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Abstract

We use a structural operational semantics which drives us in in-
ferring quantitative measures on system evolution. The transitions of
the system are labelled and we assign rates to them by only looking at
these labels. The rates reflect the possibly distributed architecture on
which applications run. We then map transition systems to Markov
chains, and performance evaluation is carried out using standard tools.
As a working example, we compare the performance of a conventional
uniprocessor with a prefetch pipeline machine. We also consider two
case studies from the literature involving mobile computation to show
that our framework is feasible.

Keywords. Calculi for Mobility, Enhanced Operational Semantics, Formal Methodo-

logy, Performance Evaluation, Stochastic Models.

1 Introduction

The design of distributed and concurrent systems requires the management
of a huge amount of information (such as the structure of interconnection

∗An extended abstract of this paper can be found in the proceedings of FASE’99. The
last two authors have been partially supported by the MURST project TOSCA.
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and synchronization, and the allocation and management of resources) along
with the cooperation of a large group of people (designers, implementors,
performance and quality analysts, etc.). A formal specification of the sys-
tem being planned may help both to organize human interactions and avoid
misunderstandings, and also to monitor the work of the implementors. The
software modules produced must behave according to their specifications,
against which they have to be checked. In the area of safety-critical con-
trol systems and secure systems (nuclear power stations, traffic alert and
collision avoidance systems, railway signalling systems, medical instruments,
etc.), where system failure may cause loss of human life, environmental dam-
age or financial loss, the verification must be certified.

Often, specifications must also include performance constraints on system
behaviour. A typical example is a distributed system for reserving plane
seats. An implementation must be rejected when a reservation takes hours,
even if it matches its behavioural specification.

We are mainly interested in specifying and evaluating distributed applic-
ations, especially those involving code migration, although our approach can
be used in other fields as well. We shall describe systems through a calcu-
lus for mobility, endowed with an enhanced version of structural operational
semantics (SOS) [55]. Our semantics [22] makes it possible to mechanically
derive Markov chains, once the user has given additional information about
the rates of system activities. More precisely, it suffices to have information
about the activities performed by the components of a system in isolation,
and on some features of its architecture. These values will then be composed
to compute the rates of the activities of the whole system. The actual per-
formance evaluation is then carried out using standard techniques and tools
[66, 58, 61].

In practice, performance analysis is often delayed until a system is com-
pletely implemented. This delay may cause high extra-costs to the imple-
mentation, so one needs to measure a system as soon as possible and to closely
integrate behavioural and performance analysis [33]. Since several tools are
available to check the behaviour of systems specified within the SOS approach
(which our proposal relies on) this integration becomes possible. Also, we
can analyse the performance of systems from the very beginning of their
design, as we use the very same specification language. What we are pro-
posing is therefore a first step towards the development of a single, formal
design methodology that supports its users in analysing (mobile) systems,
following a (semi-) mechanizable procedure.

To assess our proposal, we applied it to a case study presented in the
literature [4]. It considers a network management system, in which systems
operate in highly distributed settings. We compare the implementations in
the classical paradigms based on Remote Procedure Call and on Remote
Evaluation (the latter exploits code migration). Our results coincide with
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those of [4]. This makes us confident that our approach is sensible and
applicable. Further support comes from a larger example, also taken from
the literature on performance: the generalized polling system studied in [36]
through stochastic process calculi and in [44, 39] through stochastic Petri
nets.

We feel confident that our proposal can scale up. Indeed, many languages
for reactive and mobile systems, used in industrial application as well (e.g.
Facile [65], PICT [54], CML [53], Esterel [6] 1), are built on top of a core pro-
cess calculus like the one we use here, which is exploited as their intermediate
language. This could also be done for Java-like languages (for a translation
into a process calculus of the main features of Java see [34]). The formal
connections between a real language and the core calculus might thus help
the user to provide the information about performance mentioned above, in
the form of annotations on the compiled code.

The paper is organized as follows. The next section briefly discusses process
calculi and their use in performance analysis; also, it intuitively presents our
approach. In Sect. 3 we recall the semantics of the HOπ, the process calculus
we shall use, and the main concepts about continuous time Markov chains
(CTMCs for short). In Sect. 4 we introduce a sample function that assigns
rates to transitions. We show how to obtain the CTMC associated with a
given process and how to extract performance measures from it, mainly about
network traffic. As a simple running example, we compute and compare the
performance of a conventional uniprocessor architecture and of a prefetch
pipeline machine. We also outline how our proposal can be used for CPU
load analysis. Section 5 presents the case study on a network management
system, and we show that our results agree with those obtained via classical
evaluation techniques. A generalized polling system is studied in Sect. 6.

2 Process Algebras and Quantitative Meas-

ures

One of the most interesting paradigms for concurrent and distributed systems
is based on process calculi, or process algebras, such as CCS [45], TCSP [37],
and the π-calculus [47], the join-calculus [27, 28], Plain-CHOCS [64], Dπ
[59], the ambient calculus [12]. Particularly important for our study are the

1Facile has been used to implement the Calumet teleconferencing system [62, 63] (a sup-
port to cooperative work through real-time presentations of visual and audio information
across WAN), and Einrichten [2] (an application that combines distribution, sophisticated
graphics, and live video for collaborative interior design work). Esterel has been used as
well in industrial application (see e.g., [17, 15, 40, 50]). Esterel [43] and Facile are already
equipped with an enhanced operational semantics, and Facile has been used to check some
qualitative properties of mobile agent systems [7, 24].

3



last ones, through which computations of mobile agents can be specified at
various levels of abstraction.

These calculi describe a system in terms of the actions it can perform.
The actions are put together via a few basic operators, such as sequential
and parallel composition, nondeterministic choice and scope restriction. Se-
quentialization P ; Q of systems P and Q is often reduced to prefixing a.Q,
i.e. P can only be the prefix a. A prefix is a single atomic action, standing
for some system activity. Intuitively, the system a.Q first performs a and
then behaves like Q.

The behaviour of a system is usually represented through a directed
graph called a transition system, specified using the structural operational
semantics (SOS) approach [55]. The nodes are the configurations (or states)
that the system can pass through, and are represented by expressions of the
calculus (processes). The arcs represent the transitions from one configura-
tion to another, i.e. the occurrence of activities. Transitions can be labelled
by information on which activities they represent, yielding labelled transition
systems. The key point of the SOS approach is that the transitions are
deduced according to a set of inference rules driven by the syntax.

A transition system can be seen as the specification of an abstract ma-
chine. For example, in the sequential setting, the states consist of the pro-
gram itself (with an instruction counter) and the store, plus some auxiliary
data which represent the data structures on which the program works, e.g.,
the activation stack. A language can be specified by a hierarchy of abstract
machines, described as transition systems, which are increasingly closer to
the actual interpreter or compiler. The abstract machines can be formally
related to each other, so that a higher level transition (in the “specification”)
is mapped onto a sequence σ of lower level ones (its “implementation”); see,
e.g., the VDM approach [41] and in the process algebra field [20]). Technic-
ally, the sequence σ is tightly connected to a linearization of the deduction
of the transition in hand. By composing the connecting relations along the
hierarchy, a transition representing an activity a can be linked to the steps
that (the specification of) the actual machine performs to execute a.

In the field of process algebras, a lot of attention has been devoted to
the behavioural analysis of systems. The aim is to establish some equality
relations (usually based on bisimulation [45]) between two descriptions of the
same system to ensure that they behave the same. Using these equivalences,
one can prove that an implementation behaves according to its specification.

Besides behavioural analysis, quantitative measures are also relevant while
developing a system. The literature presents some extensions to enrich pro-
cess algebras with quantitative information such as time [52] and probab-
ilities [67, 31, 42]. A further step is made by stochastic process algebras
[30, 36, 5, 11, 56, 9, 32, 18, 35] which associate probabilistic distributions
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with prefixes. These become pairs of the form (a, F ), with the intuition that
a is performed and completed in a time drawn from the distribution F . Usu-
ally F is assumed to be an exponential distribution,2 and prefixes have the
form (a, r), where r is the parameter that characterizes such distributions.
The exponential distribution enables us to recover a continuous time Markov
chain from which performance measures are computed by using standard nu-
merical techniques. The syntactic extension of stochastic process algebras
has a potential drawback: either the rates are all symbolic (and different), or
they have to reflect a current architecture. In the first case, the calculations
needed to analyse the performance may become quite heavy; in the second
the designers should know some features of the architecture right from the
very beginning of project development.

We propose instead to leave the syntax of the calculus unchanged, yet re-
taining the peculiarities of stochastic process algebras. As mentioned above,
our idea is to mechanically derive the probabilistic distributions from the
labels of the transition system and from some additional information about
the architecture of the target machine. In this way, we partially alleviate the
problem mentioned above, and we can reuse existing tools for behavioural
analysis.

Our starting point is an enhanced version of operational semantics called
proved [22]. It is a parametric model used in [21, 23] to uniformly describe
different qualitative aspects of processes. In our proved operational semantics
the transition labels are enhanced so that they record the application of in-
ference rules, namely the proofs. By inspecting enhanced labels we derive
the rates of transitions, as the proof of a transition represents the low level
routines performed by the run-time support to execute the transition it-
self. Since the rates are also affected by the target architecture, we consider
its aspects relevant to performance evaluation as parameters. Pushing the
connection proofs/run-time support further, we would like to delegate the
instantiation of these parameters to the compiler of the language. Indeed,
the compiler knows the architecture for which it has been written, and it can
annotate (or at least suggest how to) the intermediate code with information
about performance. Clearly, different target architectures originate different
parameter instantiations. In this way, the same definition can describe the
behaviour and the performance of a system running on different target ma-
chines or networks. In particular, we can compare two systems running on

2An exponential distribution with rate r is a function F (t) = 1− e−rt, where t is the
time parameter. The value of F (t) is smaller than 1 and limt→∞ F (t) = 1. The shape
of F (t) is a curve which monotonically grows from 0 approaching 1 for positive values of
its argument t. The parameter r determines the slope of the curve. The greater r, the
faster F (t) approaches its asymptotic value. The probability of performing an action with
parameter r within time x is F (x) = 1 − e−rx, so r determines the time, ∆t, needed to
have a probability near to 1.
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the same architecture, as well as two different architectures devised to run
the same application.

To present our proposal in a pure setting, we adopt here the higher order
π-calculus (HOπ) [60]. This is an extension of the π-calculus [47] to describe
distributed and concurrent systems which allows values and port names to
be transmitted in communications between the processes. The HOπ extends
first-class values with processes allowing description of code mobility, as well.
We recall it in the next section. Since our technique can be applied to any
language with an operational semantics, no real limitation arises from this
choice.

3 Background

This section recalls the syntax and the semantics of the HOπ and the main
basic concepts about CTMCs.

3.1 Higher Order π-calculus

The HOπ (Higher-Order π-calculus) [60] extends the π-calculus of [47], a
foundational model of concurrent communicating processes based on the no-
tion of name passing. In the higher order version, names can represent values,
links and also processes. Thus communications may cause processes to mi-
grate. We slightly enrich the standard syntax to better express quantitative
analysis. In particular, we use a set of prefixes τi indicating invisible actions
rather than a single τ , in order to represent the fact that different internal
actions may have different durations.

Definition 3.1 Let N be a countably infinite set of names, ranged over by
a, b, . . . , x, y, . . . , and let S = {τ0, τ1, τ2, . . . } be a countably infinite set of
invisible actions ranged over by τi, with N ∩ S = ∅. We also assume a set
of agent identifiers, each with its arity, ranged over by A, A1, . . . and a set V
of process variables ranged over by X, Y, . . . . Then, the set P of processes,
ranged over by P, Q, R, . . . , is defined by the following syntax

P ::= 0 | π.P | P + P | P |P | (νx)P | [x = y]P | A(U1, . . . , Un)

where Ui stands for a process variable or for a name. The prefix π may be
either τi for silent moves, or x(U) for input, or xK for output, where K
stands for a process or for a name. In the last cases x is called subject, while
U and K are called objects.

Hereafter, the trailing 0 will be omitted in the definition of processes.
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3.1.1 Informal semantics

The prefix π is the first atomic action that the process π.P can perform. A
silent prefix τi denotes an action which is internal to the system. The input
prefix x(U) binds the occurrences of the process variable or name U in the
prefixed process P . Intuitively, a name or a process will be received along
the link named x and it will substitute the free occurrences of placeholder U
in the process prefixed by the input.3 The output prefix xK does not bind
the name or process K which is sent along x.

Summation denotes nondeterministic choice. The process P1+P2 behaves
either like P1 or P2.

The operator | describes parallel composition of processes. The compon-
ents of P1|P2 may act independently. Also, an output action of P1 (P2) at any
output port x may synchronize with an input action of P2 (P1) at x to create
a silent action denoting the communication. The value sent by P1 replaces
the relevant occurrences of the placeholder U in P2 (see the comment above
on input).

The restriction operator (νx) acts as a static declaration of (i.e. a binder
for) the name x in the process P that it prefixes. In other words, x is a
unique name in P which is different from all external names. The agent
(νx)P behaves like P , except that actions at ports x and x are prohibited.
However communications along link x of components within P are allowed
because the result is a silent action. Restriction affects the higher-order
features of the calculus as well. Consider the process

P = x(U).(U |U)|(ν a)xQ (1)

where Q = ab+a(y). A possible transition models the transmission of process
Q along link x; Q replaces the two occurrences of the placeholder U . The
neat result is the process displayed below, where two occurrences of Q are
both enabled and may run in parallel. Furthermore, Q uses the private name
a of the right-hand component of the parallel composition. Hence we must
enlarge the scope of (ν a) after the communication to include the left-hand
component of the top-level |. Actually, we reach the state

(ν a)((Q|Q)|0)

(see the next sub-section for a formal derivation of the transition).
Matching [x = y]P is an if-then operator: process P is activated only

if x = y.
An agent is a static definition of a parameterised process that becomes

a process when its parameters are instantiated. Each agent identifier A

3This is the so-called late semantics, because the binding of U takes place at commu-
nication time, as opposed to early semantics [48] which we do not consider in this paper.
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has a unique defining equation of the form A(Ũ) = P (hereafter, Ũ denotes
U1, . . . , Un, where the Ui are all distinct and are the only names occurring free
in P ; see the next sub-section for the definition of free names.) The equation
A(Ũ) = P is akin to the definition of function: it is invoked by A(K̃) and
triggers the substitution of the actual parameter Ki for the corresponding
formal parameter Ui.

3.1.2 Operational semantics

For the (proved) operational semantics of the HOπ, we need to define the
set of actions, which will be the basic ingredients of the transition labels.
The actions are almost the same as prefixes, from which they are obtained.
The set of silent actions will be simply S. The other actions (i.e. input
and output, sometimes called visible) form the set A, with typical element
α. More precisely, α can be x(U) for input, xK for free output just as
prefixes; furthermore it can be x(K) for bound output. This new action is
originated by the interplay between output prefix and restriction, as shown
by rule Open in Tab. 1. Roughly speaking, the effect of a bound output is

vanishing a (νx) operator, as in Q = (νx)yx.P
y(x)
−→ P . The intuition behind

this operation is to make the name x, which is private to Q, available to the
external environment. Recall that the operator (νx) can be interpreted as
a declaration: the bound output then enlarges the scope of the declaration.
For this reason a bound output is sometimes referred to as scope extrusion
in the literature.

Now, we define our enhanced labels in the style of [19, 8, 21]. The label of
a transition records the inference rules used during its deduction, besides the
action itself. This is the only difference between the proved semantics and
the standard one [47]. Below, we also introduce a function ` which takes an
enhanced label to the corresponding standard action label, thus recovering
the original semantics of [47]. For a detailed presentation of the proved
semantics of the π-calculus and of the HOπ, see [23].

Definition 3.2

Let L = {‖0, ‖1} with χ ∈ L∗, O = {+0, +1, =m, (νx), m̃} 3 o (with m, mi ∈
IR+, ∀mi ∈ m̃) and let ϑ ∈ (L∪O)∗. Then the set Θ of enhanced labels (with
typical element θ) is defined by the following syntax

θ ::= ϑα | ϑτi | ϑ〈‖0ϑ0α0, ‖1ϑ1α1〉

with α0 (α1 resp.) is x(U) iff α1 (α0 resp.) is either xK or x(K).
The function ` is defined as `(ϑα) = α, `(ϑτi) = `(ϑ〈‖0ϑ0α0, ‖1ϑ1α1〉) = τ.

We partition the set of tags in two only to simplify the presentation of
our cost function in Sect. 4.1. Intuitively, the tags will be used to keep track
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of the context in which actions occur; we shall give more intuition below,
while commenting on the rules of the proved operational semantics. We only
mention here that the tags in L are concerned with the parallel structure of
processes, and are therefore linked to the parallel composition “|”; those in
O concern, so to speak, the sequential structure of processes.

We recall a couple of auxiliary definitions. The free names fn, bound
names bn, and names n = fn ∪ bn of a standard label `(θ) are as follows.

`(θ) Kind fn(`(θ)) bn(`(θ))

τi Silent ∅ ∅
x(U) Input {x} {U}
xK Free Output {x, K} ∅

x(K) Bound Output {x} {K}

Functions fn, bn and n are extended in the obvious way to enhanced labels
and to processes by considering the input prefix x(U) and the restriction
(ν x) as binders. We sometimes write (νx, y)P for (νx)(νy)P .

A variant of P
θ

−→ Q is a transition which only differs in that P and
Q have been replaced by processes that are α-equivalent (i.e. that only
differ in the choice of bound names), and `(θ) has been α-converted, where
a name bound in `(θ) includes Q in its scope. For example the transitions

x(b) . bz
x(b)
−→ bz, x(y) . yz

x(b)
−→ bz and x(y) . yz

x(y)
−→ yz are variants of each

other. Hereafter, a transition stands for all its variants.
The (schemata of the) inference rules of the proved semantics of the HOπ

are in Tab. 1. The table has the rules for the actual transitions P
θ

−→ Q,

and for an auxiliary transition relation
θ
→I . All the rules are interpreted

as follows: if the transition(s) above the inference line (premises) can be
deduced, then so is the transition below the line (conclusion).

We briefly describe the intuition of the rules in the auxiliary transition

relation
θ
→I . The additional index I is a set of names that require special

care, since they are bound.
The axiom Act is the rule from which we start the derivation of any trans-

ition. It essentially says how a prefix of the calculus originates a transition
that in its label records the information on the kind of prefix (silent, input,
output) fired. In rule Sum0 (Sum1) the intuition behind tag +0 (+1) is to re-
cord that the left (right) alternative of a choice has been selected. Rule Par0

(Par1) adds a tag ‖0 (‖1) to the label of its conclusion, because the left (right)
component is moving. Its side condition guarantees that if θ = ϑx(K), i.e. it
is a bound output of object K with bound names bn(θ), no clash will occur
between bn(θ) and the names free in Q. Note that the names bound in K
are recorded in the set I by rule Open, see below. Restriction on name x is
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represented in labels by (νx). It signals that the restricted name is no longer
available. We record the resolution of a matching through tag =m, where
the positive real number m is the size of the actual data compared. Pairs
are used to signal interaction and to record the components which actually
interacted (and the proofs of the relevant transitions). So, the rule Com0

(and its symmetric Com1) has a pair instead of the usual τ in its conclusion.
Note that the placeholder U , which is the subject of the input action, is re-
placed by the subject of the output, which is an actual datum, both in the
residual of the input and in the label of the communication. The invocation
of a definition enriches the label of the conclusion of rule Ide with the tag m̃,
the vector of the sizes of the actual parameters K̃.

We now comment on the rules that handle the set I in the auxiliary

transition relation
θ
→I. As mentioned before, this set contains names ex-

truded while communicating them, or communicating a process in which
they occur. Rule Open assigns to I all the names to be extruded. Then, the
rule Close0 (symmetrically Close1) empties I while using it to include the
receiving process as well in the scope of the extruded names (note that here
I ⊆ fn(K), because of the side condition in rule Open).

Finally, the rule HOπ discards the index I and gives the actual trans-
itions.

To clarify the interaction of extrusion and higher-order mobility, consider
again the process P in (1). The derivation of the communication along
channel x according to the rules in Tab. 1 is

x(U).(U |U)
x(U)
−→∅ U |U,

xQ
xQ
−→∅ 0

(ν a)xQ
x(Q)
−→{a} 0

x(U).(U |U)|(ν a)xQ
〈||0x(Q),||1xQ〉

−→∅ (ν a)((Q|Q)|0)

x(U).(U |U)|(ν a)xQ
〈||0x(Q),||1xQ〉

−→ (ν a)((Q|Q)|0)

As mentioned above, the ϑ part of an enhanced label ϑα keeps track of
the context in which the prefix originating the corresponding transition is
plugged (and likewise for communications). In fact, transitions are deduced
by induction on the syntax of processes that drives the selection of inference
rules.

It is straightforward to obtain the original semantics from the proved one
by applying function ` in Def. 3.2 to each enhanced label in Tab. 1.

3.1.3 Some auxiliary definitions

The rules in Tab. 1 define the transition system of the whole HOπ. It
is a graph in which processes form the nodes, and the arcs represent the
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Act : π.P
π
−→∅P

Sum0 : P
θ
−→IP ′

P+Q
+0θ
−→IP ′

Sum1 : P
θ
−→IP ′

Q+P
+1θ
−→IP ′

Par0 : P
θ
−→IP ′

P |Q
‖0θ
−→IP ′|Q

, I∩fn(Q)=∅ Par1 : P
θ
−→IP ′

Q|P
‖1θ
−→IQ|P ′

, I∩fn(Q)=∅

Res : P
θ
−→IP ′

(νx)P
(νx)θ
−→I(νx)P ′

, x/∈n(`(θ)) Match : P
θ
−→IP ′

[x=x]P
=mθ
−→IP ′

Com0 : P
ϑxK
−→∅P ′ , Q

ϑ′x(U)
−→∅ Q′

P |Q
〈‖0ϑxK,‖1ϑ′x(K)〉

−→∅ P ′|Q′{K/U}
Com1 : P

ϑ′x(U)
−→∅ P ′ , Q

ϑxK
−→∅Q′

P |Q
〈‖0ϑ′x(K),‖1ϑxK〉

−→∅ P ′{K/U}|Q′

Ide : P{K̃/Ũ}
θ
−→IP ′

A(K̃)
m̃θ
−→IP ′

, A(Ũ)=P

Open : P
ϑxK
−→∅P ′

(νI)P
ϑx(K)
−→ IP ′

, x/∈I⊆fn(K)

Close0 : P
ϑx(K)
−→I P ′ , Q

ϑ′x(U)
−→∅ Q′

P |Q
〈‖0ϑx(K),‖1ϑ′x(K)〉

−→∅ (νI)(P ′|Q′{K/U})
, I∩fn(Q)=∅

Close1 : P
ϑ′x(U)
−→∅ P ′ , Q

ϑx(K)
−→I Q′

P |Q
〈‖0ϑ′x(K),‖1ϑx(K)〉

−→∅ (νI)(P ′{K/U}|Q′)
, I∩fn(Q)=∅

HOπ : P
θ
−→IP ′

P
θ

−→P ′

Table 1: Proved transition system of the HOπ-calculus.
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possible transitions between them.4 In the following we will only consider
the transition system associated with a process P , i.e. the fragment of the
whole transition system reachable from P . A few auxiliary definitions and
notations will be helpful.

Hereafter, we will write a transition P
θ

−→ Q only if it is deducible
according to the inference rules in Tab. 1; furthermore we will write it simply
as θ, when unambiguous.

First we make precise the notion of a derivative of P , i.e. a node reachable
from P .

Definition 3.3 Given a process P , P ′ is a derivative of P if there is a
(possible empty) sequence of transitions with source P and target P ′, i.e.

P = P0
θ1−→ P1 . . . Pn−1

θn−→ Pn = P ′, n ≥ 0.
The derivative set of a process P , written d(P ), contains all the derivatives
of P .

We can now formalize the notion of transition system associated with a
process P .

Definition 3.4 Given a process P , its (proved) transition system is a triple

〈d(P ),
θ

−→P , P 〉, where
θ

−→P= {Q
θ

−→ R |Q, R ∈ d(P )}.
When unambiguous, we will omit the index P .

As an example of HOπ specification, we now describe two architectures
that run sequential programs. Our two specifications will be used later on to
compute a simple performance measure.

Example. We consider a conventional uniprocessor and a prefetch pipeline ma-
chine. Assume that their logical components are specified as processes composed
through the parallel composition operator. The interactions between the compon-
ents in the fetch-execute cycle are represented by communications between the
corresponding processes, whose behaviour consists of fetching an instruction and
then executing it.

As far as the conventional architecture is concerned, the processor PP specified
below interacts with a memory 5 M to fetch an instruction j that is sent along the
channel fetch to PP. Then M resumes, while PP receives the instruction, executes
it and restarts. The specifications of M and PP are given by the following agent
definitions

M = fetch j.M and PP = fetch(x).x.PP

We make the channel fetch private to M and PP, and we eventually obtain the
specification

Sysc = (ν fetch)(M |PP ).

4Strictly speaking, it is not a graph because the nodes are countably infinite.
5We model the memory as an active component, actually as a one-place buffer.
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Note that we are specifying here the behaviour of the conventional machine. Hence
we can assume in our abstraction that M outputs the value needed by PP even
though in a real machine it is PP that asks what instruction to fetch.

The prefetch pipeline architecture has two modules in place of PP above: an
instruction unit IU and an execution unit EU. They should behave as follows. The
IU module fetches an instruction from M, passes it to EU and begins again. The
EU module receives the instruction, executes it and then restarts.

This kind of architecture improves the performance of conventional processors
because fetching instructions can overlap with the time of their execution, provided
that communications between IE and EU are faster than those between M and PP.
The specification of the system, consisting of IU, EU and M, follows

M = fetch j.M, IU = fetch(x).pass x.IU and EU = pass(s).s.EU.

The specification of the prefetch pipeline machine is

Sysp = (ν fetch)(M | (ν pass)(IU |EU)).

Figure 1 shows the proved transition systems of our two idealized architectures.

For the sake of clarity, in the labels of the systems we omit the restriction of the

channels (ν fetch) and (ν pass). 2

0 0

1

2

1 3
(a) (b)

〈‖0()fetch j,‖1()fetch(j)〉‖1j

〈‖0()fetch j,‖1‖0()fetch(j)〉

〈‖1‖0pass j,‖1‖1()pass(j)〉

〈‖0()fetch j,‖1‖0()fetch(j)〉

‖1‖1j

‖1‖1j

Figure 1: Proved transition system of the conventional (a) and the prefetch
pipeline uniprocessor (b).

3.2 Continuous time Markov chains

In this section we briefly recall the relevant portions of the theory of stochastic
processes and continuous time Markov chains (CTMC), see [3, 51] for more
details.
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Definition 3.5

A stochastic process is a family of random variables {X(t) s.t. t ∈ T}. The
index set T is usually called time parameter and t is called time.
The process is continuous time if T is a continuous set.
The state space of the process is the set of possible values that X(t) can
assume.

Intuitively, X(t) is the state of the process at time t.
Many systems in practice have the property that, once in a given state, the

past states have no influence on their future. This is called the memoryless or
Markov property and the stochastic processes satisfying it are called Markov
chains, if their state space is discrete.

Definition 3.6 The family of random variables {X(t) s.t. t ≥ 0} is a con-
tinuous time Markov chain (CTMC) if for any set of n + 1 values t1 < . . . <
tn+1 in the index set, and any set {x1, . . . , xn−1, xi, xj}

6 of n + 1 states, we
have that the one step transition probability is

p(X(tn+1) = xj | {X(tn) = xi, X(tn−1) = xn−1, . . . , X(t1) = x1})

= p(X(tn+1) = xj |X(tn) = xi) = pij(n)

where p(A|B) stands for the conditional probability of A given B.
A Markov chain is time homogeneous if p(X(tn+1) = xj|X(tn) = xi) = pij

does not depend on n.

Hereafter, we shall only consider time homogeneous CTMCs. As a con-
sequence of time homogeneity we do not consider systems where time-outs
are implicitly modelled by implying failure of transitions, i.e. we require that
the transitions which are enabled in a given state cannot be disabled by flow
of time. Note that many communication networks, distributed systems and
production lines can be modelled by CTMC (see [35]).

A continuous time Markov chain C can be conveniently represented as a
directed graph whose nodes are the states of C, and whose arcs only connect
the states that can be reached by each other.

The rates at which the process jumps from one state to another can
be arranged in a square matrix Q, called generator matrix. Apart from its
diagonal, it is the adjacency matrix of the graph representation of the CTMC
considered. The entries of Q are called instantaneous transition rates and

6We let here the nth and (n+1)th elements of the set be xi and xj instead of the more
natural xn and xn+1. This is to simplify the index notation for the one step transition
probability, which we write as usual as pij , instead of pn(n+1).
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are defined by

qij =



















lim
τ→0

p(X(t+τ)=xj |X(t)=xi)

τ
if i 6= j

−
n
∑

j=1
j 6=i

qij if i = j
(2)

The case i = j in the definition (2) ensures that the rows of matrix Q sum to
0, because −qii is the sum of the rates of the transitions outgoing from the
state xi. Also, −qii coincides with the exponential distribution of the holding
of state xi, i.e. the time that the chain spends in the state xi. It is called
the sojourn time of state xi. The relation between the rates in Q and the
one-step transition probability pij from state xi to state xj is pij = qij/− qii.

Performance measures of systems make sense over long periods of execu-
tion. These measures are then usually derived by exploiting the stationary
probability distribution of Markov chains which we recall below.

Definition 3.7 Let Πt(xi) = p(X(t) = xi) be the probability that a CTMC
is in the state xi at time t, and let Π0 = (Π0(x0), . . . , Π0(xn)) be the ini-
tial distribution of states x0, x1, . . . , xn. Then a CTMC has a stationary
probability distribution Π = (Π(x0), . . . , Π(xn)) if

ΠQ = 0 and

n
∑

i=0

Π(xi) = 1.

Note that all the computations needed above, and the stochastic analysis
we will make afterwards, can be performed by standard numerical techniques,
exploiting the preferred numerical package available.

Finally, we characterize the Markov chains which always admit a station-
ary distribution.

Definition 3.8 A state xi is positive recurrent if a Markov chain that visits
state xi returns to xi with probability 1 in a finite expected number of steps.
A Markov chain is positive recurrent if all its states are positive recurrent.

Note that if xi is positive recurrent and the chain visits it at least once, then
it does so infinitely often.

Definition 3.9 A Markov chain is irreducible if for every state xi there is
a path in the chain from xi to xi itself, and also there are paths from xi to
every other state. 7

7The graph of an irreducible Markov chain does not need to be fully connected. In fact,
we require connection between nodes via sequences of arcs and not via individual arcs. For
example, the graph 〈{0, 1, 2, 3}, {〈0, 1〉, 〈0, 2〉, 〈1, 0〉, 〈2, 3〉, 〈3, 0〉}〉 is irreducible, although
it is not fully connected. In terms of transition systems, we require that ∀Pi, Pj ∈ d(P ),
Pi is a derivative of Pj .
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Later on we will make use of the fact that irreducible Markov chains with
finite state space are positive recurrent.

The following theorem [26] gives a sufficient condition for the existence
and the uniqueness of the stationary distribution Π of a CTMC. It also says
that Π can be computed as the limit of the transient distributions.8

Theorem 3.10 A time homogeneous, irreducible, positive recurrent CTMC
has a stationary probability distribution Π. Moreover

lim
t→∞

p
(

X(t) = xk|X(0) = x0

)

= Π(xk).

4 Stochastic semantics

In this section we show how to extract quantitative information from a proved
transition system by transforming it into a CTMC. We do this in two steps:
first we introduce a function that assigns costs to individual transitions de-
rived from their labels, alone. Here, we use “cost” to mean any measure
that affects quantitative properties of transitions (speed, availability, etc.).
In particular, we will compute the costs of performing some low-level op-
erations to devise the rate of the corresponding actual transition. In the
next sub-sections we will perform operations on costs to tune a probabil-
istic distribution with respect to the expected speed of actions. Although
we interpret costs as parameters of exponential distributions, our relabelling
functions are not intended to manipulate random variables. The intuition
is that cost functions define a single exponential distribution by subsequent
refinements as soon as information on the run-time becomes explicit. Oper-
ationally we start with an optimistic selection of an exponential distribution
and then, while scanning contexts, we jump to other distributions until the
one suitable for the current transition is reached. The cost functions encode
this jumping strategy. Once the exponential distributions of transitions have
been computed, we make some numerical calculations, possibly by collapsing
those arcs that share source and target. We also prove some properties of
our construction that help to derive performance measures from the CTMC
obtained. In the next two sections we will illustrate our proposal by applying
it to some examples.

Hereafter, we will restrict ourselves to processes that generate finite state
spaces, i.e. which have a finite set of derivatives. 9 Note that this does

8The distributions associated with the states of the chains at time t are called transient
distributions. If the transient distributions at times t and t + 1 coincide, we obtain the
stationary distribution of the chain, because it will no longer change.

9A sufficient condition for a process to be such is that all the agent identifiers occurring
in it have a restricted form of definition A(Ũ ) = P . Namely, A can occur in P only if
prefixed by some action and cannot occur within a parallel context.
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not mean that the behaviour of such processes is finite, because their trans-
ition systems may have loops. Indeed, particular forms of loops are essential
to apply the steady state analysis that we carry out in our examples (see
the discussion at the beginning of Sect. 4.2.2). Moreover, we will only con-
sider processes that can perform inputs within communications and never in
isolation from the environment, i.e. an input can only fire if there is a com-
plementary output. 10 The two restrictions above ensure that our processes
have a finite set of derivatives.

4.1 Cost function

Our first step consists in defining the function which associates a cost with
each transition labelled by θ. As we have already seen, this cost represents
the rate of the transition, i.e. the parameter which identifies the exponential
distribution of the duration times of θ.

We assign costs to the labels of the transitions in the proved transition
system and not to the prefixes, like in the classical approach, in order to give
a more accurate description of system behaviour. Indeed our costs depend
not only on the action α = `(θ) originating the transition, but also on the
operations that the run-time support of the target architecture performs for
firing α; likewise if the action originating the transition is an internal action τi

or a communication. We briefly explain why in this way we gain descriptive
power through the following example. Consider the resolution of a choice,
made by applying a rule Sum. It mimics some real operations on the target
architecture, such as checking the ready list or implementing fairness policies.
In practice, an action fired after a choice takes more time than the same
action occurring deterministically. Also, the implementation of the run-time
support makes the duration of choices vary. We wish to account for this
performance degradation, so we charge with an extra delay the execution
of an action occurring in a nondeterministic sum. The other operations of
our calculus reflect other analogous routines of the run-time support that
delay the execution of an action as well. Communications deserve a special
treatment, discussed below. Summing up, we wish our cost function to take
the routines of the run-time support into account.

Since the structural operational semantics of a language specifies its ab-
stract machine, the context in which an action occurs in the program rep-
resents the operations that the target machine performs in order to fire that
action. In our proved semantics, the part ϑ of an enhanced label ϑα rep-
resents the context in which the action α occurs. Accordingly, a suitable
linearization of ϑ represents the execution of the above mentioned run-time

10It is sufficient to consider processes where every occurrence of an input prefix x(U)
occurs within a restriction (νx).
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support routines on the target machine. Following this intuition, we let the
cost of the transition ϑα depend on α and on (the context) ϑ.

To define a cost function, we start by considering the execution of the
action α on a dedicated architecture that only has to perform α, and we
estimate once and for all the corresponding duration with a fixed rate r.
Then we model the performance degradation due to the run-time support.
In order to do that, we introduce a scaling factor for r in correspondence
with each routine called by the implementation of the transition θ under
consideration. As a matter of fact, we do not fix the cost function and we
only propose for it a possible set of parameters that reflect some features of
a somewhat idealized architecture (the number of processors of a net, the
bandwidth of a channel, etc.). Clearly our proposal is still very abstract.
However it is sufficient to derive performance measures that agree with those
presented in the literature [4, 13], as the next section shows.

We proceed now with our definitions. First we assign costs to visible
actions α ∈ A and to invisible actions τi ∈ S; communications will be
considered afterwards. As discussed above, our cost function returns the
parameter of the exponential distribution which describes the time needed
to perform the very basic, low-level operations corresponding to one of these
actions, regardless of the context in which it occurs. Formally, we use a
function

$µ : A ∪ S → IR+

defined as

$µ(τi) = λi (3)

$µ(xK) = fout(bw(x), size(K))

$µ(x(K)) = fbo(bw(x), size(K))

$µ(x(K)) = fin(bw(x), size(K))

The real numbers λi represent the cost of executing the routine corresponding
to the ith internal action τi. The functions fout, fbo and fin define the costs
of the routines which implement the send and receive primitives. Function
fbo differs from fout because the fresh names need to be checked in the bound
output, so its cost incorporates a call to a name generator. For example, if
there are n names around and the delay due to calling the name generator
is represented by the function h(n), then we can have, e.g., fbo = fout +
h(n). Besides the implementation cost due to their own algorithms, the
functions above depend on the bandwidth of the communication channel
(represented by bw(x)) and the size of their objects (size(K)). As for the
cost of an input action, we note that sending data along a channel is faster
than receiving them, hence we assume fin ≤ fout. We let, however, fin be
a parameter supplied by the designer in order not to limit the applicability
of the framework. The intuition of input slower than output follows. The
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reception of a message involves at least one check for the presence of the data
at the site of the sending process, and then the message needs to be copied
in some storage location of the reading process. As an example, consider
the input of a piece of mobile code: the receiver must set up an execution
environment to run the received code. For instance a Java agent which moves
needs some class loading at the recipient site and possibly the activation of
a new thread of control.

According to the intuition that contexts slow down the speed of actions,
we now determine a slowing factor for any construct of the language. The idea
is to devise a general framework in which real situations can fit simply by sup-
plying actual parameters (in our case functions defining the slowing factors).
To simplify the presentation, we use here a minimal set of parameters that
affect the cost of the routines implementing any operator of our language.
In doing so, we abstract from actual architectures. A precise instantiation
to physical networks can occur in the refinement steps from specification to
implementations as long as actual parameters become available.

The cost of the operators is expressed by the function

$o : L ∪ O → (0, 1]

$o(‖i) = f‖(np), i = 0, 1

$o(+i) = k, i = 0, 1

$o(=m) = f=(m)

$o((νx)) = fν(n(P ))

$o

(

m1, . . . , mk

)

= f()(m1, . . . , mk, np).

Parallel composition is evaluated according to the number np of processors
available. A particular case is $o(‖) = 1 which arises when there is an
unbound number of processors. (Recall that we are not yet considering com-
munications.) We assume that the cost of a choice between two alternatives
is constant; note however that n nested choices delay the execution by n×k.
The cost of matching depends on the size m of the data to be compared.
The cost of restriction depends at least on the number of names n(P ) of the
process P because its resolution needs a search in a table of names. Finally,
the activation of a new agent via a constant invocation has a cost depending
on the size and the number of its actual parameters, as well as on the number
of processors available.

We now consider communications. To determine their impact on the
overall cost function, we follow their deduction scheme. Let the label of
the transition in hand be ϑ〈||0ϑ0α0, ||1ϑ1α1〉. The two partners perform in-
dependently some low-level operations locally to their environment. These
operations are recorded in ϑ0 and ϑ1, inductively built by the application of
the rules that fill in the premises of rule Com. Each of the ϑi leads to a delay
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in the rate of the corresponding αi, which we compute through the auxiliary
cost function $o. Then the pairing 〈||0ϑ0α0, ||1ϑ1α1〉 occurs and corresponds
to the actual communication. Finally, there are those operations, recorded
in ϑ, that account for the common context of the two partners. Also, the
slow down due to this common context is computed using $o. (Note that
Com and Close rules can be applied at most once in a derivation of a given
transition because pairs cannot occur as labels in their premises; see Tab. 1.)

We are left to compute the delay due to a communication, i.e. to the pair-
ing discussed above. Since communication is synchronous and handshaking,
we take the minimum of the costs of the operations performed by the parti-
cipants independently (originated by ϑi) to make communications reflect the
speed of the slower partner. 11

Also, we wish to take into account the distance of the locations where
the partners run. To do this, we use a function f〈〉 : L∗ × L∗ → (0, 1], and
we encode locations as sequences χ0, χ1 ∈ {||0, ||1}

∗. To see why, consider the
binary abstract syntax tree of a process, when the parallel composition | is
the only syntactic operator. Then, a sequence χ can be seen as the access
path from the root, i.e. from the whole process, to a leaf, i.e. to a sub-
process. An allocation table is thus a mapping ρ from (abstract) locations,
represented as strings over {||0, ||1}

∗, to the set of physical locations available.
So, the two arguments of f〈〉, together with allocation tables, can be used

to determine where the two communicating processes have been actually
placed, and from this their distance. 12

To apply function f〈〉, we need an auxiliary function that extracts the
parallel tags from the part ϑ of an enhanced label. It is · : (L ∪ O)∗ → L∗,
inductively defined as (ε is the empty string and o ∈ O)

ε = ε, ‖iϑ = ‖iϑ, oϑ = ϑ.

We now have all the ingredients to define the function that associates
costs with enhanced labels. It is defined by induction on θ and by using the
auxiliary functions $µ as basis, and then $o and f〈〉.

Definition 4.1 Let the cost function be
$ : Θ → IR+

11Recall that the lower the cost, the greater the time needed to complete an action and
hence the slower the speed of the transition occurring.

12The distance of the sites where the communicating processes reside is only one of the
aspects affecting the duration of the remote communication. Actually, a more realistic
function f〈〉 should have more parameters: for instance the average number of hops that
the message needs in the routing, or the kind of communication medium and hence latency,
or the kind of network protocols adopted.
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defined as

$(µ) = $µ(µ)

$(oθ) = $o(o)× $(θ)

$(‖iθ) = $o(‖i)× $(θ)

$(〈‖0ϑ0α0, ‖1ϑ1α1〉) = f〈〉(‖0ϑ0, ‖1ϑ1)×min{$(‖0ϑ0α0), $(‖1ϑ1α1)}

Below we compute the costs of the transitions of our running example
introduced at the end of subsection 3.1.

Example (cont’d). Consider the systems depicted in Fig. 1. For the sake of
simplicity, in computing the performance of the fetch-execute cycle we assume
that the execution of all instructions takes the same time. Furthermore, we assume
that both architectures require the same time for fetching, as well as for executing
instructions.
Since corresponding operations have the same names in Sysc and Sysp, we use a
unique cost function for both architectures. So we assign rates to actions as follows

$µ(j) = a (4)

$µ(fetch j) = $µ(fetch(j)) = b

$µ(pass j) = $µ(pass(j)) = c

Also, assume that the machines we are comparing have to interpret a set of CISC
instructions so that they take longer in the execution of an instruction than in its
fetch. Hence, we let

b ≤ a.

Nowadays, the run-time support of virtually all architectures is firmware, and it
resolves calls to routines through a jump instruction. Assume then that the ones
we are considering do the same, and neglect in what follows the cost of invoking
identifiers M , PP , IU and EU . Therefore, we let

$o(0) = 1,

(the empty list of the parameter sizes has size 0). In fact, any other cost different
from 1 only affects the value of the cost function; on the other hand our comparison
of the performance of the traditional and the prefetch architectures is not affected.

In the labels of Fig. 1 the increment of the cost due to the parallel tags is
null because each process has its own processing unit. In fact, although the
prefetch architecture has two concurrent transitions in its behaviour (||1||1j and
〈||0()fetchj, ||1||0()fetch(j)〉), it also has two processing units that can execute
them independently and simultaneously. Thus we can set

$o(‖i) = 1.
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Finally, we neglect the delay due to the restriction of the channels because hard-
ware connections are physical links which are private by definition and need no
check on their owners

$o(ν fetch) = $o(ν pass) = 1.

Now we compute the cost of synchronizations. In the prefetch architecture Sysp,
the distance between the two units connected in pipeline ( IU and EU) is not
significant. Indeed both of them lie on the same platform. Instead, we consider
the distance between the instruction unit IU and the memory M of the machine,
and between M and PP in Sysc. Thus, we assume that

f〈〉(‖0, ‖1) = f〈〉(‖0, ‖1‖0) = d, and f〈〉(‖1‖0, ‖1‖1) = 1.

To give an example of the use of function $, we compute the cost of the first
transition in Fig. 1(a).

$((ν fetch)〈‖0()fetch j, ‖1()fetch(j)〉)

= $o((ν fetch))$(〈‖0()fetch j, ‖1()fetch(j)〉)

= f〈〉(‖0(), ‖1())min{$o(‖0)$o(0)$µ(fetch j), $o(‖1)$o(0)$µ(fetch(j))}

= f〈〉(‖0, ‖1)b = d× b.

Analogously, we obtain the costs of all the other transitions

$(‖1j) = $(‖1‖1j) = a

$((ν fetch, pass)〈‖0()fetch j, ‖1‖0()fetch(j)〉) = d× b

$((ν fetch, pass)〈‖1‖0pass j, ‖1‖1()pass(j)〉) = c.

2

We now outline how the cost function defined above can be used for
languages in other paradigms, such as the imperative, functional and object-
oriented. One way is to encode these languages into a process calculus, e.g.
an imperative language into CCS [45], or a functional or an object-oriented
one into the π-calculus [46]. Alternatively, we can give the language in hand
a proved semantics, and then follow our proposal. Since many imperative
languages have an SOS semantics (including Java [14]), we only need to
enhance the labels with tags for recording the application of the rules in
the derivations. Of course, the definition of a sensible cost function entails
accurately linking tags with the low-level operations of the run-time support
of the language, as discussed in Sect. 2.

4.2 Stochastic analysis

Now we turn the transition system of a process into a CTMC for computing
performance measures.
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4.2.1 Some auxiliary results

We start by deriving some transition probabilities. In order to associate a
parameter r with a transition, we transform the nondeterministic choices
present in the specifications into probabilistic ones. This is because to meas-
ure performance we must estimate the relative frequency of a transition of
a non deterministic choice. So we assign to each alternative a probability
of occurrence. All the activities enabled attempt to proceed, but only the
fastest one succeeds. Note that the fastest activity is different on subsequent
attempts because durations are expressed by random variables drawn from
an exponential distribution. Also, the probability of two activities ending
simultaneously is 0, by definition of continuous probabilistic distributions.

Recall that the exponential distributions that we use enjoy the memory-
less property. Roughly speaking, the occurrence of the next transition is
independent of when the last transition occurred. In other words, how long
the transition will wait before completing is independent of how long it has
already waited. This means that any time a transition becomes enabled, it
restarts its elapsing time as if it were the first time that it was enabled. Also,
all transitions are assumed to be time homogeneous, meaning that the rate
of a transition is independent of the time at which it occurs.

Hereafter, we define the rate at which a system changes from behaving
like process Pi to behaving like Pj.

Definition 4.2 The transition rate between two states Pi and Pj, written
q(Pi, Pj), is the rate at which the transitions between Pi and Pj occur

q(Pi, Pj) =
∑

Pi

θk−→Pj

$(θk).

Note that more than one transition may be involved in the computation of
q(Pi, Pj). For example, the costs of both transitions of a + a are summed to
obtain q(a+a, 0). Clearly if Pj is not a one-step derivative of Pi, q(Pi, Pj) = 0.

Now we show how to attach probabilities to the transitions exiting from
the same node, i.e. the probability that a process makes a transition θ leading
to state Pj from state Pi. It is the ratio between the rate of θ and the sum
of the rates of all the transitions leaving Pi. Formally,

Definition 4.3 The occurrence probability of a transition from Pi to Pj is

pij =

∑

Pi

θk−→Pj

$(θk)

∑

Pi

θh−→Q

$(θh)
.
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Recall that in the transition system of a process P there is a node for
each derivative of P and an arc for each possible transition. To form the
CTMC, a state is associated with each node of the transition system, while
the transitions between states are defined by the arcs, possibly coalescing
those sharing source and target (as an example, consider again the process
a + a discussed above). Recall that we assumed our process to be such that
the set of its derivatives is finite.

The quantity q(Pi, Pj), or simply qij are the off-diagonal elements of the
generator matrix of the CTMC, namely Q (see Eq. (2) in Sect. 3). Recall
that CTMC can be seen as a directed graph and that its matrix Q (apart
from its diagonal) represents its adjacency matrix. Hence, hereafter we will
use indistinguishably CTMC and its corresponding Q to denote a Markov
chain. More formally, we have the following definition.

Definition 4.4

Given a process P and its transition system 〈d(P ),
θ

−→P , P 〉, let Pi, Pj belong
to d(P ), the space state of P , with cardinality n. Then, the generator matrix
Q of the continuous time Markov chain of P (called CTMC(P )) is a [n×n]
square matrix with elements qij defined as

qij =



























q(Pi, Pj) =
∑

Pi

θk−→Pj

$(θk) if i 6= j

−
n
∑

j=1
j 6=i

qij if i = j

(5)

Note that two nodes of the graph representing CTMC(P ) are connected
by at most one arc, while in the transition system of P two states can be
connected by more than one transition, as mentioned above.

Equation (5) defines the instantaneous transition rate from Pi to Pj in
terms of the transitions outgoing from Pi. Thus, we can define directly in
SOS style the graph CTMC associated with a process. More precisely, we
define a stratified transition system whose transition relation −→M of the
CTMC is defined in terms of the relation −→ of the transition system.

Definition 4.5 Let 〈d(P ),
θ

−→P , P 〉 be the transition system associated with
a process P . Then we define the continuous time Markov chain CTMC(P )
of P as the labelled transition system 〈d(P ),

r
−→M , P 〉 with r ∈ IR+, whose

transition relation −→M is the minimal relation defined by the rule

CTMC :
Pi

θk−→P Pj

Pi
qij

−→M Pj

,

qij being defined according to Eq. (5).
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We end this subsection by showing that the definitions above are correct,
in the sense that they coincide (apart from the diagonal) and that CTMC(P )
is actually a continuous time Markov chain. The first fact holds trivially.
To see that also the second holds, recall that all transition durations are
exponentially distributed. Thus, the total transition rate between two states
will be the sum of the rates of the transitions connecting the corresponding
nodes in the transition system, as stated below.

Theorem 4.6 For any finite process P , let X(t) be its corresponding stochastic
process. Then X(t) is a continuous time Markov chain with state space d(P ),
coincident with CTMC(P ).
Furthermore, the sojourn time in a state X(ti) = Pj is an exponentially
distributed random variable, the parameter of which is given by the sum of
the rates of the transitions enabled in Pj.

Proof. For an arbitrary process P with an associated stochastic process X(t), consider
the sojourn time in an arbitrary state X(ti) = Pji

. Let Si(t) denote the sojourn time
distribution, i.e. the probability that a sojourn in the state Pji

has a duration less than or
equal to t. Let the transitions enabled in Pji

be {θ1, θ2, . . . , θn}. For each of them, say θ,
define Siθ(t) to be the conditional sojourn time distribution, i.e. Siθ(t) is the probability
that a sojourn in the state Pji

has a duration less than or equal to t and ends by the
completion of the transition θ. Note that the unconditional sojourn distribution is the
sum of the conditional sojourn distributions

Si(t) =
∑

Pji

θk−→Pk

Siθk
(t).

Let the duration of each transition θk be exponentially distributed with parameter rk =
$(θk). Thus the distribution function of the duration of the transition θk is Fk(t) =
1−e−rkt, and has fk(t) = rke−rkt as its density function. 13 Therefore, for each transition
θk we have

Siθk
(t) =

∫ t

0

(

∏

1≤h≤n
h6=k

(

1− Fh(x)
)

)

dFk

=

∫ t

0

(

∏

1≤h≤n

h6=k

(

1− Fh(x)
)

)

fk(x)dx

=

∫ t

0

(

∏

1≤h≤n
h6=k

(

e−rhx
)

)

rke−rkxdx

= rk

∫ t

0

∏

1≤h≤n

e−rhxdx

= rk

∫ t

0

e−Σxdx =
rk

Σ

(

1− e−Σt
)

where Σ =

n
∑

h=1

rh.

13Given a distribution F , its density function f is such that F (x) =
∫ x

−∞ f(t)dt.
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Hence

Si(t) =
∑

θk∈Pi

θh−→Q

Siθk
(t) =

n
∑

k=1

Siθk
(t)

=

n
∑

k=1

rk

Σ

(

1− e−Σt
)

=
1− e−Σt

Σ

n
∑

k=1

rk = 1− e−Σt,

expresses that the sojourn time in the state Pji
is exponentially distributed with mean

1/Σ, and is independent of the history leading to Pji
. Therefore, the expected sojourn

time is

(

∑

Pi

θk−→Q

Siθk
(t)

)−1

. As a consequence, the stochastic process associated with the

transition system of P is a CTMC with state space d(P ) because the time needed by the

system to complete a transition with source Pji
is independent of the time elapsed since

the system reached Pji
. 2

4.2.2 Evaluating the performance

In order to evaluate the performance of a process P , we need to compute
the (unique) stationary distribution for the CTMC we associate with it. To
have a unique stationary distribution according to the hypothesis of The-
orem 3.10, CTMC(P ) must be time homogeneous and irreducible. The first
condition is clearly satisfied. The second condition is fulfilled if all the states
of CTMC(P ) are positive recurrent. Since a derivative Q of P corresponds
to a state of CTMC(P ), it suffices then that Q is reachable by any of its
derivatives through a finite sequence of transitions, because we only consider
finite state processes. So we will restrict our attention to processes in this
form.

We measure the performance of a process P by associating a reward struc-
ture with it following [38, 36, 16]. Since our underlying performance model
is a continuous time Markov chain, the reward structure is simply a function
that associates a value with any derivative of P . For instance, when calcu-
lating the utilisation of a resource, we assign value 1 to any state in which
the use of the resource is enabled (i.e. the state considered is the source
of a transition that uses the resource). All the other states earn the value
0. Another classical measure of performance is the throughput of a system,
i.e. the amount of useful work accomplished per unit time. For instance,
the throughput of a processor is obtained by associating a reward with any
state P that enables the execution of an instruction. Since the transitions
outgoing from P and describing such an execution have rates rh expressing
the probability and the speed of execution, a reasonable choice for the reward
is the sum of all the rh.
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Since rewards are associated with states while process algebras are transition-
based, we define below how to compute rewards of states from rates of trans-
itions. We follow the above discussion and assume as given a transition
reward ρθ associated with any transition θ, in accordance with the measures
of interest (utilisation, throughput, etc.).

Definition 4.7 Given a function ρθ associating a transition reward with
each transition θ in a transition system, the reward of a state P is

ρP =
∑

P
θ

−→Q

ρθ.

Now, the reward structure of a process P is a vector of rewards with as
many elements as the number of derivatives of P . From it and from the
stationary distribution Π of CTMC(P ) we can compute performance meas-
ures. For instance, we obtain the utilisation of a resource by summing the
values of Π multiplied by the corresponding reward structure. This amounts
to considering the time spent in the states in which the usage of the resource
is enabled. Likewise for computing throughputs. The above combination of
the stationary distribution and rewards is usually called total reward and is
defined below.

Definition 4.8 Let Π be the stationary distribution of CTMC(P ). The
total reward of a process P is computed as

R(P ) =
∑

Pi∈d(P )

ρPi
× Π(Pi).

Now we apply our method to our running example of the uniprocessor
and the prefetch pipeline architectures.

Example (cont’d). Consider again the transition systems in Fig. 1 which are
both finite and have cyclic initial states. Hence the associated CTMCs are irre-
ducible and, by Theorem 3.10, they have stationary distributions. We derive the
generator matrices Qc and Qp of CTMC(Sysc) and CTMC(Sysp). The station-
ary distributions of the Markov chains for Sysc and Sysp are the solutions of the
following systems of linear equations

{

(d× b)x0 − ax1 = 0
x0 + x1 = 1

and























−(d× b)x0 + ax2 = 0
(d× b)x0 − cx1 + ax3 = 0
cx1 − (a + (d× b))x2 = 0
(d× b)x2 − ax3 = 0
x0 + x1 + x2 + x3 = 1.

27



The unique solution of the system on the left gives the stationary distribution of
the Markov chain CTMC(Sysc):

Πc =

(

a

a + d× b
,

d× b

a + d× b

)

while the unique solution of the system on the right is the stationary distribution
of the Markov chain CTMC(Sysp):

Πp =

(

a2 × c

A
,
a× (d× b)2 + a2 × d× b

A
,
a× d× b× c

A
,
(d× b)2 × c

A

)

,

where A = a2 × c + (d× b)× ((d × b) + a)× (a + c).
In order to compare the relative efficiency of the two architectures, we compare

the throughput of Sysc and Sysp, i.e. the number of instructions executed per time
unit. As mentioned above, only the transitions representing the execution of an
instruction will receive a non-zero transition reward. Also, it is natural to set its
value equal to the rate of the transition considered. So, the transition reward of
the transition ||1j in Fig. 1(a) and that of the two transitions ||1||1j in Fig. 1(b) is
a. Instead all the other transitions receive 0 as their transition reward. Now, it is
easy to compute the reward of a state, as the sum of the transitions rewards of the
arcs outgoing from it. In the case of the conventional architecture, this amounts
to

ρ0 = 0 and ρ1 = a

and in the case of the prefetch one

ρ0 = 0, ρ1 = 0, ρ2 = a and ρ3 = a

The throughputs of the execution of an instruction are therefore

T (Sysc) = ρ0Π
c(0) + ρ1Π

c(1) = aΠc(1),

and

T (Sysp) =

3
∑

i=0

ρiΠ
p(i) = aΠp(2) + aΠp(3).

The prefetch architecture performs better if its throughput is higher than the one
of the conventional machine. Thus we study the equation

Πp(2) + Πp(3) ≥ Πc(0). (6)

Assume that a, b and c are defined as in equation (4) and they are all positive,
and recall that a, d × b and c measure the time of executing and of fetching an
instruction on channels fetch and pass, respectively. Also, recall that the cost of
an action is the parameter of the exponential distribution of its execution time: the
greater the parameter, the faster the corresponding action. Then, the inequality
(6) is reduced to

c ≥ a + d× b. (7)
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which indicates when the throughput, i.e. the performance, of the prefetch ar-

chitecture, is higher than the one of the conventional machine. As expected, this

happens when the speed at which its instruction unit sends a fetched instruction

to its execution units is faster than fetching and executing an instruction in the

conventional machine. 2

Now, we summarize what a designer needs to know to use our proposal. Obvi-
ously, the relevant features of the architecture running the application under
analysis are needed to instantiate the parameters of our model, e.g. the func-
tions fout and fbo used in the definition of the cost function $. Furthermore,
the designer must provide the rates of the actions performed on dedicated
computational units. This is all to build the generator matrix associated
with the specification of the application. Finally, to define a reward struc-
ture for the measure of interest (e.g. throughput, utilisation) the designer
has to assign rewards to transitions, following, for example, the suggestions
in [16].

In the next sections we apply our method to two case studies taken from
the literature. They involve a network management system and a polling
system. We conclude this section with a brief discussion on how a transition
affects the CPU load of a given node, thus showing that also other measures
of performance can be derived in our framework.

In the presence of process migration and network applications CPU load
analysis may help in balancing the load of the nodes; for multiprocessor
based systems it helps in balancing the load of computational units. In fact,
even a small amount of information leads to significant improvements in
performance. Good indices for a node are, for example, the number of active
processes on it or the length of the process queue [25, 49]. These indices

can be easily retrieved from our model. Consider a transition P
θ

−→ P ′

(suppose it is not a communication; the tuning needed for communications
is obvious). As mentioned in Sect. 4.1, the tags ||i within θ single out the
sequential component of P that actually fired the transition, and, via the
allocation table ρ, they give us the physical node n that fires θ. 14 Consider
now the set of transitions exiting from P , and let T be the set of those fired
from n. Now, |T |, the cardinality of T , is the load index of n before firing
θ. Likewise, get the set of transitions exiting from P ′, say T ′. The ratio
|T ′|/|T | measures the load variation, and expresses the way θ affects the load
of the node n. A very simple example follows, which also shows that the
enhanced labels and hence the proved operational semantics are an essential
tool to discover the sequential components of systems that are active in a

14Note that the enhanced labels and hence our proved operational semantics are essential
to enable us to discover which sequential components of systems are active in a given state,
by only looking at the labels of transitions.
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given state by only looking at the transition labels.

Example. Consider again the process in (1):

P = x(U).(U |U)|(ν a)xQ,

and allocate x(U).(U |U) and (ν a)xQ on two different physical nodes n and n′.

Initially the load of both nodes is 1. To study how the communication of Q

along the link x affects the load of n′ we count the active sub-processes (the

ones which may fire a transition) in n′ after the communication, i.e. in the state

(ν a)(0|(Q|Q)). The two possible transitions in T are labelled ||1〈||0 +0ab, ||1 +1ab〉

and ||1〈||0 +1 ab, ||1 +0 ab〉. Assume that the two copies of Q are both spawned on

the same physical node n′, so ρ(||1||0) = ρ(||1||1) = n′. From the labels of the two

transitions we can then determine that there are two sub-processes active on n ′:

the load index of n′ is 2. Therefore, the initial communication doubles the load of

n′. 2

5 Network management

We consider here the network management application analysed in [4]. It uses
the Simple Network Management Protocol based on the Internet Protocol for
the maintenance of the network. This protocol is based on a client-server
paradigm. The client NMS is a network management station that interacts
with servers placed on the network devices to monitor and maintain the net-
work. Each server handles a management information base (MIB) with the
relevant parameters for the device. In order to perform all the computations
related to the management, the NMS polls the servers periodically. The
client interacts with the servers through remote procedure calls. The oper-
ations invoked are typically get and set for retrieving and updating values
in the data bases of the servers. This kind of interaction between an NMS
and the servers is called micro-management and it usually generates a huge
amount of network traffic.

Migration of code can reduce the traffic by sending to the servers a piece of
code that groups the calls altogether. This approach is known as management
by delegation, and our specification will follow a remote evaluation paradigm
[29].

We specify below the two implementations outlined above, and we keep
the same assumptions as [4]. More precisely, if a chunk of data of size X is
to be transmitted at the ISO/OSI application level, we represent the actual
amount of data exchanged at the network layer as

η(X)×X with η(X) = α(X)/X + β(X), η(X) > 1
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where α(X) accounts for the control information exchanged in a connection
oriented protocol, and β(X) accounts for the overhead introduced by message
encapsulation.

Still following [4], we assume that the interactions between the NMS and
each of the N network devices (servers) have the same format. So we only
specify a single interaction, which consists of Q remote procedure calls to
each device D. The extensions needed to cover the general case are straight-
forward: just put in parallel N − 1 further copies of D. The operations that
an NMS requires from network devices will be denoted as ih, h = 1, .., Q,
while the answers of the devices will be jk, k = 1, .., Q.

5.1 Formal specifications

We formally describe the network management application in HOπ. We
first use the client-server paradigm, and then the one based on remote eval-
uations. 15 We will only compute the network traffic of the interactions
between NMS and D once a connection with a given device has been es-
tablished. Actually, the selection of D imposes the same delays in the two
paradigms; so, having specified the interactions of NMS with a single D is
indeed harmless.

5.1.1 The client-server specification NetMngCS

In the client-server paradigm (CS for short), the server usually offers some
services to its clients, which may be located at different sites. A client re-
quests a service by sending a message to the server, which performs the
service requested. Usually, the service produces a result which is delivered
back to the client.

In the specification of the client-server implementation of the network
management system, we omit the actual update operations, because they
are performed locally at a network unit. Therefore, its duration does not
affect the network traffic. Our first HOπ process is

NetMngCS = (νa) (NMS|D)

where

NMS = a i1. a (x1). a i2. a (x2). · · · . a iQ. a (xQ). NMS

D = a (y1). a j1.a (y2). a j2. · · · .a (yQ). a jQ. D

and the channel a is made private via the operator (νa).

15We consider here only two out of the four paradigms presented in [4], just to illustrate
how to apply our proposal.
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0 0

2Q− 1 1

2

3 1
(a) (b)

(νa)〈‖0()a i1,‖1()a(i1)〉

(νa)〈‖0a(j1),‖1a j1〉

(νa)〈‖0a i2,‖1()a(i2)〉

(νa)〈‖0a iQ,‖1()a(iQ)〉

(νa)〈‖0a(jQ),‖1a jQ〉

(νa)〈‖0()a G,‖1()a(G)〉(νa)〈‖0a(W ),‖1a W 〉

Figure 2: Proved transition systems of NetMngCS (a) and of NetMngREV

(b).

The behaviour of NetMngCS is made up of 2Q sequential interactions
between NMS and D. The typical interaction is as follows. NMS asks D for
ii and waits for an answer it receives by firing the input a(xi). The device
D waits for a question via a(yi), and then sends the answer ji. Now the
system is ready to repeat the same interaction in the (i + 1)-th step. The
corresponding proved transition system is depicted in Fig. 2 (a).

5.1.2 The remote evaluation specification NetMngREV

In the remote evaluation paradigm (REV for short), a process sends a piece
of code to a remote site where it is executed. The process which receives the
code eventually sends the results back to the first process.

In the REV paradigm, the network management station NMS sends a
piece of code to a device D to query locally the data base. A single message
suffices to send back the Q answers to NMS; this cluster of answers is denoted
by W below. The specification is

NetMngREV = (νa) (NMS|D)

where

NMS = a G. a (x). NMS

D = a (X). aW. D

The corresponding proved transition system is in Fig. 2 (b).
We conclude this subsection noting that the higher-order facility of the

HOπ is only necessary for the formal description of the REV model. In the
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case of the CS, the first-order π-calculus, or even CCS with value passing suf-
fice, as no code is sent along the net. Of course, using the same specification
language helps comparing the two paradigms.

5.2 Cost functions for NetMngCS and NetMngREV

Following our method, we now define the cost functions for our two specific-
ations of the network management applications. For the sake of simplicity
we define a unique function $ for both systems; we can do this because the
names and their intuition are the same in the CS and in the REV specifica-
tions. Following [4], we assume that requests ih, answers jk and code G have
an average size of I, R and C, respectively. The output costs are then 16

$µ(a ik) =
s

ηCS(I)× I
, $µ(a rk) =

s

ηCS(R)× R
,

$µ(a G) =
s

ηREV (C)× C
, $µ(a W ) =

s

ηREV (Q×R)×Q× R

where s is the cost of sending one bit along the channel a, and ηCS(I), ηCS(R),
ηREV (C) and ηREV (Q × R) are the overheads of a single answer, of a single
request, of the piece of code and of the Q answers sent back all together,
respectively. Also, we assume that the duration of an input depends on and
is greater than or equal to that of the corresponding output

$µ(a(x)) ≤ $µ(a x).

As we will see, there is no need for an actual definition of $µ(a(x)): the
inequality above suffices in the following calculations. Restriction and iden-
tifier invocation slow down the systems, while the parallel composition does
not, as there is a processing unit available for each process. Then, we let

$o((νa)) = 1/n

be the cost of the restriction of name a assuming that there are n names in
the system, and

$o(0) = 1/p, p ≥ 1 and $o(‖i) = 1

be the costs of the invocation of identifiers with no parameters, and of parallel
composition, respectively. Finally we assume

f〈〉(‖0, ‖1) = 1/d,

where d ≥ 1 takes into account the increment of duration of communications
due to the distance between the network management station NMS and the
selected device D.

16We are modelling here the costs of transitions by quantities at the denominator to
simplify the comparison of our results with the ones in [4].
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5.3 Stationary distribution

The proved transition systems of NetMngCS and of NetMngREV (in Fig. 2)
have a finite number of states, and their initial states are cyclic: thus the
CTMCs we associate with them are irreducible. To construct the Markov
chains, we associate a cost with each transition through the function $ defined
above, according to Sect. 4.1. Then, we calculate their stationary distribu-
tions, ΠCS and ΠREV , respectively. Theorem 3.10 and the initial state being
cyclic ensure their existence.

5.3.1 Stationary distribution for NetMngCS

The cost of the first transition in NetMngCS is as follows. Hereafter, let θi,j

be the transition from the state i to the state j.

$(θ0,1) = $((νa)〈‖0 () a i1, ‖1 () a(i1)〉)

= $o((νa))× f〈〉(‖0, ‖1)×min{$(‖0 () a i1) , $(‖1 () a(i1))}

=
1

n× d
×min

{

s

p× ηCS(I)× I
,

s

k × p× ηCS(I)× I

}

=
s

n× d× k × p× ηCS(I)× I
.

This is also the cost of the other Q − 1 transitions performed by NMS to
send a request to D, so

$(θi,i+1) =
s

n× d× k × p× ηCS(I)× I
, i = 0, 2, 4, . . . , 2Q− 2.

Likewise, for all the transitions in which an answer is communicated, we have

$(θi,i+1) =
s

n× d× k × ηCS(R)× R
, i = 1, 3, 5, . . . , 2Q− 1.

It is now easy to derive CTMC(NetMngCS), its generator matrix QCS and
its stationary distribution ΠCS, which has the following components

ΠCS(2i) =
p× ηCS(I)× I

Q× (p× ηCS(I)× I + ηCS(R)× R)

ΠCS(2i + 1) =
ηCS(R)×R

Q× (p× ηCS(I)× I + ηCS(R)× R)
i = 0, . . . , Q− 1.
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5.3.2 Stationary distribution for NetMngREV

We repeat the above for NetMngREV . The rates associated with its transitions
are

$(θ0,1) = $((νa)〈‖0 () aG, ‖1 () a(G)〉) =
s

n× d× k × p× ηREV (C)× C

$(θ1,0) = $((νa)〈‖0 a(W ), ‖1 a W 〉) =
s

n× d× k × ηREV (Q× R)×Q× R
.

These costs fully determine CTMC(NetMngREV ), QREV and ΠREV . In partic-
ular, we have

ΠREV =

(

p× ηREV (C)× C

p× ηREV (C)× C + ηREV (Q× R)×Q× R
,

ηREV (Q× R)×Q× R

p× ηREV (C)× C + ηREV (Q× R)×Q× R

)

.

5.4 Comparison of NetMngREV and NetMngCS

In this sub-section we compare the performance of NetMngCS and NetMngREV

by relating their throughputs. As we have already seen, the throughput for
a given activity is found by first associating a transition reward equal to the
activity rate with each transition, and then by rewarding a state with the
sum of the rewards of the transitions outgoing from it.

In both systems each transition is fired only once during an interaction
browser-data manager. Also, the graphs of both CTMCs are cyclic and all
the labels represent different activities. This amounts to saying that the
throughputs of all the activities are the same, and we can freely choose one
of them to compute the throughput of NetMngCS and NetMngREV . Thus we
associate a transition reward equal to its rate with the last communication
and a null transition reward with all other communications. From them, we
compute the reward structure of NetMngCS:

ρ2Q−1 =
s

n× d× k × ηCS(R)×R
and ρi = 0, i = 0, .., 2Q− 2.

Similarly for NetMngREV :

ρ0 = 0 and ρ1 =
s

n× d× k × ηREV (Q× R)×Q× R
.

The throughput of our systems is then

T (NetMngCS) =

2Q−1
∑

i=0

ρiΠ
CS(i) = ρ2Q−1Π

CS(2Q− 1) =

s

n× d× k ×Q× (p× ηCS(I)× I + ηCS(R)× R)
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and

T (NetMngREV ) = ρ0Π
REV (0) + ρ1Π

REV (1) =
s

n× d× k × (p× ηREV (C)× C + ηREV (Q× R)×Q× R)

To discover when NetMngREV is better than NetMngCS we solve the following
inequality

T (NetMngREV ) > T (NetMngCS)

from which

ηREV × C <
Q× ηCS(R)×R − ηREV (Q× R)×Q×R

p
+ Q× ηCS(I)× I.

Usually a fixed overhead is associated with each packet exchanged over the
network. Thus, the longer the message being segmented, the smaller the
relative overhead because the fragmentation of packets is reduced. In other
words it is likely that

Q× ηCS(R)×R ≥ ηREV (Q×R)×Q× .R

Hence, if several answers can be transmitted together in a single message, the
overhead is going to become smaller, though it will depend on the protocols
used to implement communications in CS and REV.

The analysis above suggests using a REV specification when the size of
the filtering code sent along with the requests is smaller than the difference
between the following two quantities. The first is the total size of all the
requests. The second quantity is the overhead in the transmission of the
answer divided by the duration p of the invocation of an identifier.

We finally note that, letting p = 1 our results coincide with those in [4],
where the time consumption of “calling an agent” is not considered.

6 A revised polling system

In this section we present a larger example taken from the literature to show
how our approach scales up. We consider a multi-server multi-queue system
(MSMQ, for short) which is an extension of a classical polling system to
include more than one server. This system has already been studied in the
settings of stochastic process algebras [36] and of stochastic Petri nets [44, 39].
We consider here a little variant of [36], which stresses mobility issues. In our
version the routing of servers is state-dependent instead of state-independent
as in the original presentation. In particular, servers do not move randomly
between nodes, but consider whether a node already has a server and whether
it has something to perform. In this respect, our specification is not a proper
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MSMQ system, but it enables us to cope with the general problem of remote
servers dispatching agents to clients.

We consider a system made up of two independent servers that are routed
between two nodes, each with a single place buffer. Two nodes suffice for
generating the smallest configuration on which we can comfortably illustrate
the features of our model; having more nodes would only make the example
longer. We assume that a customer occupies a place in the node until service
is completed. We rely on HOπ to model the routing of servers to nodes via
process migration. The specification of the polling system follows (assume
i = 1, 2).

P = (ν xi, ri, si, pi)((N1 |N2)|(S |S))

Ni = xi(U).U |Nodei

Nodei = ini.si.Nodei + pi.Nodei

S = x1〈S
1
1〉.r1.S + x2〈S

1
2〉.r2.S

S1
i = si.ri.xi(U).U + pi.ri.xi(U).U.

Servers migrate to the nodes along the links xi. Once a server has sent
its agent S1

i onto a node Ni, it waits for a signal ri from S1
i to begin again.

The agent of the server queries the node for customers waiting for service.
If there is one waiting, the agent serves the customer, performing action si

in interaction with the node Ni. Otherwise, via a pass action pi, S1
i restores

the initial state of Ni. In both cases, S1
i eventually resumes the server S, via

an action ri. The arrival of a customer on node Ni is modelled by firing the
action ini, a synchronization with the operating environment. The one place
buffer of Ni is implemented by blocking any other ini action until the service
of the current customer has ended.

Hillston [36] models the polling system with a first order calculus and
associates stochastic information with prefixes in the syntax. An implicit
assumption is that the routing of servers takes the same time for any node
in the system. We could easily relax this assumption to distinguish the time
spent for moving to one node or to another, by assigning different weights to
the relative distances.

The transitions of the process P are in the Appendix; there are 210 of
them and they form more than 45 distinct loops. The higher-order feature
of our specification reduces the number of states to 68 from 210 of the spe-
cification in [36].

As an example of analysis we computed the usage of the link s1 (which
gives the throughput of the services on the node N1) and we considered dif-
ferent performance characteristics of N1. To model this aspect, we stipulate
that all the local channels of N1 (x1, s1, . . . and x2, s2, . . . ) have the same
throughput. In particular we considered three cases for the throughput of
the channels: 352.98, 7.74 and 6.66 Mbps. We got these values by profiling
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three different machines at the Department of Computer Science of the Uni-
versity of Pisa by using Netperf [1]. The corresponding usage of link s1 is
300.089, 9.88717 and 9.64 communications/sec which turns out to fit with
our experimental data.

The transition system for the polling system and the throughputs above
have been computed by using a prototypal tool described in [10]. Its kernel
implements the enhanced operational semantics of π-calculus and assists the
user in the definition of cost functions according to different architectures
(uniprocessors, multiprocessors, network, cluster of networks). Once the cost
functions have been defined, the tool computes the generator matrix of a
CTMC, from the proved transition system of a specification. The user then
chooses the measure of interest, and the tool generates a reward structure
and interfaces Mathematica for numerical calculations.

7 Conclusions and further work

We have presented a framework in which the performance analysis of systems
is driven by the semantics of their specifications. We used an enhanced struc-
tural operational semantics, called proved, whose transitions are labelled by
(encodings of) their proofs. Taking advantage of enhanced labels, we asso-
ciate rates with transitions mechanically: we only relabel transitions with
probabilistic information. This is done symbolically, by looking at the en-
hanced labels, alone. Actual values are obtained as soon as the user provides
some additional information about the architecture on which the system un-
der analysis runs.

Since enhanced labels can be tightly connected to the routines called
by the run-time support to implement each operator of the language, the
information about architectural features can be supplied by a compiler. In-
deed, calculi like the one considered here constitute the core of languages for
reactive and mobile systems, e.g. Facile [65], PICT [54], CML [53], Esterel
[6]. In some cases, HOπ is used as an intermediate language of them, i.e. as
the code produced by some steps of compilation (see the encoding of Java in
the π-calculus [34]). The compiled code can therefore be annotated to sup-
port quantitative analysis following our proposal, thus helping to mechanize
performance analysis and to do it at compile time.

In this paper we have assumed that any activity is exponentially distrib-
uted, but general distributions are also possible (see [57]), as they depend on
enhanced labels, alone.

Once rates have been assigned to transitions, it is easy to derive the
CTMC associated with a transition system of a process. From its stationary
distribution, if any, we evaluate the performance of the process in hand.

We have programmed a prototypal tool in ML [10], which generates
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proved transition systems and their stochastic relabelling, supporting the
user in the choice among a few cost functions for some typical architectures.
It then computes CTMCs and some performance measures, e.g. throughput,
via Mathematica. The tool has been used to compute the values of the
examples on which we exemplified our approach.

Our first example considers the network management system analysed
by Baldi and Picco in [4], and our results agree with theirs, under the same
assumptions. We also analysed a slight variant of a polling system, studied
in [36, 44, 39]. Although in this case a comparison cannot be as precise as
in the previous one, the results we got seem quite sensible. This makes us
confident that our approach is indeed applicable and makes sense. Of course,
much work is still needed to test our ideas. We plan to apply them on real
size applications, in order to prove whether our proposal is scalable and to
gain more experience in the definition of sensible cost functions.

It is worth noticing that our approach follows the same pattern presented
in [23] to derive behavioural information from our enhanced labels. Also,
behavioural properties can be checked by using a tool integrated with ours.
Therefore, we propose our operational semantics as a uniform framework to
carry out integrated behavioural and quantitative analysis.

We claim that formal methods can help the designers in the development
of applications by driving and assisting them in error-prone steps such as the
translation of a specification into a model suitable for quantitative analysis.
We think that our proposal is a little step in this direction.

Acknowledgements. The authors wish to thank the anonymous refer-
ees for their precise and helpful remarks, and Jane Hillston for her illumin-
ating comments and careful suggestions on the example of a polling system.
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A Transition system of the polling specifica-

tion

The following is transition system for the multi-server multi-queue system P specified in
Sect. 6. For the sake of readability, in its transitions we omit restrictions and we use the
following auxiliary processes, where i = 1, 2.

N1
i = xi(U).U | si.Nodei N2

i = S2
i |Nodei

N3
i = S1

i | si.Nodei N4
i = S2

i |Nodei

N5
i = S2

i | si.Nodei S2
i = ri.xi(U).U

P
〈||0||0||0x1(U),||1||0+0x1〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ ((N 2
1 |N2)|(r1.S|S)) = P1

P
〈||0||1||0x2(U),||1||0+1x2〈S

1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ ((N1|N2
2 )|(r2.S|S)) = P2

P
〈||0||0||0x1(U),||1||1+0x1〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ ((N 2
1 |N2)|(S|r1.S)) = P3

P
〈||0||1||0x2(U),||1||1+1x2〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ ((N1|N2
2 )|(S|r2.S)) = P4

P
||0||0||1+0in1

−−−−−−−−→ ((N1
1 |N2)|(S|S)) = P5

P
||0||1||1+0in2

−−−−−−−−→ ((N1|N1
2 )|S|S)) = P6

P1
||0||0||1+0in1

−−−−−−−−→ ((N3
1 |N2)|(r1.S|S)) = P7

P1
〈||0||1||0x2(U),||1||1+1x2〈S

1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ ((N 2
1 |N

2
2 )|(r1.S|r2.S)) = P8

P1
||0||1||1+0in2

−−−−−−−−→ ((N2
1 |N

1
2 )|(r1.S|S)) = P9

P1
||0||0〈||0+1p

1
,||1+1p1〉

−−−−−−−−−−−−−−→ ((N 4
1 |N2)|(r1.S|S)) = P18

P2
||0||0||1+0in1

−−−−−−−−→ ((N1
1 |N

2
2 )|(r2.S|S)) = P10

P2
〈||0||0||0x1(U),||1||1+0〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−→ ((N 2
1 |N

2
2 )|(r2.S|r1.S)) = P11

P2
||0||1||1+0in2

−−−−−−−−→ ((N1|N3
2 )|(r2.S|S)) = P12

P2
||0||1〈||0+1p

2
,||1+1p2〉

−−−−−−−−−−−−−−→ ((N1|N4
2 )|(r2.S|S)) = P19

P3
||0||0||1+0in1

−−−−−−−−→ ((N3
1 |N2)|(S|r1.S)) = P13

P3
〈||0||1||0x2(U),||1||0+1x2〈S

1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P11

P3
||0||1||1+0in2

−−−−−−−−→ ((N2
1 |N

1
2 )|(S|r1.S)) = P14

P3
||0||0〈||0+1p

1
,||1+1p1〉

−−−−−−−−−−−−−−→ ((N 4
1 |N2)|(S|r1.S)) = P20

P4
||0||0||1+0in1

−−−−−−−−→ ((N1
1 |N

2
2 )|(S|r2.S)) = P15

P4
〈||0||0||0x1(U),||1||0+0〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−→ P8
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P4
||0||1||1+0in2

−−−−−−−−→ ((N1|N3
2 )|(S|r2.S)) = P16

P4
||0||1〈||0+1p

2
,||1+1p2〉

−−−−−−−−−−−−−−→ ((N1|N4
2 )|(S|r2.S)) = P21

P5
〈||0||0||0x1(U),||1||0+0x1〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P7

P5
〈||0||1||0x2(U),||1||0+1x2〈S

1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P10

P5
〈||0||0||0x1(U),||1||1+0x1〈S
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1
2 )|(S|S)) = P17
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1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P9
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〈||0||1||0x2(U),||1||0+1x2〈S

1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P12
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1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P14

P6
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1

1
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||0||0||1+0in1

−−−−−−−−→ P17
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2
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−−−−−−−−−−−−−−−−−−−→ ((N 3
1 |N

2
2 )|(r1.S|r2.S)) = P22

P7
||0||1||1+0in2

−−−−−−−−→ ((N3
1 |N

1
2 )|(r1.S|S)) = P23

P8
||0||1||1+0in2

−−−−−−−−→ ((N2
1 |N

3
2 )|(r1.S|r2.S)) = P26

P8
||0||1〈||0+1p

2
,||1+1p2〉

−−−−−−−−−−−−−−→ ((N 2
1 |N

4
2 )|(r1.S|r2.S)) = P25

P8
||0||0||1+0in1

−−−−−−−−→ P22

P8
||0||0〈||0+1p

1
,||1+1p1〉

−−−−−−−−−−−−−−→ ((N 4
1 |N

2
2 )|(r1.S|r2.S)) = P24

P9
||0||0〈||0+1p

1
,||1+1p1〉

−−−−−−−−−−−−−−→ ((N 4
1 |N

1
2 )|(r1.S|S)) = P27

P9
||0||0||1+0in1

−−−−−−−−→ P23

P9
〈||0||1||0x2(U),||1||1+1x2〈S

1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P26P10
||0||1||1+0in2

−−−−−−−−→ ((N1
1 |N

3
2 )|(r2.S|S)) = P30

P10
〈||0||0||0x1(U),||1||1+0x1〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ (N 3
1 |N

2
2 )|(r2.S|r1.S)) = P28

P10
||0||1〈||0+1p

2
,||1+1p2〉

−−−−−−−−−−−−−−→ ((N 1
1 |N

4
2 )|(r2.S|S)) = P29

P11
||0||0||1+0in1

−−−−−−−−→ P28

P11
||0||0〈||0+1p

1
,||1+1p1〉

−−−−−−−−−−−−−−→ ((N 4
1 |N

2
2 )|(r2.S|r1.S)) = P31

P11
||0||1||1+0in2

−−−−−−−−→ ((N2
1 |N

3
2 )|(r2.S|r1.S)) = P33

P11
||0||1〈||0+1p

2
,||1+1p2〉

−−−−−−−−−−−−−−→ ((N 2
1 |N

4
2 )|(r2.S|r1.S)) = P32

P12
||0||0||1+0in1

−−−−−−−−→ P30

P12
〈||0||0||0x1(U),||1||0+0x1〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P33

P12
||0||1〈||0s2,||1s2〉
−−−−−−−−−−→ P19

P13
||0||0〈||0s1,||1s1〉
−−−−−−−−−−→ P20

P13
〈||0||1||0x2(U),||1||0+1x2〈S

1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P28

P13
||0||1||1+0in2

−−−−−−−−→ ((N3
1 |N

1
2 )|(S|r1.S)) = P34

P14
||0||0〈||0+1p

1
,||1+1p1〉

−−−−−−−−−−−−−−→ ((N 4
1 |N

1
2 )|S|r1.S)) = P35

P14
〈||0||1||0x2(U),||1||0+1x2〈S

1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P33

P14
||0||0||1+0in1

−−−−−−−−→ P34

44



P15
〈||0||0||0x1(U),||1||0+0x1〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P22 P15
||0||1〈||0+1p

2
,||1+1p2〉

−−−−−−−−−−−−−−→ ((N 1
1 |N

4
2 )|(S|r2.S)) = P36

P15
||0||1||1+0in2

−−−−−−−−→ ((N1
1 |N

3
2 )|(S|r2.S)) = P37

P16
||0||0||1+0in1

−−−−−−−−→ P37 P16
〈||0||0||0x1(U),||1||0+0x1〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P26

P16
||0||1〈||0s2,||1s2〉
−−−−−−−−−−→ P21

P17
〈||0||0||0x1(U),||1||0+0x1〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P23 P17
〈||0||1||0x2(U),||1||0+1x2〈S

1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P30

P17
〈||0||0||0x1(U),||1||1+0x1〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P34 P17
〈||0||1||0x2(U),||1||1+1x2〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P37

P18
〈||0||0||0r1,||1||0r1〉
−−−−−−−−−−−−→ P P18

〈||0||1||0x2(U),||1||1+1x2〈S
1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P24

P18
||0||0||1+0in1

−−−−−−−−→ ((N5
1 |N2)|(r1.S|S)) = P38 P18

||0||1||1+0in2

−−−−−−−−→ P27

P19
〈||0||1||1r2,||1||0r2〉
−−−−−−−−−−−−→ P P19

〈||0||0||0x1(U),||1||1+0x1〈S
1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P32

P19
||0||0||1+0in1

−−−−−−−−→ P29 P19
||0||1||1+0in2

−−−−−−−−→ ((N1|N5
2 )|(r2.S|S)) = P39

P20
〈||0||0||0r1,||1||1r1〉
−−−−−−−−−−−−→ P P20

〈||0||1||0x2(U),||1||0+1x2〈S
1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P31

P20
||0||0||1+0in1

−−−−−−−−→ ((N5
1 |N2)|(S|r1.S)) = P40 P20

||0||1||1+0in2

−−−−−−−−→ P35

P21
〈||0||1||1r2,||1||1r2〉
−−−−−−−−−−−−→ P P21

〈||0||0||0x1(U),||1||0+0x1〈S
1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P25

P21
||0||0||1+0in1

−−−−−−−−→ P36 P21
||0||1||1+0in2

−−−−−−−−→ ((N1|N5
2 )|(S|r2.S)) = P41

P22
||0||0〈||0s1,||1s1〉
−−−−−−−−−−→ P24 P22

||0||1〈||0+1p
2
,||1+1p2〉

−−−−−−−−−−−−−−→ ((N 3
1 |N

4
2 )|(r1.S|r2.S)) = P42

P22
||0||1||1+0in2

−−−−−−−−→ ((N3
1 |N

3
2 )|(r1.S|r2.S)) = P43

P23
||0||0〈||0s1,||1s1〉
−−−−−−−−−−→ P27 P23

〈||0||1||0x2(U),||1||1+1x2〈S
1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P43

P24
||0||0||1+0in1

−−−−−−−−→ ((N5
1 |N

2
2 )|(r1.S|r2.S)) = P44 P24

〈||0||0||0r1,||1||0r1〉
−−−−−−−−−−−−→ P4

P24
||0||1||1+0in2

−−−−−−−−→ ((N4
1 |N

3
2 )|(r1.S|r2.S)) = P46 P24

||0||1〈||0+1p
2
,||1+1p2〉

−−−−−−−−−−−−−−→ ((N 4
1 |N

4
2 )|(r1.S|r2.S)) = P45

P25
||0||0||1+0in1

−−−−−−−−→ P42 P25
〈||0||1||1r2,||1||1r2〉
−−−−−−−−−−−−→ P1

P25
||0||1||1+0in2

−−−−−−−−→ ((N2
1 |N

5
2 )|(r1.S|r2.S)) = P47 P25

||0||0〈||0+1p
1
,||1+1p1〉

−−−−−−−−−−−−−−→ P45

P26
||0||0||1+0in1

−−−−−−−−→ P43 P26
||0||0〈||0+1p

1
,||1+1p1〉

−−−−−−−−−−−−−−→ P46

P26
||0||1〈||0s2,||1s2〉
−−−−−−−−−−→ P25

P27
||0||0||1+0in1

−−−−−−−−→ ((N5
1 |N

1
2 )|(r1.S|S)) = P48 P27

〈||0||1||0x2(U),||1||1+1x2〈S
1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P46

P27
〈||0||0||0r1,||1||0r1〉
−−−−−−−−−−−−→ P6

P28
||0||1||1+0in2

−−−−−−−−→ ((N3
1 |N

3
2 )|(r2.S|r1.S)) = P50 P28

||0||1〈||0+1p
2
,||1+1p2〉

−−−−−−−−−−−−−−→ ((N 3
1 |N

4
2 )|(r2.S|r1.S)) = P49

P28
||0||0〈||0s1,||1s1〉
−−−−−−−−−−→ P31

P29
||0||1||1+0in2

−−−−−−−−→ ((N1
1 |N

5
2 )|(r2.S|S)) = P51 P29

〈||0||0||0x1(U),||1||1+0x1〈S
1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P49

P29
〈||0||1||1r2,||1||0r2〉
−−−−−−−−−−−−→ P5

P30
||0||1〈||0s2,||1s2〉
−−−−−−−−−−→ P29 P30

〈||0||0||0x1(U),||1||1+0x1〈S
1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P50

P31
||0||0||1+0in1

−−−−−−−−→ ((N5
1 |N

2
2 )|(r2.S|r1.S)) = P52 P31

〈||0||0||0r1,||1||1r1〉
−−−−−−−−−−−−→ P2

P31
||0||1||1+0in2

−−−−−−−−→ ((N4
1 |N

3
2 )|(r2.S|r1.S)) = P54 P31

||0||1〈||0+1p
2
,||1+1p2〉

−−−−−−−−−−−−−−→ ((N 4
1 |N

4
2 )|(r2.S|r1.S)) = P53

P32
||0||0||1+0in1

−−−−−−−−→ P49 P32
||0||0〈||0+1p

1
,||1+1p1〉

−−−−−−−−−−−−−−→ P53

P32
||0||1||1+0in2

−−−−−−−−→ ((N2
1 |N

5
2 )|(r2.S|r1.S)) = P55 P32

〈||0||1||1r2,||1||0r2〉
−−−−−−−−−−−−→ P3

P33
||0||0||1+0in1

−−−−−−−−→ P50 P33
||0||0〈||0+1p

1
,||1+1p1〉

−−−−−−−−−−−−−−→ P54

P33
||0||1〈||0s2,||1s2〉
−−−−−−−−−−→ P32

P34
||0||0〈||0s1,||1s1〉
−−−−−−−−−−→ P35 P34

〈||0||1||0x2(U),||1||0+1x2〈S
1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P50
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P35
||0||0||1+0in1

−−−−−−−−→ ((N5
1 |N

1
2 )|(S|r1.S)) = P56 P35

〈||0||1||0x2(U),||1||0+1x2〈S
1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P54

P35
〈||0||0||0r1,||1||1r1〉
−−−−−−−−−−−−→ P6

P36
||0||1||1+0in2

−−−−−−−−→ ((N1
1 |N

5
2 )|(S|r2.S)) = P57 P36

〈||0||0||0x1(U),||1||0+0x1〈S
1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P42

P36
〈||0||1||1r2,||1||1r2〉
−−−−−−−−−−−−→ P5

P37
||0||1〈||0s2,||1s2〉
−−−−−−−−−−→ P36 P37

〈||0||0||0x1(U),||1||0+0x1〈S
1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P43

P38
〈||0||0||0r1,||1||0r1〉
−−−−−−−−−−−−→ P5 P38

〈||0||1||0x2(U),||1||0+1x2〈S
1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P44

P38
||0||1||1+0in2

−−−−−−−−→ P48

P39
||0||0||1+0in1

−−−−−−−−→ P51 P39
〈||0||0||0x1(U),||1||1+0x1〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P55

P39
〈||0||1||1r2,||1||0r2〉
−−−−−−−−−−−−→ P6

P40
||0||1||1+0in2

−−−−−−−−→ P56 P40
〈||0||1||0x2(U),||1||0+1x2〈S

1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P52

P40
〈||0||1||1r2,||1||1r2〉
−−−−−−−−−−−−→ P5

P41
||0||0||1+0in1

−−−−−−−−→ P57 P41
〈||0||0||0x1(U),||1||0+0x1〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P47

P41
〈||0||1||1r2,||1||1r2〉
−−−−−−−−−−−−→ P6

P42
||0||1||1+0in2

−−−−−−−−→ ((N3
1 |N

5
2 )|(r1.S|r2.S)) = P58 P42

||0||0〈||0s1,||1s1〉
−−−−−−−−−−→ P45

P42
〈||0||1||1r2,||1||1r2〉
−−−−−−−−−−−−→ P7

P43
||0||0〈||0s1,||1s1〉
−−−−−−−−−−→ P46 P43

||0||1〈||0s2,||1s2〉
−−−−−−−−−−→ P42

P44
〈||0||0||0r1,||1||0r1〉
−−−−−−−−−−−−→ P15 P44

||0||1〈||0+1p
2
,||1+1p2〉

−−−−−−−−−−−−−−→ ((N 5
1 |N

4
2 )|(r1.S|r2.S)) = P59

P44
||0||1||1+0in2

−−−−−−−−→ ((N5
1 |N

3
2 )|(r1.S|r2.S)) = P60

P45
||0||0||1+0in1

−−−−−−−−→ P59 P45
||0||1||1+0in2

−−−−−−−−→ ((N4
1 |N

5
2 )|(r1.S|r2.S)) = P61

P45
〈||0||0||0r1,||1||0r1〉
−−−−−−−−−−−−→ P21 P45

〈||0||1||1r2,||1||1r2〉
−−−−−−−−−−−−→ P18

P46
||0||0||1+0in1

−−−−−−−−→ P60 P46
〈||0||0||0r1,||1||0r1〉
−−−−−−−−−−−−→ P37

P46
||0||1〈||0s2,||1s2〉
−−−−−−−−−−→ P45

P47
||0||0||1+0in1

−−−−−−−−→ P58 P47
||0||0〈||0+1p

1
,||1+1p1〉

−−−−−−−−−−−−−−→ P61

P47
〈||0||1||1r2,||1||1r2〉
−−−−−−−−−−−−→ P9

P48
〈||0||0||0r1,||1||0r1〉
−−−−−−−−−−−−→ P17 P48

〈||0||1||0x2(U),||1||1+1x2〈S
1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P60

P49
||0||1||1+0in2

−−−−−−−−→ ((N3
1 |N

5
2 )|(r2.S|r1.S)) = P62 P49

||0||0〈||0s1,||1s1〉
−−−−−−−−−−→ P53

P49
〈||0||1||1r2,||1||1r2〉
−−−−−−−−−−−−→ P13

P50
||0||0〈||0s1,||1s1〉
−−−−−−−−−−→ P54 P50

||0||1〈||0s2,||1s2〉
−−−−−−−−−−→ P49

P51
〈||0||0||0x1(U),||1||1+0x1〈S

1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P62 P51
〈||0||1||1r2,||1||1r2〉
−−−−−−−−−−−−→ P17

P52
||0||1||1+0in2

−−−−−−−−→ ((N5
1 |N

3
2 )|(r2.S|r1.S)) = P63 P52

||0||1〈||0+1p
2
,||1+1p2〉

−−−−−−−−−−−−−−→ ((N 5
1 |N

4
2 )|(r2.S|r1.S)) = P67

P52
〈||0||0||0r1,||1||1r1〉
−−−−−−−−−−−−→ P10

P53
||0||0||1+0in1

−−−−−−−−→ P62 P53
〈||0||0||0r1,||1||1r1〉
−−−−−−−−−−−−→ P19

P53
||0||1||1+0in2

−−−−−−−−→ ((N4
1 |N

5
2 )|(r2.S|r1.S)) = P64 P53

〈||0||1||1r2,||1||0r2〉
−−−−−−−−−−−−→ P20

P54
||0||0||1+0in1

−−−−−−−−→ P63 P54
〈||0||0||0r1,||1||1r1〉
−−−−−−−−−−−−→ P12

P54
||0||1〈||0s2,||1s2〉
−−−−−−−−−−→ P53

P55
||0||0||1+0in1

−−−−−−−−→ P62 P55
||0||0〈||0+1p

1
,||1+1p1〉

−−−−−−−−−−−−−−→ P64

P55
〈||0||1||1r2,||1||0r2〉
−−−−−−−−−−−−→ P14
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P56
〈||0||0||0r1,||1||1r1〉
−−−−−−−−−−−−→ P17 P56

〈||0||1||0x2(U),||1||0+1x2〈S
1

2
〉〉

−−−−−−−−−−−−−−−−−−−→ P63

P57
〈||0||1||1r2,||1||1r2〉
−−−−−−−−−−−−→ P17 P57

〈||0||0||0x1(U),||1||0+0x1〈S
1

1
〉〉

−−−−−−−−−−−−−−−−−−−→ P58

P58
||0||0〈||0s1,||1s1〉
−−−−−−−−−−→ P61 P58

〈||0||1||1r2,||1||1r2〉
−−−−−−−−−−−−→ P23

P59
〈||0||0||0r1,||1||0r1〉
−−−−−−−−−−−−→ P36 P59

||0||1||1+0in2

−−−−−−−−→ ((N5
1 |N

5
2 )|(r1.S|r2.S)) = P65

P59
〈||0||1||1r2,||1||1r2〉
−−−−−−−−−−−−→ P38

P60
〈||0||0||0r1,||1||0r1〉
−−−−−−−−−−−−→ P37 P60

||0||1〈||0s2,||1s2〉
−−−−−−−−−−→ P59

P61
〈||0||0||0r1,||1||0r1〉
−−−−−−−−−−−−→ P41 P61

〈||0||1||1r2,||1||1r2〉
−−−−−−−−−−−−→ P27

P62
||0||0〈||0s1,||1s1〉
−−−−−−−−−−→ P64 P62

〈||0||1||1r2,||1||0r2〉
−−−−−−−−−−−−→ P34

P63
〈||0||0||0r1,||1||1r1〉
−−−−−−−−−−−−→ P30 P63

||0||1〈||0s2,||1s2〉
−−−−−−−−−−→ P62

P64
〈||0||0||0r1,||1||1r1〉
−−−−−−−−−−−−→ P39 P64

〈||0||1||1r2,||1||0r2〉
−−−−−−−−−−−−→ P35

P65
〈||0||0||0r1,||1||0r1〉
−−−−−−−−−−−−→ P57 P65

〈||0||1||1r2,||1||1r2〉
−−−−−−−−−−−−→ P48

P66
〈||0||0||0r1,||1||1r1〉
−−−−−−−−−−−−→ P51 P66

〈||0||1||1r2,||1||0r2〉
−−−−−−−−−−−−→ P56

P67
||0||1||1+0in2

−−−−−−−−→ ((N5
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5
2 )|(r2.S|r1.S)) = P66 P67

〈||0||1||1r2,||1||0r2〉
−−−−−−−−−−−−→ P40

P67
〈||0||0||0r1,||1||1r1〉
−−−−−−−−−−−−→ P29
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