must be a real POVM in general (in F(X)F(X) #
F(X)), in fact D the conjugate momentum of 7" on £; has a spectrum bounded from below.
We have here a sort of inverse Neumark theorem. Imposing some constraint in f to the energy”,
T’ turns to be a generalized observable.

3 Example of thermal theories with time

In this section we present some concrete examples of time operators T'.

3.1. Time operator of quantum particle on the half line. We shall study the second
quantization of a one dimensional particle associated with the so called tachyon field. This
theory was proposed some years ago by Sewell [25], restricting some Minkowskian free field
theory on the Killing horizon. Sometime in literature this is related with lightfront holography
[26]. Recently its relation with conformal theory was put forward [27, 28, 29]. For conformal
theory on the circle see for example [30, 31, 32, 33] and reference therein. Consider the classical
wavefunctions 9 in 8: the set of smooth real function vanishing with every derivative at infinity.
Equip 8 with the symplectic form o(¢,v') = [59$0,9" — 9'0y4pdz, invariant under change
of coordinate z. Once the coordinate x is chosen, every wavefunction can be decomposed in

positive and negative frequency parts: 9(z) := 9 (c) + ¥+ (x), where the positive frequency

part is ¥4 (z) == [;° %1]4(1?) The set of 1), turns out to be (dense in) a Hilbert space

Hr ~ L*(R",dE) with the scalar product (4,9, ) := —io (¥, 9, ). The Weyl quantum fields
W () := €®) on the standard Fock space F(fr) generates a unitary GNS representation
of the Weyl algebra associated with the pair (§,0). We consider now the subalgebra W(8)

made by concrete Weyl operators W(1/)) smeared by wavefunction with support contained in

the positive part of the real line. 9M(R) := 7(W(8)4)"” is a von Neumann algebra on F(HRr)



and the vacuum Q of F(Hr) is a cyclic and separating state on it [30, 31, 32, 33, 34, 35].
Remarkably, in this case, the one-parameter group of transformations V (¢) :== A®*/27) (A being
the modular operator) has a geometrical meaning, it is made by z—dilation generated by D :=
Jrz: Opd(x)0yd(z) : dz. The theory is thermal, namely € is a KMS state at temperature 1/(2r)
w.r. to V(t). z—translations can be represented by the unitary operators U(a) generated by
the positive operator H := [ : 02 p(z)0pp(z) : dz. Q is invariant under U(a) and M(R) is
invariant under the action of U(a) provided a is positive, then the hypothesis of theorem 2.2
are fulfilled. We can build & C F($Hr) and W(a) that with V(¢) satisfies the Weyl-Heisenberg
commutation relation (1) on &. R is the orthogonal to the vacuum 2 in the Fock space. H|g has
continuous spectrum only. The time operator T generating W (a) is log(H): T := [log AddE(\)

where Hig = [AdE()). In a more messy language T' := [;° log(E)aEaEdE', where aE, ap are
the creation and annihilation operator of the state at fixed H = E. As noticed in the remarks
of the above section, it is intriguing that the time operator can be build using the spectral
decomposition H.

3.2. Rindler coordinates in two dimensional Minkowski spacetime. We consider for
simplicity only the two dimensional Minkowski spacetime M but the example we are present-
ing here can be generalized straightforwardly also in the case of four dimensional Minkowski
spacetime or also on some other spacetime having a bifurcate Killing horizon (e.g. de Sitter
spacetime). Here we show that the time related with the bust (Rindler time) and also the posi-
tion, can be represented by selfadjoint operators on some suitable Hilbert space. The metric of
M is ds? = —dt?+dz?. The Poincaré group, which acts as the isometric transformations, is made
by spacetime translations and by the one parameter boost. The concrete free massive or mass-
less local Weyl fields W( f) := ) smeared by local function on the Fock space F($) with
Poincaré-invariant vacuum §2, generate a GNS unitary representation )¢ of the abstract Weyl
algebra W(M) associated with the standard symplectic structure on Minkowski2. See [15, 19, 18]
for details. Consider W(R) C W(M) the subalgebra of fields smeared by local function having
domain in the right Rindler wedge R := {(¢,2),0 < |t| < z}. 7x(W(f)) := mm(W(f)) is also
a concrete representation of W(R) in F(Hnr). M(R) := 7x(W(R))” is a von Neumann algebra
acting on the Hilbert space (). Q2 is a cyclic and separating state for 2 (R) [15], then it
has a modular operator A and a modular reflection J. Interestingly these two operator have
a geometrical meaning, in fact A’ represents the boosts and J acts on M(R) as a geometrical
reflection mapping the right wedge R into the left one. D, the generator of A™/(7)  represents
the energy of the accelerating observer. 9(R) is not invariant under the action of time trans-
lation, unitarily implemented on F($¢) by Ux(a) := ¥ for every a # 0, then the Borchers
theorem 2.1 does not apply for Uy and consequently also the theorem 2.2 does not permit to
find a time operator. We can circumvent the problem noticing that there are two one parameter
group of transformation corresponding to displacements in Minkowksi light coordinates, respec-
tively z+ = (t + z)/2 and £~ = (t — z)/2. They are unitarily implementable on F($)). We
call the corresponding unitary operators U, (a) and U_(a), generated respectively by H, and

2The local smearing is realized by mapping local function f to wavefunction 1 satisfying the massive Klein
Gordon equation by means of the standard causal propagator.



H_. Uy(a)MR)U, (a)t € M(R) for a > 0 and U_(5)M(R)U_(b)! € M(R) for b < 0. Both
groups keep invariant the vacuum €2 and are generated by positive operators. By theorem 2.2
it is possible to find two operators Ty = log(H,) and T = —log(H_). Both 7'y, D and T, D
satisfy the Weyl-Heisenberg commutation relation (1) on a subspace & € F(9¢), the orthogonal
of the vacuum. If U, (a) and U_(b) commute, as for example for massless fields, it is possible
to combine both in the following way: 7" = (T + 7-)/2 and X = (T} — T_)/2. Notice that
[T, D] = ¢ while X commute with D. T represents the Rindler time while X is the Rindler
position. The explicit construction of 7 and 7_ descends straightforwardly as in the above
example from the spectral representations of H, and H . Notice that Rindler points arises as
elements of the joint spectrum of 7' and R on a subset of F($q).

4 Comments

We have built a time observable in thermal theories at thermodynamical limit equipped with an-
other one-parameter group of symmetry which exists under the hypothesis of Borchers theorem
2.1. This observable is described by a selfadjoint operator whose associates one-parameter group
of unitary transformation satisfy the Weyl-Heisenberg commutation relations with unitary time
translations. This is not the usual situation in ordinary quantum mechanic where a selfadjoint
operator describing the time displacement cannot exists. Moreover we have studied the restric-
tion of that operators in subspaces where the energy is bounded from below. We have shown
that in this way time observables turns to be re-constructed by a POVM as in the ordinary
quantum mechanic. With these tools we have analyzed two practical situations one related with
conformal theories and the related with description of Rindler observables in Minkowski vacuum
sector. We have shown that in the latter case the Rindler time arises, surprisingly, as a function
of the generators of Minkowksi lightlike translations: 7' = log H; — log H_. As an interesting
consequence, the points in the Rindler wedge arises as elements of the joint spectrum of two
observables in Minkowski vacuum.

Appendix

A Explicit form of 7" on the one particle Hilbert space

We study the restriction of the Weyl-Heisenberg groups studied in section 3.1 on the one particle
Hilbert space $) = L?(Rt,dE) where W (a) and V (t) have this form:

W(a)(E) == Ey(E),  V(t)p(E) == e39(Be).

In § it is easy to show that they are unitary and that V(¢)t = V(—t), V(¢)!V(¢) = 1 and that
W(a)t = W(—a) , W(a)'W(a) = 1, and W (a)V (t) := €'V ()W (a). These are two strongly
continuous unitary representation of R in §) which form a representation of the Weyl-Heisenberg
commutation relations on . W(a) = €1,V (t) = €. To show the explicit form of T' and D



we unitarily map L?(R",dFE) onto L?(R,dg) where ¢ = log E and for every v in L?(R+, dE)
Pe(q) = Velpp(e?) is in L?(R,dg). On a suitable common dense domain this 7 and D takes

the following standard form

d
T = D=i—.
q’ dq
A.1. Time in position representation. For completeness we would like to present 7' and

D in position representation where 9 () := [;° %&(E)dE for every 1 in §. The action of

V(t) on 9 () is V(t)1h4(z) = 14 (elx) corresponding to a dilation generated by D = ix%. On
the other hand the action of W on v (x) is more complicated. It is a bit simpler considering
the action of W on wavefunction (¢(z) := v (z)+ + c.c.) instead, where

™

|z la] e2

I'(ia) I‘(—ia)) sinh(ma) =z

—ia ao(x)

W(a)(o) = (o) *
where x is for a convolution, o(z) is the distribution representing the signum of z. The action
of T turns to be: log(lz])

. [ log(|z|) +
Ty (z) == thy(z) % i (M>

x

where the second term in the convolution needs to be intended with the prescription of principal
value, and 7 is the logarithmic derivative of the gamma function evaluated in i: v = I'(1)'/T'(1).
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