

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

GENERALIZED XML SECURITY VIEWS

Gabriel Kuper, Fabio Massacci and Nataliya Rassadko

October 2005

Technical Report # DIT-05-061

.

Generalized XML Security Views

Gabriel Kuper
kuper@acm.org

Fabio Massacci
Fabio.Massacci@unitn.it

Nataliya Rassadko
Nataliya.Rassadko@dit.unitn.it

Universit̀a di Trento
Via Sommarive 14, 38050 Povo, Trento, Italy

Abstract

We investigate a generalization of the notion of XML security view introduced by Stoica and Farkas [22] and later
refined by Fan et al. [12]. The model consists of access control policies specified over DTDs with XPath expression
for data-dependent access control policies. We provide the notion ofsecurity viewsfor characterizing information
accessible to authorized users. This is a transformed (sanitized) DTD schema that can be used by users for query
formulation and optimization. Then we show an algorithm to materialize “authorized” version of the document
from the view and an algorithm to construct the view from an access control specification. We show that our view
construction combined with materialization produces the same result as the direct application of the DTD access
specification on the document. To avoid the overhead of view materialization in query answering, user queries should
undergo rewriting so that they are valid over the original DTD schema, and thus the query answer is computed from
the original XML data. We provide an algorithm for query rewriting and show its performance compared with the
naive approach, i.e. the approach when query is evaluated over materialized view. We also propose a number of
generalizations of possible security policies.

1 Introduction

XML [5] has become the prime standard for data representation and exchange on the Web. In light of the sensitive
nature of many business data applications, this also raises the important issue of security in XML and the selective
exposure of information to different classes of users based on their access privileges.

To address this issue we need simple, powerful, fine grained authorization mechanisms that

1. can control access to both content and structure;

2. can be enforced without annotating the entire document;

3. still provide a “sanitized” schema information to users.

While specifications and enforcement of access control are well understood for traditional databases [10, 17, 20, 21],
the study of security for XML is less established. Although a number of security models have been proposed for
XML [4, 7, 9, 16, 18, 19], these models do not meet criterion 3 above and, to a lesser extent, criterion 2. More
specifically, these proposed models enforce security constraints at the document level by fully annotating the entire
XML document/database [7, 4, 9]; these require expensive view materialization, and complicate the consistency and
integrity maintenance.

1

The most important limitation of the mainstream models is the lack of support for authorized users to query the data:
they either do not provide in advance any schema information of the accessible data, or expose the entire original
document DTD (or its “loosened” variant). If no schema is provided, or cannot be derived from the chosen access
control model, the solution is hardly practical for large and complex documents. If we want to query an hospital
databases just to know who is the nurse on duty in ward 13, there is little sense in sanitizing the entire databases
(clinical records and all) which is largely irrelevant for us.

Furthermore, fixing the access control policies at the instance level without providing or computing a schema, makes
it difficult for the security officer to understand how the authorized view of a document for a user or a class of users
will actually look like.

On the other side, revelation of excessive schema information might lead to security breaches: an unauthorized user
can deduct or infer confidential information via multiple queries (essentially if the authorization specifications are not
closed under intersection) and analysis of the schema even if just accessible nodes are queried.

To overcome this limitations, the notion of XML security views was initially proposed by Stoica and Farkas [22] and
later refined by Fan et al. [12]. The basic idea is to provide a schema that describes the data that can be seen by the
user, as well as a (hidden) set of Xpath expressions that describe how to compute the data in the view from the original
data.

1.1 Our Contribution.

We generalize the notion of XML security views to arbitrary DAG DTDs and to conditional constraints expressed in a
very expressive XPath fragment. For each view, a security specification is a simple extension of the document DTDD
with security annotations and security policies exploited to obtain full annotation from partial one. This specification
has the advantage that can be easily implemented with little or no modification to state-of-the-art DTD parsers and
offer security officers an intuitive feeling of the actual look of sanitized document.

From the specification, we derive a security viewV consisting of aview DTDDv and a functionσ defined via XPath
queries. The view DTDDv shows only the data that is accessible according to the specification. The view is provided
to the users so that they can formulate their queries over the view. The functionσ is withheld from the users, and is
used to extract accessible data from the actual XML documents to populate a structure conforming toDv.

Query optimization can then be performed by users (using security view) and then by the system (by expanding and
optimizing the selection function). Thus, it is no longer necessary to process an entire document and only relevant
data is retrieved. Moreover, the users can only access data viaDv, and no information beyond the view can be inferred
from (multiple) queries posed onDv.

Thus the users can only access data viaDv, and no information beyond the view can be inferred from (multiple)
queries targeted atDv.

In the current paper, we also implement and test experimentally the performance of the security view model described
above. To this end, we define a rewriting algorithm that takes a user query over the a security view, and rewrites the
query into a query over the original database. We then compare the cost of evaluating this query with that of evaluating
the original query over a materialized view of the data, and show that significant performance improvements.

More specifically, the main contributions of the paper include:

• A refined version of access policies over XML documents using conditional annotations at DTD level;

• A notion of security view that enforces the security constraints at the schema level and provides a view DTD
characterizing them;

• An efficient algorithm for materializing security views, which ensures that views conform to view DTDs;

2

• An algorithm for deriving a security view from a specification of security annotations;

• An algorithm for deriving a security view from a specification of security policies as XPath expressions;

• A query rewriting algorithm and its evaluation.

1.2 Plan of the paper

The rest of the paper is organized as follows. First we present preliminary notions on XML and XPath in Sec. 2.
In Sec. 3 we provide a motivating example. Next we introduce the notion of security specification (Sec. 4) and
the notion of view (Sec. 5). We show how to materialize a view and that using views is equivalent to annotating
directly the document (Sec. 6). In Sec. 7 we describe classification of security policies with respect to consistency
and completeness properties. Some extensions of our model are outlined in Sec. 8. In Sec. 9 we show algorithm for
rewriting queries. Implementation issues are discussed in Sec. 10. Evaluation of rewriting algorithm is provided in
Sec. 11. Finally, we conclude the paper in Sec. 12.

2 A Primer On XML and XPath

We first review DTDs (Document Type Definitions [5]) and XPath [8] queries.

Definition 2.1: A DTD D is a triple(Ele, P, root), whereEle is a finite set ofelement types; root is a distinguished
type inEle, andP is a function defining element types such that for eachA in Ele, P (A) is a regular expression over
Ele ∪ {str}, wherestr is a special type denotingPCDATA, We useε to denote the empty word, and “+”, “ ,”, and
“∗” to denote disjunction, concatenation, and the Kleene star, respectively. We refer toA → P (A) as theproduction
of A. For all element typesB occurring inP (A), we refer toB as asubelement type(or achild type) of A and toA
as agenerator(or aparent type) of B. 2

We assume that DTD is non-recursive, i.e., that the graph has no cycles. Sec. 8 discusses this limitation.

Definition 2.2: An XML tree T conforms toa DTDD iff

1. the root ofT is the unique node labelled withroot ;

2. each node inT is labelled either with anEle typeA, called anA element, or with str , called atext node;

3. eachA element has a list of children of elements and text nodes such that their labels form a word in the regular
language defined byP (A);

4. each text node carries astr value and is a leaf of the tree.

We callT an instanceof D if T conforms toD. 2

Example 2.1: Consider a DTD describing database of applications for PhD program. The DTDD is defined to be
(Ele, P, db), where

Ele = {applications, application, student-data, department, degree,
waiver, name, recomm-letter, evaluator, title, institution,
letter, rating, English, MS, PhD, free-text, PDF, TXT,
unreliable, reason, favorable, unfavorable };

and the functionP is defined as follows (we omit the definition of elements whose type isstr):

3

APPLICATION

STUDENT-DATA

LETTER

NAME

DEPARTMENT DEGREE WAIVER EVALUATOR

RATING FREE-TEXTTITLE INSTITUTION

MS PhDENGLISH

APPLICATIONS

*

RECOMMENDATION-
LETTER

*

REASON

UNRELIABLE

PDF TXT

*

FAVORABLE UNFAVORABLE

ID

Figure 1: The graph representation of the document DTDD

P (applications) = (application*)
P (application) = (student-data, recomm-letter*, unreliable*)
P (student-data) = (department, degree, waver, name)
P (recomm-letter) = (evaluator, letter)
P (evaluator) = (name, title, institution)
P (letter) = (favorable|unfavorable)
P (favorable) = (rating, free-text)
P (unfavorable) = (rating, free-text)
P (rating) = (English, MS, PhD)
P (free-text) = (PDF|TXT)
P (unreliable) = (recomm-letter, reason)

An XML tree conforming toD consists of a list ofapplicationsfor PhD/MS program. Each application is initiated
by a student described viastudent-datawith an attributeid uniquely identifying student and representing student’s
login name.Student-datais composed ofname, desireddegree(PhD or MS)department, andwaiver. The latter field
may take values “true” or “false” and means that student does (does not) waive his/her right to inspect the content of
recommendation letters. Application is supported by several letters of recommendation (recomm-letter), some of them
can be classified asunreliableunder somereason. Each letter hasletter body and is provided by a separateevaluator
havingname, title andinstitutionattributes. Evaluator places comments on applicant’s skills infree-textfield, which
is eitherPDF or TXT file, and rates applicant’sEnglishproficiency, achievements duringMS program and possible
contribution inPhD program. Letters of recommendation are reviewed by admission committee and are assigned to a
categoryfavorableor unfavorabledepending on the context.

The corresponding DTD is depicted on Fig. 1. 2

Remark 2.1 Regular expressions in a DTD are 1-unambiguous as required by the XML Standard [5]. In contrast
to [12], we consider DTDs defined with general (1-unambiguous) regular expressions.

We consider a class of XPath queries, which corresponds to the CoreXPath of Gottlob et al. [15] augmented with the
union operator and atomic tests and which is denoted by Benedict et al. [12] asX .

The XPath axes we consider as primitive arechild , parent , ancestor-or-self , descendant-or-self ,
self . Gottlob, Koch and Pichler [15] show how the semantics of such axes can be computed in polynomial time. In

4

the sequel we denote byθ one of those primitive axes and byθ−1 its inverse. Notice that each primitive axis has its
inverse within the same set of primitives. For instancedescendant-or-self −1 = ancestor-or-self .

Definition 2.3: An XPath expression inX is defined by the following grammar:

〈xpath〉 ::= 〈path〉 | ‘/‘ 〈path〉
〈path〉 ::= 〈step〉 (‘/‘ 〈step〉)∗
〈step〉 ::= θ | θ‘[‘ 〈qual〉 ‘]‘ | 〈path〉 ‘ ∪ ‘ 〈path〉
〈qual〉 ::= A | ‘ ∗ ‘ | op c | 〈xpath〉 |

〈qual〉 and 〈qual〉 | 〈qual〉 or 〈qual〉 |
not 〈qual〉 | ‘(‘ 〈qual〉 ‘)‘

whereθ stands for an axis,c is astr constant,A is a label,op stands for one of=, <, >,≤,≥. The result of thequal
production is calledqualifier and is denoted byq. We denote byXNoTest the fragment build without theop c test. 2

For sake of readability, we ignore the difference betweenxpath andpath we denote both withp. We also abbreviate
self with ε, child [A]/p with A/p, descendant-or-self [A]/p with //A/p, q[op c] with q op c andp =
p1/p2, wherep2 is //p′2, is writtenp asp1//p′2. The ancestor axis is also abbreviated as../.

The semantics of XPath is obtained by adapting to our fragment theS→, S←, E operators proposed by Gottlob et
al. [15] and is identical to proposal of Benedickt et al. [3]. IntuitivelyS→ [|p|] (N) gives all nodes that are reachable
from a node inN using the pathp. TheS← [|p|] functions gives all nodes from which a pathp starts to arrive to
queried node. TheE [|q|] function evaluates qualifiers and returns all nodes that satisfyq.

For sake of readability we overload theθ-symbol to stand for both the semantics and the syntax of axes. So given a set
of nodesN of a documentT we have thatθ(N) = {m | n θ m for n ∈ N}. In other words,θ(N) returns the nodes
that are reachable according the axis from a node inN . By T (A) we denote the set of nodes that have element type
A. By T (∗) we denote all nodes of a document.

The semantics of the other operators is shown in Fig. 2.

3 A Motivating Example

The need to provide users with a schema-level security view is illustrated by the access control requirements in Exam-
ple 3.1.

Example 3.1: The applicant can access only his/her own data located under fieldstudent-data . Access to fields
favorable andunfavorable is forbidden, while visibility ofrating andfree-text is established according
to the accessibility to fieldletter . The latter is accessible if thewaiver is true (data-dependent access). Moreover,
the applicant should not be aware of reliability of the recommendation letters as the leakage of this information to
recommenders might lead to diplomatic incidents. 2

How can such constraints be enforced? Cho et al. [7] and Bertino et al. [4] enforce these constraints directly on the
XML document. Damiani et al. [9] express their security specifications as sets of XPath expressions. However they
also transform their XPath specifications into an annotation of the entire document. So we have systems that do specify
how to restrict access at thedata level.

An important question remains unanswered: what schema information should be provided to the user? To formulate
and process queries, the user needs a schema describing the accessible data. One solution, suggested by Damiani et
al. [9], is to loosenthe original DTD (make forbidden nodes optional). In some cases it is unacceptable to expose

5

S→ [|/p|] (N) = S→ [|p|] ({root })
S→ [|θ[q]|] (N) = θ(N) ∩ E [|q|]

S→ [|θ[q]/p|] (N) = θ(S→ [|p|] (N)) ∩ E [|q|]

S→ [|p1 ∪ p2|] (N) = S→ [|p1|] (N) ∪ S→ [|p2|] (N)
S→ [|(p1 ∪ p2)/p|] (N) = S→ [|p1/p|] (N) ∪ S→ [|p2/p|] (N)

S← [|/p|] =
{ {n occursinT} if root ∈ S← [|/p|]
∅ otherwise

S← [|θ[q]|]N = θ−1(N ∩ E [|q|])
S← [|θ[q]/p|]N = θ−1(S← [|p|] ∩ E [|q|])

S← [|p1 ∪ p2|] = S← [|p1|] ∪ S← [|p2|]
S← [|(p1 ∪ p2)/p|] = S← [|p1/p|] ∪ S← [|p2/p|]

E [|A|] = T (A)
E [|q1andq2|] = E [|q1|] ∩ E [|q2|]
E [|q1or q2|] = E [|q1|] ∪ E [|q2|]
E [|not q|] = {n occurs inT} \ E [|q2|]

E [|p|] = S← [|p|]

Figure 2: The semantics of operators

even the loosened DTD to final user. To illustrate this, consider two permissible XPath queries about a letter of
recommendation:

Q1 /applications/application//evaluator

Q2 /applications/application/recomm-letter/evaluator

The queryQ1 finds all elements of typeevaluator that are associated with recommendation letter (including those
of unreliable category), whileQ2 returns onlyevaluator s of reliablerecomm-letter s. Although most of the
unreliable data is hidden, a look at the document DTD allows one to infer which letters are considered as unreliable:
theevaluator s inQ1 that are not returned byQ2; thus a security breach.

All evaluators are visible, but by different ways. The trick is to make requestor unable to distinguish those ways.

In traditional relational databases users access aViewof the data and permissions are assigned to views [17, 20]. A
user may be denied the knowledge of the existence of an attribute of a relational schema. What we need here is a view
of the document (at the schema level) that the user can use for queries, but that hides not only data but also structural
information.

We borrow from Stoica and Farkas [22] the notion of access control model for XML that specifies and enforces
security constraints at theschemalevel. For the actual notation we refine and generalize the proposal from Fan et
al. [12]: authorizations are defined on a document DTD by annotating element types withY/N or XPath qualifiers,
indicating their accessibility.

From such a specification we can then infer aview DTDDv and aselection functionσ defined via XPath queries. The
view DTD Dv shows only the data that is accessible according to the specification. The view is provided to the users

6

APPLICATION

STUDENT-DATA

LETTER

NAME

DEPARTMENT DEGREE WAIVER EVALUATOR

RATING FREE-TEXTTITLE INSTITUTION

MS PhDENGLISH

*

RECOMMENDATION-
LETTER

*

REASON

UNRELIABLE

PDF TXT

*

FAVORABLE UNFAVORABLE

N

Q2
N

APPLICATIONS

Q1

Q1

Q1

Q1

ID

Q3

Q3

Y

(a) Security annotation defined at DTD level

q1
.= ancestor::application [./student-data [@id = $login]/waiver /text() = “true′′]];

q2
.= ./student-data [./@id = $login]]

q3
.= ancestor::application [./student-data [@id = $login];

(b) Meaning of security annotation qualifiers

Figure 3: Security annotation for competing student

so that they can formulate their queries over the view. This means that the users can only access data viaDv, and no
information beyond the view can be inferred from (multiple) queries targeted atDv.

The functionσ is withhold to the users, and is used to extract accessible data from the actual XML documents with
XPath queries to populate a document structure conforming toDv.

4 Security Specifications

In this section we present our access-control specification language. Anaccess specificationS is an extension of a
document DTDD associating security annotations with productions ofD.

Definition 4.1: A authorization specificationS is a pair(D, ann), whereD is a (document) DTD,ann is a partial
mapping such that, for each productionA → P (A) and each child element typeB in P (A), ann(A,B), if explicitly
defined, is an annotation of the form:

ann(A, B) ::= Q[q] | Y | N

where[q] is a qualifier in our fragmentX of XPath. A special case is the root ofD, for which we defineann(root) = Y
by default. 2

Intuitively, annotating production ruleP (A) of the DTD with an unconditional annotation is a security constraint
expressed at the schema level:Y or N indicates that the correspondingB children ofA elements in an XML document
conforming to the DTD will always be accessible (Y) or always inaccessible (N), no matter what the actual values of
these elements in the document are. Ifann(A,B) is not explicitly defined, thenB inherits the accessibility ofA. On
the other hand, ifann(A,B) is explicitly defined it mayoverridethe accessibility ofB obtained via propagation.

7

<!ELEMENT applications (application*)>
<!ELEMENT application (student-data, recommendation-letter*, unreliable*)>
<!ELEMENT unreliable (recommendation-letter, reason)>
<!ELEMENT student-data (department, degree, name, waiver)>
<!ELEMENT recommendation-letter (evaluator, letter)>
<!ELEMENT evaluator (title, institution, name)>
<!ELEMENT letter (favorable|unfavorable)>
<!ELEMENT favorable (rating, free-text)>
<!ELEMENT unfavorable (rating, free-text)>
<!ELEMENT rating (MS, PhD, English)>
<!ELEMENT free-text (TXT|PDF)>
<!ELEMENT reason (#PCDATA)>
<!ELEMENT waiver (#PCDATA)>
<!ELEMENT department (#PCDATA)>
<!ELEMENT degree (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT institution (#PCDATA)>
<!ELEMENT MS (#PCDATA)>
<!ELEMENT PhD (#PCDATA)>
<!ELEMENT English (#PCDATA)>
<!ELEMENT TXT (#PCDATA)>
<!ELEMENT PDF (#PCDATA)>

<!ATTLIST student-data id CDATA #IMPLIED>

<!ATTLIST applications
hierarchy_security_policy CDATA #FIXED "topDown"
local_security_policy CDATA #FIXED "closed"
hierarchy_conflict_security_policy CDATA #FIXED "hierarchyFirst"
value_conflict_security_policy CDATA #FIXED "denialFirst"
security_annotation_data CDATA #FIXED "Y">

<!ATTLIST application security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED "./student-data[@id=$login]">

<!ATTLIST rating security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"ancestor::*[self::application[./student-data[@id=$login]/waiver/text()=’true’]]">

<!ATTLIST free-text security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"ancestor::*[self::application[./student-data[@id=$login]/waiver/text()=’true’]]">

<!-- recommendation-letter tag should be visible under unreliable tag
if ancestor "application" is visible-->
<!ATTLIST recommendation-letter security_annotation_data CDATA #FIXED "Q"

security_annotation_xpath CDATA #FIXED
"ancestor::*[self::application[./student-data[@id=$login]]]">

<!ATTLIST letter security_annotation_data CDATA #FIXED "N">
<!ATTLIST unreliable security_annotation_data CDATA #FIXED "N">

Figure 4: Partially annotated DTD

At the data level, the intuition is the following: given an XML documentT , the document is typed with respect to the
DTD, and the annotations of the DTD are attached to the corresponding nodes of the document, resulting in apartially
annotatedXML document. Intuitively, given an XML treeT conforming toD, the specificationS uniquely defines the
accessibility of the elements ofT . SinceT is an instance ofD and the regular expressions inD are 1-unambiguous,
this implies that eachB elementv of T has a unique parentA element and a unique production that “parses” theA
subtree. Then we convert the documentT to afully annotatedone by labelling all of the unlabelled nodes withY or N.
This is done by evaluating the qualifiers and replacing them byY or N annotations, and then by a suitable policy for
completing the annotation of the yet labelled nodes of the tree. When everything is labelled we remove allN-labelled
nodes fromT .

We should emphasize that semantics of qualifiers presented in this paper isdifferentfrom that of in [12]. According
to [12] a false evaluation of the qualifier is considered as “no label” and requires the inheritance of an access label

8

APPLICATION

STUDENT-DATA

NAME

DEPARTMENT DEGREE WAIVER EVALUATOR

RATING FREE-TEXTTITLE INSTITUTION

MS PhDENGLISH

*

RECOMMENDATION-
LETTER

*

PDF TXT

APPLICATIONS

XP1

XP2 XP3

XP4

ID

(a) Security DTD view

xp1 = ./student-data [@id = $login]
xp2 = ./letter /(favorable ∪ unfavorable)/rating [q]
xp3 = ./letter /(favorable ∪ unfavorable)/free-text [q]
xp4 = ./(ε ∪ unreliable)/recomm-letter
whereq = applications /application /student-data /waiver = “true′′

(b) Meaning of XPath expressions

Figure 5: Security view for competing student

from the nearest labelled ancestors, while we assume that once evaluated on the document, a qualifier is mapped to
eitherY or N. In other words, our qualifiers are locally determined so that an administrator has a clear understanding
of what will happen. In contrast with approach of Fan et al. it is not possible to predict what will happen unless the
administrators has a clear view of the data in the “entire” document (if we allow for ancestors queries in XPath) which
is unlikely to be the case for even moderately large documents.

Example 4.1: In Fig. 3(a) we show an example of security specification: paths to unconditionally allowed (forbidden)
element types from their corresponding parents are marked withY(N), and conditionally accessible element types
are marked by qualifiersq1, q2 andq3 (Fig. 3(b)). $login is a dynamic variable that is assigned at run time and
depends on the student’s login name. Fig. 4 shows an input DTD file that can be encoded according to the conditions
of Example 3.1. Note thatapplication andrecomm-letter have accessibility conditionq1 andq3 respectively,
while accessibility of elementsrating , free-text is described by qualifierq2. 2

Example 4.2: The partial annotation generated by the policy in Figure 3(a) is extended to a full annotation by la-
belling the element typesfavorable andunfavorable underletter andreason underunreliable with
N irrespectively of their position. On the other hand,evaluator underrecomm-letter is labelled asY. All the
other element types labelling depends on the query evaluation. 2

More sophisticated ways of annotation are presented in [14, 23]. In particular, [14] uses XQuery to define derivation
access control rules from the existing ones that are organized as XACL privilege triples<object, subject, access-
right> [19]. The proposal of [23] is based on the conception of Role Graph Model merged with the conception of
RBAC for object-oriented databases.

The construction of a fully annotated document depends heavily on the overall security policy that is chosen to get

9

completeness [10]. The top-down procedure that we describe next is the result ofmost-specific-takes-precedence
policy which simply says that an unlabelled node takes the security label of its first labelled ancestor. Damiani et
al. [9] use aclosedpolicy as default: if a node is not labeled then label it asN. We return to this issue in Sec. 7, where
we extend our model to allow alternate propagation techniques.

Definition 4.2: Let (D, ann) be a authorization specification andT a XML document conforming toD. Theautho-
rized versionTA of T according the authorization specification is obtained fromT as follows:

1. TypeT with respect toD and label nodes withann values;

2. Evaluate qualifiers top down starting from the root and replace annotations byY or N depending on the result;

3. For each unlabelled node, label it with the annotation of its nearest labelled ancestor;

4. Delete all nodes labelled withN from the result, making all children of a deleted nodev into children ofv’s
parent.

The annotation of the document, before deleting nodes in the last step, is called thefull annotationof T . 2

Example 4.3: Fig. 5(a) shows the security view generated from the security specification in Fig. 3(a). It hides con-
fidential information. Fig. 5(b) lists some of the XPath annotations that are used to populate the appropriate element
types form the original document DTD. 2

SinceT is a tree (a node has only one ancestor) it is not possible to have a conflict on labelling. There are different
policy to extend the labelling that may lead to conflicts. We discuss this later in Sec. 7.

The pruning algorithm is more severe than that used by Damiani et al. [9] who delete only subtrees that are entirely
labelledN, and delete only the data from nodes labelledN with some descendant labelledY. As a consequence, the
authorized viewTA no longer conforms to the original DTDD, not even to its loosened variant.

Example 4.4: In example 3.1 sinceunreliable is forbidden, the user should not even know that it exists. So he
receives documents without it. 2

5 Security Views

We now turn to the enforcement of an access specification. To this end, we introduce the notion ofsecurity viewwhich
consists of two parts. The first part is a schema that is seen by the user, while the second part is a function that is
hidden from the user, which describes how the data in the new schema should be derived from the original data. The
intuition behind our approach is similar to that of security views for relational databases in multi-level security [17]
and the notation is borrowed from [12].

We first present the syntactic definition of security views.

Definition 5.1: Let D be a DTD. Asecurity viewfor D is a pair(Dv, σ) whereDv is a DTD andσ is a function from
pairs of element types such that for each element typeA in Dv and element typeB occurring inP (A), σ(A,B) is an
expression inX . 2

Definition 5.2: Let S = (Dv, σ) be a security view. The semantics ofS is a mapping from documentsT conforming
to D to documentsTS such that

10

1. TS conforms toDv

2. The nodes ofTS are a subset of the nodes ofT , and their element type is unchanged.

3. For any noden of T which is inTS , let A be the element type ofn, and letB1, . . . ,Bm be the list of element
types that occur inP (A). Then the children ofn in TS are

⋃

1≤i≤m

S→ [|σ(A, Bi)|] ({n}) .

These nodes should be ordered according to the document order in the original document.

TS is called thematerialized versionof T w.r.t. the viewS. 2

Definition 5.3: A valid security view is one for which the semantics are always well-defined, i.e., if for every document
T , its materialized version conforms to the security view DTD. 2

Not all views are valid: wrong typing, violated cardinality constraints, and other problems could be all causes of of a
view to be invalid. However, the views that we construct from an annotated DTD are valid.

Example 5.1: The view with the only productionroot → AA∗ andσ(root → A,A) := (A = “alice”), is not
defined on the document having the string“alice” as the onlyA-child of root . 2

Example 5.2: The view with the productionsroot → A and A → B, whereσ(root → A,A) := A and
σ(A → B, B) = parent /parent is invalid on any documents because the resulted materialized document can-
not be a tree. 2

Security specification and views are related as follows.

Definition 5.4: Let (D, ann) be a authorization specification, and letS = (Dv, σ) be a security view forD. We say
thatS is data equivalentto (D, ann) iff for every documentT , conforming toD, the materialized versionTS coincides
with the authorized versionTA. 2

Two weaker characterizations are based on the notion ofdata secrecyanddata availability1.

Definition 5.5: Let (D, ann) be a authorization specification, andS = (Dv, σ) a security view forD.

1. S guaranteesdata secrecyiff for every T conforming toD, and for every noden of T , if n occurs inTS thenn
must also occur in the authorization versionTA.

2. S guaranteesdata availability iff for every T conforming toD, and every node noden of T , if n occurs in
authorized treeTA thenn occurs in materialized versionTS .

2

Intuitively, a secrecy-preserving view assure us that no forbidden node is leaked whereas a availability-preserving view
is a guarantee that no permitted node is held from legitimate principals. Obviously if a view is data equivalent, then it
also guarantees secrecy and availability but the converse does not hold. Indeed a data equivalent view also “preserves
the structure” of the original document. We leave such concept of structure preservation informal at this stage, though
one may think to subsumption of XML schemas as a possible way to classify views.

1Sometimes these notions are also termed consistency and completeness in the literature [10] but that terminology can be misleading in our
context.

11

Algorithm: MATERIALIZE

Input: a documentT conforming to DTDD, a DTD View(Dv, σ)
Output: a materialized viewTS of T or⊥ (there is no such view)

1: for all nodesn of typeA in T do
2: let A → P (A) the corresponding rule inDv

3: for all B occurring inP (A) do
4: precomputeS→ [|σ (A → P (A) , B)|] ({n})
5: assign toTS the root ofT and mark it as unprocessed
6: while there are unprocessed nodes inTS do
7: select an unprocessed noden of typeA with ruleA → P (A) in Dv

8: make the nodes in ⋃

B occurs inP (A)

S→ [|σ (A → P (A) , B)|] ({n})

in T as unprocessed children ofn in TS
9: if a child ofn already occurs as a processed node inTS then

10: return⊥ (invalid view)
11: maken as processed

Figure 6: AlgorithmMATERIALIZE

Given a security viewS = (Dv, σ) and documentT conforming to a DTDD, we show how to constructTS in Fig. 6.

The following is immediate:

Proposition 5.1: If S = (Dv, σ) is a valid view forD, then the result of AlgorithmMATERIALIZE is a documentTS
that is the materialized version ofT . 2

A classical question for relational database research, namely whether a view produced by theMATERIALIZE algorithm
is actually populated by some instances, has a trivial yes answer. Since the root of the document is always labelledY,
the materialized view has always one node. We can show that for the XPath fragment we can be as efficient as we can
hope for. Indeed, Gottlob, Koch and Pichler [15] have shown that for CoreXPath (i.e.X without union and test) it is
f(|σ| , |T |) = |σ| × |T |. We extend their result toX without test without penalties in complexity and with aT factor
to the fullX fragment.

We now study the complexity of the algorithm. Letf(n, d) be the complexity of evaluating an XPath expression of
sizen on a document of sized. Gottlob et al. [15] have shown that for CoreXPath (i.e.X without union and test) it is
f(|σ| , |T |) = |σ| × |T |. We extend their result toX without test and with a factor ofT to the fullX fragment. Let|σ|
be the size of the largest XPath expression in the range ofσ. Then:

Theorem 5.2:AlgorithmMATERIALIZE computes a materialized view in timeO(f(|σ|, |T |)× |T |). 2

Lemma 5.3: Every XPath queryp ∈ XNoTest over a documentT can be evaluated in timeO(|p| × |T |). 2

Proof: The proof follows the line of Gottlob, Koch and Pichler [15] for the CoreXPath fragment (that is without
union of paths): we use the functionsS→, S←, andE to compute a query tree which is then evaluated bottom-up to
yield the desired complexity result.

For the full fragment considered here, the naive implementation of union would lead to an exponential blow up because
S→ [|p1(p2 ∪ p3)|] (N) = S→ [|p1/p2|] (N) ∪ S→ [|p1/p2|] (N) the processing ofp1 is duplicated.

To avoid this blow-up we use a query DAG instead of a query tree. Each path of the formS→ [|p1/(p2 ∪ p3)|] (N) is
mapped into a (single source) rooted DAG in which the root is labelled∪ with two children, one corresponding to the

12

root of S→ [|p2|] (X) and one corresponding to the root ofS→ [|p3|] (X). The sharedX leaf node is the root of the
S→ [|p1|] (N) node.

Formally, this is equivalent to say thatS→ [|p1/(p2 ∪ p3)|] (N) is evaluated using the symbolic rightmost lazy evalu-
ation of(λX.S→ [|p2|] (X) ∪ S→ [|p3|] (X))S→ [|p1|] (N).

For the evaluation of theS← function we use a single target DAG for the construction of the query DAG.

With this construction each XPath expression can be transformed in timeO(|p|) into a query DAG of sizeO(|p|) in
which each operation is a set operation that can be computed in timeO(|T |) thus yielding the desired upper bound.2

Lemma 5.4: Every XPath queryp ∈ X over a documentT can be evaluated in timeO(|p| × |T |2). 2

The addition of the test operation increases slightly the complexity because the computation of theO (c) operator
requires the comparison of thestr valuec with the str value at every node of the tree. This yields a quadratic
increase in data complexity. Once theO (c) has been computed at the appropriate leaves of the query DAG, all other
operations can be done in time linear in the size of the document.

Corollary 5.5: Every valid DTD view whose annotations are inX , respectively inXNoTest , can be materialized in
O(|σ| × |T |3), resp.O(|σ| × |T |2), by AlgorithmMATERIALIZE . 2

Proof: The first step of the algorithm takes up onlyO(|σ| × |T |3), resp.O(|σ| × |T |2), by using the construction
in Lemma 5.3, resp. Lemma 5.4, for the evaluation of XPath queries. For the subsequent processing the number of
iteration is bounded by the number of nodes inT and each step can be performed inO(|σ| × |T |) steps. 2

Remark 5.1 We cannot obtain a linear bound in the size ofT because of the ancestor and descendant axis in the
XPath fragment under consideration. The materialization of each node ofTS require the evaluation of a query overT
which may involve the entire original document.

6 From Authorization Specifications to Views

Our main result is to show how to construct a security view, given a document DTD and an authorization specification
on it. The idea behind our algorithm is to eliminate qualifiers by expanding each qualifier into a union of two element
types: one is the original element type, which is annotatedY, and the other is a new type, essentially a copy of the
original type, which is annotatedN. Since the tag of an element uniquely determines the type, it follows that new type
names cannot match any nodes in a document that conforms to the original DTD. This is not a serious problem, as all
of these new type names are ultimately deleted in the final security view.

The next step expands the annotation to a “full annotation”. The notion of a full annotation was defined on annotated
documents, and we showed that every document has a unique full annotation. At the schema level, however, this is
not the case, as there may be several “paths” in the DTD that reach the same element type, each of which results in a
different annotation. We use a similar technique to the way we handle qualifiers, i.e., we introduce new element types,
and label the original oneY and the “copy”N. Finally, we delete all the element types that are labelledN, modifying
the regular expressions and theσ functions correspondingly.

We show the algorithmANNOTATE V IEW in Fig. 7 and algorithmBUILD V IEW in Fig. 8.

Definition 6.1: Let S = (D, ann) be an authorization specification. The DTD constructed byANNOTATE V IEW

algorithm is thefully annotatedDTD corresponding to(D, ann). 2

Theorem 6.1:Let (D, ann) be a security specification whereD is non-recursive. AlgorithmsANNOTATE V IEW and

13

Algorithm: ANNOTATE V IEW

Input: A authorization specification(D, ann)
Output: Fully annotated DTDD

1: Initialize Dv := D whereann is defined onDv as onD;
2: for all production rulesA → P (A) in Dv do
3: for all element typesB occurring inP (A) do
4: initialize σ (A → P (A) , B) := B[ε]
5: //Below we will eliminate qualifier annotation
6: for all element typesB with ann(B) = Q[q] do
7: add toDv a new element typeB′ and a production ruleB′ → P (B′)
8: setP (B′) := P (B)
9: for all element typesC occurring inP (B′) do

10: σ (B′ → P (B′) , C) := σ (B → P (B) , C)
11: setann(B) = Y andann(B′) = N
12: for all production rulesA → P (A) do
13: if B occurs inP (A) then
14: σ (A → P (A) , B) := B[q];
15: σ (A → P (A) , B′) := B[¬q];
16: replaceB by B + B′ in P (A)
17: //Below we will get fully annotated DTDD
18: while ann(B) of some element typesB is undefineddo
19: if all generatorsA of B have definedann(A) then
20: if all ann(A) = Y then
21: setann(B) := Y;
22: else ifall ann(A) = N then
23: setann(B) := N;
24: else
25: add toDv a new element typeB′ and a production ruleB′ → P (B′)
26: setP (B′) := P (B)
27: for all element typesC occurring inP (B′) do
28: σ (B′ → P (B′) , C) := σ (B → P (B) , C)
29: setann(B) = Y, ann(B′) = N,
30: for all generatorsA of B do
31: if ann(A) = N then
32: replaceB with B′ in P (A)

Figure 7: AlgorithmANNOTATE V IEW

Algorithm: BUILD V IEW

Input: Fully annotated DTDD
Output: A security view (Dv, σ)

1: for all element typesB with ann(B) = N do
2: for all production rulesA → P (A) do
3: if B occurs inP (A) then
4: for all C that occurs inP (B) do
5: setσ (A → P (A) , C) := σ (A → P (A) , B) /σ (B → P (B) , C) ∪ σ (A → P (A) , C)
6: replaceB by P (B) in P (A) if B → P (B) exists and byε otherwise
7: Dv consists of all the element typesA for whichann(A) = Y, with theσ function restricted to these types.

Figure 8: AlgorithmBUILD V IEW

14

<!ELEMENT applications (application*,#application*)>
<!ELEMENT application (student-data,recommendation-letter*,#recommendation-letter*,unreliable*)>
<!ELEMENT #application (#student-data,recommendation-letter*,#recommendation-letter*,unreliable*)>
<!ELEMENT unreliable (recommendation-letter,#recommendation-letter,reason)>
<!ELEMENT student-data (department,degree,name,waiver)>
<!ELEMENT #student-data (#department,#degree,#name,#waiver)>
<!ELEMENT recommendation-letter (evaluator,letter)>
<!ELEMENT #recommendation-letter (#evaluator,letter)>
<!ELEMENT evaluator (title,institution,name)>
<!ELEMENT #evaluator (#title,#institution,#name)>
<!ELEMENT letter (favorable | unfavorable)>
<!ELEMENT favorable (rating,#rating,free-text,#free-text)>
<!ELEMENT unfavorable (rating,#rating,free-text,#free-text)>
<!ELEMENT rating (MS,PhD,English)><!ELEMENT #rating (#MS,#PhD,#English)>
<!ELEMENT free-text (TXT | PDF)><!ELEMENT #free-text (#TXT | #PDF)>
<!ELEMENT reason (#PCDATA)>
<!ELEMENT waiver (#PCDATA)><!ELEMENT #waiver (#PCDATA)>
<!ELEMENT department (#PCDATA)><!ELEMENT #department (#PCDATA)>
<!ELEMENT degree (#PCDATA)><!ELEMENT #degree (#PCDATA)>
<!ELEMENT name (#PCDATA)><!ELEMENT #name (#PCDATA)>
<!ELEMENT title (#PCDATA)><!ELEMENT #title (#PCDATA)>
<!ELEMENT institution (#PCDATA)><!ELEMENT #institution (#PCDATA)>
<!ELEMENT MS (#PCDATA)><!ELEMENT #MS (#PCDATA)>
<!ELEMENT PhD (#PCDATA)><!ELEMENT #PhD (#PCDATA)>
<!ELEMENT PDF (#PCDATA)><!ELEMENT #PDF (#PCDATA)>
<!ELEMENT English (#PCDATA)><!ELEMENT #English (#PCDATA)>
<!ELEMENT TXT (#PCDATA)>
<!ELEMENT #TXT (#PCDATA)>

Figure 9: Fully annotated DTD: element part

BUILD V IEW terminate and produce a valid security view. 2

Proof: We have loops in the algorithmANNOTATE V IEW (steps 6 and 18) and in the algorithmBUILD V IEW (step 1).

Step 6 inANNOTATE V IEW eliminates qualifiers from the authorization specification.

Step 18 inANNOTATE V IEW is to extend the annotation to a “full” annotation, i.e., one whereann is defined as either
Y or N for every element type. We do this by a “top-down” traversal of the DTD, starting from the root. The fact that
DTD is non-recursive implies that whenever there remains at least one element typeB with ann(B) undefined, there
must be one suchB such that wheneverB occurs inP (A), ann(A) has already been defined. For one suchB, do the
following, and repeat until all element types are annotated. Thus 18 inANNOTATE V IEW always terminates, whereas
step 1 inBUILD V IEW will terminate as it always reduces the number of element types in the DTD by one.

We next show thatDv is a DTD.Dv would fail to be a DTD only if, for some element typeA in Dv, P (A) includes
an element typeB that is deleted in step 7 ofBUILD V IEW. Chose such anA andB such thatB has no successor in
the DTD tree (we make use again of the non-recursiveness ofD). SinceB is deleted,ann(B) must be equal toN, and
thereforeB is replaced byP (B) in step 1 ofBUILD V IEW, a contradiction.

As we are considering only non-recursive DTDs, we must also show that the new DTD is non-recursive. But this
follows immediately, as any cycleDv can be traced back to a cycle inD.

This shows that we get a security view. To prove it is valid, we must show thatTS conforms toDv. To do this, we
first examineT ′ the fully annotated version ofT (Definition 4.2) andD′, the fully annotated DTD defined above. As
this point, we would like to show thatT ′ conforms toD′, but there is a problem, namely that some of the nodes in
nodes inT ′ should to be typed by new element types that were introduced inD′, which is impossible. To get around
this problem, modify the definition of “conforms”, to allow each new element typesB′ introduced by the algorithm to
type the same nodes that were typed byB.

With this modified definition of “conforms”, an examination of steps 6 and 18 of the algorithmANNOTATE V IEW,
comparing them to the corresponding steps in the definition ofT ′, shows thatT ′ conforms toD′. Furthermore, a node

15

<!ATTLIST applications
hierarchy_security_policy CDATA #FIXED "topDown"
value_conflict_security_policy CDATA #FIXED "denialFirst"
local_security_policy CDATA #FIXED "closed"
hierarchy_conflict_security_policy CDATA #FIXED "hierarchyFirst"
security_annotation_data CDATA #FIXED "Y">

<!ATTLIST application security_annotation_data CDATA #FIXED "Y">
<!ATTLIST #application security_annotation_data CDATA #FIXED "N">
<!ATTLIST unreliable security_annotation_data CDATA #FIXED "N">
<!ATTLIST student-data security_annotation_data #FIXED "N" id CDATA #IMPLIED>
<!ATTLIST #student-data security_annotation_data #FIXED "N" id CDATA #IMPLIED>
<!ATTLIST recommendation-letter security_annotation_data CDATA #FIXED "Y">
<!ATTLIST #recommendation-letter security_annotation_data CDATA #FIXED "N">
<!ATTLIST letter security_annotation_data CDATA #FIXED "N">
<!ATTLIST favorable security_annotation_data #FIXED "N">
<!ATTLIST evaluator security_annotation_data #FIXED "N">
<!ATTLIST #evaluator security_annotation_data #FIXED "N">
<!ATTLIST unfavorable security_annotation_data #FIXED "N">
<!ATTLIST rating security_annotation_data CDATA #FIXED "Y">
<!ATTLIST #rating security_annotation_data CDATA #FIXED "N">
<!ATTLIST free-text security_annotation_data CDATA #FIXED "Y">
<!ATTLIST #free-text security_annotation_data CDATA #FIXED "N">
<!ATTLIST reason security_annotation_data #FIXED "N">
<!ATTLIST waiver security_annotation_data #FIXED "Y">
<!ATTLIST #waiver security_annotation_data #FIXED "N">
<!ATTLIST department security_annotation_data #FIXED "Y">
<!ATTLIST #department security_annotation_data #FIXED "N">
<!ATTLIST degree security_annotation_data #FIXED "Y">
<!ATTLIST #degree security_annotation_data #FIXED "N">
<!ATTLIST name security_annotation_data #FIXED "Y">
<!ATTLIST #name security_annotation_data #FIXED "N">
<!ATTLIST title security_annotation_data #FIXED "Y">
<!ATTLIST #title security_annotation_data #FIXED "N">
<!ATTLIST institution security_annotation_data #FIXED "Y">
<!ATTLIST #institution security_annotation_data #FIXED "N">
<!ATTLIST MS security_annotation_data #FIXED "Y">
<!ATTLIST #MS security_annotation_data #FIXED "N">
<!ATTLIST PhD security_annotation_data #FIXED "Y">
<!ATTLIST #PhD security_annotation_data #FIXED "N">
<!ATTLIST English security_annotation_data #FIXED "Y">
<!ATTLIST #English security_annotation_data #FIXED "N">
<!ATTLIST TXT security_annotation_data #FIXED "Y">
<!ATTLIST #TXT security_annotation_data #FIXED "N">
<!ATTLIST PDF security_annotation_data #FIXED "Y">
<!ATTLIST #PDF security_annotation_data #FIXED "N">

Figure 10: Fully annotated DTD: attribute part

in T ′ that is annotatedN (resp.Y) will be typed by a type inD′ that is annotatedN (resp.Y).

It follows immediately from the definitions, that if we takeD′ with theσ function defined in algorithmANNOTATE

V IEW, T ′ “conforms” toD′. As we delete nodes in step 5, we can show that this property is preserved, so thatTS
“conforms” toDv. Since all the new nodes have been deleted at this point, the new definition of “conforms” reduces
to the standard definition, completing the proof. 2

Note that our assumption that regular expressions in DTDs may be 1-ambiguous is essential, as the following example
shows.

Example 6.1: Consider the DTD with element typesA, B, C, D, whereD → CA(A + B) andD → (A + B)∗.
If ann(A) = ann(B) = ann(C) = Y, andann(D) = N, then the security DTD computed by AlgorithmANNOTATE

V IEW will have the productionD → (A + B) ∗ A(A + B), which is not equivalent to any 1-unambiguous regular
expression [6]. 2

In practice, if we really need to use 1-unambiguous regular expressions, one could approximate the expressions gen-
erated by the algorithm with 1-ambiguous expressions that capture a larger language ([2] describes one method to do

16

<!ELEMENT applications (application*,recommendation-letter*,
((rating,free-text)|(rating,free-text))*,recommendation-letter*,
((rating,free-text)|(rating,free-text))*)>

<!ELEMENT application (student-data,recommendation-letter*,
((rating,free-text)|(rating,free-text))*,recommendation-letter*,
((rating,free-text)|(rating,free-text))*)>

<!ELEMENT recommendation-letter (evaluator,
((rating,free-text)|(rating,free-text))*)>

<!ELEMENT student-data (department,degree,name,waiver)>
<!ATTLIST student-data id CDATA #IMPLIED>
<!ELEMENT recommendation-letter (evaluator,

((rating,free-text)|(rating,free-text))*)>
<!ELEMENT evaluator (title,institution,name)>
<!ELEMENT rating (MS,PhD,English)>
<!ELEMENT rating (MS,PhD,English)>
<!ELEMENT degree (#PCDATA)>
<!ELEMENT department (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT waiver (#PCDATA)>
<!ELEMENT institution (#PCDATA)>
<!ELEMENT PhD (#PCDATA)>
<!ELEMENT MS (#PCDATA)>
<!ELEMENT English (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT TXT (#PCDATA)>

Figure 11: DTD viewDv

this).

Example 6.2:Fully annotated DTD depicted on Fig. 9 is the result of application of the algorithmANNOTATE V IEW

to partially annotated DTD of Fig. 4. Elements marked with # symbol are introduced artificially during the process of
qualifier elimination (step 6) and inheritance from differently annotated parents (step 18). Fig. 10 represents attribute
part of DTD. Note that artificial elements have security annotationN while initial elements are marked byY. 2

Example 6.3:The result of application ofBUILD V IEW to DTD of Fig. 10 is depicted on Fig. 11. Note that all security
related attributes (compared with input DTD annotation depicted on Fig. 4) are eliminated. Correspondingσ-function
is represented on Fig. 12. 2

Note, thatσ-function has rules with contradictory conditionsQ andnot(Q) (e.g. 3–11, 14–22), therefore correspond-
ing σ will always return empty set. The same is true also for rule 2 because it contains both conditionnot(P) and
R with subconditionP . These rules can be eliminated on the process of optimization which is an open issue and is
leaved for future work.

We now need a technical lemma.

Lemma 6.2: Let(D, ann) be a security specification whereD is a not-recursive DTD and(Dv, σ) be the security view
that is constructed by AlgorithmsANNOTATE V IEW and BUILD V IEW, for any sequence of element typesB0. . .Bn

in the full annotatedD such that (i)Bi+1 is a child type ofBi for i = 0 . . . n − 1, (ii) eachBi for i = 1 . . . n − 1 is
annotatedN, there exists an XPath expressionp andq1 . . . qn XPath qualifiers such that the following equation holds
for all set of nodesN :

S→ [|σ(B0 → P (B0) , Bn)|] (N) = S→ [|p|] (N) ∪ S→ [|B1[q1]/ · · · /Bn[qn]|] (N) .

2

Proof: The proof is by a nested induction onn and the number of iteration of step 1 of algorithmBUILD V IEW.

For the base case,n = 1, thenB1 is a child ofB0. Then, before step 1 ofBUILD V IEW is executed, algorithmAN-

17

applications -> P(applications):
1 sigma(applications, application)= application[P]
2 sigma(applications, recommendation-letter) = application[not(P)]/recommendation-letter[R]
3 sigma(applications, rating) =

application[not(P])]/recommendation-letter[not (Q)]/letter/favorable/rating[Q]
4 sigma(applications, free-text) =

application[not(P)]/recommendation-letter[not(Q)]/letter/favorable/free-text[Q]
5 sigma(applications, rating) =

application[not(P)]/recommendation-letter[not(Q)]/letter/unfavorable/rating[Q]
6 sigma(applications, free-text) =

application[not(P)]/recommendation-letter[not(Q)]/letter/unfavorable/free-text[Q]
7 sigma(applications, recommendation-letter) =

application[not(P)]/unreliable/recommendation-letter[R]
8 sigma(applications, rating) =

application[not(P)]/unreliable/recommendation-letter[not(Q)]/letter/favorable/rating[Q]
9 sigma(applications, free-text) =

application[not(P)]/unreliable/recommendation-letter[not(Q)]/letter/favorable/free-text[Q]
10 sigma(applications, rating) =

application[not(P)]/unreliable/recommendation-letter[not(Q)]/letter/unfavorable/rating[Q]
11 sigma(applications, free-text) =

application[not(P)]/unreliable/recommendation-letter[not(Q)]/letter/unfavorable/free-text[Q]

application -> P(application):
12 sigma(application, student-data) = student-data
13 sigma(application, recommendation-letter) = recommendation-letter[R]
14 sigma(application, rating) = recommendation-letter[not(Q)]/letter/favorable/rating[Q]
15 sigma(application, free-text) = recommendation-letter[not(Q)]/letter/favorable/free-text[Q]
16 sigma(application, rating) = recommendation-letter[not(Q)]/letter/unfavorable/rating[Q]
17 sigma(application, free-text) = recommendation-letter[not(Q)]/letter/unfavorable/free-text[Q]
18 sigma(application, recommendation-letter) = unreliable/recommendation-letter[R]
19 sigma(application, rating) = unreliable/recommendation-letter[not(Q)]/letter/favorable/rating[Q]
20 sigma(application, free-text) = unreliable/recommendation-letter[not(Q)]/letter/favorable/free-text[Q]
21 sigma(application, rating) = unreliable/recommendation-letter[not(Q)]/letter/unfavorable/rating[Q]
22 sigma(application, free-text) = unreliable/recommendation-letter[not(Q)]/letter/unfavorable/free-text[Q]

student-data -> P(student-data):
23 sigma(student-data, department) = department
24 sigma(student-data,degree) = degree
25 sigma(student-data, name) = name
26 sigma(student-data, waiver) = waiver

recommendation-letter -> P(recommendation-letter):
27 sigma(recommendation-letter, evaluator) = evaluator
28 sigma(recommendation-letter, rating) = letter/favorable/rating[Q]
29 sigma(recommendation-letter, free-text) = letter/favorable/free-text[Q]
30 sigma(recommendation-letter, rating) = letter/unfavorable/rating[Q]
31 sigma(recommendation-letter, free-text) = letter/unfavorable/free-text[Q]

evaluator -> P(evaluator):
32 sigma(evaluator, title) = title
33 sigma(evaluator, institution) = institution
34 sigma(evaluator, name)= name

rating -> P(rating):
35 sigma(rating, MS) = MS
36 sigma(rating, PhD) = PhD
37 sigma(rating, English) = English

free-text -> P(free-text):
38 sigma(free-text, TXT) = TXT
39 sigma(free-text, PDF)= PDF

where P = ./student-data[@id=$login]
Q = ancestor::*[self::application[./student-data[@id=$login]/waiver/text()=’true’]]
R = ancestor::*[self::application[./student-data[@id=$login]]]

Figure 12:σ-function

NOTATE V IEW would setσ(B0 → P (B0) , B1) = B1[q1] for a suitable qualifierq1. Therefore, up to that point of
the execution of the algorithm, the theorem holds by settingp = ∅. During step 1 of algorithmBUILD V IEW it is
possible that the elimination of someN-children ofB0 would modify the selection function forB1. By evaluating

18

theσ (B0 → P (B0) , B1) expression constructed by step 4 ofBUILD V IEW with theS→ operator and by induction
hypothesis we get

S→ [|σ(B0 → P (B0) , B1)|] (N) =
S→ [|σ(B0 → P (B0) , C)/σ(C → P (C) , B1) ∪ σ(B0 → P (B0) , B1)|] (N) =
S→ [|σ(B0 → P (B0) , C)/σ(C → P (C) , B1)|] (N) ∪ S→ [|σ(B0 → P (B0) , B1)|] (N) =
S→ [|σ(B0 → P (B0) , C)/σ(C → P (C) , B1)|] (N) ∪ S→ [|p0|] (N) ∪ S→ [|B1[q1]|] (N) =
S→ [|p1|] (N) ∪ S→ [|B1[q1]|] (N)

If B1 itself is eliminated fromP (B0) this would not change the selection function constructed so far forB1.

For the inductive case, letB0 . . .Bn be the sequence of nodes and letBi for i ∈ {1 . . . n− 1} be the last node that
is eliminated by step 1 of the algorithmBUILD V IEW. Since the DTD is not recursive neitherσ (B0 → P (B0) , Bi),
nor σ (Bi → P (Bi) , Bn) can be changed by this step. By evaluating theS→ operator and by induction hypothesis
we get:

S→ [|σ(B0 → P (B0) , Bn)|] (N) =
S→ [|σ(B0 → P (B0) , Bi)/σ(Bi → P (Bi) , Bn) ∪ σ(B0 → P (B0) , Bn)|] (N) =
S→ [|σ(B0 → P (B0) , Bi)/σ(Bi → P (Bi) , Bn)|] (N) ∪ S→ [|σ(B0 → P (B0) , Bn)|] (N) =
S→ [|σ(Bi → P (Bi) , Bn)|] (S→ [|σ(B0 → P (B0) , Bi)|] (N)) ∪ S→ [|p0|] (N) =
S→ [|σ(Bi → P (Bi) , Bn)|] (S→ [|p1,i|] (N) ∪ S→ [|B1[q1]/ · · · /Bi[qi]|] (N)) ∪ S→ [|p0|] (N) =
S→ [|σ(Bi → P (Bi) , Bn)|] (S→ [|p1,i|] (N))∪

S→ [|σ(Bi → P (Bi) , Bn)|] (S→ [|B1[q1]/ · · · /Bi[qi]|] (N)) ∪ S→ [|p0|] (N) =
S→ [|p1|] (N) ∪ S→ [|σ(Bi → P (Bi) , Bn)|] (S→ [|B1[q1]/ · · · /Bi[qi]|] (N)) ∪ S→ [|p0|] (N) =
S→ [|p2|] (N) ∪ S→ [|σ(Bi → P (Bi) , Bn)|] (S→ [|B1[q1]/ · · · /Bi[qi]|] (N)) =
S→ [|p2|] (N) ∪ S→ [|pi+1,n|] (S→ [|B1[q1]/ · · · /Bi[qi]|] (N))∪

S→ [|Bi+1[qi+1]/ · · · /Bn[qn]|] (S→ [|B1[q1]/ · · · /Bi[qi]|] (N)) =
S→ [|p2|] (N) ∪ S→ [|p3|] (N) ∪ S→ [|B1[q1]/ · · · /Bi[qi]/Bi+1[qi+1]/ · · · /Bn[qn]|] (N) =
S→ [|p|] (N) ∪ S→ [|B1[q1]/ · · · /Bn[qn]|] (N)

The casei = n is similar to the above one by combining the reasoning for the base case and the intermediate case
above. 2

Remark 6.1 In the statement of the lemma we have no condition on the labelling of eitherB0 or Bn as this would
make the induction hypothesis needed for the proof not strong enough. Equally we need to quantify over all setsN
or the composition of two intermediate sequences during the induction step would not have an inductive hypothesis
strong enough.

Theorem 6.3: Let (D, ann) be a authorization specification,D is non-recursive, let(Dv, σ) the security view con-
structed by AlgorithmsANNOTATE V IEW and BUILD V IEW. LetT be a document,TA the authorized version ofT
andTS the materialized version ofT with respect to(Dv, σ). ThenTA is isomorphic toTS . 2

Proof: The proof is done by a top-down induction onT . The root ofT is clearly in bothTA andTS .

By induction, assume thatn is of element typeA, and is in bothTA andTS . We must show that each childn in TA is
also a child ofn in TS , and vice versa. The result will then follow, as the order of the children ofn is the same in both
documents. Note, that for this to work it is essential that nodes inA should be ordered with the old order.

Let, therefore,m be a child ofn in TA, of typeB. Assume, first, thatm is a child ofn in the original documentT .
Consider the fully annotated DTD(DF , ann′). Sincen is inTS , ann′(A) = Y. Sincem is inTA, it follows thatann(B)
cannot be equal toN, and henceann′(B) = Y, and so element typeB is in Dv. Furthermore, ifann(B) = Q[q], then
q must hold atm.

19

We must show thatm is in S→ [|σ (A → P (A) , B)|] ({n}). Let p = σ(A, B). The algorithmANNOTATE V IEW

initially setsp = B (step 2), may replacep by B[q] in step 12, and may add additional disjuncts in step 2 of algo-
rithm BUILD V IEW. In all casesm is clearly in the result.

Now consider the case wherem is not a child, but a descendant, ofn in T . Let n, n1, . . . , nk, m (k ≥ 1) be the
sequence of nodes inT from n to m, of element typesB1, . . . , Bk. Since these nodes are not present inTA, each
ann(Bi) (1 ≤ i ≤ k) must be either undefined,N or Q[qi], with the qualifier in the latter case evaluating to false atni.
Furthermore,ann(B) must be eitherY or a qualifierQ[q] that evaluates to true atm, which implies thatB is in Dv.

To show thatm is in S→ [|σ(A,B)|] ({n}), observe first thatDF contains element typesB′
j wheneverann(Bj) is

undefined or is a qualifier. For this part of the proof, we shall writeB′
j as a synonym forBj in the remaining case,

whenann(Bj) = N. Wheneverann(Bi) is Q[qi], step 12 of the algorithmANNOTATE V IEW initially setsσ(B′
i−1, B

′
i)

to Bi[¬q] (writing B′
0 = A, for convenience); whenann(Bi) = N or is undefined,σ(B′

i−1, B
′
i) is initially set equal

to B′
i in step 2 ofANNOTATE V IEW. Finally, step 1 ofBUILD V IEW deletes elements typesB′

1, . . . , B′
k, replacing

σ(A,B) by a disjunction of paths, and by lemma 6.2 we get:

S→ [|σ (A → P (A) , B)|] ({n}) = S→ [|p ∪B1[¬q1]/B2[¬q2]/ · · · /Bk[¬qk]/B|] ({n})

with some of theqi’s absent, whenann(Bi) is N or undefined. It follows thatm ∈ S→ [|σ(A,B)|] ({n}), as desired.

For the converse, letm be a child ofn in TS . We must show thatm is a child ofn in TA.

From the definition ofTS , m must be in the result of evaluatingσ(A, B) at n. Let n = n0, n1, . . . , nk, m = nk+1

(k ≥ 0) be the shortest path fromn to m that is used in the evaluation of theσ function, and letσ′ be the value of
theσ function after application of the algorithmANNOTATE V IEW. We claim thatni+1 ∈ S→ [|σ(Bi, Bi+1)|] ({ni})
(0 ≤ i ≤ k, B0 = A, Bk+1 = B). We show this by induction on the lastBi eliminated in step 1 ofBUILD V IEW: this
step replacesσ(Bi−1, Bi+1) by

σ(Bi−1, Bi)/σ(Bi, Bi+1) + σ(Bi−1, Bi+1) .

By our induction hypothesis,ni+1 ∈ S→ [|σ(Bi−1, Bi+1)|] ({ni−1}). If ni+1 was in the second disjunct above, we
would have a contradiction with assumption that our path was the shortest. Therefore we haveni+1 ∈ S→ [|σ(Bi, Bi+1)|] ({ni})
andni ∈ S→ [|σ(Bi−1, Bi)|] ({ni−1}), proving our claim. We therefore know thatσ(Bi−1, Bi) is

1. Bi whenann(Bi) is eitherN or undefined. The caseann(Bi) = Y is impossible except wheni = k + 1, as the
element type in question is deleted in step 1 ofBUILD V IEW.

2. Bi[¬q] whenann(Bi) is Bi[¬qi].

In both case, it follows thatn, m1, . . . ,mk, m is a path inT . It remains to show thatm1, . . . ,mk are deleted inTA.
For nodes annotated with a qualifier, this is immediate; for other nodes it follows from the fact that the algorithm used
to define a complete annotation is the same in the definition ofTA and in AlgorithmANNOTATE V IEW. 2

The complexity of the algorithm is as follows:

Theorem 6.4: Let (D, ann) be a authorization specification for a non-recursive DTD, letP be size of the largest
production rule inD. LetnY be the number of element types annotated withY, and letnother the number of element
types otherwise annotated or not annotated. Then the size of the select functionσ generated by the algorithm is
bounded byO(nother × |ann|) and the size of the View DTDDv is bounded byO(nY × Pnother+1). 2

Proof: For the first bound observe that the introduction of the symbols/ and∪ in the definition ofσ only happens
when eliminating an element type labelled withN in the fully annotated DTD, and there are at mostnother element
types of this sort. All qualifiers appearing theσ are the same as qualifiers that were in the original authorization
specification, or their negations, and therefore their size is bounded by|ann|.

20

For the second step observe that we only replace occurrences ofN-element types in a regular expression of aY-labelled
element type with another regular expression, and that each of those replacement eliminates aN-labelled node. 2

The above upper bound is tight as the following example shows:

Example 6.4: Consider DTD with the productionroot → A0 andAi → Ai+1Ai+1 for i = 0 . . . n − 1 and where
ann(A0) = N, ann(An) = Y. Then the DTD ViewDv has only one rule

root →
2ntimes︷ ︸︸ ︷

An . . . An ,

and the select function isσ(root , An) = A0/ · · · /An. 2

7 Other security policies

Our model is based on a specific policy, used for determining a complete authorization specification of a document
based on a partial specification. This is themost-specific-takes-precedencepolicy [10]. Different applications may
have different requirements, and we now look at alternative approaches.

We can classify security policies using two orthogonal classifications that focus oncompletenessandconsistency(De
Capitani di Vimercati and Samarati [10]). The first classification is based on how one handlesunassigned values,
while the second is based on the handling ofconflicting assignmentsand how one restores consistency.

We are interested only in policies that are complete and consistent:

Definition 7.1: A policy is completeandconsistentif every partially annotated tree can be extend to a fully annotated
tree. 2

We list here several possible policies. These are variations of classical security policies that are used in other settings
([10]).

We have identified a number of policies for value propagation and conflict resolution:

Local Propagation Policy: “open”, “closed”, or “none”;

Hierarchy Propagation Policy: “topDown”, “bottomUp”, or “none”;

Structural Conflict Resolution: “localFirst”, “hierarchyFirst”, or “none”;

Value Conflict Resolution: “denialTakesPrecedence”, “permissionTakesPrecedence”, or “none”.

The Local Propagation Policy is similar to traditional policies for access control: in the case of “open”, if a node is not
labelledN then it is labelled byY; in the case of “closed”, a node not labelledY is labelled byN.

The Hierarchy Propagation Policy specifies node annotation inheritance in the tree. In the case of “topDown”, an
unlabelled node with a labelled parent inherits the label of its parent. In the case of “bottomUp” an unlabelled node
inherits the label from a labelled children. Note that the “bottomUp” case can result in conflicts, and they should be
addressed by the Value Conflict Resolution Policy.

The Structural Conflict Resolution Policy specifies whether the local or hierarchy rule takes precedence (“localFirst”
or “hierarchyFirst” respectively); while “none” means that the choice depends on the values and on the Value Conflict
Resolution Policy. The latter specifies how to resolve conflicts for unlabelled nodes that are assigned different labels

21

hierarchy local structural conflict value conflict condition
topDown 6=none hierarchyFirst ∗ ∗
topDown none ∗ ∗ root is annotated

Table 1: topDown policy conditions

hierarchy local structural conflict value conflict condition
bottomUp 6=none hierarchyFirst 6=none ∗
bottomUp none ∗ 6=none leaves are annotated

Table 2: bottomUp policy conditions

by the preceding rules:N always has precedence overY (“denialTakesPrecedence”);Y always has precedence overN
(“permissionTakesPrecedence”), and no choice (“noneTakesPrecedence”).

In the sequel we show some sufficient conditions for complete and consistent policy combinations. We start with some
policies that we can termtopDown.

Proposition 7.1: All policies that satisfy one of the conditions of table 7.1 are sound and complete. 2

Proof: Assume thatT is a partially annotated tree. We show that the annotation can be extended to a full tree.

Consider condition 1 oftopDownsecurity policy of table 7.1.

Base case: if the root is annotated then we are done. If it is not annotated then according to the definition it can obtain
its annotation fromlocal security policy: Y/N if local=open /closed respectively. Thus root annotation is defined.

Inductive case: consider an arbitrary noden with annotated parentp. If n is annotated we are done. Otherwise,n
obtains its annotation from the parent sincestructural conflict=hierarchyFirst . Thus annotation of any node is
defined.

Consider condition 2 oftopDownsecurity policy of table 7.1.

Base case: the root is annotated.

Inductive case: consider an arbitrary noden with annotated parentp. If it is annotated we are done. Otherwise it
obtains its annotation from the parent. Thus annotation of any node is defined 2

Next we have some policies that we can termbottomUp.

Proposition 7.2: All policies that satisfy one of the conditions of table 7.2 are sound and complete. 2

Proof: . Assume thatT is a partially annotated tree. We show that the annotation can be extended to full tree.

Consider condition 1 ofbottomUpsecurity policy of table 7.2.

Base case: if the children are annotated then we are done. If some of them are not annotated then according to the
condition they can obtain their annotation fromlocal security policy: Y/N if local=open /closed respectively. Thus
annotation of all leaves is defined.

Inductive case: consider an arbitrary noden with all annotated children. Ifn is annotated we are done. Otherwise,
n obtains its annotation from the children sincestructural conflict=hierarchyFirst . However, different children
can have different annotation. On the other hand,value conflict6=nothingTakesPrecedence can be used to

22

hierarchy local structural conflict value conflict
∗ 6=none localFirst ∗

none 6=none ∗ ∗

Table 3: local policy conditions

hierarchy local structural conflict value conflict
6=none 6=none noneFirst 6=none

Table 4: multilabel policy conditions

define “winning” label. Thus annotation of any node is defined.

Consider condition 2 ofbottomUpsecurity policy of table 7.2.

Base case: all leaves are annotated.

Inductive case: consider an arbitrary noden with all annotated children. If it is annotated, we are done. Otherwise it
obtains its annotation from the children. However, different children can have different annotation. On the other hand,
value conflict6=nothingTakesPrecedence can be used to define “winning” label. Thus annotation of any node
is defined. 2

Now we consider some policies that we can termlocal.

Proposition 7.3: All policies that satisfy one of the conditions of table 7.3 are sound and complete. 2

Proof: Assume thatT is a partially annotated tree. We show that the annotation can be extended to full tree.

Consider condition 1 oflocal security policy of table 7.3. Sincestructural conflict= localFirst , local is enforced
in the first turn.

Consider case 2 oflocal security policy of table 7.3. Sincehierarchysecurity policy is not defined,local is enforced.

Thus, for each not annotated noden, we enforcelocal security policy that assigns either a labelY or N depending on
local policy definition. 2

In some cases bothhierarchysecurity policy andlocal security policy are defined, butstructural conflictsecurity pol-
icy is “noneFirst”. In these cases we apply bothhierarchyandlocal security policy thus obtaining for each node a set of
more than one security annotation. So it is not really clear from the user specification what is really wanted. The “win-
ning” label is defined by means ofvalue conflictsecurity policy which should not be equal to “noneTakesPrecedence”.
We call such policies “resolvable multilabel” security policies.

Proposition 7.4: All policies that satisfy one of the conditions of table 7.4 are sound and complete. 2

Proof: Assume thatT is a partially annotated tree. We show that the annotation can be extended to full tree.

Sincestructural conflictis not defined but bothhierarchyand local are not “none”, we enforce both of them inde-
pendently (in cases when it is possible, e.g. ifhierarchy= topDown but root is not annotated, we cannot enforce
hierarchy from the root; however, we can start enforcement ofhierarchypolicy from any annotated node, because
explicitly defined label overrides propagated one). As the result, for each node we will receive a set of labels. Since
value conflictis defined, it can be used for defining the “winning” label.

Since each node is assigned at least one label (consideringlocal policy), partial annotation can be extended to full

23

hierarchy local structural conflict value conflict
none none ∗ ∗
6=none 6=none none none

bottomUp ∗ hierarchyFirst none
bottomUp none 6=hierarchyFirst none

Table 5: unresolvable policy conditions

annotation. 2

Remark 7.1 All the other policies are classified asunresolvable: considering the table 7.1, policies following condi-
tion in line 1 are incomplete, policies in lines 2 and 3 of are inconsistent, policy in line 4 may be either inconsistent or
incomplete.

Extending the security view approach to other policies, such as these, requires modifying the construction of the
security view so that it propagates annotations in a way that corresponds to annotation propagation in the security
policy. We leave this to the future work.

8 Extending to Recursive DTDs

The restriction in our current proposal is the requirement of nonrecursive nature of DTDs. For authorization specifica-
tion of recursive DTD it is possible to derive a fully annotated DTD by modifying step 18 of the algorithmANNOTATE

V IEW, but one cannot construct a select function in XPath that guarantees both secrecy and availability by modifying
step 1 of the algorithmBUILD V IEW.

The reason for this is that to handle with recursive DTDs correctly, one should repeat step 18 ofANNOTATE V IEW

until a fix point is reached. Then, if there are still unlabelled nodes they are part of a cycle of completely unlabelled
nodes. We could then consider all entry points of the cycle, and apply step 18 ofANNOTATE V IEW to all entry points
at the same time: if all generators of entry points outside the cycle areY-nodes then all nodes of the cycle can be
labeledY. The case forN is similar. In the case of conflicts, apply step 24 ofANNOTATE V IEW to all entry points of
the cycle at the same time. This process breaks progressively more cycles until all cycles get labelled.

The problem, however, is that XPath lacks the full Kleene-star operator. Thus we cannot select exactly the nodes in
which an element must be reached just after a particular loop is traversed an arbitrary number of times. It may be
possible to extend the security view with “dummy nodes” that map to epsilon rules, and obtain the desired result, but
such a solution would not be acceptable as the schema would be meaningless to the user. Using the present algorithm,
we can obtain an approximate solution:by stopping the modifiedANNOTATE V IEW-algorithm after a finite number of
iterations of step 1 ofBUILD V IEW-algorithm we have asecrecy preservingview.

The problem, however, is that XPath lacks the full Kleene-star operator. XPath language. Thus we cannot select
exactly the nodes in which an element must be reached just after a particular loop is traversed an arbitrary number of
times. It may be possible to extend the security view with “dummy nodes” that map to epsilon rules, and obtain the
desired result, but such a solution would not be acceptable as the schema would be meaningless to the user. Using
the present algorithm, we can obtain an approximate solution:by stopping the modifiedANNOTATE V IEW-algorithm
after a finite number of iterations of step 1 ofBUILD V IEW-algorithm we have asecrecy preservingview.

24

〈xpath〉

¼ j
〈step〉 〈path〉

¼ ? j
θ 〈qual〉 〈qual〉. . .

? j
〈step〉 〈path〉

¼ ? j
θ 〈qual〉 〈qual〉. . .

¼ ?
O1 Ok. . .

...
?

Figure 13: Parse tree schema

9 Query Rewriting

This section considers rewriting of user queries over security viewsV = (Dv, σ). More precisely, user provided with
theDTD viewDv poses a query overDv. The query evaluation procedure may rely on two strategies:

• thenaivestrategy assumes that the user query is evaluated over the materialized security viewTS that has been
extracted from initial dataT by means of theσ-function or directly from the security annotation;

• therewriting strategy transforms the user queryq into anequivalentqueryqt using theσ-function over the initial
schemaD. Queryqt can be then evaluated over the initial data setT without materialization ofTS .

The naive approach may be extremely time consuming in the case of very large XML files and multiple queries. On
the other hand, one could precompute and store data viewsTS . This approach may be inefficient for volatile data (e.g.
auction or stock sells) or for data in which integrity across views is important. Rewriting cost is insignificant compared
to the cost of view derivation from a large XML document.

Below we present our algorithm for query rewriting which has two phases: query parsing and further translation of
parsed query intoσ-functions.

The user query is parsed according to the grammar that we have shown in Definition??. Initially, we consider the
user query as〈xpath〉. We process it recursively resulting in aparse treeaccording to the schema on Fig. 13. The
intuition of parse tree schema is the following. We divide〈xpath〉 into 〈step〉 andremaining〈path〉. 〈step〉 consists
of node testθ and zero or more qualifiers〈qual〉. Each of these qualifiers represents a condition that the node test
should satisfy. The condition is a boolean function of several arguments (Oi, i = 1, k) which are either〈path〉, literal,
or number.

Each node of the parse tree representation of user query is called asubquery.

For example, the XPath expression//a/b[(c/text() =‘school’) ∧ (parent :: q)]/d selects all nodesd that is a child
of b, b is a child ofa and has parentq and childc with text node ‘school ’, a is a descendant of root node. The parse
tree representation is depicted on Fig. 14

For each subqueryp in XPath parse tree representation and for each elementA in Dv we compute a local translation
rewrite(p,A) which is based on translationsrewrite(pi, Bj), wherepi is a direct subquery (child in parse tree) ofp
andBj is a node reachable (the graph ofDv has a path toB) fromA. The rewritten query is located inrewrite(p, root)
whereroot is the root element of initial DTDD andp has a “normalized” format i.e. each step of path is rewritten
into formaxisSpecifier :: label.

The algorithm presented in Fig. 15 shows the translation procedure. More precisely, in lines 1, 17, 29, 35 we can
distinguish whether the subexpression is〈path〉, 〈qual〉, θ or θ[〈qual〉] respectively. In the case of〈path〉 we process

25

//a/b[(c/text() = ‘school‘) ∧ (parent :: q)]/d

¼ j
descendant :: a b[(c/text() = ‘school‘) ∧ (parent :: q)]/d

j¼
child :: b[(c/text() = ‘school‘) ∧ (parent :: q)] child :: d

¼ j
child :: b (c/text() = ‘school‘) ∧ (parent :: q)

j¼
c/text() = ‘school‘ parent :: q

¼ j
child :: c/text() ‘school‘

¼ j
child :: c child :: text()

Figure 14: Parse tree of expression//a/b[(c/text() =‘school’) ∧ (parent :: q)]/d

first 〈step〉 (which is represented asp1 in the “normalized” format) and then the remaining part as〈path〉 (which is
rewritten top2) recursively. The final step of〈path〉 processing consists in joiningp1 andp2 into pathp1/p2 which
represents the initial〈path〉 in “normalized” format where every step has the formataxisSpecifier :: label. The
joining procedure is shown in lines 4- 16 of algorithmQUERY REWRITE.

Parsingθ[〈qual〉] handles separately predicate expression〈qual〉 and node testθ. More precisely, node testθ should
be rewritten with respect to all DTD nodes in first turn. After that all filters are treated consequently as〈path〉
expressions. But since predicates are posed on node testθ, the rewritten query will comprise the translation of filters
with respect to node testθ (q0 in algorithm). However, in the case of wildcard test (∗) the algorithm should find all the
appropriate nodes to which considered filters may be applied (see lines 46- 51 ofQUERY REWRITE).

The processing of〈qual〉 depends on arity of predicate function: either unary or binary. We process each operand
(either〈path〉, literal or number) of the function. Since we deal with unary and binary functions,〈qual〉 has no more
than two operands. In lines 21- 23 and 27-28 ofQUERY REWRITE we perform joining procedure respectively for
binary and unary function.

Intuitively, processing of node testθ produces path in terms ofσ from each elementA of Dv to θ. If θ haschild axis
specifier thenrewrite(θ, A) = σ(A, θ). If axis specifier isparent , it means that instead of returningσ(A, θ) we
should returnσ(θ, A) (σ−1(A, θ) is an alternative notation). For example, user poses queryA/B. We should rewrite
it to σ(A,B). On the other hand, if user poses queryA/parent :: B, we should findσ(B, A) and returnσ−1(B, A),
i.e. the consequence of steps and corresponding axis specifiers ofσ(B, A) should be changed on the contrary. For
example, ifσ(B,A) = C/A which is equivalent toself :: B/child :: C/child :: A, thenσ−1(B, A) = self ::
A/parent :: C/parent :: B. Steps 1– 11 of algorithmgetTranslation depicted on Fig. 18 represent the process of
calculatingσ−1(A,B).

This intuition corresponds to “neighbor” axis specifiers (e.g.child andparent). In case ofdescendant-or-self
(ancestor-or-self) we have to calculate all descendants (ancestors) and all possible paths to each descendant
(ancestor). Finally, all computed paths should be translated into theσ-function corresponding to the reverse property
of axis specifier. Obviously, descendant/ancestor processing requires a different approach. Thus we introduce two
auxiliary functions:processChildParent on Fig. 16 andprocessDescendAncest on Fig. 17. We should mention
that each of these functions also considers the case when the node label is∗ (line 3 of processChildParent and
line 7 of processDescendAncest) which requires rewriting for a union of nodes reachable from considered DTD

26

node according to axis specifier.

For rewriting of descendant/ancestor relations we use the data of the statically precomputed tablepreRewrite. The
idea ofpreRewrite calculation is borrowed from [12] whererecProc andtraverse procedures are intended to cap-
ture all the paths from all DTD nodes to all their corresponding descendants, and to translate these paths to an equiv-
alent paths over the initial DTDD. We updated subroutinesrecProc andtraverse so that they precompute not only
descendant-or-self but alsoancestor-or-self relations. OurpreRewrite table is arecrw table of [12]
extended with the third dimension representing the DTD graph traversal: either in bottom up (ancestor-or-self)
or top down (descendant-or-self) direction.

The correctness of the algorithm follows immediately from the correctness of each step. Indeed,〈path〉 processing
is correct if processing of both first〈step〉 and remaining〈path〉 is correct. The processing of〈step〉 is correct
if processing of axisθ and all its filters〈qual〉 is correct. The processing of〈qual〉 is correct if processing of all its
operands is correct, where operand can be either〈path〉 or literal, or number. We claim that processing ofθ and binding
it with qualifiers is correct. Indeed, let us consider binding axisθ with qualifier. We assume that node testn and related
filter expressionsf1, f2, ..., fq are processed correctly, i.e. for every DTD elementv we built the correct rewriting of
expressionsv/axisSpecifier::n, v/operandfj

, j = 1, q, whereoperandfj
is any operand of filterfj . Since filters

are posed on elementn andn is one of DTD elements, the rewriting of expressionn[fj] for every DTD elementv
should have formrewrite(n, v)[rewrite(fj , n)]. The latter is reflected in algorithmQUERY REWRITE in lines 41- 51.
Now we show the correctness of axis processing. As it was mentioned above, axis processing requires representation
of expressionv/axisSpecifier::n in terms ofσ function for every DTD elementv. If axisSpecifier is child then
the rewritten expression is equal toσ(v, n) (in the case ofn = ∗ it will be union of σ(v, childv) wherechildv is a
child of v). If axisSpecifier is parent then the rewritten expression is equal toσ−1(n, v) (again, in the case of
wildcard it will be the union of all reversed relatedσ functions). IfaxisSpecifier is descendant-or-self then
we use precomputed data ofpreRewrite table which consists of expressions representing all paths fromv to n for all
DTD elementsv andn. The correctness of construction such expressions is shown in [12]. As we said above, these
expressions are also rewritten in terms ofσ function. If axisSpecifier is ancestor-or-self the expressions of
preRewrite table should be rewritten by means of reversedσ function (i.e.σ−1).

Comparing presented algorithm for query rewriting with that of provided by Fan et al. in [12], we would like to
mention the differences. First difference is related to processing of qualifiers: we do not distinguish different types of
qualifiers as it is done in [12]. Moreover, we consider the rewriting of qualifiers with respect to a subset of nodes to
which these qualifiers are applied. This approach provides clear binding between node test and filters related to this
node test. Furthermore, this binding is absent in the query rewriting algorithm presented in [12]. Another distinction
lies in treatment of node testsθ. More precisely, according to our notion of parsing tree, the smallest (the latest) entity
of parsing procedure (the leaf of parse tree) is an axisθ which is either label or wildcard. It means, that we do not
distinguish a separated subpath∗ as it is done by Fan et al. We consider∗ as a type of axis. The same remark can
be done for treatment of descendants: from our point of view “descendant” is a characteristics of axis rather than
distinguishable subpath. The last and most prominent advantage of our approach is that it can accept user queries
containing reverse axis specifiers such asparent andancestor-or-self .

10 Implementation

At the University of Trento we have implemented a preliminary version of a Java tool that accepts user queries and
returns answers as an XML document that is constructed from the set of nodes which are both visible to the user and
satisfy the query conditions.

The tool consists of the following main components:

• DTD Parser: we extended the Wutka DTD parser2 to be able to extract the security policy from the root element
2http://www.wutka.com/dtdparser.html

27

Algorithm: QUERY REWRITE

Input: a subqueryq (as a string)
Output: a queryp locally rewritten in terms ofσ(as a string)
1: if q is 〈path〉 then

// q = firstStep/remainingSteps
2: q1 = q.getFirstStep();p1 = QUERY REWRITE(q1);
3: q2 = q.getRemainingSteps();p2 = QUERY REWRITE(q2);
4: p = p1/p2;
5: for all elementsA of Dv do
6: if rewrite(p1, A) = ∅ then
7: rewrite(p, A) = ∅; reach(p, A) = ∅;
8: else
9: newRw = ∅;
10: for eachv in reach(p1, A) do
11: newRw = newRw ∪ rewrite(p2, v);
12: reach(p, A) = reach(p, A) ∪ reach(p2, v);
13: if newRw 6= ∅ then
14: rewrite(p, A) = rewrite(p1, A)/newRw;
15: else
16: rewrite(p, A) = ∅; reach(p, A) = ∅;
17: else ifq is 〈qual〉 then
18: if q has two operandsthen
19: q1 is the first operand;p1 = QUERY REWRITE(q1);
20: q2 is the second operand;p2 = QUERY REWRITE(q2);
21: p = p1 q.getOperator()p2;
22: for all elementsA of Dv do
23: rewrite(p, A) = rewrite(p1, A) q.getOperator()rewrite(p2, A);
24: else

// q has one operand, i.e. function is eithernot, unary minus
// or empty operator. The latter means thatq does not have
// operator at all (e.g.q is 〈path〉)

25: q0 is the operand;p0 = QUERY REWRITE(q0);
26: q.getOperator()p = p0 q.getOperator();
27: for all elementsA of Dv do
28: rewrite(p, A) =q.getOperator()rewrite(p0, A);
29: else ifq is θ then
30: label = q.getLabel();axisSpecifier = q.getAxisSpecifier();
31: if axisSpecifier is ‘child ’ or ‘ parent ’ then
32: p =processChildParent(label, axisSpecifier);
33: else ifaxisSpecifier is ‘descendant-or-self ’ or ‘ ancestor-or-self ’ then
34: p =processDescendAncest(label, axisSpecifier);
35: else ifq is θ[〈qual〉] then

// q = nodeTest[filter1] . . . [filtern]
36: q0 = q.getNodeTest();
37: p = q0;
38: for all filters ofq do
39: qi is the next filter;pi = QUERY REWRITE(qi);
40: p′ = p[qi];
41: for all elementsA of Dv do
42: if q0.getNodeLabel()6= ∗ then
43: rewrite(p′, A) = rewrite(p, A)[rewrite(qi, q0.getNodeLabel())];
44: reach(p′, A) = q0.getNodeLabel();
45: else
46: newRw = ∅;
47: for all elementsv in reach(q0, A) do
48: newRw = newRw ∪ rewrite(qi, v);
49: if newRw 6= ∅ then
50: rewrite(p′, A) = rewrite(p, A)[newRw];
51: reach(p′, A) = reach(p′, A) ∪ reach(q0, A);
52: p = p′;
53: else if(q is literal) or (q is number)then
54: p = q;
55: rewrite(p, A) = p;
56: returnrewrite(p, root);

Figure 15: AlgorithmQUERY REWRITE

and security annotation of each DTD element. The DTD Parser returns a special objectDTDrepresenting a set
of DTD elements (DTDElement), their attributes (DTDAttribute) and children configuration. The latter is
organized as a container (DTDContainer object) of items (DTDItem object). Each item is either a container
or an element name (DTDNameobject). Moreover, containers can be of three kinds: sequence (DTDSequence,
i.e. items delimited by commas), choice (DTDChoice , i.e. items are delimited by vertical bars), and mixed

28

Algorithm: processChildParent
Input: node labellabel, node axis specifieraxisSpecifier (as a string)
Output: a queryp locally rewritten in terms ofσ
1: p = axisSpecifier::label;
2: for all elementsA of Dv do
3: if label = ∗ then
4: for each nodev that is in relationaxisSpecifier with A do
5: σ = getTranslation(A,v,isReverse(axisSpecifier));
6: rewrite(p, A) = rewrite(p, A) ∪ σ;
7: reach(p, A) = reach(p, A) ∪ v
8: else
9: if label is in relationaxisSpecifier with A then
10: rewrite(p, A) =getTranslation(A,v,isReverse(axisSpecifier));
11: reach(p, A) = label;
12: else
13: rewrite(p, A) = ∅; reach(p, A) = ∅;
14: returnp;

Figure 16: Algorithm processChildParent

Algorithm: processDescendAncest
Input: node labellabel, node axis specifieraxisSpecifier (as a string)
Output: a queryp locally rewritten in terms ofσ
1: p = axisSpecifier::label;
2: if axisSpecifier = descendant-or-self then
3: q =‘�’;
4: else

// axisSpecifier = ancestor-or-self
5: q =‘�’;
6: for all elementsA of Dv do
7: if label = ∗ then

// reach(q, A) andpreRewrite(q, A, B) are precomputed
8: for eachB in reach(q, A) do
9: if preRewrite(q, A, B) 6= ∅ then
10: rewrite(p, A) = rewrite(p, A) ∪ preRewrite(q, A, B);
11: reach(p, A) = reach(p, A) ∪ B
12: else
13: if preRewrite(q, A, label) 6= ∅ then
14: rewrite(p, A) = rewrite(p, A) ∪ preRewrite(q, A, label);
15: reach(p, A) = reach(p, A) ∪ label
16: returnp;

Figure 17: Algorithm processDescendAncest

Algorithm: getTranslation
Input: elementsA, B of Dv (as string), node axis specifier directionreverse (as boolean)
Output: aσ(A, B) in direct or reverse direction
1: if reverse = true then

// σ(B, A) is an existing PathExpression
// we wantσ−1(B, A)

2: str =‘parent :: B’;
3: σ(B, A) = σ(B, A).getRemainingSteps();
4: while σ(B, A) 6= ∅ do
5: step = σ(B, A).getFirstStep();
6: σ(B, A) = σ(B, A).getRemainingSteps();
7: if σ(B, A) 6= ∅ then
8: p = self :: step/p;
9: else
10: p = parent :: step/p;
11: returnp

// p = σ−1(B, A)
12: else
13: returnσ(A, B);

Figure 18: Algorithm getTranslation

(DTDMixed, i.e. includesPCDATA). However Wutka’sDTDElement object has two significant drawbacks:
container configuration complicates the process of retrieval of children set, andDTDElement does not pro-
vides access to parents. To overcome these limitations, we added toDTDElement class two additional fields:
children andparents representing plain lists of children and parents names respectively. Thus these fields

29

represent graph structure of input DTD. Their content is formed at the step of DTD parsing.

• View Builder: implements algorithmsANNOTATE V IEW andBUILD V IEW.

• Query Parser: we used the SAXON3 processor to parse XPath expression into their tree representation. Query
Parser also performs evaluation of the rewritten query over XML source. This functionality is stipulated by
the SAXON XPath query implementation via theXPathEvaluator object which is able to parse the XML
source, to create the intermediate parse tree representation of the XPath query, and finally to evaluate parsed
query over the XML document. In addition Query Parser performs output of answer set to an XML file.

• Query Rewriter: implements algorithmQUERY REWRITE

• DOM Validator: performs checks of the validity of XML document (i.e. XML document should conform to
the rules of DTD schema), parses XML into DOM tree, and produces the materialized view. We used Xerses4

processor for these purposes.

To write the XML file (either materialized view or answer set), we use JAXPDocumentBuilder 5.

Firstly, Wutka DTD parser is used to parse DTD stored in dtd-file. As it was said above, we modified Wutka DTD
parser so that it could be able to distinguish annotation introduces in Sec. 4. Then partially annotated DTD is extended
to a full annotated one according to the algorithmANNOTATE V IEW. Next we applyBUILD V IEW to produceDv

(schema of accessible data) andσ-function which is used to materialize view of XML documentTS according to the
algorithmMATERIALIZE .

Example 10.1:Fig. 26 shows an initial XML document corresponding to DTD of Fig. 4. Fig. 27 and Fig. 28 represent
XML view for user with login “dkonovalov” and “vromanov” respectively. Both views correspond to DTD view of
Fig. 11 and are extracted by means ofσ-function of Fig. 12 during application of algorithmMATERIALIZE .

We should note, that each student has an access only to relevant data, i.e. Dmitry Konovalov with login “dkonovalov”
is not able to see the data of Vladimir Romanov having login “vromanov” and vice versa. Moreover, Vladimir Ro-
manov is forbidden to see the content of recommendation letters except of the names of his evaluators, while Dmitry
Konovalov has an access to full content of all recommendation letters. This is because the former student didn’t waive
his right to inspect the content of recommendation letters (waiver =“false”) while the latter did. Furthermore, no one
student is permitted to see elementsunreliable , reason , letter , favorable , unfavorable . 2

11 Experimental Results

11.1 Experimental framework

XML documents. To generate a set of XML documents we use XMark benchmark [1]. The benchmark data generator
produces XML documents modelling an auction web-site. Number and type of elements in resulting XML depend on
parameter calledfactor. The significant feature of XMark benchmark is the generation of one unique XML document
for one factor value.

We generated 31 XML documents with factori/10000, i = 100, 130. The size of these XML files varies from 1Mb to
1.2Mb.

Security annotation. XMark benchmark provides the DTD schema auctions.dtd which describes an auction scenario.
It defines 77 elements describing a list of auction items, information about bidders, sellers, buyers, etc.

3http://saxon.sourceforge.net/
4http://xml.apache.org/xerces2-j/
5http://java.sun.com/xml/jaxp

30

<!ATTLIST catgraph security_annotation_data
CDATA #FIXED "N">

<!ATTLIST regions security_annotation_data
CDATA #FIXED "N">

<!ATTLIST categories security_annotation_data
CDATA #FIXED "N">

<!ATTLIST person
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath
CDATA #FIXED "self::node()[@id=$login]">

<!ATTLIST open_auction
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA
#FIXED "./bidder/personref[@person=$login]">

<!ATTLIST closed_auction
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA
#FIXED "./buyer[@person=$login]">

<!ATTLIST privacy security_annotation_data
CDATA #FIXED "N">

Figure 19: Buyer policy

<!ATTLIST catgraph security_annotation_data
CDATA #FIXED "N">

<!ATTLIST regions security_annotation_data
CDATA #FIXED "N">

<!ATTLIST categories security_annotation_data
CDATA #FIXED "N">

<!ATTLIST creditcard
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"parent::person[@id=$login]">

<!ATTLIST profile
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"parent::person[@id=$login]">

<!ATTLIST buyer
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"parent::person/seller[@person=$login]">

<!ATTLIST open_auction
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"seller[@person=$login]">

<!ATTLIST closed_auction
security_annotation_data CDATA #FIXED "N">

<!ATTLIST privacy security_annotation_data
CDATA #FIXED "N">

Figure 20: Seller policy

We have defined three user roles:

• buyer: can see personal information, open auctions where he is one of the bidders, closed auction where he is a
buyer. Buyer cannot see privacy info, data about regions, category graph and categories. DTD representation of
buyer’s policy is depicted in Fig. 19.

• seller: is permitted to see own profile and credit card info, as well as open auctions where he is a seller. Seller can
also see who buys his items. Seller cannot see privacy info, data about regions, category graph and categories.
Seller’s policy is shown in Fig. 20.

• visitor: is allowed to read information about bidders, sellers and buyers. Personal info and privacy info, as well
as data about regions, category graph and categories are unavailable for visitor. Security annotation for seller is
presented in Fig. 21.

31

<!ATTLIST catgraph security_annotation_data
CDATA #FIXED "N">

<!ATTLIST regions security_annotation_data
CDATA #FIXED "N">

<!ATTLIST categories security_annotation_data
CDATA #FIXED "N">

<!ATTLIST buyer
security_annotation_data CDATA #FIXED "Y">

<!ATTLIST seller
security_annotation_data CDATA #FIXED "Y">

<!ATTLIST bidder
security_annotation_data CDATA #FIXED "Y">

<!ATTLIST people security_annotation_data
CDATA #FIXED "N">

<!ATTLIST open_auction
security_annotation_data CDATA #FIXED "N">

<!ATTLIST closed_auction
security_annotation_data CDATA #FIXED "N">

<!ATTLIST privacy security_annotation_data
CDATA #FIXED "N">

Figure 21: Visitor policy

Table 6: Query rewriting evaluation
Q1 Q2 Q3 Q4 Q5

buyer 12.5 11.2 7.2 15.7 11
seller 11 10.8 9.5 14.1 15.7
visitor 3.2 0 0 0 1.6

For all three roles we assume that rootsite is annotated byY policy propagation is performed in top down manner,
default security policy is closed.

Queries.We consider the following set of queries to be evaluated over the data set:

Q1 = .//person/name

Q2 = .//open auction/(bidder|quantity)
Q3 = .//open auction[seller and bidder]
Q4 = .// ∗ [name]/parent :: people/person

Q5 = .//bidder/parent :: ∗

Thus all queries contain a step with axis specifierdescendant-or-self . Moreover queryQ2 has union operation,
predicate with∧ operation is included in queryQ3, examples of usage of∗ and reverse axis specifier (parent) are
shown in queriesQ4 andQ5.

11.2 Evaluation

In Table 6 we show the time that is required to rewrite queriesQi, i = 1, 5 over DTD views built for rolesbuyer, seller
andvisitor. Since we rewrote queries for each XML file (we have 31 different XML files) and for each login (we have
10 logins), each cell of Table 6 presents time (in milliseconds) as arithmetic mean of 310 relevant values.

How do we validate the effectiveness of the approach? The simplest approach is simply to materialize the view and
then run the user’s query on it. We call this approach thenaive approach. This is what could be done following the
previous approaches such as Bertino et al. or Damiani et al. Then a second question come: how do we evaluate the

32

Figure 22: Comparison of size of initial and materialized XML files for visitor

running time: do we materialize the view for each and every query or we just materialize it once and amortize the
materialized time over many queries.

However, trying to decrease processing time by storing materialized view cannot work in this setting. Recall that
this is the materialized view foroneuser and different users may have different views. On the XMark benchmark,
since policy for buyer and seller include conditions on user login, we shouldpreserve and select views for all logins
and all roles. For example, the smallest XML document that we generated by XMark has approximately 250 people
identifiers. Each of these people may want to see the data stored in that XML.

In Fig. 22 we show the comparison of size of the initial XML document and its materialized view. The policy of visitor
role does not contain any login-based conditions. Therefore views are the same for all logins. However, the size of
materialized view is around 100Kb provided the initial XML file is 1Mb size. Views for seller are even bigger. And if
we want to store the views for all sellers we should reserve 25Mb of space only for one role. Moreover real-life data
may require much more space. Finally, maintaining the integrity of fast changing auction data in 250 views is hardly
an effective solution.

At the other side of the spectrum we can apply the query rewriting algorithm to the unmaterialized view. We call this
approach theadvanced approach. In the remaining of the paper we compare the naive and the advanced approach
on each individual query, as we have already ruled out as infeasible the notion of amortizing the materialization over
many queries.

Next we compare two strategies of query answering: naive and advanced. For each XML document we ran evaluation
of each query from the viewpoint of 10 users (login = personi, i = 1, 10). Moreover, each user tries to login under
different roles. One dimension of our evaluation is query evaluation time depending on the size of initial XML file.

In advanced approach time depends on the following steps:

1. DTD parsing, DTD annotation and building of DTD viewDv;

2. query parsing;

3. query rewriting ;

4. evaluation of query overinitial XML source.

In naive approach time measurement is conditioned by the following steps:

1. DTD parsing, DTD annotation and building of DTD viewDv;

2. building of sanitized XML source (view materialization);

33

Figure 23: Query evaluation for buyer role

Figure 24: Query evaluation for seller role

Figure 25: Query evaluation for visitor role

3. query parsing

4. evaluation of query oversanitizedXML source.

We emphasized with bold font those steps that are specific for a particular approach.

Figures 23, 24 and 25 show the dependency of query evaluation time on the size of the initial XML document for buyer,
seller and visitor respectively. Horizontal axis represents XML size in bytes, vertical axis shows query evaluation time
in milliseconds. In all three pictures we can see two main trends: upper trend (diamonds) is produced by the naive
approach, lower one (triangles) stands for advanced approach. It is easy to see that naive approach answers user query
much slower than the advanced one.

34

Concluding this section, we should mention that there is no implementation available for either Stoika and Farkas or
Fan et al.

12 Related Work and Conclusions

A number of security models have been proposed for XML (see [13] for a recent survey). Specifying security
constraints with XPath on top of document DTDs was discussed in [9]. The semantics of access control to a user is
a specific view of the document determined by the XPath access-control rules. A view derivation algorithm is based
on tree labelling. Issues like granularity of access, access-control inheritance, overriding, and conflict resolution are
studied in [4, 9].

A different approach is explored in [7]. In a nutshell, access annotations are explicitly included in the actual ele-
ment nodes in XML, whereas DTD nodes specify “coarse” conditions on the existence of security specifications in
corresponding XML nodes. Only elements with accessible annotations appear in the result of a query.

Stoica and Farkas [22] proposed to produce single-level views of XML when conforming DTD is annotated by labels of
different confidentiality level. The key idea lies in analyzing semantic correlation between element types, modification
of initial structure of DTD and using cover stories. Altered DTD then undergoes “filtering” when only element types
of the confidentiality lever no higher that the requester’s one are extracted. However, the proposal requires expert’s
analysis of semantic meaning of production rules, and this can be unacceptable if database contains a large amount of
schemas which are changed occasionally.

This paper elaborates on certain issues left open in [12]. In particular, we studied access control and security specifi-
cations defined over general DTDs in terms of regular expressions rather than normalized DTDs of [12]. Furthermore,
we developed a new algorithm for deriving a security view definition from more intuitive access control specification
(w.r.t. a non-recursive DTD) without introducing dummy element types, and thus preventing inference of sensitive
information from the XML structure revealed by dummies.

In this paper, we have also studied the performance of answering queries on an XML database, subject to access
control annotations applied on the original DTD. We show that the query rewriting approach compared to the naive
one is more efficient in sense of time and space.

Time effectiveness takes place because we are delivered from view materialization which is a very time consuming
operation. In our experimental benchmark the query rewriting strategy issues answer for user query approximately one
hundred times faster than the naive strategy. Another considered point is the space preserving property of advanced
method: naive approach in our experimental framework generates views that require 2.5 times more space than the
initial data set. Moreover, the number of views can be extremely large that may cause problems with the maintenance
of data integrity.

Several extensions to the security model are targeted for future work. First, we plan to extend the definitions of
security views and authorization specifications by supporting more complex XML Schema [11] instead of DTDs.
Second, we are also studying extensions of our algorithm for deriving security-view definitions with respect to re-
cursive DTDs/schemas. Third, we intend to evaluate the effect of different security policies, whether the notion of
security view can be adapted to all, or some, of these security policies, and the design of efficient algorithms for those
cases where this is possible. Finally, our next step toward enforcing inference control will be to investigate reasoning
techniques in the presence of integrity constraints and ID/IDREF attributes.

Acknowledgments. This project has been partially supported by the MIUR-FIBR project ASTRO and the MIUR-
COFIN “Web-based management and representation of spatial and geographical data”.

35

References

[1] XMark – An XML Benchmark Project. http://monetdb.cwi.nl/xml/index.html.

[2] H. Ahonen. Disambiguation of SGML content models. InProceedings of PODP, Lecture Notes in Computer
Science, pages 27–37, 1996.

[3] M. Benedikt, W. Fan, and G. M. Kuper. Structural properties of XPath fragments. InProceedings of the Inter-
national Conference on Database Theory, 2003.

[4] E. Bertino and E. Ferrari. Secure and selective dissemination of XML documents.ACM Transactions on Infor-
mation and System Security, 5(3):290–331, 2002.

[5] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.Extensible Markup Language (XML) 1.0. W3C, Feb. 1998.

[6] A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages.Information and Computation, pages
182–206, 1998.

[7] S. Cho, S. Amer-Yahia, L. Lakshmanan, and D. Srivastava. Optimizing the secure evaluation of twig queries. In
Proceedings of the International Conference on Very Large Data Bases, 2002.

[8] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C Recommendation.
http://www.w3.org/TR/xpath, November 1999.

[9] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A fine-grained access control system
for XML documents.ACM Transactions on Information and System Security, 5(2):169–202, 2002.

[10] S. De Capitani di Vimercati and P. Samarati. Access control: Policies, models, and mechanism. In R. Focardi
and F. Gorrieri, editors,Foundations of Security Analysis and Design - Tutorial Lectures, volume 2171 ofLecture
Notes in Computer Science. Springer-Verlag, 2001.

[11] D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer Second Edition. W3C Recommendation.
http://www.w3.org/TR/xmlschema-0/, 2004.

[12] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure XML querying with security views. InProceedings of the 2004
ACM SIGMOD International Conference on Management of Data, pages 587–598. ACM Press, 2004.

[13] I. Fundulaki and M. Marx. Specifying access control policies for XML documents with XPath. InProceedings
of the 9th ACM symposium on Access control models and technologies, pages 61–69. ACM Press, 2004.

[14] S. K. Goel, C. Clifton, and A. Rosenthal. Derived access control specification for XML. InProceedings of the
2nd ACM Workshop On XML Security, pages 1–14. ACM Press, 2003.

[15] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithm for processing XPath queries. InProceedings of the
International Conference on Very Large Data Bases, 2002.

[16] S. Hada and M. Kudo. XML Access Control Language: Provisional Authorization for XML Documents.
http://www.trl.ibm.com/projects/xml/xacl/, 2000.

[17] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley. The SeaView security model.IEEE
Transactions on Software Engineering, 16(6):593–607, 1990.

[18] G. Miklau and D. Suciu. Controlling access to published data using cryptography. InProceedings of the Inter-
national Conference on Very Large Data Bases (VLDB), pages 898–909, September 2003.

[19] M. Murata, A. Tozawa, M. Kudo, and S. Hada. XML access control using static analysis. InProceedings of the
10th ACM conference on Computer and communication security, pages 73–84. ACM Press, 2003.

36

[20] X. Qian. View-based access control with high assurance. InProceedings of the 15th IEEE Symposium on Security
and Privacy, pages 85–93. IEEE Computer Society Press, 1996.

[21] P. D. Stachour and B. Thuraisingham. Design of LDV: A multilevel secure relational database management
system.IEEE Transactions on Knowledge and Data Engineering, 2(2):190–209, 1990.

[22] A. Stoica and C. Farkas. Secure XML views. InResearch Directions in Data and Applications Security, IFIP
WG 11.3 Sixteenth International Conference on Data and Applications Security, volume 256, pages 133–146.
Kluwer, 2003.

[23] J. Wang and S. L. Osborn. A role-based approach to access control for XML databases. InProceedings of the
9th ACM symposium on Access control models and technologies, pages 70–77. ACM Press, 2004.

37

<?xml version=’1.0’?> <!DOCTYPE applications SYSTEM ’input.dtd’>
<applications>

<application>
<student-data id=’dkonovalov’>

<department>CS</department><degree>PhD</degree>
<name>Dmitry Konovalov</name><waiver>true</waiver></student-data>

<recommendation-letter>
<evaluator>

<title>Full Professor</title>
<institution>University of Suncity</institution>
<name>Albert Wasserman</name></evaluator>

<letter><unfavorable>
<rating>

<MS>average</MS><PhD>not recommended</PhD><English>below average</English>
</rating>
<free-text>

<TXT>link to txt-file goes here</TXT></free-text>
</unfavorable></letter>

</recommendation-letter>
<unreliable>

<recommendation-letter>
<evaluator>

<title>Researcher</title>
<institution>Magnificent Labs</institution>
<name>Maria Shaker</name></evaluator>

<letter><favorable>
<rating>

<MS>outstanding</MS>
<PhD>highly recommended</PhD>
<English>outstanding</English></rating>

<free-text>
<PDF>link to pdf-file goes here</PDF></free-text>

</favorable></letter>
</recommendation-letter>
<reason>The recommender does not exist.</reason>

</unreliable>
</application>

<application>
<student-data id=’vromanov’>

<department>CS</department><degree>PhD</degree>
<name>Vladimir Romanov</name><waiver>false</waiver></student-data>

<unreliable>
<recommendation-letter>

<evaluator>
<title>Researcher</title>
<institution>Magnificent Labs</institution>
<name>Maria Shaker</name></evaluator>

<letter><favorable>
<rating>

<MS>outstanding</MS>
<PhD>highly recommended</PhD>
<English>outstanding</English></rating>

<free-text>
<PDF>link to pdf-file goes here</PDF></free-text>

</favorable></letter>
</recommendation-letter>
<reason>The recommender does not exist.</reason>

</unreliable>
</application>

</applications>

Figure 26: Initial XML

38

<applications>
<application>

<student-data id="dkonovalov">
<department>CS</department>
<degree>PhD</degree>
<name>Dmitry Konovalov</name>
<waiver>true</waiver>

</student-data>
<recommendation-letter>

<evaluator>
<title>Full Professor</title>
<institution>University of Suncity</institution>
<name>Albert Wasserman</name>

</evaluator>
<rating>

<MS>average</MS>
<PhD>not recommended</PhD>
<English>below average</English>

</rating>
<free-text>

<TXT>link to txt-file goes here</TXT>
</free-text>

</recommendation-letter>
<recommendation-letter>

<evaluator>
<title>Researcher</title>
<institution>Magnificent Labs</institution>
<name>Maria Shaker</name>

</evaluator>
<rating>

<MS>outstanding</MS>
<PhD>highly recommended</PhD>
<English>outstanding</English>

</rating>
<free-text>

<PDF>link to pdf-file goes here</PDF>
</free-text>

</recommendation-letter>
</application>

</applications>

Figure 27: XML view for student Dmitry Konovalov

<applications>
<application>

<student-data id="vromanov">
<department>CS</department>
<degree>PhD</degree>
<name>Vladimir Romanov</name>
<waiver>false</waiver>

</student-data>
</application>

</applications>

Figure 28: XML view for student Vladimir Romanov

39

