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Abstract

In this paper we consider domain decomposition preconditioners
based on a vertex-oriented decomposition of the computational do-
main. In element-oriented (EO) decompositions, each element of the
grid belongs to a different domain, while in vertex-oriented (VO) de-
compositions each vertex belongs to a different subdomain. Based on
VO decompositions, we present several preconditioners for the solu-
tion of the original (unreduced) system, as well as for that of the Schur
complement system.

Theoretical properties are investigated for a finite element approx-
imation of a scalar problem. Numerical results and comparison with
state-of-art preconditioners are also reported. The numerical results
here presented show the effectiveness of the proposed preconditioners
and their good parallel properties.

1 Introduction

We consider the iterative solution by Krylov methods of sparse linear systems
Au=Tf, (1)

where A € R™™ is a non-singular matrix (typically, derived from the dis-
cretisation of a boundary value problem for partial differential equations),
u € R” the solution vector, and f € R" the right-hand side.
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The convergence rate depends on the spectral properties of A, mainly on
its condition number x(A). The latter is defined as |||A]]| - [||A ||| (for a
suitable matrix norm ||| - |||), or simply as Amax(A)/Amin(A) if the matrix
is symmetric and positive definite. For ill-conditioned systems one typically
resorts to solve the (left) preconditioned system

P 'Au = P7'f, (2)

where P is a non-singular matrix, or else, if P is a symmetric and positive
definite matrix,

P Y2AP 2w = pU%f, (3)

with w = PY?u. The preconditioner P should approximate A~' as closely
as possible, so that k(P~'A) < k(A), while still being reasonably cheap
to invert. Ideally, P should be optimal—i.e. k(P~'A) ought not depend
on the mesh size, and, when considering parallel preconditioners, a further
requirement for P is that it is scalable—i.e. k(P~!A) should not depend on
the number of processors used in the computations.

In this paper, we address parallel preconditioners issuing from domain
decomposition (DD) [19, 25].

DD is nowadays a very active area of research in the field of numeri-
cal approximation of boundary value problems for PDEs. The key idea of
(homogeneous) domain decomposition techniques is to split the original com-
putational domain, say (2, into smaller components €2;,7 = 1,... , M (which
may or may not overlap), called subdomains, and then to solve the boundary
value problem on each subdomain. Clearly, additional interface conditions
have to be imposed on 0€2,;\09. Usually, the original global problem is re-
formulated as an iterative procedure on the subdomains.

In overlapping DD preconditioners, local Dirichlet-type problems are then
solved on each €2;. The communication between the solutions on the different
subdomains is here guaranteed by the overlapping regions. This procedures,
often referred to as one-level Schwarz method, is non-scalable. In fact, the
information exchange among the subdomains is only through the overlapping
regions. A good scalability may be recovered by the addition of a coarse cor-
rection, whose role is to spread out information among far away subdomains.

For problems arising from PDEs, a typical choice to define the coarse
correction is to solve the original PDE problem on a coarse grid. However,



the construction of a coarse grid and of the corresponding restriction and
extension operators may be difficult or computationally expensive on general
unstructured grids and arbitrary geometries. In addition, for a general, possi-
bly non-convex domain, it is difficult to ensure that the boundary conditions
are correctly represented on the coarse level.

To overcome these difficulties, the VO decomposition easily allows the
definition of a coarse operator based on aggregation procedures. This pro-
cedure has been previously used for the shallow water equations and 2D
potential flows [17], for 3D potential flow computations [6], for groundwater
flows [9], for multiphase flows [11], for discontinuous Galerkin approxima-
tion of advection-diffusion problems [12], and for the 3D compressible Euler
equations on unstructured tetrahedral grids [23, 24], to mention some.

On the other side, non-overlapping DD preconditioners are usually refor-
mulated in terms of the so-called Schur complement (SC) system. The idea
is to partition the set of nodes assigned to each subdomain into the set of
boundary and internal nodes. This latter set can be “condensed”. Thus, in-
stead of solving a linear system with matrix A, one can solve a linear system
with the SC matrix S. If A is symmetric and positive definite matrix, the
spectral condition number £(S) of S is lower than x(A) [2].

The first step in every DD approach is the decomposition of the computa-
tional domain € into the subdomains. Let  C R?¢, d = 2, 3, be a polygonal
domain. Let 7, be a triangulation made of polygons or polyhedra, and, for
the sake of simplicity, assume that the boundary of €2 coincides with that of
the triangulation. We may face the two following cases. In the first approach,
7Tr is partitioned into M non-overlapping parts, namely Ty 1, Th2,- -, Th,m-
For each 7 = 1,... , M we associate to T,; a subdomain (2;, formed by the
interior of the union of the elements of 7} ;, while Qr is composed by a finite
number of d — 1 manifolds; see Figure 1, left, for an example in the case
M = 2. This situation represents the common case where {11 is the union of
the part of the boundary of €2; that is internal to €2. This type of decompo-
sition is called element-oriented (EO) decomposition, because each element
of T, belongs exclusively to one of the M subdomains );.

An alternative approach consists of partitioning 2 into M +1 non-overlap-
ping parts Tn.1, The, - - - , Th,m, and T, p. By construction, the portion of space
Qp of which 7, is a triangulation, is now formed by the union of a finite
number of “strips” laying between the (2;. This is called vertex-oriented
(VO) decomposition, because each vertex belongs exclusively to one of the
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Figure 1: Example of element-oriented (left) and vertex-oriented (right) de-
composition.

M subdomains ;. This time Qr is a d—dimensional domain as well (see
Figure 1, right).

Note that by construction, in an EO decomposition all the vertices on €
are shared by two or more subdomains €2;, while in a VO decomposition they
belong to exactly two subdomains: r and one of the €2;. EO decompositions
lead to well-known SC based schemes, while VO decompositions allow a
variational reinterpretation and give rise to new schemes.

From the point of view of parallel computing, a distinguishing feature of
VO decompositions is that the transition region {)r can be replicated among
the processors which hold the ;. This provides a way for data communica-
tion. In particular, if the discrete operator associated to the matrix A has
a compact stencil, matrix-vector products based on VO decompositions may
be easily computed in parallel.

VO techniques are also adopted by many parallel linear algebra packages.
Indeed, with a VO approach one may derive the local operators directly from
the assembled global matrix A, while adopting an EO decomposition would
require to work at the level of the (problem dependent) assembly process.
On the other side, some quasi-optimal results have been proved for EO SC
matrices.

In this paper we mainly focus on a new Dirichlet-Neumann domain de-
composition preconditioner that we call swiss-carpet preconditioner, based
on a VO decomposition like that presented in Figure 2, right. The Dirichlet
step is performed in parallel in the domains €);, while the Neumann step is
performed in the domain 2r. When considering the stiffness matrix deriving
by the finite element approximation of the Laplace operator in two dimen-
sions, the condition number of the preconditioned system turns out to be



O(H/h), H being a bound for the diameter of €; and h the mesh size. We
point out that this estimate is less favourable than others, like that obtained
for the balancing Nemann-Neumann method or the FETI method; however,
the algorithm is one-level (no coarse space), and the preconditioner is cheap,
as only one Neumann solver in the domain Qr (that contains very few mesh
nodes) is needed. This problem is global and, at some extent, plays the role
of the coarse correction.

The paper is organised as follows. In Section 2 we introduce the algebraic
formalism for EO and VO decompositions. Linear system (1) is reformulated
for both the EO and the VO approach, pointing out the main differences.
The focus is mainly on Schur complement systems. The EO approach has
been extensively investigated in the literature (see for instance [19, 14, 3, 25]);
hence, in Section 3 we present several preconditioners for the VO decompo-
sition. The solution of both the unreduced system and the SC system is
considered. For the latter, a O(H/h)-theoretical estimate of the condition
number is obtained. Numerical results are presented in Section 4, while in
Section 5 we draw some conclusions.

2 Element-oriented and vertex-oriented de-
composition

The difference between EO and VO decompositions can be easily appreciated
in the case of two subdomains. Let us introduce some notation first. The
nodes on ) will be called border nodes, and in particular those on Q; N Qp
are the border nodes of the domain €2;. A node of Q; which is not a border
node is said to be internal to ;, 1 =1,... , M.

For vectors, we will consistently use the subscripts I and B to indicate
internal and border, respectively, while the superscript (i) will denote the

domain we are referring to. Thus, ugi) will indicate the vector of unknowns

associated to nodes internal to €2;, while ug) is associated to the border nodes.

The dimension of these vectors will be denoted ngi) and ng), respectively. For
ease of notation, we will often refrain from distinguishing between a domain
) and its triangulation 75, when no ambiguity is possible. Unless otherwise
specified, for matrices we will use the subscript ¢ to indicate the subdomain

to which we are referring to.

Let us consider the EO approach first. By rewriting equation (1) so that



the values associated to nodes internal to €2; are ordered first, followed by
the ones internal to )y, and finally those on Qr, one obtains

A oA (e
0 4% 4P W? | =1 @ | . (4)
Apy Afy App+ Ay ) \up fs

; T .

If A is symmetric, then A%)I = A% . Ag)B represents the mutual influence
of the border nodes of {2;. For example, in the case of a finite element
discretisation, one has

[ASplks = algsla, erla).
where ¢y, ¢; are the finite element shape functions associated to border nodes
k and j, respectively, restricted to the subdomain €2;. The two null blocks
arise because of the local support of the shape functions.
Eliminating the internal nodes from system (4) gives

Sgoup =g (5)
where Spo = S1 4+ 5, and g = g(l) + g(2), with
i i) 4@ LG
Si = Afy— AR AL AT, (6)
i i i) 4 () LG
&0 = ) - A% 0

The generalisation to an arbitrary number of subdomains, see Figure 2,
left, is straightforward. We introduce the restriction matrix R; € R*3:ix"8
which from a global vector ugp € R"2 extracts the entries corresponding to
the border nodes of €);, i.e. ug; = R;ug. Its transpose RZ-T is the prolongation
matrix relative to the subdomain €2; which extends by zero a vector of border
values. Then,

M M
= 5 ST 4(8) 4(0) 7L g
i=1

i=1

For the VO approach, in the case of two subdomains, we have
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Figure 2: On the left, element-oriented decomposition: each element is as-
signed to a different subdomain €2;,7 = 1,..., M. On the right, vertex-
oriented decomposition: each vertex is assigned to a different subdomain.
The blue domain is called Q.

The border nodes are split in two subsets, one belonging to €, the other
to Qs. Ar represents the mutual influence of border nodes, considering only
the contribution from the subdomain Qr. For instance, in the case of a finite
element discretisation, one has

lym
[AY™], 5 = a(gj]ar, @ilar)

fori e N Qpr and j € Q,, N Q.
The elimination of the vector associated to the internal nodes leads to
the system

with S; and g defined by (6) and (7). Its generalisation to the case of M
subdomains gives

Sp+ Al A A0 u)) g
APY G ARY AW u | | &®
AMD M2 g g A ul}? g™

(10)
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Figure 3: Two VO unstructured decompositions, with M = 4 and cross
width 6 = 1 (left) and § = 3 (right).

Some of the blocks A(Fi’j) may be in fact empty. This happens when no
element in the triangulation contains nodes belonging to both 2; and €;.

For a decomposition with many subdomains, let us indicate with A;;
the minimum number of edges that one has to cross when moving from an
arbitrary node belonging to €2; to a node of Q;, 4,5 =1,..., M,7 # j; then

0]
represents the width of 2. In the VO decomposition described so far, we

have § = 1. However, this value can be easily increased using the following
algorithm.

Algorithm 1.
1 Fork=1,...,N Do
2 For every element j of T, ¢ =1,...,M Do:
3 If k is a border node, assign the element j to Ty
4 End For
5 Update the set of internal and border nodes
6 End For
Example of VO decomposition for M = 4 and § = 1,3,5,7 are given in
figures 3 and 4.
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Figure 4: Two VO unstructured decompositions, with M = 4 and cross
width § =5 (left) and § = 7 (right).

3 VO DD Preconditioners

3.1 Solution of the unreduced system

The VO decomposition can be used to define an overlapping (Schwarz) pre-
conditioner. Let us introduce the matrices

ao (A AN
AD A AGD =1 M

Note that 4, = R;,ARY where R; is the rectangular (restriction) matrix

7 7
which, when applied to a vector corresponding to §2, returns its components
in Qz
With this notation, the one-level additive Schwarz method reads

M
Pg'=) RTA'R;. (11)
i=1
In the case of two subdomains we obtain
1 1
A%{; (1) Agg (1,1) ) )
A Ann + AR 0 0
Py = BI BB r o) o) ,
0 0 A}/ Alh
0 0 AP AD 4 222



i.e., Pg is a block-Jacobi preconditioner applied to system (8).
In a two-level Schwarz method, a further term R Ay 'Ry is added to the
preconditioner, obtaining

M
Pytada= Y RIAT'R;. (12)
=0
Ay is the so-called coarse operator, whose role is to spread out information
among the far-away subdomains. The construction of Ay involves the dis-
cretisation of the PDE problem on a coarser grid, whose number of elements
no is much lower than that of the original fine grid.

This procedure may be difficult or computationally expensive on general
unstructured grids and arbitrary geometries. In addition, for a general, possi-
bly non-convex domain, it is difficult to ensure that the boundary conditions
are correctly represented on the coarse level.

In VO decompositions, however, the definition of a coarse operator can be
based on aggregation procedures. Precisely, on each subdomain €2; we build

no; aggregates ¥;s,1 = 1,... ,M,s =1,... ,ng;, each of them representing
a set of contiguous vertices, see Figure 5 for an example in 2D. Then on
every (2;, each aggregate is associated to a vector i, ;,s = 1,... ,ng;, whose

elements are built following the rule

(k) = {

At this stage, the construction of Ry, called smoothed aggregation (SA)
procedure, is made in 2 steps: coarsening and grid transfer construction. The
former corresponds to build a non-smoothed restriction operator Ry so that
each fine grid node is included in just one aggregate. This decomposition can
be obtained using a graph partitioning algorithm (vertex-oriented decompo-
sition of the grid). The value ng = Y., ng; represents the dimension of
the coarse space, since each aggregate will be given a coarse grid basis func-
tion. We will indicate with ¥; the set of nodes that form the non-smoothed
aggregate i. The entries of Ry are thus as follows:

= 1 ifjed;
Ry(i,7) = { 0 otherwise. 1)

1 if k belongs to ¥,
0 otherwise.

Ry can be viewed as a simple grid transfer operator corresponding to
piecewise constant interpolation. A 2D example is reported in figure 5. The

10



Figure 5: Examples of aggregates for a 2D domain. The nodes marked with
‘W, ‘o', and ‘e’ belong to ¥, ¥, and I3, respectively.

second step (thgt may actually be avoided) consists of applying a prolonga-
tion smoother Sy to produce the final prolongation operator R = RT'S;.

For a more exhaustive presentation on this subject, the reader is referred
to [21].

3.2 Preconditioners for the SC system

Equation (10) may be reinterpreted as a two-subdomain formulation, the two
subdomains being given by Qr and Q, = UM,Q;. Then

Svo = Sy + Ar, (14)

with S, = blockdiag{S;,i=1,...,M}.

In the two-subdomain formulation Q = Q, U Qp, S, is the Schur com-
plement obtained by eliminating the internal nodes of €),, while the Schur
complement of domain Q2r, usually indicated by Sr, coincides with Ar, since
no internal nodes have been included in Qr.

Note that S, has a (dense) diagonal block form, while Ar is sparse and,
in general, features many zero-blocks.

Three preconditioners may be derived for the matrix (14):
P,=S.; Pr=Ar; Pynv=(S"+A")"" (15)

P, and Pr are formally equivalent to Dirichlet-Neumann (DN) precon-
ditioners [19, Section 3.2]. The inversion of P, involves M Neumann solves

11



(one in every €2;), whereas only one Neumann solve in Qr is required to invert
Pr. The latter solve is somehow unusual since all the nodes of {)r stand on
the border of the domain Qr. Pyy is the 2-subdomain Neumann-Neumann
(NN) preconditioner.

Remark 1. The DN and NN preconditioners are optimal for the two-sub-
domain case. However, the analysis requires the subdomains to have a mea-
sure independent of h. This is not verified by preconditioners P,, Pr, and
Py, since the width of Qr is h. Clearly, if the subdivision is modified so that
Qr has a measure independent of h, then P,, Pr, and Pyy become optimal
preconditioners.

The Pr preconditioner behaves better (both theoretically and numeri-
cally) than the P, preconditioner (see the theoretical results in Proposition 1,
that we have been able to prove only for the Pr preconditioner; see moreover
the numerical results in Table 7). On the other hand, though the condition
number of P;}VSVO is in general slightly lower than that of P LSvo (see
Table 7), the computational complexity of Py is higher than that of Pr, as
it requires M + 1 solves. Moreover, in the “floating” subdomains ; (those
internal to ), the solution of a pure Neumann problem can demand for
compatibility conditions on the data. For this reason, in the sequel we will
focus almost exclusively on the preconditioner Pr.

Remark 2. We take the liberty of calling Pr the swiss-carpet preconditioner.
In fact, this is a little abuse that we grant ourselves, and that is motivated by
the following analogy. A typical VO decomposition can be obtained starting
from the Swiss flag (a white cross on a red background) and applying to it
a recursive procedure (see Figure 6) somehow similar to the one used for
constructing the Sierpiriski carpet (see, e.g., [16], p. 144). Indeed, the real
procedure consists of moving from step n to step n+ 1 by eliminating from
each square a central cross of thickness equal to the finite element mesh-size
h.

We now derive a convergence estimate for the swiss-carpet preconditioner.
For the sake of simplicity, the estimate of the condition number of the precon-
ditioned Schur complement P; 'S will be presented only in a case of simple
geometry and the Laplace operator with homogeneous boundary conditions.
However, using similar arguments, the interested reader could easily extend
the result to many more general situations (for instance, the result is true for

12



Figure 6: Derivation of the Swiss-carpet preconditioner (warning: this anal-
ogy is not rigorous): starting from the Swiss flag (on the left), we apply a
recursive procedure, to obtain the desired decomposition (on the right).

any second order elliptic operator (without zero order terms) and being asso-
ciated to a symmetric and coercive bilinear form, or for the two-dimensional
elasticity system; however, other boundary conditions and domains are al-
lowed as well).

Let us consider the square 2 = (0,1) x (0,1), and a family of uniform
triangulations 7, of it. We assume that €2 is subdivided into the union of the
disjoint squares €2;, j = 1,... , M, with side-length H such that \/M(H +
h) = 1+ h, and of the domain Qr, which is connected and consists of the
union of 2(v/M —1) non-disjoint strips of length 1 and width A (see Figure 6).
Let us also set

We denote by 7, the trace on I of the piecewise linear functions vj, defined
in Q2. Then, we indicate by FE}, .7, the discrete harmonic extension of 7, in
, and by Ejrn, the discrete harmonic extension of 7, in Qr. Since in
Qr there are no internal nodes (the width of Qr is equal to k), the function
E}, rny, is simply the interpolant of 7, in Qp.

The action of both the Schur complement S and Pr can be expressed
through the local bilinear forms in the following way (here 1 and g denote
the vector of the nodal values of 7, and py, respectively) (see, e.g., [19, pag.

13



22)):

Sn-p= [o VEuh - VEhpun+ fQF VEurnh - VEy

Prn-p= fQF VEurn, - VER i,
We can prove the following proposition.

Proposition 1. There is a positive constant C independent of h and H
such that

H
PFW'TISSU-USCHWPrn-n Vn € Rz,

Therefore, the condition number of P='S satisfies k(P 'S) < CH/h.

Proof. The first inequality is obvious. To prove the second one, we need to
bound fQ* |V E}.nn|?, and this can be done by adding the contributions to
the integral from each square €);.

By means of a translation, instead of €2; we can consider the square
Qp centred in (0,0) and with sides of length H. Then by the change of
variable (Z,7) = T(x,y) = (z/H,y/H), we map Qy over the unit square Q.
The triangulation over @)y is transformed into a triangulation onto @; the
correspondent mesh size is given by h/H. Introducing, for each function g
defined in Q g, the function § = goT~! defined in Q, and denoting by Eh/Hﬁ}l
the discrete harmonic extension of 7, with respect to the triangulation in @,
it is easily verified that E\h/H% = m and that

/ |VEh,*77h|2=/A|€Eh/HﬁB|2- (17)
Qn Q

The uniform extension theorem for finite elements (see, e.g., [27], Sect.
4.2.2) gives that

LBl < Colfnfnag (18)

where the constant Cy does not depend on h and H and |- |, /2,00 denotes the

seminorm of HY/2(3Q).
Let us now observe that the set €l is the union of F; N ), where the
“frames” F} are the sets of width h around €;(note that these sets are not

14



disjointed, but any possible intersection concerns at most four of them).
Moreover, by means of a translation, we can think that each set Fj is the
frame Fp, of the square Qg.

Let us consider now the set F1 1/2, that is, the frame of width 1 /2 around
Q We want to construct a function in F1 ,1/2 such that its value on the

internal boundary of F1,1 /2 (that is, on GQ) is equal to 7,. The natural
idea is to start from FEj rny, that is, from the interpolant of 7, in Qp. For
simplicity, we will write ¢, = Ej, rn, and we recall that ¢, = .

Now we have to pass from the domain Fj (or, equivalently, from Fy )

onto ﬁl,l /2. First of all, note that the transformation 7" maps Fp , onto the
set F1/m. Moreover, we define

He) = 3 if ¢ < 1/2
1/2[1+h " H(|E| - 1/2))¢/1€]  if1/2<|¢] <1/24+h/H,

then we introduce the transformation
K(z,y) == (t(z),t(y)) ,

that maps ﬁl,h/H onto ﬁl,l/z, leaving the internal boundary 8@ unchanged.
We are now in a position to set

W Flijp = R, = Ppm,, 0T Lo K1

~

and we easily verify that 1/J|ﬂaé = Np-
We can thus use the trace theorem and obtain

< G|V (19)

|77h 1/2,0Q = 0,5 175

(see [27, Theorem 4.1]). To estimate the right hand side, taking into con-
sideration the explicit expression of the transformations 7" and K, we can
prove

VY2 <GhH [ [V, (20)

Fgp

By collecting (17), (18), (19) and (20) we have thus obtained

fQj \VEp | < Csh 'H fFj |V Ep |2
= C3h71H fanQ ‘VEh,FnhP

15



(here, for the squares €2; that have at least one side on 0f2, the function
Nn, has to be considered extended by 0 on the boundary of {2 and on the
boundary of F; external to €2).

Bearing in mind the geometry of {2 we easily obtain the estimate

4/ \VEprm* > Z/ \VEprmn|? .
Qr j FjﬂQ

The thesis now follows by summing up the contribution from all the domains
2; and the frames Fj. O

Remark 3. As we already noted, the above result also holds for the elliptic
operator

Lu:=— Z D;[p(x)D;u] ,

where p(x) is a positive and bounded function in Q.

A more precise conclusion can be reached if the coefficient p(z) satisfies
p(z) =p; >0in QU (Fjl/2 NQ), j=1,...,M, where Fjl/2 is the frame of
width h/2 around $;: in this case the constant Cy in Proposition 1 does not
depend on the jumps of the coefficients p;.

In fact, in each domain C); the extension operator with respect to the oper-
ator L coincides with the harmonic extension, therefore (18) holds. Moreover,

proceeding as before we obtain (21) (with Fjl/2 instead of F;) and therefore

Sim-n = Z]Nil Py fQj ‘VEh,*nhP
< Csh'HY (L, p; fF;/Zm |V Enrnn|?
=Csh 'HPm-n

where the constant Cs does not depend on the jumps of the coefficients p;.

4 Numerical Experiments

We consider a finite element approximation of the problem

{—Au = f inQ

u = g on 0f), (22)

(where f and g are chosen so that u(z,y) = sinz siny in 2D and u(z,y, z) =
sinz siny sin z in 3D), with the aim of numerically validating the VO DD

16



preconditioners presented in Section 3, and comparing them with popular
DD preconditioners.

For 2D problems, 2 = (0,1) x (0,1), and the mesh is built by dividing
Q into (1/h)? squares of uniform size, which are then subdivided into two
triangles. For 3D problems, Q = (0,1) x (0,1) x (0,1), and the mesh is
divided into (1/h)® hexahedra, subdivided into 5 tetrahedra.

As regards the domain decomposition, we consider overlapping squares
(for 2D problems) or hexahedra (for 3D problems) €;, of equal area H? or
volume H?3, plus the subdomain Qr in the case of a VO decomposition. If
not otherwise specified, the width of {2 is of one element. We use piecewise
linear finite elements, and we solve the linear systems (1), (5), and (10) by a
preconditioned conjugate gradient (PCG) method [8, 20].

The tables report the estimated condition number (according to the al-
gorithm given in [7], pp. 128-130) of the preconditioned system.

We start by considering the solution of system (1), using a one-level
Schwarz preconditioner on a VO decomposition of the grid. In this case,
Qr represents the union of the overlapping regions among the subdomains
;. In Table 1 we report the estimated condition number (ECN) of the pre-
conditioned system. Tables 2 and 3 report the ECN for two-level Schwarz
preconditioners, using respectively a coarse grid, and the aggregation proce-
dure with non-smoothed aggregation. One can appreciate that both methods
share the same asymptotic behaviour with respect to H and h (see for in-
stance [13]). The easiness in the construction of the aggregation coarse space
has a drawback in that, for given H and h, the condition number results
larger than using a classical coarse space. For further results on this subject,
see [22].

Then, we focus on the solution of system (10). First of all, it is found
numerically that Sy is better conditioned than A; see Table 4. However,
from Tables 5 and 6 one sees that x(Sy ) is slightly more than linear with
h~!in 2D, and slightly more than quadratic in 3D: therefore a preconditioner
for this matrix is mandatory. The preconditioners proposed in Section 3.2
are studied in Table 7. For a given h, we have first constructed a VO decom-
position into 4 subdomains, as described in Section 2 (that is, § = 1). Then,
Algorithm 1 was used to increase the width. In the table, Pyy = Sy '+ Ap’.
All the tested preconditioners share the same asymptotic behaviour; how-
ever, P, results in a consistently larger condition number than Pyy and Pr.
As M additional Neumann problems have to be solved to impose Pyy, in
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the following we will focus only on Pr.

Tables 8 and 9 report the condition number using Pr, for regular decom-
positions as that presented in Proposition 1. The results of Table 8 confirm
the theoretical estimates of Proposition 1, while Table 9 suggests that a sim-
ilar estimate may hold for 3D domains as well.

In Tables 10 and 11 the ECN of Syo and Py 'Syo, respectively, is again
reported, this time for 2D unstructured decompositions into M subdomains;
the subdomain partition has been obtained by using the software METIS
(see [10]). The analogous results for the 3D case are reported in Tables 12
and 13.

In order to compare Pr with more standard preconditioners, we have
used one of the state-of-the-art preconditioners for non-overlapping decom-
positions, namely the balancing Neumann-Neumann (BNN).

We recall briefly the Neumann-Neumann preconditioner, which is based
on the assembly of the global SC from the local subdomain SC matrices:

M

=1

The weighting diagonal matrices D; allow to preserve good conditioning even
when the subdomains have different characteristics, for instance because of
the different values of the coefficients of the differential operator.

For a small number of subdomains, the convergence of the Neumann-
Neumann algorithm is quite good.

It is possible to prove that x (PyyS) < 1 (1+ log(H/h))*. The term
1/H? cannot be avoided with this formulation since the NN algorithm fails to
provide any means of global distribution of information beyond that of local
exchange and, as expected, suffers from steep deterioration of convergence as
the number of subdomains increases.

Asnoted in [14], the NN preconditioner becomes impractical when applied
to problems with a number of subdomains larger than about 16. Mandel [15]
proposed the so-called balancing Neumann-Neumann preconditioner (BNN)
by adding to the NN preconditioner a simple coarse correction constructed
by using piecewise constant coarse grid space. The corresponding coarse
operator involves one unknown per subdomain in the scalar case. It can be
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k(P;'A) |H=1/4 H=1/8 H=1/16 H =1/32
S

h=1/15 24.29 45.92 - -
h=1/31 51.66 98.63 194.97 -
h=1/63 106.31 203.80 403.31 804.48
h=1/127 | 215.58 414.03 819.73 1635.34

Table 1: 2D model problem. Condition number of Py ' A using the one-level

Schwarz preconditioner Ps with minimal overlap (6 = h).

| 6(Pgaed) | H=1/4 H=1/8 H=1/16 H=1/32|

h=1/15 417 3.86 - -
h=1/31 6.77 4.79 4.20 -
h=1/63 | 12.22 7.19 5.13 4.36
h=1/127 | 23.08  12.84 7.37 5.35

Table 2: 2D model problem. Condition number of Py (lj,addA, with a coarse

space built using a coarse grid (standard coarse space).

proved that the resulting preconditioner satisfies

7\ 2
k(PgunA) < C (1 + log F) :

(24)

For numerical results, we refer the reader to [15, 5] or [19, Section 3.2.2]. See

also Table 14.

Comparison between BNN (with an EO decomposition) and Pr (with a
VO decomposition) are shown in Table 15. The 2D grid has been partitioned,

| 6(P5taeA) |H=1/4 H=1/8 H=1/16 H=1/32|

h=1/15 | 12.09 8.53 - -
h=1/31 | 2547  17.23 9.76 -
h=1/63 | 5286  34.64 19.06 10.11
h=1/127 | 10791  69.61 39.95 20.33

Table 3: 2D model problem. Condition number of Pg (lj,addA, with a coarse
space built using non-smoothed aggregation.
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[ h [ s()_ #lBvo) ]
1/15 90.52 41.33
1/31 | 388.81 96.85
1/63 | 1607.89 209.27
1/127 | 5979.31 431.87

Table 4: 2D model problem. Condition number of the A and Sy (in this

latter case, with H = 1/2).

| k(Svo) |H=1/2 H=1/4 H=1/8]
h=1/15 | 41.33 62.75 90.52
h=1/31 | 96.85 155.75  264.73
h=1/63 | 209.27  347.06  627.94
h=1/127 | 431.87  732.06 1366.15
h=1/255| 886.65 1503.25 2849.46
h=1/511| 1790.63 3046.23 5817.04

Table 5: 2D model problem. Condition number of Sy .

[ k(Svo) [H=1/2 H=1/3 H=1/4]

h=1/15] 7445 9554 -
h=1/31| 390.13  507.33  596.79
h=1/63| 1785.84 2391.22 2892.44

Table 6: 3D model problem. Condition number of Sy .
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‘ ‘ ) ‘ K(Svo) H(Sl—_\ISVo) lf(S*_ISVo) K(P];}VSVO) ‘

1| 41.33 6.72 16.01 4.92
h=1/15 | 3| 2047 2.77 4.67 1.98
5| 12.95 2.08 2.97 1.15
1| 96.85 13.54 31.95 8.86
h=1/31 | 3| 61.59 5.00 9.66 3.22
5| 48.99 3.36 5.66 2.19
1| 209.27 27.27 63.86 16.81
h=1/63 | 3| 149.69 9.66 20.01 5.84
5| 133.05 6.05 11.69 3.72
1| 431.87 54.51 127.79 32.78
h=1/127 | 3| 329.70 18.71 41.28 11.15
5 | 309.76 11.52 24.29 6.88

Table 7: 2D model problem. Condition number for the VO SC matrix, with
no preconditioning and using the preconditioners proposed in Section 3. The

domain is partitioned into 4 subdomains, and the influence of the cross width
is reported. (Note that Sp = Ap if § = 1, but not if 6 > 2.)

| &(Pi'Svo) |H=1/2 H=1/4 H=1/8 H=1/16|

h=1/15 | 6.72 487 2.00 -

h=1/31 | 1354 9.76 5.27 2.00
h=1/63 | 2771 1976  10.83 5.44
h=1/127 | 5450 3948  21.93 11.09

Table 8: 2D model problem. Condition number of Py 1Svo.

[%(P'Svo) [H=1/2 H=1/3 H=1/4|

h=1/15 5.19 4.11 3.23
h=1/23 7.44 5.54 4.49
h=1/31 9.74 6.87 0.82
h=1/47 14.36 10.61 8.54
h=1/63 19.01 13.76 11.28

Table 9: 3D model problem. Condition number of P 'Sy.
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\ (Svo) |[M=12 M=16 M=20 M=24 M=28 M=232]|
=1/15| 80.54 73.66 85.62 87.57 86.92 90.42

h =1/31| 150.22 156.13 184.14 185.58  196.77  219.02

h=1/47 | 23524 256.57 286.27 298.71  306.99  330.72

h=1/63| 300.47 337.71 382.03 401.72 425.96  464.09

Table 10: 2D model problem. Condition number of Syo. Unstructured
decomposition into M subdomains (obtained using METIS).

| &(Pi'Svo) [ M =12 M=16 M=20 M=24 M=28 M=32]
h=1/15 | 11.67 2517  15.69  10.25 9.23 7.65
h=1/31 | 4716  24.38  35.76  19.31  27.92 17.93
h=1/47 | 2060  35.67  40.57  44.68  21.27 = 24.84
h=1/63 | 4593  33.82 4863  32.22  28.61 34.27

Table 11: 2D model problem. Condition number of Py 1Svo. Unstructured
decomposition into M subdomains (obtained using METIS).

\ (Svo) |[M=12 M=16 M=20 M=24 M=28 M=232]|

=1/15| 84.75 88.60 92.00 93.27 94.97 97.78
h =1/31| 458.46  487.99  500.93 526.41 561.41  569.71
h=1/47 | 1177.10 1171.86 1253.82 1345.87 1404.50 1422.79

Table 12: 3D model problem. Condition number of Syo. Unstructured
decomposition into M subdomains (obtained using METIS).

| k(Pi'Svo) [M=12 M=16 M=20 M=24 M=28 M=32

h=1/15 20.50 21.00 22.32 20.67 21.72 20.54
h=1/31 21.44 21.62 21.73 21.37 21.80 21.50
h =1/47 23.19 21.75 26.23 21.67 21.73 21.83

Table 13: 3D model problem. Condition number of P 1Svo. Unstructured
decomposition into M subdomains (obtained using METIS).
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h=1/15 1.67 1.48 1.27 -

h=1/31 2.17 2.03 1.47 1.29
h=1/63 2.78 2.76 2.08 1.55
h=1/127 3.01 3.67 2.81 2.07

Table 14: 2D model problem. Condition number of Pg ]{,NS EO-

by means of the software METIS, into M subdomains using a VO decompo-
sition. Then, in order to obtain a EO decomposition, each of the elements
in Qr has been assigned to one of the neighbouring subdomains. The SC
systems has been solved with a tolerance of 1071°.

In Table 15, it I' and it_BNN indicate the number of iterations to con-
verge using Pr and Pgyy, respectively. £lops_I" and f1lops_BNN refer to the
flops required to solve the problem, as indicated by the MATLAB command
flops. We have not included in the flops count the operations required to
explicitly form the SC matrix, and the coarse matrix of BNN. The Neu-
mann problems have been solved using a LU decomposition. The operations
needed to compute the LU factors have not been included in the flop count.

Few considerations are in order. BNN always outperforms Pr in terms of
iterations to converge; however, it is worth to note that the preconditioning
phase is much cheaper for Pr than for BNN, for what concerns both CPU-
time and memory storage. In fact, to apply the BNN preconditioner we have
to solve a Neumann problem on each subdomain. If a direct method is used,
we have to compute the LU decomposition of the matrix A;, while, in the case
of an iterative method, we usually have to provide a (local) preconditioner.
On the contrary, to apply Pr we have to solve just one Neumann problem in
Qr. Therefore, at least for this test case, Pr reveals to be computationally
cheaper than Pgyy.

For the parallel solution of Pr we have investigated two approaches:

1. The parallel direct solver for distributed matrices available in MUMPS
(see [1]). The bottleneck of this library for our application is that the
vector to be preconditioned must be entirely stored on processor 0 (as
the resulting preconditioned vector).

2. A nested iterative solver.
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1/h M | k(Sgo) 1it-BNN flops_BNN | k(Syp) it.' flops.I'
1/10 4 19.1 10 1.15e405 34.4 21  7.82e+04
1/10 8 27.5 11 1.86e4-05 47.0 28  1.32e+05
1/10 16 38.8 14 4.05e+05 56.1 29  1.80e+405
1/20 4 34.1 9 4.55e+05 80.5 30  4.09e+05
1/20 8 52.7 13 9.20e+05 109.5 33  5.46e+05
1/20 16 91.28 18 1.80e4-06 145.8 36  7.99e+405

1/20 32 | 111.8 16 2.94e+06 190.6 39  1.08e+06
1/30 4 59.6 12 1.91e+06 123.9 36  1.08e+06
1/30 8 85.82 15 2.62e+06 189.3 40  1.45e+06
1/30 16 | 1235 18 4.24e+06 254.6 45  2.06e+06
1/30 32 | 185.9 19 7.11e4+06 | 321.9 46  2.62e+06
1/40 4 71.9 10 3.65e+06 180.1 38  1.78e+06
1/40 8 128.2 16 9.90e+06 254.1 48  2.99e+06
1/40 16 | 168.2 19 8.31e+06 | 343.9 92  3.96e+06
1/40 32 | 230.1 20 1.33e+07 | 462.3 53  4.91e+06
1/40 64 | 3438 22 2.66e+07 | 608.7 o1  7.72e+06
1/40 128 | 463.8 21 5.72e+07 | 770.4 44 1.29e+07
1/60 4 125.1 12 1.65e+07 | 268.4 45  4.69e+06
1/60 8 187.7 16 1.82e+07 | 406.3 99  8.04e+06
1/60 16 | 255.2 20 2.31e4+07 | 522.0 o7  8.97e+06
1/60 32 | 357.8 22 3.37e+07 | T12.3 59  1.12e+07
1/60 64 | 539.4 22 5.6le+07 | 9714 99  1.53e+07

Table 15: Comparison of Pgyy (EO decomposition) and Pr (VO decompo-
sition). it_BNN and it_I" indicate the iterations to converge of Pgyy and Pr,
respectively, while flops BNN and flops_I' the MATLAB flops required by
the solution of the problem using CG.
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Our numerical results for medium-size problems suggest to solve Pr iter-
atively. In this case, several choices are available. We have considered the
following:

1. few steps of a simple iterative method, like Jacobi’s;
2. a nested Krylov accelerator (possibly with preconditioning).

Note that 2. may result in a non-constant preconditioner, leading PCG to
diverge (unless the linear system with Pr is solved up to machine precision).
For this reason, in the numerical experiments using a nested Krylov solver,
we have resorted to GMRESR [26], which allows variable preconditioning.

Tables 16 and 17 report the iterations required to solve up to a tolerance
of ||r]|/llrel] < 107° our model problem on (0,1) x (0,1) and on (0,1) X
(0,1) x (0,1), respectively. Different strategies for the solution of Pr are
investigated. In the table, Jacobi indicates two steps of the Jacobi method
applied to the linear system

PFZ =T, (25)

with initial guess zg = 0 (using PCG as external Krylov solver), and PCG
indicates that linear system (25) is solved using the PCG method, iterated
up to the fulfillment of the criterion

It — Przi|o

< 1072
[[x[2

(using GMRESR as external Krylov solver).
Table 18 reports the CPU-times, obtained on a LINUX cluster, composed
by 12 bi-processor Pentium IV.

5 Conclusions

The choice of a VO or EO decomposition largely affects both the numerical
algorithm and the data structures used in a parallel code. Often, a VO ap-
proach is preferred since the transition region {2 may be replicated on the
processor which holds €2; and provides a means of data communication. In
this way if the discrete operator associated to the matrix A has a compact
stencil (as it is often the case with finite elements or finite volume discretisa-
tions) the matrix-vector product may be easily carried out in parallel. The
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‘ h M ‘noprec Jacobi PCG ‘

1/128 2x1| 92 116 27
1/128 2x2| 110 93 26
1/128 3x3| 120 135 25
1/128 4x4| 134 94 25
1/256 2x1| 125 88 26
1/256 2x 2| 140 90 26
1/256 3 x3| 209 106 28
1/256 4x4 | 256 102 30
1/512 2x1| 142 105 28
1/512 2x2| 148 114 39
1/512 3x3| 374 163 40
1/512 4x4| 428 186 46

Table 16: Iterations to converge for the 2D model problem.

‘ h M noprec Jacobi PCG
1/16 2x1x1 22 13 11
1/16 2x2x2 26 16 11
1/16 4x4x4 33 21 12
1/32 2x1x1 35 19 15
1/32 2x2x2 51 24 14
1/32 4x4x4 57 29 15
1/64 2x1x1 51 26 16
1/64 2x2x2 65 34 15
1/64 4x4x4 70 40 17

Table 17: Tterations to converge for the 3D model problem.
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h M  noprec Jacobi PCG

1/128 2x1  6.32 8.06 3.30
1/128 2x2  3.29 2.92 1.27
1/128 3 x3  1.42 1.65 0.60
1/128 4x4  0.99 0.75 0.45
1/256 2x1 53.03 38.08  18.28
1/256 2 x2 24.09 16.51 6.41
1/256 3 x3 12.93 6.75 2.92
1/256 4x4  8.80 3.68 1.78
1/512 2x1 498.67 237.84 115.68
1/512 2x2 20875 184.36 75.39
1/512 3 x3 150.32 65.69 22.34
1/512 4x4 80.89 35.84  12.71

Table 18: CPU-time for the 2D model problem, obtained on a LINUX cluster,
with a tolerance ||ry||/||rol] < 1075.

VO technique is also the matter of choice of many parallel linear algebra
packages. Indeed, with a VO approach one may derive the local operators
directly from the assembled global matrix A, while adopting an EO decompo-
sition would require to work at the level of the (problem dependent) assembly
process. On the other hand, some quasi-optimal results have been proved for
EO SC matrices.

We point out that the given estimate for the condition number of the pro-
posed Dirichlet-Neumann VO preconditioner is less favourable than others,
like BNN, or FETTI; however:

e the method is one-level (no coarse space);

e the preconditioner is cheap: one has to solve only one Neumann prob-
lem. This problem is global and, at some extent, plays the role of the
coarse correction.

For a scalar implementation one can factorize and store Pr, while on a
parallel computer a strategy to solve the global problem with FPr is necessary.
Note that the linear system with Pr needs not be solved exactly.

To conclude, we have presented a new approach for the iterative solu-
tion of the SC system with many subdomains. Instead of defining a coarse
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space, we have decomposed the original domain in order to have one subdo-
main which is connected to all the others. This subdomain Qr is reduced
to the minimum width of 1 element, and it allows the definition of global
preconditioners. In particular, among the preconditioners here reported, the
best choice seems to be a DN preconditioner, where a Neumann problem is
solved in Qr. Consequently, the preconditioning step requires the solution
of only one linear system on a subdomain of a special shape. Numerical
tests confirm the good properties of such a decomposition, and comparison
with the balancing Neumann/Neumann preconditioner shows that, from the
point of view of computational cost, the approach advocated in this paper is
competitive.

References

[1] P.R. Amestoy, I.S. Duff and J.-Y. L’Excellent. Multifrontal parallel
distributed symmetric and unsymmetric solvers. Comput. Meth. Appl.
Mech. Eng., 184 (2000), 501-520.

[2] O. Axelsson. Iterative Solution Methods. Cambridge University Press,
Cambridge, 1994.

[3] T.F. Chan and T.P. Mathew. Domain decomposition algorithms. Acta
Numerica, 1994, 61-143.

[4] Y.-H. De Roeck and P. Le Tallec. Analysis and test of a local domain
decomposition. In Fourth International Symposium on Domain Decom-
position Methods for Partial Differential Equations, R. Glowinski et al.,
eds., pp. 112-128, SIAM, Philadelphia, 1991.

[6] M. Dryja, B.F. Smith, and O.B. Widlund. Schwarz analysis of itera-
tive substructuring algorithms for elliptic problems in three dimensions.
SIAM J. Numer. Anal., 31 (1994), 1662-1694.

[6] L. Formaggia, A. Scheinine, and A. Quarteroni. A numerical investiga-
tion of Schwarz domain decomposition techniques for elliptic problems
on unstructured grids. Math. Comput. Simulations, 44 (1994), 313-330.

[7] G.H. Golub and C.F. van Loan. Matriz Computations. 2% ed., The
Johns Hopkins University Press, Baltimore, 1989.

28



8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Hestenes and E. Steifel. Methods of conjugate gradients for solving
linear systems. J. Res. Nat. Bur. Stand., 49 (1952), 409-436.

L. Jenkins, T. Kelley, C.T. Miller, and C.E. Kees. An aggregation-based
domain decomposition preconditioner for groundwater flow. Technical
Report TR00-13, Department of Mathematics, North Carolina State
University, 2000.

G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for
irregular graphs J. Parallel Distrib. Comput., 48 (1998), 96-129.

C.E. Kees, C.T. Miller, E.ZW. Jenkins, and C.T. Kelley. Versatile mul-
tilevel Schwarz preconditioners for multiphase flow. Technical Report
CRSC-TRO01-32, Center for Research in Scientific Computation, North
Carolina State University, 2001.

C. Lasser and A. Toselli. An overlapping domain decomposition pre-
conditioner for a class of discontinuous Galerkin approximations of
advection-diffusion problems. Math. Comp., 72 (2003), 1215-1238.

C. Lasser and A. Toselli. Convergence of some two-level overlapping do-
main decomposition preconditioners with smoothed aggregation coarse
spaces. In Recent Developments in Domain Decomposition Methods,
L.F. Pavarino and A. Toselli, eds., pp. 95-117, 2002.

P. Le Tallec. Domain decomposition methods in computational mechan-
ics. Comput. Mech. Adv., 1 (1994), 121-220.

J. Mandel. Balancing domain decomposition. Comm. Appl. Numer.
Methods, 9 (1993), 233-241.

B.B. Mandelbrot. The Fractal Geometry of Nature. W.H. Freeman and
Company, San Francisco, 1982.

L. Paglieri, A. Scheinine, L. Formaggia, and A. Quarteroni. Parallel con-
jugate gradient with Schwarz preconditioner applied to fluid dynamics
problems. In Parallel Computational Fluid Dynamics. Algorithms and
Results Using Advanced Computer, P. Schiano et al., eds., pp. 21-30,
1997.

29



18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

A. Quarteroni and A. Valli. Numerical Approximation of Partial Dif-

ferential Equations. Springer-Verlag, Berlin, 1994.

A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial
Differential Equations. Oxford University Press, Oxford, 1999.

Y. Saad. Iterative Methods for Sparse Linear Systems. PWS, Boston,
1996.

M. Sala. Analysis of two-level domain decomposition preconditioners
based on aggregation. Submitted to M2AN Math. Model. Numer. Anal.

M. Sala. Domain Decomposition Preconditioners: Theoretical Proper-
ties, Applicatiqn to the Compressible Euler Equations, Parallel Aspects.
PhD Thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland,
2003.

M. Sala and L. Formaggia. Parallel Schur and Schwarz based precondi-
tioners and agglomeration coarse corrections for CFD problems. Tech-
nical Report 15, DMA-EPFL, Lausanne, 2001.

M. Sala and L. Formaggia. Algebraic coarse grid operators for domain
decomposition based preconditioners. In Parallel Computational Fluid
Dynamics — Practice and Theory, P. Wilders et al., eds., pp. 119-126.,
Elsevier, The Netherlands, 2002.

B.F. Smith, P. Bjorstad, and W.D. Gropp. Domain Decomposition.
Parallel Multilevel Methods for Elliptic Partial Differential Equations.
Cambridge University Press, Cambrige, 1996.

H. Van der Vorst and C. Vuik. GMRESR: a family of nested GMRES
methods. Numer. Linear Algebra Appl., 1 (1994), 369-386.

J. Xu and J. Zou. Some nonoverlapping domain decomposition methods.
SIAM Rewv., 40 (1998), 857-914.

30



