
TOOTHAGENT: A MULTI-AGENT SYSTEM FOR

VIRTUAL COMMUNITIES SUPPORT.

Volha Bryl, Paolo Giorgini and Stefano Fante

October 2005

Technical Report # DIT-05-064





ToothAgent: A Multi-Agent System for Virtual
Communities Support

Volha Bryl
∗

Department of Information and
Communication Technology

University of Trento, Italy

volha.bryl@unitn.it

Paolo Giorgini
Department of Information and

Communication Technology
University of Trento, Italy

paolo.giorgini@dit.unitn.it

Stefano Fante
ArsLogica Lab

Mezzolombardo (TN), Italy

stefano.fante@arslogica.it

ABSTRACT
People tend to form social networks within geographical ar-
eas. This can be explained by the fact that generally ge-
ographical localities correspond to common interests (e.g.
students located in a university could be interested to buy
or sell textbooks adopted for a specific course, to share notes,
or just to meet together to play basketball). Cellular phones
and more in general mobile devices are currently widely used
and represent a big opportunity to support social commu-
nities. In this paper, we present a general architecture for
multi-agent systems accessible via mobile devices (cellular
phones and PDAs), where Bluetooth technology has been
adopted to reflect users locality. We illustrate ToothAgent,
an implemented prototype of the proposed architecture, and
discuss the opportunities offered by the system.

1. INTRODUCTION
Being widespread and ubiquitous, cellular phones are re-
cently used not only as means of traditional communication.
They are also supposed to satisfy the information needs of
their users, e.g. to support information search and filtering
or electronic data exchange [13, 1, 15, 10]. Users equipped
with mobile devices, such as cellular phones or PDAs, can
form so called mobile virtual communities [14], which make
possible the collaboration and the information exchange be-
tween their geographically distributed members. Such com-
munities are inherently open, new users can join and existing
ones can leave anytime.

A number of multi-agent applications to mobile devices’ en-
vironments have been proposed in literature. [10] presents
a multi-agent system named KORE where a personal elec-
tronic museum guide provides to visitors (with Java-enabled
mobile devices) information about artistic objects they are
currently looking at. Information is filtered and adapted to
the user profile. Bluetooth technology [2] is used to detect

∗Ph.D. Student

the user position. Bluetooth is a cheap and a widely used
wireless communication technology able to connect Bluetooth-
enabled devices located in a range of 100 meters. [15] pro-
poses MobiAgent, an agent-based framework that allows
users to access various types of services (from web search
to remote applications control) directly from their cellular
phones or PDAs. Once the user sends a request for a spe-
cific service, an agent starts to work on her behalf on a
centralized server. The user can disconnect from the net-
work and the agent will continue to work for her. When the
request has been processed, the user is informed via Short
Message Service and she can decide to reconnect the net-
work and download the results. MIA information system [1]
is another example that provides personalized and localized
information to users via mobile devices.

What is still missing in these systems is the interaction and
the collaboration between the members of the virtual com-
munity. Just few proposals in literature introduce domain-
specific collaborative environments where interacting and
collaborative agents act on the behalf of their users. For in-
stance, [11] describes a context-aware multi-agent system for
agenda management where scheduling agents can execute on
PCs or PDAs and assist their users in building the meeting
agenda by negotiating with the other agents. ADOMO [12]
is an agent-based system where agents running on mobile
devices sell the space on the device’s screen to commercial
agents for their advertisements. Agents on behalf of their
users negotiate and establish contracts with neighbors via
Bluetooth.

There exist a number of multi-agent platforms that can be
used on mobile devices. Taking into account the limited
computational and memory resources, it could be very prob-
lematic to run a multi-agent platform on such mobile devices
as cellular phones. A possible solution is either to avoid run-
ning multi-agent platform on mobile devices, as for example
in [12], or to use portal multi-agent platforms [13] where
agents are executed not on the device itself but on the ex-
ternal host.

In this paper we present a general architecture based on
this last option. The architecture proposes independent
servers where multi-agent platforms can be installed and
where agents can act on behalf of their users. Each server
proposes one or more specific services related to the geo-
graphical area in which it is located (e.g. a server inside the



university could offer the service of selling and buying text-
books, renting an apartment, etc.), and users can contact
their personal agents using their Bluetooth-enabled mobile
phones or PDAs. The system is domain independent (it does
not depend on the specific services offered by the servers)
and independent from the multi-agent technology adopted
(we can use different technologies on each server).

The paper is organized as follows. Section 2 describes a mo-
tivating example for our system. The general architecture of
the system is introduced in Section 3, while Section 4 pro-
vides some architectural details and describes ToothAgent,
the implemented prototype. Section 5 concludes the paper
and provides some future work directions.

2. MOTIVATING EXAMPLE
Let’s consider three places in a town: university, railway
station and bar. People spending some time in one of these
places may have some common interests and needs. For
instance, students at the university might want to buy or to
sell secondhand textbooks, find a roommate or form study
groups. People at the bar could be interested in the latest
sport news (especially in Italian bars), or they could just
be looking for someone to chat with. Passengers waiting at
the railway station may want to know some details about
the trip they are going to have — what cities their train
goes through, or what the weather is like at the destination
point. They may want also to find someone with common
interests to chat with during the trip.

Let’s suppose also that people cannot or do not want to
spend their time on examining announcements on the bul-
letin boards, questioning people around them, or searching
for the information office. They would prefer to ask their
mobile phones and wait for the list of available proposals.

To support interests and needs of such groups of co-localized
users, a server is placed at each of the three meeting points.
Servers can provide a certain number of services to people
equipped with mobile phones or PDAs (hereinafter referred
as users). A user can have access to the services when she is
close enough (depending on her Bluetooth device) to one of
the three servers — at the bar, in the waiting room of the
station, or at the main hall of the university.

Let’s suppose that among the available services we have the
following ones. At the university users can buy/sell their
secondhand books and search for roommates. At the bar,
users can access a sport news service or search for ”inter-
esting” people. Finally, at the railway station, users can
receive information about their trips (including touristic in-
formation).

Users’ interaction and collaboration is the base for the sat-
isfaction of their needs. To sell a secondhand textbook, one
should find a buyer and agree on the price. To find someone
in the bar to chat with, one should look for the person with
similar interests or preferences. Each server recreates the
group of co-localized human users in a virtual community
of personal agents (Figure 1) able to interact and collabo-
rate with one another. Users formulate their requests and
forward them to their personal agents.

Figure 1: Users, servers, and virtual communities of
personal agents.

Personal agents interact with the other available agents (they
may also negotiate, not just interact, as in the case of sell-
ing or buying books), and produce results that will be sent
back to the users. The main idea is to have a distributed
system composed of a number of open virtual communities
that evolve and act autonomously on the behalf of human
communities.

3. SYSTEM ARCHITECTURE
In this section we describe the general architecture of the
system. We start from the requirements and then we illus-
trate the various sub-components and their interaction.

3.1 System Requirements
We can summarize the requirements of the whole system in
the following objectives.

• The system should allow the user to express her in-
terests and choose the services she wants to access. It
means that the user should be able to search for avail-
able servers and services by location, category, key-
words, etc. The user should be provided with an in-
terface to select services she is interested in and to
customize them, i.e. to specify parameters of the re-
quests to these services (e.g. book title and price for
”buy/sell books” service). The system should allow
to view and edit customized requests, and transfer the
list of requests to the mobile device.

• The system should provide access to the requested
services when the mobile device and the appropriate
server are co-localized (i.e. the Bluetooth connection is
feasible). This means the system should be able to sup-
port the search of servers (and corresponding services)
in the neighborhood of the mobile device, and the veri-
fication of the mobile device by the server. Then user’s
requests should be transferred to the server, where it
should be possible to find correspondence between the
user and her personal agent. The system should also
support interaction among the personal agents, store
the results and let users access results from their mo-
bile devices.



Figure 2: Interaction of system’s components.

• The system should allow the user to retrieve pending
results. Results should be accessible both in the case
the user is still in the Bluetooth range of the server and
when she is out of the range. In the second case the
system should allow the user to access pending results
from her mobile device connecting to any server of the
system, or from her PC via a dedicated interface. To
do this, the system should support interaction between
different servers and between the server and the PC.
The system should keep track of all servers visited by
the mobile devices and transfer these information to
the PC or to the connected server.

3.2 System Components
The architecture of the system includes four main types of
components: mobile device, PC, server and services data-
base.

The PC component provides an interface for the user’s reg-
istration, to get and to choose available services, and to
build requests for the chosen services. Also the pending re-
sults can be retrieved via PC. The mobile device is used to
send the user’s requests to the servers and to get back the
results. Each server within the system provides a list of
predefined services. The server runs a multi-agent platform
with personal agents representing single users, a database
where results are archived, and an interface responsible for
establishing connections with mobile devices and PCs, and
for redirecting the users’ requests to the corresponding per-
sonal agents. The central services database, accessible via
web, contains information about all the servers and their
properties, such as name, location, etc. The database pro-
vides also a description of available services on each server,
and stores the information about users registered to the sys-
tem.

Figure 2 illustrates the general architecture of the system
and the interaction among its components. Connection be-
tween the mobile device and the PC, and between the mobile
device and the server is established via Bluetooth wireless
communication technology.

3.3 Getting Access to the Services
In the following we describe how the process of getting access
to the services is organized (Figure 3).

The software running on the PC allows the user to search
and discover the servers and the services registered to the
services database (steps 1–3). The user selects one or more

Figure 3: Getting access to services.

services and provides information (i.e. requests) related to
the use of such services (step 4). For example, using the ser-
vice ”Buy/sell secondhand books”, the user could request to
”Sell the copy of Thinking in Java by Bruce Eckel, printed
in 1995, for the price not less than 20 euros”. All the user’s
requests are stored in the configuration file, which is down-
loaded onto the mobile device via Bluetooth (step 5).

When the user with her mobile device approaches one of the
servers, the software on the device establishes a connection
with the server (step 6) and sends the requests related to
the available services (step 7). The requests are built on
the base of the configuration file of the mobile device. In
other words, the mobile device checks in the configuration
file if the user is interested in the services provided by the
server and then builds and sends the requests to the server.
The requests are processed on the server, and the results are
sent back to the user (steps 8–12) The mobile device stores
the server’s address to keep track of the contacted servers.
It stores the address even if there are no relevant services
on the server. This allows the user to check later the list
of all visited servers and associated services, and decide to
update her preferences by including new servers/services in
the configuration file.

3.4 Retrieving Pending Results
We describe now how the process of retrieving the pending
results is organized (Figure 4).

The user has basically two options to get back the results of
her requests. The first one is to receive them directly on her
mobile device. However, this is not always possible. The
user could leave the Bluetooth area or the mobile device
may not have enough memory or computational power to
manage the answers (e.g. in the case the answers are a
number of big files). Thus the second option is to get back
the results later when the connection with the server they
were requested from is closed.

Pending results can be retrieved both from the mobile device
(steps A.x) and from the PC (steps B.x). In the first case



Figure 4: Retrieving pending results from mobile
device (A) and from PC (B).

the mobile device has to be configured to get the pending
results and has to be in the Bluetooth range of some server.
For example, if a student is going to spend a whole hour in
the main hall of the university waiting for the next lecture,
namely she will have enough time to download the results
of her requests sent in the morning to the railway station
server (where she bought her train ticket before going to
the university). She switches on the option ”get pending
results” on her mobile phone (step A1), and waits for results.
The mobile device sends to the university server the list of
addresses of the servers the user has visited (step A2). The
server establishes a connection with each server in the list,
and sends the information that identifies the mobile device
(e.g. its Bluetooth address) as a request for the pending
results (step A3). The obtained information is sent back to
the mobile device (steps A5–A6).

In the second case the user receives pending results through
the PC. The student goes back home and runs the PC soft-
ware that collects all the pending results obtained from the
visited servers (steps B3–B5), after the list of the visited
servers and their addresses is transferred from the mobile
device to the PC (step B1).

3.5 Agent Platform
Each server runs a multi-agent platform, where agents corre-
spond to mobile devices and receive and process requests ob-
tained from the users. There is a one-to-one correspondence
between agents and mobile devices (users). An agent is iden-
tified by the unique Bluetooth address of the corresponding
mobile device. The same device can have many personal
agents within different platforms on different servers.

When the server receives the request from the mobile de-
vice, it checks if there exists the personal agent of this device
within the platform. If not, a new personal agent is created.
Each personal agent communicates and collaborates with
other agents in order to find ”partners” which will satisfy
its request. Interaction protocols and collaboration mecha-
nisms are domain (services) dependent.

Figure 5: General architecture of SICS.

Multi-agent platforms on the server are based on the Implicit
Culture [9] framework. In short, Implicit Culture allows new
members of a community to behave in accordance with the
culture of the community. For example, a new student may
not know which textbooks can be helpful for the Program-
ming Languages course and starts to search for Textbook on
Programming Languages. The idea of the Implicit Culture
framework is that the system suggests the students the items
that are usually used by the other members of the commu-
nity. So for example, the system could suggest the student
to search for the book Thinking in Java.

Multi-agent systems with the Implicit Culture support are
used for example for searching the web. See [8] for the de-
scription of Implicit, an agent-based recommendation sys-
tem for the web search, which improves the search for in-
formation for a community of users with similar interests.
When a user submits a query, Implicit looks for the relevant
information, exploiting observations of the behavior of other
users when they have issued similar queries.

To follow the Implicit Culture concept the agent on the plat-
form should contain System for Implicit Culture Support
(SICS) [9]. SICS consists of three basic components (their
interaction is illustrated in Figure 5):

• Observer, which stores in a database the information
about the user’s actions (observations).

• Inductive module, which analyzes the obtained obser-
vations and induces behavioral patterns of the com-
munity using Data Mining techniques.

• Composer, which produces suggestions on the base of
the information from the Observer and Inductive mod-
ule.

More details about the Implicit Culture framework are avail-
able at [3].

4. IMPLEMENTATION ISSUES
In this section we present the details of ToothAgent, the im-
plemented prototype of the proposed architecture. Basically,
the system is a first implementation of the architecture pre-
sented in Section 3 and focuses on a number of servers spread
around the university campus (faculties, libraries, and de-
partments). Each server offers only the service for selling
and buying books. We are currently working on a number
of other services including ones available on servers located
outside the university campus (e.g. train station, museums
and places close to touristic attractions).



Figure 6: Request input form.

We tested the system using Nokia 6260 cellular phones and
PC/Server equipped with Tecom Bluetooth adapter. Blue-
tooth communication has been implemented using Blue Cove
[4] which is an open source implementation of the JSR-82
Bluetooth API for Java.

4.1 Online Registration and Services Selection
To start working with the system, the user has to register.
To do this she should fill the online registration form where
she needs to put her personal information such as name,
birth date, e-mail, Bluetooth address and phone number of
her mobile device, and password. The registration, basi-
cally, allows the system to identify the user and the mobile
device she is going to use. Password is used to access the
information about servers and related services, and to up-
load/update the user information (e.g. the user can decide
to use different mobile device or just to change her data such
as telephone number or e-mail address). Also the password
is needed to access the servers and their services via mobile
device (for this purpose user has to input the password while
configuring the application on her mobile device). All the
information about the user is stored in the services database.
Registered users obtain the rights to download the software
for the PC and the mobile device components (which are two
jar files), and the XML file containing information about all
available servers with corresponding services.

After the registration (or login), the user can start select-
ing the services to use. Using the Java GUI interface shown
in Figure 6, she can explore all the available services using
filtering criteria such as server location (e.g. we can have
servers located in different cities or in different places in the
same city), type or category of the service (e.g. buy/sell
books, exchange courses’ notes, or meet people), and key-
words (e.g. books, course, etc.). The list of the selected
services is managed by the PC component that allows the
user to customize these services with the specific requests
(e.g. title of the book to buy or to sell, the desired price,
minimal or maximal price).

The list of customized services (with related servers’ ad-
dresses) is stored in an XML configuration file, which is up-
loaded via Bluetooth in the mobile device. Figure 7 shows

Figure 7: Configuration file.

Figure 8: ToothAgent application running on the
mobile phone.

an example for the ”sell/buy books” service. Note that the
file format does not depend on what services it describes,
i.e. it is domain independent.

4.2 Accessing the Services
To access the services, the user needs to run the Bluetooth
application on her mobile device (Figure 8). The application
is written in Java and uses JSR-82 [5], which is Bluetooth
API for Java. The application starts a continuous search
for the Bluetooth-enabled devices in the neighborhood, and
whenever it finds a server with the services specified in the
configuration file, the mobile device sends the user’s requests
to the server. Figure 9 shows the protocol we use for the
interaction among the different components.

A specific communication module on the server is responsi-
ble for managing the interaction with the mobile device. It
receives the Bluetooth address and the encrypted password
from the mobile device (steps 1 and 3) and checks whether
in the platform running on the server there already exists a
personal agent assigned to that mobile device (step 4), the
Bluetooth address is used to map the mobile device with the
personal agent. If there are no personal agent for the user,
the communication module connects to the central services
database and verify whether the user is registered to the
system (steps 5–6) by matching device’s Bluetooth address
and password. Only in case of a positive answer, it creates



Figure 9: Getting access to services.

a new agent and assigns it to the mobile device’s user (step
8). Then, the mobile device sends the configuration file to
the communication module (step 9), which forwards all the
user’s requests to the personal agent (step 10).

Now, the personal agent starts the interaction with the other
agents on the platform trying to satisfy all the user’s re-
quests (step 12). In our example the personal agent receives
one or more requests for buying and/or selling books (with
specified title, desired price, maximum and minimum prices,
etc.). If the agent reaches an agreement with another agent
about their users’ requests it stores the results locally in the
server database (step 13). Later the results could be sent
back to the user (steps 14–18) or left on the server, depend-
ing on the retrieval modality that the user has defined in
the configuration file.

4.3 Results Retrieval
Whenever a new connection between a server and a mobile
device is established, the communication module sends to
the mobile device the IP-address of the server (step 2 on
Figure 9). The mobile device stores the IP addresses of
all the visited servers in an XML list, that is used later
to retrieve all pending results. The format of the results
produced by the personal agent is shown in Figure 10. It
may contain the request identifier, the contacts (e.g. phone
number) of the user interested to buy or sell the book, the
actual agreed price, etc.

As discussed in Section 3, the user has three different modal-
ities to retrieve results: get the results immediately, get
pending results using the mobile device, and get pending
results using the PC. Each of these modalities has to be de-
fined in advance by the user and can be changed at runtime
by means of the mobile device application.

Choosing the first option, the user can receive the results
immediately in her mobile device. Of course, she can re-
ceive the results if and only if she is still at a Bluetooth dis-
tance from the server. The communication module checks
the availability of the mobile device and sends to it the re-
sults stored in the internal server’s database by the corre-
sponding personal agent (see Figure 9, steps 14–18).

Figure 10: List of responses.

Figure 11: Pending results from the mobile device.

Figure 11 shows the interaction protocol of retrieving the
pending results via mobile device. Consider for example the
situation in which a user is near to the server of the cen-
tral library. After the connection has been established, the
mobile device sends the list of IP-addresses of all previously
visited servers (e.g. faculty servers, departments servers,
etc.) to the library server (step 2). The communication
module of the server sends then the Bluetooth address of
the mobile device to all listed servers (step 3). In turn, the
communication module of each server extracts from the in-
ternal database all the stored results related to that user
and sends them back to the requester server (steps 4–7).
All the results are collected by the communication module
and finally sent to the mobile device (steps 8–10). If the
mobile device is no longer connected to the server (e.g. the
user has left the library), the retrieval process will fail and
the results will be cancelled (they are still available on the
original servers).

Figure 12 shows the interaction protocol of retrieving the
pending results via PC. The user connects her mobile de-
vice to the PC via Bluetooth and sends the list of all visited
servers to the PC component (step 2). Now, the user can de-



Figure 12: Pending results from PC.

cide either to retrieve the results from all the servers or just
to select some of them. An interface on the PC allows the
user to connect to the servers and then to view or download
the pending results (steps 3–7).

4.4 Agents Interaction
As we said, in this first prototype we implemented just
one kind of service, namely the ”buy/sell books” service.
The multi-agent system has been implemented in JADE
(Java Agent DEvelopment framework) [6], FIPA-compliant
[7] framework for multi-agent systems development. The
agents’ interaction includes two phases: elaboration of user’s
request and agents’ negotiation.

During the first phase the request of buying/selling a book is
elaborated and detailed. For example, the request of ”Buy
a textbook on Java for the price from 10 to 20 euros” is
incomplete as the exact title is not specified. The personal
agent makes the request more clear exploiting the informa-
tion about what textbooks on Java other users were recently
interested in and what they have finally bought, at what
prices, etc. Another example of request that needs to be
elaborated could be ”Buy Thinking in Java for the price
less than 10 euros”. It is unlikely that this request will be
satisfied as all copies of Thinking in Java currently avail-
able, or sold so far, cost at least 20 euros. The user has
clearly underestimated the price. In this case we want that
the personal agent extends the price range when starting to
search for a copy of the book.

Figure 13 presents the interaction protocol used by agents
during the request elaboration phase. On each platform
there is a dedicated agent, called Expert Agent (EA), which
contains the System for Implicit Culture Support (SICS).
After the personal agent receives its user’s request (step 1),
it sends it to the Expert Agent (step 2). On the EA side
Observer component of the SICS extracts data from the re-
quest and stores it in the database of observed users’ be-
havior (step 3). Composer component estimates the real
price for the requested book and/or suggests the title of the
book if the input was incomplete (step 4). For the elabora-
tion process Composer uses the information about the past
users’ actions, obtained from Observer and analyzed by In-
ductive module. At the end the user’s personal agent gets
back the elaborated request (step 5), which it will process
during the second phase.

As it was explained in Section 3.5, SICS needs to gather in-
formation about users’ behavior. In the described prototype
to observe the user’s behavior Expert Agent extracts data

Figure 13: User’s request elaboration.

from the requests it gets from personal agents. Two other
additional sources of observations could be added. The first
one is the database where results of agents’ negotiations
are stored. Each time two personal agents agree on buy-
ing/selling the book and send their proposals to the data-
base, Expert Agents extracts necessary information (e.g.
book title and the price) from the proposals and stores it
in its internal database. The second source is the direct
users’ feedback. When the user views the list of proposals
on her mobile device, she can choose to make a phone call
or to send an SMS to the other user whose contacts are in
the proposal. When the proposals are viewed on the PC,
the user can choose to write an e-mail to her potential part-
ner. For the purpose of feedback the system records the in-
formation about these phone calls/SMSs/e-mails assuming
that if the other user of the proposal (the potential part-
ner) was contacted then the feedback is positive, otherwise
negative. The feedback information is sent to the Expert
Agent as soon as the user establishes connection with the
corresponding server via her mobile device or the PC.

On the second phase — agents’ negotiation — the inter-
action mechanism is very simple. Figure 14 presents the
implemented agents’ interaction ”from the point of view” of
the agent which is buying a book. First, the buyer’s personal
agent broadcasts the request of looking for a specific book
(step 1), information about title, desired price, etc. is speci-
fied in the message. If in the platform there is another agent
that is selling the requested book, it responds to the buyer
with the price it wants for the book (step 2). If the price is
greater than the maximum price specified by the buyer, the
interaction continues with the request for discount from the
buyer agent (step 3). The seller responds either with the
discounted price or with the initially proposed price (step 4)
in case it does not want to give the discount. If this price is
less than maximum price for the buyer, it accepts the deal
(step 5). After that, the buyer and seller personal agents
exchange their users’ data (step 6), form the agreed propos-
als and send them to the server’s database (step 7). The
proposals are than forwarded either to mobile device, or to
the PC as described in Section 4.3.

5. CONCLUSIONS
In this paper we have presented an implemented prototype
where multi-agent systems and Bluetooth wireless commu-
nication technology are combined together to support co-
localized communities of users. We have discussed the gen-
eral architecture of the system, and presented some imple-
mentation issues related to ToothAgent, the prototype we



Figure 14: Agents’ negotiation.

have built.

We are currently working with ArsLogica s.r.l. on the devel-
opment of a real-life scenario where many different services
will be available in the city center of Trento (including the
university campus). Of course a lot of work has to be done
before the real use of the system. In particular, we need to
verify the scalability of the system and test its performance
for a considerably high number of users. Some preliminary
tests have, however, shown the effectiveness of the system
in supporting co-localized community of users.

6. ACKNOWLEDGEMENTS
We thank ArsLogica s.r.l. for the collaboration and the sup-
port to this project. This research also is partially supported
by COFIN Project ”Integration between learning and peer-
to-peer distributed architectures for web search (2003091149
004)”. We also thank people working on Implicit Culture,
in particular Aliaksandr Birukou and Enrico Blanzieri for
their support in using the Implicit Culture framework.

7. REFERENCES
[1] MIA project —

http://www.uni-koblenz.de/∼bthomas/MIA HTML.

[2] The official Bluetooth website —
http://www.bluetooth.com/.

[3] Implicit Culture website —
http://dit.unitn.it/∼implicit/.

[4] Blue Cove project —
http://sourceforge.net/projects/bluecove/.

[5] JSR-82: Java APIs for Bluetooth —
http://www.jcp.org/en/jsr/detail?id=82.

[6] JADE: Java Agent DEvelopment Framework website
— http://jade.tilab.com/.

[7] FIPA: Foundation for Intelligent Physical Agents —
http://www.fipa.org/.

[8] A. Birukov, E. Blanzieri, and P. Giorgini. Implicit: An
agent-based recommendation system for web search.
In Proceedings of the 4th International Conference on

Autonomous Agents and Multi-Agent Systems, pages
618–624. ACM Press, 2005.

[9] E. Blanzieri, P. Giorgini, P. Massa, and S. Recla.
Implicit culture for multi-agent interaction support. In
CooplS ’01: Proceedings of the 9th International
Conference on Cooperative Information Systems,
pages 27–39, London, UK, 2001. Springer-Verlag.

[10] M. Bombara, D. Cal̀ı, and C. Santoro. Kore: A
multi-agent system to assist museum visitors. In
Proceedings of the Workshop on Objects and Agents
(WOA2003), Cagliari, Italy, pages 175–178, 2003.

[11] O. Bucur, P. Beaune, and O. Boissier. Representing
context in an agent architecture for context-based
decision making. In Proceedings of the Workshop on
Context Representation and Reasoning (CRR’05),
Paris, France, 2005.

[12] C. Carabelea and M. Berger. Agent negotiation in
ad-hoc networks. In Proceedings of the Ambient
Intelligence Workshop at AAMAS’05 Conference,
Utrecht, The Netherlands, pages 5–16, 2005.

[13] C. Carabelea and O. Boissier. Multi-agent platforms
on smart devices : Dream or reality? In Proceedings of
the Smart Objects Conference (SOC03), Grenoble,
France, pages 126–129, 2003.

[14] A. Rakotonirainy, S. W. Loke, and A. Zaslavsky.
Multi-agent support for open mobile virtual
communities. In Proceedings of the International
Conference on Artificial Intelligence (IC-AI 2000)
(Vol I), Las Vegas, Nevada, USA, pages 127–133,
2000.

[15] L. Vasiu and Q. H. Mahmoud. Mobile agents in
wireless devices. Computer, 37(2):104–105, February
2004.


