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ABSTRACT
This paper develops a likelihood-based methodology to estimate loss distributions and
compute Capital at Risk in risk management applications. In particular, we deal with
the problem of estimating severity distributions with censored and truncated operational
losses, for which numerical maximization of the likelihood function by means of standard
optimization tools may be difficult. We show that, under the standard hypothesis of
lognormal severity, maximum likelihood estimation can be performed by means of the EM
algorithm. We derive the relevant equations of the algorithm and apply it to operational
loss data. Finally, a simulation study shows that, in this setup, the EM algorithm has
more desirable properties than both the BFGS algorithm and the Nelder-Mead simplex
algorithm.
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1 Introduction

The New Basel Capital Accord has started to treat operational risk as an au-
tonomous type of risk, with its own tools and methods. Nevertheless, it is not yet
easy to formulate a clear-cut definition of operational risk, and there is a consider-
able debate going on about the precise bounds of the concept: the commonly used
definition is “the risk of direct or indirect loss resulting from inadequate or failed
internal process, people and systems or from external events” (Basel Committee on
Banking Supervision 2001). According to Crouhy et al. (2000), it includes internal
and external frauds, employment practices and workplace safety, clients, products,
and business practices, damage to physical assets, business disruption and system
failures, execution, delivery and process management; legal risk is usually included
as well, whereas reputational and strategic risks are not. Therefore, operational
risk is non-financial, so that it is not restricted to the financial sector, and it was
indeed first measured by firms other than banks and financial institutions, like
companies with complex IT and/or production processes (e.g. car, energy).

Because of the regulators’ pressure, operational risk has recently received
increasing attention in the financial industry. The augmented emphasis was also
spurred by the growing relevance of this source of risk: it is clear that, as both
financial products and IT processes become more sophisticated, failures tend to
become more frequent and their consequences more severe.

Operational risk presents peculiar features with respect to market and credit
risk and, as a consequence, its measurement and management require different
tools. In particular, the distribution of losses has to be modeled directly, because,
unlike typical financial losses, operational losses are not related to underlying fi-
nancial factors. The relevant literature dates back to the analysis developed by
non-life insurance companies, where losses are represented by claims; see Klug-
man et al. (1998) for a thorough analysis of these methods, which represent an
important starting point for the measurement of operational risk.

The Basel II accord contemplates four methodologies, in increasing order of
mathematical sophistication (see Nyström and Skoglund 2002 for a review); in
this paper we will concentrate on the most sophisticated one, the so called Loss
Distribution Approach (LDA), which computes the total loss amount for each
business line by modelling separately the frequency and the severity of losses. The
typical probabilistic models proposed to describe the severity are the Lognormal,
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Gamma and Weibull distribution, or possibly the Generalised Pareto in case we
are particularly concerned with tail events. Among them, attention has recently
focused mainly on the Lognormal distribution, which guarantees a higher degree of
analytical tractability. As for the frequency, we will follow the common approach
of modelling it as a Poisson distribution; this is a rather strong hypothesis, in
particular because it implies equality of mean and variance, a feature which is
not always supported empirically. Despite of this remark, the Poisson-Lognormal
model is now considered the standard one; see Cruz (2003) for an extensive analysis
of the stochastic models used in the LDA approach.

In this setup, there are at least two reasons why statistical analysis is quite
challenging. First, irrespectively of the distribution chosen for the severity, statis-
tical inference about its parameters can’t be performed along the familiar lines,
because losses below a given threshold are discarded: using statistical terminology,
data are left-truncated, and this makes inferential procedures more complicated.

Second, for measuring risk one has to determine the aggregate loss, as given
by the combination of frequency and severity: this distribution is the convolution
of k independent continuous r.v.’s, where k is the realization of a discrete random
variable. The resulting distribution is usually very difficult to work with, so that,
in order to compute loss and risk measures, simulation techniques are called for.

In this paper we focus on the problem of maximum likelihood estimation of the
aggregate loss distribution with censored and truncated observations. The estima-
tion of truncated distributions is considerably more difficult than the estimation
of the corresponding plain (not truncated) distributions, and even the numerical
maximization of the likelihood function is not straightforward. We show that the
EM algorithm provides a solution that is both theoretically well founded and easily
implementable; in addition, it has a feature which is very important in this setup:
it produces an estimate of the number of truncated observations, which is essential
for the estimation of the parameter of the frequency distribution.

For the sake of completeness it is worth mentioning an approach which has
recently been put forward in response to the scarcity of data; the idea consists in
combining the historical data with the expert knowledge gathered from internal
managers, and is implemented by means of Bayesian methods. However, this
methodology will not be used in this paper, so that we refer the interested reader
to Cruz (2003, chap. 10).
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The rest of this paper is organized as follows. In section 2 we describe the data
generating process of operational losses; in section 3 we derive the EM algorithm
to find the maximum likelihood estimators of the parameters in the case of both
censored and truncated lognormal losses; section 4 uses the algorithm to measure
risk with real data; moreover, the EM algorithm is compared to the BFGS and
Nelder-Mead algorithms by means of simulation experiments; section 5 discusses
the results and gives a review of the problems open to future research and of their
connection with the tools developed in this paper.

2 The model

The most relevant operational risk measure is the Unexpected Loss, which is
computed as the (1−α)-th quantile minus the expected value of the loss distribu-
tion over a specified time horizon. The Basel II accord defines it as the Capital at
Risk (CaR).

In order to describe formally the mathematical approach to CaR measure-
ment, we first define the loss distribution. The total loss over a predetermined
time horizon is given by the random sum

S =
K∑

i=1

Wi, (1)

where K is a random variable with a counting distribution and W1, . . . ,WK are
iid continuous positive random variables, also independent from K. The corre-
sponding cdf is

FS(w) = P (S ≤ w)

=
∞∑

k=0

pkP (S ≤ w|K = k)

=
∞∑

k=0

pkF
∗k
W (w),

where pk = P (K = k) and F ∗k
W (w) is the k-fold convolution of the cdf of W ; the

distribution of S is commonly known as a compound distribution. In the following
we will assume that K and W are respectively Poisson and Lognormal.

The LDA approach can be formulated, more generally, in continuous time.
In this setup the loss process S(t), 0 ≤ t ≤ T is a compound counting process,
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represented as

S(t) =
K(t)∑
k=1

Wk, 0 ≤ t ≤ T, (2)

where K(t) is a counting process and W1, . . . ,WK are iid continuous r.v.’s. The
pair {tk,Wk}k∈Z, where tk are the points of jump and Z is the set of integers,
is usually called a marked point process. If we assume that K(t) is a Poisson
process with parameter ν, (2) is called a Poisson compound process; from the
basic properties of the Poisson process (see, for example, Durrett 1996, pag. 145),
if we fix t∗ ∈ [0, T ], the compound counting process (2) reduces to the compound
distribution (1), where the parameter of the Poisson distribution is λ = ν · t∗.

The joint distribution fK,W (k, w) of the two sources of randomness K and W
in (1) is quite intricate, so that not only it is analytically intractable (although in
some cases a recursive computation is possible: see Panjer 1981), but also a direct
application of Monte Carlo simulation is not straightforward. The latter, however,
can be performed by decomposing the joint distribution of K and S: fK,S(k, s) =
fS|K(s|k) · fK(k). Conditionally on K = k, the model for the aggregated loss is
given by the random variable

(S|K = k) =
k∑

i=1

Wi,

which may or may not be analytically tractable depending on the distribution
of W , but can easily be simulated as long as we can simulate K and W . If
W ∼ Logn(µ, σ2), and conditionally on K ∼ P (λ), this distribution is the convo-
lution of k lognormal r.v.’s, and random number generation from fK,S(k, s) can
be accomplished by performing the following steps:

(i) simulate a random number k from the P (λ) distribution;
(ii) simulate k random numbers w1, . . . , wk from the Logn(µ, σ2) distribution and

compute s =
∑k

i=1 wi.

Repeating B times these two steps, we get a random sample of size B from the
density fK,S(k, s). This is the approach commonly adopted by banks to compute
CaR, which is given by the (1−α)-th quantile of the empirical distribution minus
its mean.

From the point of view of statistical inference, the parameters of the frequency
and of the severity distribution can be estimated separately either by maximum
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likelihood or by percentile matching. Whereas in principle this is straightforward,
a major difficulty is given by the fact that loss data are usually left-censored
or, more frequently, left-truncated; according to whether data are truncated or
censored, specific inferential procedures are needed. Despite of the fact that the
data generating processes of truncated and censored data are different, the two
terms are sometimes incorrectly treated as synonymous. For this reason, before
tackling the problem we recall the appropriate definitions (Klugman et al. 1998,
pag. 132).

Definition. Data are said to be censored when the number of observations that

fall in a given set is known, but the specific values of the observations are unknown;

data are said to be censored from below when the set is all numbers less than a

specific value.

Definition. Data are said to be truncated when observations that fall in a given

set are excluded; data are said to be truncated from below when the set is all

numbers less than a specific value.

3 The estimation procedure

In financial models, estimation of parameters tends to be considered as a
background matter. Whereas in pricing models this issue is perhaps less rele-
vant, because they can often be calibrated to market data, rigorous estimation is
essential for the computation of risk measures.

The derivation of MLE’s is based on two steps: finding the functional form
of the likelihood function and maximizing it. To give a motivation for the later
developments of the paper, and referring to the next sections for details, we an-
ticipate here the likelihood function corresponding to the density of the severity
distribution when the observations are left-censored:

L(µ, σ2; c,y) = const · [Φ(c∗)]NC ·
NU∏
i=1

L(µ, σ2; c, yi),

where yi (i = 1, . . . , NU ) is the logarithm of the uncensored observations, L(µ, σ2; c, yi)
is the normal likelihood function, NU and NC are respectively the number of un-
censored and censored observations, c is the censoring threshold, c∗ = (c − µ)/σ
and const is a constant that does not depend on unknown parameters. Maximizing
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this function is rather complicated: analytical differentiation is impossible because
of the presence of the normal cdf, and numerical differentiation is computationally
heavy. For this reason, standard gradient-based optimization methods are likely to
give unstable results, and it is preferable to introduce algorithms which are better
suited for the solution of this problem.

3.1 The EM algorithm

The EM algorithm is an iterative method for computing maximum likelihood
estimators in presence of missing data. Typically, the algorithm is particularly
convenient in cases when, if the missing data were known, estimation would be
straightforward. The seminal paper concerning the EM algorithm is Dempster et
al. (1977); a thorough review of both theory and applications is given by McLach-
lan and Krishnan (1996).

Roughly speaking, the intuition behind the algorithm consists in maximizing,
instead of the likelihood based on the observed data, an hypothetical likelihood
based not only on the observed data but also on a “proper replacement” of the
missing data. The maximization of this function, called complete likelihood, is
often straightforward.

More formally, let Y be the random vector of the observed data; let g(y; θ)
and l(θ) be respectively its density and log-likelihood function, where θ is the
vector of all parameters. Let then Z be the vector containing the missing data,
whose elements are unobservable; finally, let X = (Y′,Z′)′ be the complete-data
vector, with density and log-likelihood denoted respectively by gc(x; θ) and lc(θ).

The first step of the algorithm (called E-step, where E stands for Expectation)
consists in computing the conditional expectation of the complete log-likelihood
function lc(θ), given the current value of θ and the observed sample y.

The second step (M -step, whereM stands for Maximization) maximizes, with
respect to θ, the conditional expectation of the complete log-likelihood computed
in the E-step.

The structure of the algorithm can be described as follows: let θ(0) be the
initial value of the parameter vector; the E-step consists in computing

Q(θ; θ(0)) = Eθ(0){lc(θ)|y}. (3)
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Then Q(θ; θ(0)) is maximized with respect to θ, namely θ(1) is chosen such that

Q(θ(1); θ(0)) = max
θ
Q(θ; θ(0)) (4)

The procedure is then repeated, i.e. (3) and (4) are recomputed using θ(1) in place
of θ(0). The two steps are iterated until some convergence criterion is met.

Referring the interested reader to McLachlan and Krishnan (1996, chap. 3)
for details, we would like to mention some very desirable properties of the EM
algorithm. First, it increases the likelihood at each iteration. Second, it is hardly
sensitive to the choice of the starting values: it is indeed often the case that it
converges to the global maximum irrespectively of the initialization; even with ill-
behaved likelihood functions, only in case of very bad initializations the algorithm
fails to converge. The only drawback is that convergence is rather slow: the rate of
convergence of the algorithm can be shown to be inversely related to the amount
of missing data (this point can be made more precise by introducing the concept
of missing information; see McLachlan and Krishnan 1996, sect. 3.9). However,
it will be seen in section 4 that the large number of iterations is frequently more
than compensated by the small time required by a single iteration.

The actual form of (3) and (4) depends on the specific problem at hand and on
the assumptions on the distribution of the data. In the next two sections we will
develop the algorithm respectively for left-censored and left-truncated lognormal
data.

3.2 Censored data

The problem of maximum likelihood estimation with censored data is more
commonly encountered in situations where the observations are right-censored,
as for example in survival analysis. A typical example is the case when some
individuals are still alive at the end of the experiment: they constitute the censored
observations, and all we know about them is their number and the value of the
threshold. Loss data are instead left-censored or left-truncated; we first work out
the details for the left-censored case.

Let W1, . . . ,WN be a sample of independent losses from a lognormal popu-
lation with parameters µ and σ2; as usual with lognormally distributed observa-
tions, one can resort to the transformation Yi = log(Wi) ∼ N(µ, σ2) and restrict
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attention to the normal case. Let NU and NC = N − NU be respectively the
number of uncensored and censored observations, and let y = (y1, . . . , yNU

)′ be
the vector of uncensored observations. Similarly, let x be the missing data, i.e.
x = (x1, . . . , xNC

)′; their numerical values are unobservable, but their number NC

is known. Finally, let z = (y′,x′)′ be the complete data. Notice that we can also
write y = {zi : zi ≥ c}, and x = {zi : zi < c}, i = 1, . . . , N , where c is the
logarithm of the truncation threshold.

In order to find the MLE’s of the parameters, we have to write down the
observed and complete likelihood functions; the complete likelihood function is
given by

Lc(µ, σ2; z) =
N∏

i=1

L(µ, σ2; zi), µ ∈ R, σ2 ∈ R+,

where L(µ, σ2; zi) is the normal likelihood function evaluated at zi. Let now c∗ =
(c− µ)/σ; the observed likelihood (Maddala 1983, pag. 5) can be written as:

Lobs(µ, σ2; c,y) = const ·
NU∏
i=1

L(µ, σ2; c, yi) · [P (Y ≤ c)]NC =

= const ·
NU∏
i=1

L(µ, σ2; c, yi) · [Φ(c∗)]NC , µ ∈ R, σ2 ∈ R+, (5)

where L(µ, σ2; c, yi) is the normal density, considered as a function of µ and σ2,
so that

Lobs(µ, σ2; c,y) = const ·
NU∏
i=1

{
· 1√

2πσ
e−

1
2 (

yi−µ

σ )2
}
· [Φ(c∗)]NC . (6)

The E-step is given by the conditional expectation of the complete log-likelihood
function given the observed data and the current numerical values of the parame-
ters. Putting τ = σ2 to simplify notation, at the t-th iteration we have

E[Lc(µ, τ ; z)|y, µ(t), τ (t))] =
NU∏
i=1

L(µ, τ ; yi) ·
NC∏
i=1

E[L(µ, τ ; c, xi|yi, µ(t), τ (t))].

Now the distribution of the missing data Xi, i = 1, . . . , NC , is right-truncated
normal, because the Xi are normal and smaller than c, so that they have density

fX(x) =
1

Φ(c∗)
· 1√

2πσ
e−

1
2 ( x−µ

σ )2 , x ≤ c.
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The computation of the conditional expectation E[L(µ, τ ; c, xi|yi, µ(t), τ (t))] is sim-
plified by the fact that the complete log-likelihood function is linear in X and X2;
thus, it amounts to computing E(X |µ(t), τ (t), y1, . . . , yNU

) and
E(X2|µ(t), τ (t), y1, . . . , yNU

). These two quantities are given by the well known
formulas for the expected value and the variance of the right-truncated normal
distribution. Putting α(c∗) = φ(c∗)/Φ(c∗), we get:

E(X |θ(t),y) = µ(t) − σ(t) · α(c∗(t)); (7)

E(X2|θ(t),y) = τ (t) · [1− c∗(t) · α(c∗(t))− (α(c∗(t)))2] + [E(X |θ(t),y)]2.

(8)

As for the M -step, we just have to use the formulas of the MLE’s of the normal
distribution, with missing data replaced by (7) and (8):

µ(t+1) =
1
N

(
NU∑
i=1

yi +NC · E(X |θ(t),y)

)
; (9)

τ (t+1) =
1
N

(
NU∑
i=1

y2i +NC ·E(X2|θ(t),y)

)
− (µ(t+1))2. (10)

Finally, MLE’s of the parameters are given by iterating (7), (8), (9) and (10) until
convergence.

3.3 Truncated data

The situation presented in the preceding section is not the one usually en-
countered when dealing with loss data. Such data are indeed typically truncated,
namely losses below a given threshold are discarded; deriving the relevant equa-
tions of the algorithm in this case is slightly more tricky, but the practical im-
plementation remains as easy as with censored observations. The following calcu-
lations are based on the way of reasoning followed by McLachlan and Krishnan
(1996, sect. 2.8) in a model with grouped and truncated data.

The setup needs to be modified as follows. Let W1, . . . ,WNU
be a sample

of independent losses from a truncated lognormal population with parameters µ
and σ2; again, we use the transformation Yi = log(Wi) ∼ N(µ, σ2) and restrict
attention to the normal case. NU is now the number of untruncated observations,
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and y = (y1, . . . , yNU
)′ is the vector containing these data. We also know that NT

observations are smaller than c and have been discarded, but NT is unknown. It
follows that the missing data are now given by {NT ,x}, where NT is the number
of truncated observations and x = (x1, . . . , xNT

)′. As before, let finally z =
(y′, NT ,x′)′ represent the complete data, where y = {zi : zi ≥ c}, NT = #{zi :
zi < c} and x = {zi : zi < c}, i = 1, . . . , N .

First of all, we have to write down the complete and observed likelihood
functions. The complete likelihood function is as in section 3.2:

Lc(µ, σ2; z) =
N∏

i=1

L(µ, σ2; zi), µ ∈ R, σ2 ∈ R+, (11)

where L(µ, σ2; zi) is the normal likelihood function evaluated at zi. The observed
likelihood is given by

Lobs(µ, σ2; c,Y) =
NU∏
i=1

Ltrunc(µ, σ2; c, yi) =

=
NU∏
i=1

{
1

1− Φ(c∗)
· 1√

2πσ
e−

1
2 (

yi−µ

σ )2
}
, µ ∈ R, σ2 ∈ R+. (12)

In order to implement the EM algorithm, it is convenient to rewrite (11) using the
fact that the joint density of Y , NT and X can be decomposed as

f(y, nT , x) = f(y) · f(nT |y) · f(x|nT , y).

To compute the conditional expectation of the complete log-likelihood function,
we need to determine the distribution of NT |Y and of (X |Y,NT ).

Denoting with Z the r.v. having the complete-data distribution, i.e. Z ∼
N(µ, σ2), it can be shown (McLachlan and Krishnan 1996, pag. 76-77) that NT |Y
has the negative binomial distribution with parameters NU and π, where π =
P (Z > c) = (1−Φ(c∗)). The conditional expectation is thus given by E(NT |Y ) =
NU · (1− π)/π.

Concerning (X |Y,NT ), the quantities E[X |Y,NT ] and E[X2|Y,NT ] can be
computed as in the preceding section so that, to sum up, the E-step is given by

E(NT |Y ) def
= N̂T = NU · (1− π)/π;

E(X |θ(t), Y ) = µ(t) − σ(t) · α(θ(t)); (13)

E(X2|θ(t), Y ) = τ (t) · [1− c∗(t) · α(θ(t))− (α(θ(t)))2] + [E(X |θ(t), Y )]2.

(14)
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As for the M -step, the equations are analogous to the censored case, with NC

replaced by N (t)
T :

µ(t+1) =
1

NU +N (t)
T

(
NU∑
i=1

yi +N
(t)
T · E(X |θ(t),y)

)
; (15)

τ (t+1) =
1

NU +N (t)
T

(
NU∑
i=1

y2i +N
(t)
T · E(X2|θ(t),y)

)
− (µ(t+1))2. (16)

These equations are then iterated until convergence to get the MLE’s.
In conclusion, it can be seen that the EM algorithm is easily implemented in

both the censored and truncated case.
As usual, the problem can also be tackled by means of standard optimiza-

tion tools. However, gradient-based algorithms (for example, Newton-Raphson,
Scoring, BFGS), may not be the best solution in this case: we have already men-
tioned that the first and second derivative of the log-likelihood function cannot
be obtained in closed form for (6) and (12). Moreover, the computational bur-
den associated to the usual alternative, consisting in computing numerically the
derivatives, is not negligible: this fact, besides slowing the algorithm, is likely to
cause unstable results, in particular as concerns the Hessian matrix.

Another possibility consists of using a direct search method, as for example
the Nelder-Mead simplex algorithm. The algorithms in this family do not require
any gradient information, with the consequence of being usually less efficient: as
pointed out by Press et al. (1992, sect. 10.4) they may be most useful when the
aim consists in “get something working quickly”. A detailed comparison of the
EM, BFGS and NM algorithms will be performed in section 4.

3.4 Bootstrap for standard errors

The computation of standard errors in the EM framework is somewhat in-
volved (McLachlan and Krishnan 1996, chap. 4), so that we prefer to assess them
using the nonparametric bootstrap.

Roughly speaking, the nonparametric bootstrap is based on sampling with
replacement from the observed data; more formally, this means sampling from
the empirical distribution function FN , which puts probability 1/N on each ob-
servation. Denoting with Ψ the asymptotic covariance matrix of θ̂, the actual
implementation consists of the following steps:
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(i) generate a sample (called bootstrap sample) from the empirical distribution of
the data at hand;

(ii) use it to compute the MLE’s of the parameters;
(iii) repeat steps (i) and (ii) a large number of times B and evaluate

Ψ̂B = (1/B)
∑B

i=1(θ̂
(i) − ˆ̄θ

(B)
)(θ̂(i) − ˆ̄θ

(B)
)′, where θ̂(i) is the MLE of θ ob-

tained at step (ii) with the i-th bootstrap sample and ˆ̄θ
(B)

= (1/B)
∑B

i=1 θ(i)

is the mean of the bootstrap distribution of θ̂.
It has been shown by Efron (1982) that Ψ̂B is, under fairly general conditions,

a consistent estimator of Ψ. See Davison and Hinkley (1997) for further details.
It is worth noting that the empirical distribution function is different for

censored and truncated data. Whereas in the latter case it is just the pdf which
puts probability mass 1/NU over any of the untruncated observations, in the former
it is the pdf which puts mass 1/NU over any of the NU observations and mass
NC/N over the set of censored observations; thus, for generating a bootstrap
sample (i.e. for performing step (i) above), the following steps have to be repeated
N times:

(a) simulate a random number from the U(0, 1) distribution; if it is smaller than
NC/N , increment by one the cardinality of the set of censored observations;
otherwise, go to step (b);

(b) with probability 1/NU choose one of the uncensored observations.

This implies that the cardinality of the set of censored observations changes
at each bootstrap replication.

4 Application and simulation

4.1 A real-data application

In this section we apply the methodology developed so far to some operational
losses recorded in Banca Intesa in a recent year. For confidentiality reasons, we
mention neither the names of the business lines nor the year of the losses, and we
have rescaled the data multiplying them by a constant. We consider data for two
business lines, which will be called A and B. Table 1 shows the estimates of the
parameters obtained with the EM algorithm and the standard errors computed by
means of the nonparametric bootstrap.
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Table 1. Univariate estimates and standard errors - Truncated data

µ σ2 NT

Business line A 3.078 4.895 52.271
(N = 154) (0.50) (1.19) -

Business line B 1.898 2.106 234.38
(N = 322) (0.44) (0.62) -

In order to apply the algorithm for the censored case, we used the same data,
treating now the estimated number N̂T of truncated observations (rounded to the
nearest integer) as the true number of censored observations. Results are shown
in table 2.

Table 2. Univariate estimates and standard errors - Censored data

µ σ2

Business line A 3.082 4.884
(0.16) (0.59)

Business line B 1.898 2.106
(0.06) (0.13)

For comparison purposes, we also applied the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) and the Nelder-Mead (NM) simplex method to maximize the
log-likelihood function. The BFGS algorithm is probably the most popular method
in the class of quasi-Newton algorithms. Its main strength is fast convergence (it
converges at a quadratic rate); however, the initial guess must be sufficiently good,
or it does not converge; moreover, numerical differentiation is usually needed, and
this may be a source of instability. The NM algorithm, on the other hand, is
entirely based on function evaluations, so that it does not require derivatives; for
this reason its use is mainly recommended for the maximization of highly discon-
tinuous functions. For details about both algorithms we refer the interested reader
to Press et al. (1992, chap. 10) and to the references therein.

Not surprisingly, BFGS and NM give the same point estimates as EM; the
interest lies mostly in the analysis of the conditions under which the algorithms
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converge and of the convergence times. Whereas we delay to the next section
the investigation of the first issue, here we give some details about the second
one: in table 3 we show the times and the number of iterations required to reach
convergence in both the truncated and censored case.

Table 3. Convergence times (in seconds) and number of iterations (nit) for EM, BFGS and NM

algorithms in both the truncated (T) and censored (C) case. These results were obtained on a Pentium

4 PC, 2.66 GHz, 512 MB RAM, with the MatlabTM programming language.

Business line A Business line B
tT nitT tC nitC tT nitT tC nitC

EM 0.094 246 0.016 27 0.296 657 0.015 44
BFGS 0.078 14 0.109 16 0.078 13 0.093 14
NM 0.125 77 0.141 80 0.125 75 0.156 82

According to the results, two remarks are in order. First, a single iteration of
the EM algorithm is much faster than an iteration of both the BFGS and the NM
algorithm; this can be attributed to the fact that the E and M steps are compu-
tationally easier than function evaluation in this setup. Second, the performance
of the NM algorithm deteriorates considerably in the censored case, because the
function is more complicated, so that each function evaluation requires more time;
similarly, derivative computation becomes heavier in the censored case, so that
an analogous remark holds for BFGS, although the worsening is less pronounced.
On the other hand, when switching from the truncated to the censored case, the
performance of the EM algorithm improves, because not only it is not affected
by the computational burden associated to the evaluation of the log-likelihood
function (which is not used in the maximization process), but also gains from the
larger informational content given by the knowledge of the cardinality of the set of
censored observations. This gain is also reflected by the reduction of the number
of iterations necessary for the EM algorithm to converge; this number remains
approximately the same for BFGS and NM.

These outcomes confirm a rule of thumb of optimization: the choice of the
algorithm should be guided by the problem at hand. When maximizing a likelihood
function, consideration of the probabilistic aspects of the problem can often provide
us with a much simpler solution with respect to a “brute force” approach based
on deterministic numerical methods; see Casella and Robert (2000, pag. 18-19),
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for more details about this point. In general, we notice that the EM algorithm can
be very convenient in cases when the likelihood function is complicated but the E
and M step are easy. Histograms of data with superimposed estimated densities
are shown in figure 1a and 1b. The histogram is built using N̂T as the frequency
of the first bin [0, c].
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Figure 1a: Loss distribution and fitted lognormal distribution (Business line A)
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Figure 1b: Loss distribution and fitted lognormal distribution (Business line B)

From the graphs it can be seen that the tails of the empirical distribution are
slightly fatter than the estimated lognormal distribution, in particular for business
line A, but the overall fit is rather good.

Figure 2 shows contour plots of the likelihood functions for the two business
lines; the dot marks the maximum found by the algorithms.
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Fig. 2a: Contours of the likelihood function (business line A)
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Fig. 2b: Contours of the likelihood function (business line B)

µ

σ2

−3 −2 −1 0 1 2 3 4 5

1

2

3

4

5

6

7

8

Finally, CaR measures are computed by means of the procedure outlined in section
2 (with 10,000 Monte Carlo replications); the results are displayed in table 4.

Table 4. Daily Capital at Risk in Euros at the 99.9% level, based on 10,000 Monte Carlo replications

Daily CaR
Business line A 1, 989, 604
Business line B 393, 918

The parameters ν, µ and σ2 have been estimated using one year of data; for
the simulation, thanks to the properties of the Poisson process and the invaiance
of MLE’s, we used a Poisson distribution with parameter λ̂ = ν̂/250 to obtain
daily measures (assuming 250 working days per year).
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The fact that data are truncated has an impact on the estimation of the
parameter ν as well: the MLE of ν is indeed the number of losses observed in one
year, but with truncated data we do not know the number of losses smaller than
c. However, the EM algorithm gives an estimate of this number, N̂T , so that the
MLE of ν is ν̂ = N̂T +NU . It is worth noting that when using the BFGS and NM
algorithm no estimate of NT is available and thus maximum likelihood estimation
of λ is impossible.

4.2 Simulation

It is well known that MLE’s are consistent and asymptotically normal. How-
ever, the asymptotic theory of maximum likelihood estimation does not give any
indication about the behavior of MLE’s in small samples. Considering the rele-
vance of the issue, the aim of this section consists in studying the rate of con-
vergence of the estimators. Given the sample size N , the simulation experiment
proceeds as follows:

(i) simulate a random sample of size N from the censored (truncated) normal
distribution with the numerical parameter values estimated above µ̂C (µ̂T )
and σ̂2

C (σ̂2
T );

(ii) estimate the parameters of the censored (truncated) normal distribution;
(iii) repeat the first two steps a large number of times M and compute mean and

standard deviation of the results.

We perform the experiment for sample sizes N = 20, 40, 70, 100, 154, 200,
400 in case of business line A and N = 20, 40, 70, 100, 150, 200, 322, 400 for
business line B; the results are shown in table 5 and 6.

Table 5. Simulation-based estimates and standard errors (Business Line A)

µ̂T σ̂2
T µ̂C σ̂2

C

N = 20 2.70 (1.74) 5.52 (4.18) 3.05 (0.52) 4.90 (2.13)
N = 40 2.92 (1.07) 5.18 (2.64) 3.08 (0.36) 4.84 (1.34)
N = 70 2.93 (0.85) 5.19 (2.12) 3.07 (0.27) 4.89 (1.01)
N = 100 3.00 (0.61) 5.04 (1.56) 3.08 (0.24) 4.89 (0.84)
N = 154 3.04 (0.47) 4.94 (1.19) 3.07 (0.19) 4.87 (0.69)
N = 200 3.04 (0.42) 4.98 (1.01) 3.08 (1.10) 4.90 (0.59)
N = 400 3.06 (0.28) 4.91 (0.73) 3.07 (0.12) 4.88 (0.42)
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Table 6. Simulation-based estimates and standard errors (Business Line B)

µ̂T σ̂2
T µ̂C σ̂2

C

N = 20 1.62 (1.36) 2.34 (1.80) 1.88 (0.38) 2.08 (1.01)
N = 40 1.74 (1.02) 2.24 (1.31) 1.89 (0.26) 2.08 (0.66)
N = 70 1.78 (0.77) 2.23 (1.03) 1.89 (0.20) 2.12 (0.51)
N = 100 1.77 (0.67) 2.24 (0.87) 1.89 (0.16) 2.09 (0.44)
N = 150 1.80 (0.54) 2.20 (0.71) 1.89 (0.14) 2.10 (0.36)
N = 200 1.87 (1.44) 2.11 (0.57) 1.89 (0.12) 2.11 (0.31)
N = 322 1.87 (0.33) 2.14 (0.44) 1.89 (0.09) 2.11 (0.25)
N = 400 1.86 (0.28) 2.15 (0.39) 1.89 (0.08) 2.12 (0.22)

The main lesson to be learned from the simulations is that the “informational
gap” associated with the switch from the censored to the truncated case is reflected
by the increased sample size necessary to get stable results. In the truncated case
the variability of the estimators is much higher, and the overall conclusion is that
in this case at least 100 observations are needed to perform a reliable analysis.

In the censored case, when using the BFGS or NM algorithm to maximize the
likelihood function (5), there is another numerical problem: the term [Φ(c∗)]NC

becomes very small when NC is large, and this can cause underflow problems. To
analyze this issue, we performed an experiment with simulated data: for given
N , we generated N standard normal random numbers and, for increasing values
of the threshold c, we treated the numbers smaller than c as censored values and
used the BFGS and NM algorithms to estimate the parameters of the distribution.
In table 7 we give, for each sample size N , the maximum value of the fraction of
censored data φN = NC/N for which the algorithms converge (for larger values,
the log-likelihood is a too large negative number and the algorithm breaks down).

19



Table 7. Maximum percentage φN = NC/N of censored data for which the BFGS and NM algo-

rithms converge.

N φN

400 88.5%
500 73.6%
600 57.5%
700 47.3%
800 42.3%
900 36.4%
1000 28.8%
1200 23.4%
1500 17.6%
2000 11.9%
3000 7.6%
4000 5.7%
5000 4.0%

It can be seen that, for example, when N = 3000, with more than 7.6% of
censored data the algorithm aborts. Again, this problem does not affect the EM
algorithm (except for the fact that the numerical value of the maximized log-
likelihood function cannot be computed), because it does not use the likelihood
function.

All the results shown here were obtained using the sample mean and vari-
ance of the untruncated (uncensored) observations as starting values. A quick
experiment was done to check the behavior of the algorithms with different initial
guesses. To this aim, the algorithm was started with several different (randomly
chosen) initializations: not surprisingly, in case of bad starting values EM and NM
converged, while BFGS broke down.

5 Discussion

In this paper we have derived the EM algorithm for maximum likelihood
estimation of lognormal severity distributions with censored and truncated data.
Using real operational losses data, we computed estimates of the parameters, stan-
dard errors and Capital at Risk. A comparison was done with respect to the BFGS
algorithm and the Nead-Melder simplex algorithm, and it turned out that the EM
algorithm has several advantages: (i) it is faster than BFGS and NM when, as
is the case here, the functional form of the likelihood function is complicated
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but, thanks to the use of the probabilistic aspects of the problem, the E and M
steps are simple; this advantage is particularly evident in the censored case (ii)
unlike BFGS and NM, in the truncated case it gives an estimate of the number
of truncated observations, which is essential for the estimation of the frequency
distribution and for the computation of risk measures; (iii) in the censored case,
when the sample size is large and the fraction of censored data is not sufficiently
small, the BFGS and NM algorithms break down; in such a setup the EM algo-
rithm converges normally. Finally, an advantage of both EM and NM is that they
converge even for “very bad” starting points, whereas BFGS fails to converge if
not initialized properly.

The field of operational risk represents a real challenge for the statistician,
and many problems are still open to future research. First, the appropriateness of
the lognormal model should not be taken for granted: it has often been noted that
the severity distribution is heavy-tailed; in this case, Extreme Value Theory has
sometimes been proposed (see Embrechts et al. 2003 for a thorough analysis). Sec-
ond, the extension of the techniques to the multivariate case is still at a pioneering
stage. Given the analytical intractability of the univariate distributions, a multi-
dimensional model should likely be based on copulas (see Nyström and Skoglund
2002 and Frachot et al. 2001 for different proposals about this point); although in
some cases losses in different business lines may be independent, we do not agree
with the extreme point of view by Roehr (2002), who claims that correlation is
spurious and losses are largely independent. Third, the empirical evidence in favor
of the Poisson assumption is weak, because frequency data are typically character-
ized by overdispersion with respect to the Poisson distribution. This feature can
possibly be accommodated by the negative binomial distribution; in case of large
overdispersion, Poisson mixtures are a more flexible model. Finally, in CaR com-
putation, it would be important to find more efficient simulation procedures: the
high confidence levels requested by the regulators have the consequence that the
variance of the quantile obtained by crude Monte Carlo is very large. Application
of variance reduction techniques to this problem would be extremely useful.
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