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Abstract

A constructive and recursion theoretic analysis of the standard Com-
putable General Equilibrium (CGE) model of economic theory is un-
dertaken. It is shown, contrary to widely expressed views and textbook
versions of the CGE model, that the standard CGE model is neither com-
putable nor constructive in the strict mathematical senses.
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1 Introduction

The economic foundations of Computable General Equilibrium (CGE) models
lie in Uzawa�s Equivalence Theorem ([17], [15],ch. 11, pp. 135-8, [4], p.719, ¤);
the mathematical foundations are underpinned by topological �x point theorems
(Brouwer, Kakutani, etc.). The claim that such models are computable or con-
structive rests on mathematical foundations of an algorithmic nature: i.e., on

�A simpler and less detailed version of the results reported in this paper were presented
during my lectures at the �Winter School� in Experimental and Computable Economics held
in the department of economics at the University of Trento on 4/5 February, 2004.

yAddress and e-mail for correspondence: Professor K. Vela Velupillai, Department of Eco-
nomics, National University of Ireland, Galway, Ireland; e-mail:vela.velupillai@nuigalway.ie

zvela@economia.unitn.it
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recursion theory or some variety of constructive mathematics. It is a widely held
belief that CGE models are both constructive and computable1 . That the latter
property is held to be true of CGE models is evident even from the generic
name given to this class of models; that the former characterization is a feature
of such models is claimed in standard expositions and applications of CGE
models. For example in the well known, and pedagogically elegant, textbook
by two of the more prominent advocates of applied CGE modelling in policy
contexts, John Shoven and John Whalley ([14]), the following explicit claim is
made:

"The major result of postwar mathematical general equilibrium the-
ory has been to demonstrate the existence of such an equilibrium by
showing the applicability of mathematical �xed point theorems to
economic models. ... Since applying general equilibrium models to
policy issues involves computing equilibria, these �xed point theo-
rems are important: It is essential to know that an equilibrium exists
for a given model before attempting to compute that equilibrium.
.....

...

The weakness of such applications is twofold. First, they provide
non-constructive rather than constructive proofs of the existence of
equilibrium; that is, they show that equilibria exist but do not pro-
vide techniques by which equilibria can actually be determined. Sec-
ond, existence per se has no policy signi�cance. .... Thus, �xed point
theorems are only relevant in testing the logical consistency of mod-
els prior to the models� use in comparative static policy analysis;
such theorems do not provide insights as to how economic behavior
will actually change when policies change. They can only be em-
ployed in this way if they can be made constructive (i.e., be used to
�nd actual equilibria). The extension of the Brouwer and Kakutani
�xed point theorems in this direction is what underlies the work of
Scarf .... on �xed point algorithms ...."

ibid, pp12, 20-1; italics added

However, in Scarf�s classic book of 1973 there is the following characteristi-
cally careful caveat to any unquali�ed claims to constructivity of the algorithm
he had devised:

"In applying the algorithm it is, in general, impossible to select
an ever �ner sequence of grids and a convergent sequence of sub-
simplices. An algorithm for a digital computer must be basically

1The references to constructive and computable are to their strict mathematical senses. The
mathematical meaning of computable (or e¤ ectively calculable) is unambiguous in recursion
theory (and under the Church-Turing thesis). Constructivity can be interpreted in a variety
of ways, even in strict mathematical senses. However, the CGE Model is non-constructive
under any mathematical interpretation of constructive and not only in the most �puritanical�
versions, such as Brouwer�s (based on a particular type of intuitionistic logic).
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�nite and cannot involve an in�nite sequence of successive re�ne-
ments. ....... The passage to the limit is the nonconstructive aspect
of Brouwer�s theorem, and we have no assurance that the subsimplex
determined by a �ne grid of vectors on S contains or is even close
to a true �xed point of the mapping."

[12], p.52; italics added

The main goal in this paper is to sort out this and other ambiguities by clar-
ifying the precise roles played by computability and constructivity in the theory
of CGE models. The paper is organized as follows. In the next section the
Uzawa equivalence theorem is analysed from the point of view of computability
theory. In section 3 the (non-) constructive content of the combinatorial proof
of the Brouwer �x point theorem is made explicit and other, related, issues on
constructivity in proofs of this theorem are also discussed. Following this, in
the brief concluding section, further clarifying remarks on the mathematical and
algorithmic foundations of the theory of CGE models are made together with
some suggestions on going beyond reliance on topological �x point theorems in
the proof of equilibrium existence.

2 Uncomputability and Undecidability in the Uzawa
Equivalence Theorem

The Uzawa Equivalence theorem is the fulcrum around which the theory of
CGE modelling revolves. This key theorem2 provides the theoretical justi�ca-
tion for relying on the use of the algorithms that have been devised for determin-
ing general economic equilibria as �x points using essentially non-constructive
topological arguments. The essential content of the theorem is the mathematical
equivalence between a precise statement ofWalras�Existence Theorem (WET)
and Brouwer�s (or any other relevant3) Fix-Point Theorem. To study the al-
gorithmic - i.e., computable and constructive - content of the theorem, it is
necessary to analyse the assumptions underpinning WET, the nature of the
proof of economic equilibrium existence in WET and the nature of the proof
of equivalence. By the �nature of the proof� I mean, of course, the construc-
tive4 content in the logical procedures used in the demonstrations- whether, for

2To the best of my knowledge it is only in Ross Starr�s excellent textbook ([15], op.cit)
that this fundamental theorem is stated and proved in an illuminating way. A theorem that
is crucial not only from a theoretical point of view, but also one that underpins all the applied
work that is based on CGE models should, surely, be more widely available at the advanced
textbook level?

3For simplicity, I shall restrict the discussion of the equivalence, in this paper, to that
between Walras�Existence Theorem and only Brouwer�s Fixed-Point Theorem. The analysis
applies, however, pari passu to the equivalence with the Kakutani or any other topological
�xed point theorem.

4Since computability theory freely invokes classical logical principles in proof procedures
such an analysis is not required for any of the proofs from a recursion theoretic point of view.
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example, the law of double negation or the law of the excluded middle (LEM:
tertium non datur) is invoked in non-�nitary instances. This latter point will be
crucial in the next section. Therefore, I shall, �rst, state an elementary version
of WET (cf., [17], p. 60 or [15], p. 136).

Theorem 1 Walras�Existence Theorem (WET)
Let the excess demand function, X(p) = [x1(p); :::::::; xn(p)], be a mapping

from the price simplex, S, to the RN
commodity space; i.e., X(p) : S ! RN
where:
i). X(p) is continuous for all prices, p 2 S
ii). X(p) is homogeneous of degree 0;

iii). p:X(p) = 0;8p 2 S (Walras�Law holds:
nX
i=1

pixi(p) = 0, 8p 2 S)5

Then:
9p� 2 S; s.t., X(p�) � 0, with p�i = 0; 8i, s.t., Xi(p�) < 0

The �nesse in this half of the equivalence theorem, i.e., thatWET implies
the Brouwer �x point theorem, is to show the feasibility of devising6 a continuous
excess demand function, X(p), satisfying Walras�Law (and homogeneity), from
an arbitrary continuous function, say f(:) : S ! S, such that the equilibrium
price vector implied by X(p) is also the �x point for f(:), from which it is
�constructed�7 .
The question remains, however, of the recursion theoretic status of X(p). Is

this function computable for arbitrary p 2 S? Obviously, if it is, then there is
no need to use the alleged constructive procedure to determine the Brouwer �x
point (or any of the other usual topological �x points that are invoked in general
equilibrium theory and CGE Modelling) to locate the economic equilibrium
implied by WET. If it is not, p:X(p) is meaningless from a recursion theoretic
point of view for uncomputable X(p).
The key step in proceeding from a given, arbitrary, f(:) : S ! S to an excess

demand function X(p) is the de�nition of an appropriate scalar:

5As far as possible I attempt to retain �delity to Uzawa�s original notation and structure
even although more general formulations are possible. .

6 I have to seek recourse to words such as �devise� to avoid the illegitimate use of mathe-
matically loaded terms like �construction�, �choice�, �choose�, etc., that the literature on CGE
modelling is replete with, signifying, illegitimately, possibilities of meaningful - i.e., algorith-
mic - �construction�, �choice�, etc. For example, Uzawa, at this point, states: "We construct
an excess demand function.." (op.cit, p.61; italics added; Starr, at a comparable stage of the
proof states: "If we have constructed [the excess demand function] cleverly enough..." (op.cit.,
p.137; italics added). Neither of these claims are valid from the point of view of any kind of
algorithmic procedure.

7 I have placed this use of the word within inverted commas because �constructive� and
�construction�are supposed to mean something very speci�c in a mathematical sense, in this
paper. See also related remarks in the previous footnote.
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�(p) =

nX
i=1

pifi[
p

�(p) ]

nX
i=1

p2i

=
p:f(p)

jpj2
(1)

Where:

�(p) =
nX
i=1

pi (2)

From (1) and (2), the following excess demand function, X(p), is de�ned:

xi(p) = fi(
p

�(p)
)� pi�(p) (3)

i.e.,
X(p) = f(p)� �(p)p (4)

It is simple to show that (3) [or (4)] satis�es (i)-(iii) of Theorem 1 and,
hence, 9p�s.t., X(p�) � 0 (with equality unless p� = 0). Elementary (non-
constructive8) logic and economics then imply that f(p�) = p�. I claim that the
procedure that leads to the de�nition of (3) [or, equivalently, (4)] to determine
p�is provably undecidable. In other words, the crucial scalar in (1) cannot be
de�ned recursion theoretically (and, a fortiori, constructively) to e¤ectivize a
sequence of projections that would ensure convergence to the equilibrium price
vector.
Clearly, given any p 2 S, all the elements on the r.h.s of (1) and (2) seem to

be well de�ned. However, f(p) is not necessarily computable (nor meaningfully
constructive) for arbitrary p 2 S. Restricting the choice of f(:) to the partial
recursive functions may most obviously violate the assumption of Walras�Law.
Therefore, even from a very elementary (classical) recursion theoretic standpoint
it is easy to show the absence of a computable (and constructive) content to
Theorem 1. I shall, however, opt for a slightly more direct and formal route
to the demonstration of a recursion theoretic infelicity in the implication in
Theorem 1. This will be a formal demonstration that it is impossible to devise
an algorithm to de�ne (3) [or (4)] for an arbitrary f(p), such that the equilibrium
p� for the de�ned excess demand function is also the �x point of f(:). If it were
possible, then the famous Halting Problem for Turing Machines can be solved,
which is an impossibility.

Theorem 2 X(p�), as de�ned in (3) [or (4)] above is undecidable; i.e., cannot
be determined algorithmically.
Proof. Suppose, contrariwise, there is an algorithm which, given an arbitrary
f(:) : S ! S, determines X(p�). This means, therefore, in view of (i)-(iii)
of Theorem 1, that the given algorithm determines the equilibrium p� implied

8There is an implicit reliance on LEM (tertium non datur ) in an in�ntary situation in the
proof, too.
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by WET. In other words, given the arbitrary initial conditions p 2 S and
f(:) : S ! S, the assumption of the existence of an algorithm to determine
X(p�) implies that its halting con�gurations are decidable. But this violates the
undecidability of the Halting Problem for Turing Machines. Hence, the assump-
tion that there exists an algorithm to determine - i.e., to construct - X(p�) is
untenable.

Remark 3 The algorithmically important content of the proof is the following.
Starting with an arbitrary continuous function mapping the simplex into itself
and an arbitrary price vector, the existence of an algorithm to determine X(p�)
entails the feasibility of a procedure to choose price sequences in some deter-
mined way to check for p� and to halt when such a price vector is found. Now,
the two scalars, � and � are determined once f(:) and p are given. But an ar-
bitrary initial price vector p, except for �ukes, will not be the equilibrium price
vector p�. Therefore the existence of an algorithm would imply that there is a
systematic procedure to choose price vectors, determine the values of f(:), � and
� and the associated excess demand vector X(p;�; �). At each determination
of such an excess demand vector, a projection of the given, arbitrary, f(p), on
the current X(p), for the current p, will have to be tried. This procedure must
continue till the projection for a price vector results in excess demands that
vanish for some price. Unless severe recursive constraints are imposed on price
sequences - constraints that will make very little economic sense - such a test is
algorithmically infeasible. In other words, given an arbitrary, continuous, f(:),
there is no procedure - algorithm (constructive or recursion theoretic) - by which
a sequence of price vectors, p 2 S, can be systematically tested to �nd p�.

Remark 4 In the previous remark, as in the discussion before stating Theorem
2, I have assumed away the di¢ culties with uncomputable functions, prices and
so on. They simply add to complications without changing the nature of the
content of Theorem 2.

One may wonder whether, using the vector �eld interpretation of Walras�
Law, given an initial, arbitrary p 2 S and an arbitrary, continuous, f(:), it would
be possible to construct a continuous time dynamical system in such a way that
it is algorithmically feasible to determine its basin of attraction to locate p�.
The idea is the following. Given Walras� Law, the excess demand function
X(p); at any p, is tangent to the price simplex, S. Then, given continuity it is
clear that X(p) de�nes a continuous vector-�eld on the price simplex. Clearly,
therefore, the equilibrium price vector implied byWET must lie on this vector-
�eld induced by X(p). The question is, therefore: is it possible to construct a
dynamical system consistent with the vector-�eld interpretation of X(p) whose
basin of attraction contains p�? Put in the language of recursion theory, the
question can equivalently be posed thus: is it possible to construct a Turing
Machine equivalent of such a dynamical system such that it halts at a particular
con�guration? Obviously, theorem 2 precludes this possibility. Perhaps we can
ask a slightly more structured question with hopes of an a¢ rmative answer. Is
it possible to identify a subclass of algorithms - a subclass of dynamical systems

6



- with the speci�ed property of halting at p�- as dynamical systems, with the
speci�ed property of entering a particular basin of attraction - for computable
initial conditions? The following result, stated in the form of a theorem, dashes
any hope of an a¢ rmative answer.

Theorem 5 Let M @ A be the proper subset of the set of (computable) algo-
rithms that are candidate procedures for determining p� for given, computable,
initial conditions, p and f(:). Then there is no algorithm to decide whether or
not any given, arbitrary member Mk 2M @ A.

Proof. A direct application of Rice�s Theorem.

Remark 6 A recent result of da Costa and Doria ([3], in particular Proposi-
tion 13 in §6) suggests that it is not even necessary to resort to the roundabout
process of �rst constructing the algorithmic (i.e., Turing Machine) equivalent of
a dynamical system so as to use the recursion theoretic version of Rice�s Theo-
rem. da Costa and Doria develop a version of Rice�s Theorem for a fragment of
real analysis in a way that makes it directly applicable to deriving undecidability
results for continuous vector �elds.

3 Notes on Non-Constructivity in CGE Theory
and Modelling

An algorithm, by de�nition, is a �nite object, consisting of a �nite sequence of
instructions. However, such a �nite object is perfectly compatible with �an in-
�nite sequence of successive re�nements�([12], p. 52), provided a stopping rule
associated with a clearly speci�ed and veri�able approximation value is part
of the sequence of instructions that characterize the algorithm. Moreover, it is
not �the passage to the limit [that] is the nonconstructive aspect of Brouwer�s
[�x point] theorem�(ibid, p.52)9 . Instead, the sources of non-constructivity are

9 In [13], p. 1024, Scarf is more precise about the reasons for the failure of constructivity
in the proof of Brouwer�s �x point theorem:

"In order to demonstrate Brouwer�s theorem completely we must consider a
sequence of subdivisions whose mesh tends to zero. Each such subdivision will
yield a completely labeled simplex and, as a consequence of the compactness of
the unit simplex, there is a convergent subsequence of completely labeled sim-
plices all of whose vertices tend to a single point x�. (This is, of course, the
non-constructive step in demonstrating Brouwer�s theorem, rather than provid-
ing an approximate �xed point)."

There are two points to be noted: �rst of all, even here Scarf does not pinpoint quite
precisely to the main culprit for the cause of the non-constructivity in the proof of Brouwer�s
theorem; secondly, nothing in the construction of the algorithm provides a justi�cation to
call the value generated by it to be an approximation to x�. In fact the value determined by
Scarf�s algorithm has no theoretically meaningful connection with x� (i.e., to p�) for it to be
referred to as an approximate equilibrium.

7



the undecidable disjunctions - i.e., appeal to the law of the excluded middle in
in�nitary instances - intrinsic to the choice of a convergent subsequence in the
use of the Bolzano-Weierstrass theorem and an appeal to the law of double nega-
tion in an in�nitary instance during a retraction. The latter reliance invalidates
the proof in the eyes of the Brouwerian constructivists; the former makes it
constructively invalid from the point of view of every school of constructivism,
whether they accept or deny intuitionistic logic. Brief notes on these issues are
discussed in this section.
To the best of my knowledge, every textbook proof of the Brouwer �x point

theorem that proceeds via some variant of Sperner�s Lemma, however round-
about, invokes the Bolzano-Weierstrass Theorem10 . This theorem relies on an
undecidable disjunction which is, often, submerged and unconsciously unrecog-
nised as such. The reason, almost invariably, is the wording used to describe the
undecidable disjunction. For example, Starr�s clear and detailed presentation of
the proof of Brouwer�s �x point theorem is based on the excellent and almost
elementary exposition in [16] (particularly, pp.424-7). There, in turn, the ap-
peal to the Bolzano-Weierstrass theorem is made almost as with a magician�s
wand11 :

"Making [the] assumption [that given any simplex S, there are
subdivisions that are arbitrarily �ne] we can now �nish the proof
of Browuer�s �xed-point theorem. We take an in�nite sequence
of subdivisions of S with mesh, that is, length of the longest one-
dimensional edge, approaching 0. From each subdivision, we choose
one simplex that carries all labels, and in this simplex we choose a
single point. We thus have an in�nite sequence of points in the orig-
inal simplex S, and we can choose a subsequence that converges to
a single point. This point .. is the limit point of the sequence of all
vertices of all the simplexes from which the points of the convergent
subsequence were originally chosen." ([16], p.427; all italics, except
the �rst one, are added)

10Just for ease of reading the discussion in this section I state, here, the simplest possible
statement of this theorem:

Bolzano-Weierstrass Theorem: Every bounded sequence contains a con-
vergent subsequence

11 In the clear and elementary proof of the Brouwer �x point therem given in Starr�s textbook
(op.cit), the appeal to the Bolzano-Weierstrass theorem is made when proving the KKM
theorem (p. 62). In Scarf�s own elegant text (op.cit) invoking of this theorem occurs, during
the proof of Brouwer�s theorem, on p. 51:

"As the vectors are increasingly re�ned, a convergent subsequence of sub-
simplices may be found, which tend in the limit to a single vector x�." (italics
added)

Scarf is careful to claim that the required subsequence �may be found�, but does not claim
that it can be found algorithmically. One may wonder: if not found algorithmically, then
how?
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The deceptive use of the word �choose�in the above description of mathe-
matical processes conveys the impression that the �choices�, in each case, are
algorithmically implementable. However, it is only the �rst use of the word
�choose�and the implied choice - i.e., choosing simplexes from increasingly �ne
subdivisions - that can be algorithmized constructively. The part that invokes
the Bolzano-Weierstrass theorem, i.e., �Choosing a subsequence that converges
to a single point�- incidentally, this point is the sought after �xed-point of the
Brouwer theorem - entails undecidable disjunctions and as long as any proof
relies on this aspect of the theorem, it will remain unconstructi�able12 .
An alternative approach to demonstrating the Brouwer �x point theorem

is by way of the non-retraction theorem (cf. [13], §4)13 . To the best of my
knowledge, every demonstration of the Brouwer �x point theorem via a non-
retraction theorem proceeds by way of proof by contradiction and an appeal
to the law of double negation in in�nitary instances. Moreover, unless the
retractions are on highly structured spaces, there is no hope whatsoever of
devising computable methods to locate the �x points that are non-constructively
shown to exist. Since Brouwer�s original proof was along these lines, just before
he saw the �light�, so to speak, and began repudiating his theorem for its non-
intuitionistic and non-constructive nature, it may be useful to make it known
to an economic readership14 .
Brouwer�s proof of his celebrated �x point theorem was indirect in two ways:

he proved, �rst, the following:

Theorem 7 Given a continuous map of the disk onto itself with no �xed points,
9 a continuous retraction of the disk to its boundary.

Having proved this, he then took its contrapositive:

Theorem 8 If there is no continuous retraction of the disk to its boundary then
there is no continuous map of the disk to itself without a �xed point.

Using the logical principle of equivalence between a proposition and its con-
trapositive (i.e., logical equivalence between theorems 7 & 8) and the law of

12Over �fty years ago, when Brouwer returned to the topic of his famous theorem with an
Intuitionist version of it, he made the trenchant observation that seems to have escaped the
attention of mathematical economists:

"[T]he validity of the Bolzano-Weierstrass theorem [in intuitionism] would
make the classical and the intuitionist form of �xed-point therems equivalent."
([2], p.1).

The invalidity of the Bolzano-Weierstrass theorem in any form of constructivism is due to
its reliance on the law of the excluded middle in an in�nitary context of choices (cf. also [5],
pp. 10-12)
13Scarf�s discussion of the version of this theorem is based on results in [6]. However,

Hirsch�s proof of the Brouwer �x point theorem in [6] is incorrect (cf. [7]) and, therefore, I
shall not discuss the non-constructive aspects in the connection between Scarf�s combinatorial
lemma on labelling a restricted simplex (op.cit, Lemma 3.43) and the non-retraction theorem.
But I shall have something to say about the general logical strategy intrinsic to proofs of the
existence of �xed points of continuous maps using retractions.
14 I am, essentially, summarizing ultra-concisely the lucid discussion in [9], pp. 120-7.
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double negation (@ a continuous map with no �xed point = 9 a continuous map
with a �xed point) Brouwer demonstrated the existence of a �xed point for a
continuous map of the disk to itself. This latter principle is what makes the
proof of the Brouwer �x point theorem via retractions (or the non-retraction
theorem) essentially unconstructi�able. Scarf�s attempt to discuss the �relation-
ship between these two theorems [i.e., between the non-retraction and Brouwer
�x point theorems] and to interpret [his] combinatorial lemma [on e¤ectively
labelling a restricted simplex] as an example of the non-retraction theorem is
incongruous. This is because Scarf, too, like the Brouwer at the time of the origi-
nal proof of his �x-point theorem, uses the full paraphernalia of non-constructive
logical principles to link the Brouwer and non-retraction theorems and his com-
binatorial lemma15

I shall conclude this section with two conjectures:

Conjecture 9 The non-retraction theorem is unconstructi�able

To put the next conjecture within the context of Scarf�s (constructive) com-
binatorial lemma (op.cit) some elementary terminological and conceptual prepa-
ration is necessary. The unit simplex is given a (restricted) simplical subdivision
with t vertices vj (j = 1; 2::::; n; :::; t) such that all but the �rst n vertices are
strictly interior to the simplex and they are labelled with integers, say `(�j),
without restriction, except for `(�j) = j, 8j = 1; 2; ::::; n.

Conjecture 10 @ computable solutions for g(x) = 0, for the continuous, piece-
wise, linear mapping g(x) of the unit simplex into itself

Where:

x = �1�
j1 + �2�

j2 + ::::::::+ �n�
jn (5)

and: �i � 0,
X

�i = 1

These two conjectures summarize the aim of the discussion in this section
in the following senses. Non-constructivity pervades the basic underpinnings
of CGE Theory and hence any modelling based on this kind of theory cannot
escape being non-constructive. Moreover, since the mathematical foundations of
CGE Theory, relying as it does on topological �x point theorems, are essentially
unconstructi�able, any numerical exercise or application of CGE modelling will
have inevitable and unavoidable ad hoc aspects, entirely divorced from theory. I
am not however led to believe that the impressive applied work based on CGE
modelling is entirely worthless. I subscribe, in fact, to the enlightened view,
eloquently expressed by Sydney Afriat in another, not unrelated context16 :

"Practice can stand without theory; put another way, it consti-
tutes its own theory. All that is accomplished by expressing anything

15Scarf uses, in addition, proof by contradiction where, implicitly, LEM (tertium non datur )
is also invoked in the context of an in�nitary instance (cf. [13], pp. 1026-7).
16 In the context of index number theory and its foundations in utility analysis.
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in practice in terms of ..... theory is to show it does not con�ict with
that theory. Practice is consistent with a poor specialization of that
theory, so poor that nothing is aided by bringing it in." ([1], p.3)

4 Concluding Notes

In his characteristically perceptive review of the important papers by Pour-El
and Richards ([10]), Kreisel ([8], p.900) observed:

"The [papers by Pour-El and Richards] add to the long lists of
operations � in analysis with some recursive �input�I for which no
output in �(I) is recursive. ... Familiar examples are provided by (i)
Brouwer�s �xed point theorem in dimension >1 .... where I ranges
over (i) continuous maps of the unit cicle into itself ... and where
�(I) is the set of (i) �xed points.... ."

Somehow this kind of important observation seems to have escaped the at-
tention of mathematical economists and, more importantly, it is not part of the
basic knowledge of CGE modelers. Had the latter been aware of this important
but elementary fact - that Brouwer�s �xed point theorem entails, for recursive
inputs, only non-recursive reals as outcomes - they may have attempted to adapt
the underlying theory of the CGE model to computability assumptions ab initio.
Although the substantive content of the results and discussion in this paper

may have a pessimistic �avour the aim is, in fact, positive. The implicit aim
has been to dissect the computable and constructive content in the foundations
of CGE theory and modelling. The problem in such an exercise has been most
appropriately pointed out by Richman:

�Even those who like algorithms have remarkably little appreci-
ation of the thoroughgoing algorithmic thinking that is required for
a constructive proof. ...... I would guess that most realist mathe-
maticians are unable even to recognize when a proof is constructive
in the intuitionist�s sense.
It is a lot harder than one might think to recognize when a the-

orem depends on a nonconstructive argument. One reason is that
proofs are rarely self-contained, but depend on other theorems whose
proofs depend on still other theorems. These other theorems have
often been internalized to such an extent that we are not aware
whether or not nonconstructive arguments have been used, or must
be used, in their proofs. Another reason is that the law of excluded
middle [LEM] is so ingrained in our thinking that we do not distin-
guish between di¤erent formulations of a theorem that are trivially
equivalent given LEM, although one formulation may have a con-
structive proof and the other not.�([11], p.125)

In a sense, this paper substantiates the perceptive points made by Fred
Richman in the above quote. Very few economists, even the very competent
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mathematical economists, pause to wonder whether standard theorems that are
routinely invoked are numerically meaningful. Thus the computable content of
the Heine-Borel or the Hahn-Banach theorem or the constructive content of the
Bolzano-Weierstrass theorem are never raised as issues even though far reaching
policy conclusions depend on applied models that invoke them, albeit implicitly.
The positive aim in the task I undertook in this paper is the following. I have

no doubt that �x point theorems are important because economic analysis needs
equilibrium benchmarks. Such benchmarks are best formalized and derived as
�x points, particularly in dynamic contexts. The question - and this is where
the pessimistic �avour with which this paper seems to have been lined may
camou�age the positive aim - is whether it is necessary or advisable to model
economic fundamentals in terms of the mathematics of real analysis and its
handmaiden, topological analysis - especially topological �x point theorems. Is
there no alternative, in view of the admirable success of CGEmodelling in many
applied contexts? I think there is and it is to formalize and model economic
fundamentals, ab initio, in terms of constructive or computable mathematics.
I do not think any aspect of the proverbial baby will have to be thrown out
with the bathwater that is real analysis, particularly that part of the bathwater
that contains the non-constructive and non-computable elements. By the latter
I mean, of course, any part of economic theory that depends on topological �x
point theorems. The reason is my �nal conjecture:

Conjecture 11 every result in economic theory that depends on topological -
non-constructive and uncomputable - �x point theorems can be derived, with
imperceptible change in content, with recursion theoretic �x point theorems that
are also constructive.

I choose to end with this unnecessarily vague and obviously bold conjecture
to pose it as a counterpoint to an equally bold one with which Starr ends his
pedagogically lucid discussion of Uzawa�s Equivalence Theorem (but cf. also
[4], pp. 919-720):

"What are we to make of the Uzawa Equivalence Theorem? It
says that use of the Brouwer Fixed-Point Theorem is not merely one
way to prove the existence of equilibrium. In a fundamental sense,
it is the only way. Any alternative proof of existence will include,
inter alia, an implicit proof of the Brouwer Theorem. Hence this
mathematical method is essential; one cannot pursue this branch of
economics without the Brouwer Theorem." ([15], p.138)

If Starr is correct about his conjecture, it would appear that economic the-
ory is condemned to non-constructive and uncomputable existence and, hence,
to numerical and applied work that will always be divorced from theory in un-
comfortable ways.
My conjecture suggests that there are non-topological �x-point theorems

whose constructive and computable content patch the wedge that divides the-
ory and practice. The implementation of a research program to realize this
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conjecture is not a simple task. That it is realizable is, on the other hand, quite
clear - at least to me. There are, after all, many di¤erent kinds of mathematics
at the disposal of the mathematically inclined economist and to have had the
fate of economic theory �locked into�one, non-constructive, uncomputable, kind
may, after all, have been entirely due to an accident of history.
The main reason for my conviction about the realizability of such a research

program is economic: it appears to me that almost all the more important
and fundamental theorems of economic theory were �rst derived on the basis of
unalloyed economic intuition, before being given formal respectability in terms
of mathematical dressing. Not least of these was the question of equilibrium
existence, for which the powerful intuition of Adam Smith, Léon Walras, Alfred
Marshall, Friedrich Hayek and a host of other distinguished economists are a
testimony.
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