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Abstract

We study a non—overlapping domain decomposition method for the harmonic Maxwell
equations with a new kind of interface condition. We derive optimal transmission condi-
tions for the harmonic Maxwell system in R® following the procedure that M. Gander, F.
Magoules and F. Nataf have used for Helmholtz equation. We obtain in this way inter-
face conditions with second order tangential derivatives, which guarantee convergence for
both propagative and evanescent modes. We then propose two iterative solvers for the
Maxwell equations based on a domain decomposition procedure where such conditions are
enforced on the interface. Some numerical results for a two domain decomposition show
the effectiveness of the optimized interface conditions.

1 Introduction

The numerical solution of the time-harmonic Maxwell system over a large three-dimensional
domain is a difficult task. The linear system resulting from the finite element approximation
is complex and the matrix is neither hermitian nor definite. In order to construct an efficient
iterative method to solve this system, domain decomposition can be used. We concentrate
in non overlapping domain decomposition methods. The idea is to decompose the domain
into several non overlapping subdomains and to solve in parallel the local problems. This
procedure leads to an iterative method that converges to the solution of the original problem
if the solutions in the subdomains are related by means of suitable boundary conditions at the
interface. The performance of the method depends drastically on the choice of this interface
conditions.

The earliest non overlapping domain decomposition method for the time-harmonic Maxwell
system was introduced in [5] with an interface condition of Robin type. For this algorithm
it is proved that the local solutions converge to the corresponding restrictions of the global
solution weakly in the spaces of complex vector functions of L? with curl in L?. In his Ph.D.
Thesis, Chevalier [2] proposed a modification of the Robin interface condition by adding a
second order differential operator along the interface. For this new algorithm there is not an
accurate convergence analysis. Another interface condition involving a second order tangen-
tial operator is analyzed in [3], where some numerical results are given for a model problem
with conditions of radiative type on the boundary. A Fourier analysis shows that, for the
interface conditions used in these three algorithms, the iteration map is not a contraction for
evanescent modes.
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Using this Fourier analysis and proceeding as M.J. Gander, F. Magoulés and F. Nataf
for Helmholtz equation (see [6]) we identify two families of interface conditions that lead to
iteration maps that are contractive for both propagative and evanescent modes. Both families
involve a second order tangential differential operator. The first family of interface conditions
depends on a complex parameter p € C, while the second one depends on two parameters,
one real (r € R) and one purely imaginary (ig, ¢ € R). We will refer in the sequel to the
first family as to symmetric interface conditions, and to the second one as to unsymmetric
interface conditions. The parameters p € C, and r,q € R can then be optimized, namely
they can be chosen in order to minimize the convergence rate of the corresponding iterative
procedure.

The paper is organized as follows. In Section 2 the model problem in R? is solved by
means of an additive Schwarz method in a very general framework: by means of a Fourier
analysis, we derive two families of interface conditions which guarantee convergence for both
propagative and evanescent modes. An optimization is then performed on the parameters
describing such families. In Section 3 the proposed domain decomposition algorithms are
detailed for a two-domain decomposition at both the continuous and the discrete level. In
Section 4 the algorithms are validated by some numerical tests. Finally, in Section 5, a survey
of the non-overlapping domain decomposition algorithms for the harmonic Maxwell system
previously appeared in literature is given: the interface conditions in these algorithms can
be easily included in the general framework we introduced in Section 2, and are compared
numerically with the conditions we propose.

2 Optimized interface conditions for a model problem in R?

The harmonic solutions of Maxwell equations are complex valued fields E and H such that
the following fields

E(x,t) = Re(E(x)exp(iwt)) ,

H(x,t) = Re(H(x)exp(iwt))

satisfy the Maxwell system. The positive number w is called the pulsation of the harmonic
wave. E and H satisfy the time-harmonic equations

curl E —swuH =0

curl H + sweE = J (1)

where J is the amplitude of the applied current density.
The model problem we consider is the second order time-harmonic Maxwell equation
obtained from (1) by eliminating either the magnetic field H or the electric filed E. It reads

curl curl u — w?u=F inQ, (2)

where, for sake of simplicity in notations, we have normalized both the electric permittivity
¢ and the magnetic permeability p (i.e. ¢ = p = 1). When u stands for the electric field,
F :=iwJ; on the other hand, if u is the magnetic field, F := curl J.

We present the analysis in the domain © = R® with the radiation condition

lim r(curl u X n + jwu) =0 (3)
T—00

where r = |x|, n = x/|x]|.



We decompose the domain in two non-overlapping subdomains Qp := R? x (—o0,0)
and Q7 := R? x (0,+00) and we set I' := Qp N Q7. Since, as it is well known in domain
decomposition literature, an iterative algorithm of Schwarz type without overlap does not
converge when Dirichlet interface conditions are used, we consider the following iterative
algorithm with more general interface conditions: given u% and uf, for j > 0 solve

{ curl curl uj+1 w? %4-1 F in Qp

curl w;"' x ng + Sp( Hl) = curl ul, an—i—SB(ugw,T) onT,
(4)

{ curl curl T ouQujf+1 F _ ' in Qp

curl uli™ x ng + ST(u%fT) =cwrl up x nr + Sr(up,) onT.

Here Sp and St are two linear operators acting in the tangential direction on the interface
and uLT = ng X uL X ng = nr X uL x np for L = B,T. Tt is then easy to see that, if
ker(Sp + Sr) = {0}, we recover at convergence the solutlon of the single domain problem.
Since the problems involved are linear, it is enough to analyze the convergence to the zero
solution for the homogeneous system. Note that since curl curl v + Vdiv v = —Av, the

. i+1 i1 . .
homogeneous equation curl curl u}™" — w?ul™ = 0 is equivalent to

—Au]L+1 — wQuJL+1 =0 inQr

: 5
divult' =0 inQ, L=B,T. (5)

We perform a partial Fourier transform in the z and y directions, that we denote with F,
and we call k1 and ko the corresponding dual variables. The transform F is defined as

Fru(z,y,2) — Uk, k2, 2) // z,y, z)e”k12tk2y) g gy,
R2

Then we obtain

( 2’*]+
8az2 + (kK + k3 — )ai;l =0 (k1,k2) €ER2, 2 <0
—iki W — kol + O,00 5 =0 (k1,ks) €R2, 2 < 0

F(curl u];l) X ng + O'B(kl,kg)(u]B+,r1)
= .7:(0111‘1 uT) X ng + O'B(kl,kQ)(uTT) (kl,kg) € RQ, z=0,

27 +1 .
_65?2 +(k%+k%_w2)ﬁ%“+1:0 (k1,k2) €ER2, 2> 0

. ~7+1 . ~7+1 ~7+1
—'LkluJT,l —zkgu]TQ + 0, JT3 =0 (k1,k2) €ER?, 2> 0

F(curl uJ;l) x nr + or(k1, kQ)(uJT+T1)
= F(curl u;) x np + aT(kl,kg)(uBT) (k1,ko) €ER?, 2=0,

\

where o, denotes the symbol of the operator St.



The general solutions of —a;zﬁf + (k? + k2 —w?)ur, =0, (L = B,T) are

ﬁL(kl,kQ,Z) = aL(kl,kg)G/\Z + bL(k‘l, k‘g)ei)‘z

where A = A(k1,k2) = \/k? + k3 — w? denotes the root of the characteristic equation which is
either real and positive or purely imaginary. Since the radiation conditions exclude growing
solutions as well as incoming modes at infinity we obtain that bp(ki,k) = ar(ki, ko) = 0,

hence
Up(k1, ko, 2) = ap(ky, k2)et?
ﬁT(kl, k‘g, Z) = bT(kl, kg)ef)‘z.

From the transformed divergence free conditions —ikiur, 1 — ikotr, 2 + 0,Ur,3 = 0 we get

Xupsz = Oupz = i(kiupy + kaUpya)
—Aurz = Ourg = i(kiury + koury2),
thus, for A # 0,
N 7 - - T, ~
Uup3 = X(kluB,l + kotp2) urz = —X(kluT,l + kol 2).

This means that we can write F(curl uz) X nz, in terms of the tangential components on T',
(@r,1,ur,2). In fact we can prove the following result.

Lemma 1 Let u;, (L = B,T) be a solution of
—AuL — w2uL =0 mn QL

div uy, = 0 in QLa
lim, o r(curl uy, X n+ iwuy) =0,

and let U, := [ EL’I ] Then
ur2

2
AF(curlug) X ng, = [ UL —w'UL ]

0

where R = R(k1,k2) is the matriz

. k2 —k1ko
Re=| 2 TR

Proof.- This result can be found in [2]. We include here the proof for completeness. We
consider the case L = B but the proof is analogous for L = T.

Since
[ —ikoUp 3 — % kyz(kl?/iBJ + koip2) — AU 2
F(curlup) = aaaz,l + ik1lp 3 = | M, — le(klﬂB,l + kolip o)
| —ik1Upp +ikolip | —ikiup o + ikoUp 1




we easily conclude

Mgy — ki(kilip + kolip o) (k3 — w?)up — kikotip o
MF(curlug) x ng = | —ka(k1ip1 + kolipo) + NUpy | = | —kekitip1 + (k2 — w?)lp2
0 0
O

Remark 1 We recall that for a function q:R?> — R?, curl q = % — %—qyl and

i(aqz _ 3(11)
oy \ Ox oy
curl curl q =
_9 (3(12 _ 3(11)
oz \ o oy

It is then easy to see that
RUL = F(curl curl uy, ;).

Since the third components in the above expressions vanish identically, we can express the
action of one iteration of the algorithm (6), in terms of Up and Urp, as

LRUL — UL + 0pU%™ = ~L(RUJ - w?U) + 05U
LRUM — 02Ul + o UL = —L(RUY), — w?U%) + 07U,
If op and o7 are such that the matrix (R — w?I + A\oy) is invertible for L = B, T', we have
UL = (R— w?T + Aop) ' (—R + w2l + Aop)U},
UL = (R — w2 + dor) (=R + w2l + Aor) Ul
Given U% and U%, if we let
Mp := (R — w*IT + Xog) ' (—R+ w?I + M\oB)(R — w’I + dor) ' (—~R + w’I + \oT)
and
Mr = (R — I+ Xo7) ' (—R + W?T + Xo7)(R — w?I + Aog) " (—R + w?T + Aog),

we can write _ _
U = MLUY U = M1 UY.
Since the matrices Mg and My share the same spectrum as a function of ki and ko,
we can define the convergence rate of the algorithm as being the spectral radius of Mg (or,
equivalently, Mr), namely

p(k1, k2) == p(Mr) = p(Mp).
Thus, the sequence (Ujé, UZF) converges to zero if and only if p < 1.
Notice that if og = o then Mg = My = N? with N = (R—w?I+ o) }(—=R+w?I +\o).
Moreover, choosing op = or = }(R — w?I), the operator R — w?I + Aoy, = 2(R — w?I) is



invertible if and only if w # 0 and w? # |k|? := k? + k3: in this case p(M7) = p(Mp) = 0,

and the algorithm converges in two iterations. Unfortunately, due to the presence of the

square root in the symbol, this choice corresponds to non-local operators Sy which cannot

be used in practice in the real domain where computations take place. In order to overcome

this problem we replace A with a constant, in other words, we take o7, = pLL(R — w?I) with

pr, € C independent of k1 and ks. In this way, for L = B,T, St is the second order operator
1

Sy, = —(curl peurl p — W?I) (7)
pr

. —
where curl r is the surface scalar curl operator and curl r the surface vector curl operator.
With this position, the iterative matrix on the interface is

—pB+ A —pr+ A
pB+A pr+ A

Mp = My = 1, (8)
and the convergence rate is in fact a function of |k|?, which depends only on the choice of the
parameters pgp and pr. In the remaining part of the section we present two suitable choices
for such parameters.

2.1 Symmetric interface conditions

The most natural choice is to take pg = pr = p € C, which amounts to use the same operator
in the interface condition on both subdomains: we thus refer to this choice as symmetric
interface conditions. With our positions, owing to (8), the sequence (U%,U7) converges if

and only if
—p + A2

oo k) = |27

On one hand, for evanescent modes (|k|? > w?), we have that

—p+ X2 (-Rep+ VIk]> = w?)?2 + (Im p)? _ |p|* + |k]? — w? —Z’Rep\/|k|2—w
pP+A (Rep+ k2 — w?)2 + (Im p)®>  |p|2 + || — w2 —I—2Rep\/|k|2—w

if and only if Rep > 0.
On the other hand, for propagative modes (|k|?> < w?), we similarly have

‘—p+>~ 2 _ (Rep)’ + (~Imp+ /w? ~ \k >)? _ I +w? — [k]* — 2Zmpy/w’® — [k’
p+A (Rep)?2 + (Imp+ y/w? — |k]?) |p|2 + w? — |k|2 + 2Zmpy/w? — |k|?

if and only if Zmp > 0.
Notice, however, that for |k|2 = w? the convergence rate p(p, |k|) = 1 for all p € C.
This analysis leads us to consider algorithm (4) with the second order interface conditions
( curl u?’l X ng+ %(curl reurl p — wQI)(ung)
— 1 J —1) 1 27 J
=curluj x ng + p(cur reurl r — w?I)(uz )
curl " x ng + %(cur] reurl p — wQI)(u%?LTl)

= curl u}; X ny + p(curl reurl p — wQI)(u%’T).




on I'. The complex parameter p is chosen with Rep, Zmp € RT. In the following we call
Cr:={qeC|Req>0,Imgq>0}.

The best choice of p is the one that gives a minimal convergence rate. As we have noted
before, if |k|? = w? then p(p,|k|) = 1 for all p € CT. However, following [6], we can restrict
ourselves to consider spatial frequencies such that |k| € I := (m,w_) U (w4, M) where w_
and w4 are parameters to be chosen such that w_ < w < w4, where m denotes the smallest
value of |k| relevant to the subdomain and where M is the largest value of |k| supported by
the numerical grid. This largest frequency is of order 7 /h. Hence we choose p°P' as being the
solution of the following optimization problem

opt

= min ma k
ps’ = min max|o(p, [k

that coincides with the one analyzed in [6], whose solution is given by
[(w? — w2) (M2 — )]
\/5 )

Rep®® = Im p°P' =

(10)
and provides the convergence rate
w-w2 \ V4 rw?ew? 12
Opt B 1_\/§(M2_w2) + (M2_w2>

Ps = a2\ 1/4 2, 2\1/2°
1+v2 (55) |+ (5ns)

2.2 Unsymmetric interface conditions

Another opportunity stems from the expression of matrices Mg and My in (8), and from the
fact that X is either real and positive or purely imaginary: choosing one parameter real and
positive and the other one purely imaginary (with positive imaginary part), the reduction
factor is strictly smaller than 1 for all modes. To fix the ideas, if we take, for instance,
pg=r €RT, and pr = iq, ¢ € RT, the reduction factor is given by

—r+ A —ig+ A
T+ 'zq + (11)
r+A dig+ A

(and we claim that the inverse choice provides the same result). We immediately have, for

propagative modes

p(r,q,|k|) =

-+ A —ig+ A
=1 — <1, 12
T+ A g+ A (12)
as well as, for evanescent modes
—r+A —iq+ A
<1 — | =1 13
r+ A g+ A (13)

The algorithm we are thus led to consider is based on the following interface conditions on I'
(recall that (iq) ' = —i/q)
curl uf;l x npg + L(curl peurl p - wQI)(ung) .
= curl u}, X np + L(curl peurl p — wQI)(u%wJ)
curl u];l X np — %(curl reurl p — wQI)(uJ;,';)

= curl u% X ny — 2(curl reurl t — wQI)(u%,T).

7



As this choice entails the use of different operators in the construction of matching conditions
on the two sides of the interface, we refer to it as unsymmetric interface conditions.

Again, the best choice of the parameters pp = r and pr = iq is the one that gives a minimal
convergence rate. Once again, if |k|?> = w? then p(r,q,|k|) = 1 for each r,q € R. However,
in this case, owing to (12) and (13), an optimization procedure for the parameters can be
performed separately on the two intervals Iy = (m,w_) and Iy = (w4, M), where m, M, w_
and w, are the ones introduced in the previous section. The min-max problem we are dealing
with is thus decoupled and reads

) —r+ A . ¢ d
min max or propagative modes
. reR* |klely | T+ A propag
N (15)
. —ig+ A
min max |——— for evanescent modes
g€R+ |k|ela | iq + A

which has an elegant analytical solution, given by the following lemma.

Lemma 2 The solution of the minimization problem (15) is given by

1/4 )
] for propagative modes

for evanescent modes,

qopt _ [(wi N w2) (M2 . w2)] 1/4

and the optimal reduction factor of the algorithm is given by

(w2 _ wg)1/4 _ (w2 . m2)1/4
(w2 — w2)1/A 4 (w2 — m2)1/4
s = (16)
(M2 _ w2)1/4 _ (w_2’_ _ w2)1/4
(M2 — w?)1/% + (“’3— —Ww?)l/4

for propagative modes

for evanescent modes

Proof. We outline the solution for propagative modes, the solution for evanescent ones being
similar. With the change of variables

SN

we are led to study

) T —r
min max )
réRtzel- |x +r
where I~ = (y/w? — w?, Vw? — m?) = (0, 1). Since the function ¢(x,r) = 2=~ is monotone
increasing for z € I~, ¢(0,7) = —1, and limy_,, ¢(x,7) = 1, the maximum of the modulus

is attained on the boundary of the interval. The min-max problem reduces thus to

|

rg—T
To+T

r1 —T
1+

reR+ ’

min max {



We thus have that the optimal parameter for propagative modes belongs to the interval
(o, 1), and is given by

roP* = | froz) = [(w2 —w?) (w? — m2)] 1/4. (17)

For evanescent modes, in a similar way, the change of variable z := /|k|?> — w?, reduces to

study the min-max problem on Rt x I'", where I = (y/w? — w?, vV M? — w?), whose solution
is given by

1/4
¢ = (@3 —w?) (M2 - ?)] (18)
So far, a simple algebra leads to the expression of the optimal reduction factor (16). O

Convergence rate for different interface condition
1 T T T T T

Convergence rate
o o
o o

T T

o
=
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Figure 1: Convergence rate (as a function of |k|) in Fourier space of the optimized Schwarz
algorithm with symmetric (solid line) and unsymmetric (dashed line) interface conditions.

We report in Figure 1 the convergence rates p(p°P', |k|) and p(r°P*, ¢°P*, |k|).

3 Two domain decomposition
In the following we consider a bounded domain © C R? and the boundary value problem

curlcurlu —w?u=F inQ
curluxn+iwu=0 onTp (19)
uxn=20 on I'p.

where T'r and I'p are two disjoint open subsets of 9Q such that Tg UTp = 99.

We decompose the domain €2 in two non overlapping subdomains ;, [ = 1,2. We set
' = Q1 N Q9 and for simplicity we assume that T NTg = (. Let us set I'r; =T'r N oY and
I'p; =Tp N OSYy. We denote n; the unit normal outward vector on 0 N T.



We consider the following iterative procedure:

( curl curl 7+1 w? JH =F in O
curl u Uxm + zwuﬁ'1 =0 onI'g1
< u71+ Xnp = 0 onl'p1
curl W/t x n; + curl reurl p — w?I witt
1 1 T .
L = curl u2 Xmy+ - (curl reurl T — sz)(u%,T) on I
( curl curl w —w uéﬂ =F in Q9
curl u2 ' ny + zwu =0 onIgo
< u%“ X n, =0 on PD’Q
curl ul ! x ns + curl reurl p — w?I ult
2 2 T
— curl W/ x ns —|— curl reurl p — w2l w on T’
1 1,7

where either p; = py = p°t, or p; = r°P!, and py = i¢°P', according to the choice of symmetric
or unsymmetric interface conditions. By introducing the new variables
. . 1 . )
X = curl v} x ny + p—l(curl reurl p — wQI)(u%’T)
and

. . 1 ; .
X := curl w} x ny + — (curl peurl p — w?I)(u) )
D2 ’

the algorithm becomes

,

curl curl ujle w? Hl =F in O
1
curl /™ x n; + zwuﬁ' =0 onTp;
) . A ;
uler xn; =0 onTp

curl u{+ X+ oo (curl rcurl p — wQI)(u]ltl) = )\{ on T

curl curl uw) ™t —w? %H F in Q9
) curl u Ly ns + zouuﬁ'1 0 onI'go
‘%—’_1 Xng =0 on FD’Q (20)

curl ug+ Xmy+ - ((:url reurl o — wQI)(u];Tl) = )\g on I’

. p— g

/\314—1 _ )\] (m + p12) (curl' reurl v — wQI)(u%tl)
. p—

)\%ﬂ = —A] (p1 + p%) (curl peurl r — WQI)(ujltl)'

3.1 Finite elements discretization

We will employ a curl-conforming finite element approximation of the problem. We can use
the first family of Nédélec finite elements in a tetrahedral mesh or in a hexaedral mesh (see

Nédélec [9]). Other possibles choices are the finite element families introduced and analysed
by Nédélec in [10].

10



Let {Tn}r>0 be a regular family of finite element meshes of €2 of elements of maximum
diameter h such that each K € 7j, is contained either in Q; or in Q5. We denote Tip the
restriction of 7, to , [ =1,2.

Let Py, £ > 1, be the space of polynomials of degree less than or equal to k£, and denote
by Pj the space of homogeneous polynomials of degree k. We set

Y = {p € (PZ)?" p(x) ‘X = 0} , Ry := (Pk—1)3 SIS

Notice that (Px_1)® C Ry C (Pg)3. In order to discuss also finite elements built on hexaedra,
we also need the polynomial space

Qn1,na,ns = {polyomials of maximum degree n; in 1, ny in z2, and n3 in z3}.
If {Th}n>0 is a family of tetrahedral meshes, we employ the finite element spaces
Nllfh = {vy € H(curl ;) | VK € R,V K € Tip}.

On the other hand, if {7, }r¢ is a family of hexaedral meshes, then the curl-conforming finite
element space that we employ is given by

Nllfh = {vp € H(curl;€%) | vpx € Qr—1kk X Qi 1,6 X Qrpp—1 V K € Tip}
Now we consider the spaces
Xl,h = {Vh € Nl]fh | vpxn =0 in PD,l}-

A mesh 75, of €; induces a mesh on I' in the sense that the faces of the elements in 7;
that lie on I' obey the usual finite elements meshing constraints. Since we have matching
grids in the interface, 71, and 735 induce the same partition of I'. Moreover the tangential
component of an element of IV, l’fh on I' lies in the appropriate two—dimensional analogue of the

set Nl’fh (that is just the rotated of the Raviart-Thomas finite elements space). Let us denote
Y}, the finite elements space induced on I' by the tangential components of functions of N .

Let {wi}f\’:ll be a basis of X; j, and {q;}{-; the corresponding basis of ¥},. For simplicity we
assume that these basis are such that q; = wy,_n4, for i =1,...,n, 1 =1,2. We consider
the matrices 4;, I = 1,2 and S with entries

(A)ij = /Q (curl wé- - curl wl — w2w§- -wh) +iw W;,T . wéﬁ 1<4,j7 <N
1 TR,

Sij = /(curl rq;curl rq; — wij ‘q) 1<i,j<n.
T
Moreover we conside the matrices
B eR"NM B =1[0 I

where 0 denotes the n x (N; — n) matrix with all zero entries, and I is the n x n identity
matrix. By and Bs are the trace operators of domains 21 and 5 on the interface I'. Finally
let us consider the vectors

(fl)]-:/ F-wh 1<j<N.
97

Then, the discrete analogous of algorithm (20) reads:

11



Algorithm 1 Given A? € C*, for 5 >0 solve
1 . .
(A + EBZTSI)UlJ“ = f, + B/ A],
forl =1, 2 and then set

o .
M7 =M+ (& +4) sBuft,

M =M+ (4 L) sl
Denoting R; = A; + pilBlTSl and g; = Rflfl this algorithm can be rewritten as

A=A+ (p% + p%) $By(g2 + Ry ' BT A))

(21)
A = N+ (3 + ) SBi(er + BB A),
which is a fixed point iteration to solve the linear system
1 1 T p-1
I I— (p—l + p—2) SB; Ry By Ay 11 SB1g1
-Gt
(1 1 Tp—1 A 1 2 SB

1-(&+%)sBIR "By I 2 282
(22)

As done in [6], instead of solving the fixed point iteration (21) one can use a Krylov subspace
method directly on the substructured problem (22). This corresponds to use the optimized
Schwarz method as a preconditioner for the Krylov subspace method.

Algorithm 2 Solve (22) using GMRES.

Notice that when the GMRES method is applied to the linear system (22), each multipli-
cation of the matrix
1,1 T p-1
e I I—(p—1+p—2>SBQR2 By
) 1 1 T p—1
T- (& +%)SBIRT' By I

by a vector requires the solution of two local problems of the type Rix = b, [ =1, 2.

4 Numerical Experiments

In this section we validate the interface conditions proposed in the previous sections by means
of some numerical tests. For the implementation we have used MATLABTM 6.5. We compare
the performance of the two type of interface conditions for both algorithm 1 and 2. To solve
the non hermitian linear systems of the form Rjx = b, [ = 1,2, we use the COCG algorithm
proposed in [13].

The computational domain throughout this section will be

Q=10,2] x [0,1] x [0,1],

12



in which we consider the following problem:

curl curlu — w?u=F in [0,2] x [0,1] x [0,1]
uxn=0 on {y =0}, {y=1}, {z=0}, {z=1} (23)
curluxn +iwu, =0 on {z =0}, {z =2}.

We take w = 57. The function F is chosen such that the exact solution u is the gradient of
the function ¥ = z(2 — z)y(1 — y)z(1 — 2).

We employ curl-conforming linear finite elements in a uniform hexaedral mesh and we
perform the computations with the optimized parameters p°P*, r°P*, and ¢°P' as defined in
the previous sections.

4.1 Influence of the mesh size

In this first series of tests we decompose 2 into two equal subdomains, Q; = [0, 1]x[0, 1]x[0, 1],
and Q9 = [1,2] x [0,1] x [0, 1].

In Table 1 we report the number of iteration required to achive a residual vector of norm
less than 10~7. We compare the four algorithms for different meshsizes. In Figure 2 we

h Iterative S | Iterative NS | Krylov S | Krylov NS
1/8 35 36 9 14
1/12 36 41 11 17
1/16 55 63 12 19
1/20 7 111 12 21

Table 1: ITteration counts for different algorithms and different meshsizes

report the convergence histories of the four algorithms for a fixed mesh size, and in Figure 3
we report the convergence histories of each algorithm with respect to the mesh size.

The most efficient method is the Krylov one with symmetric interface condition. The
speed-up of the Krylov accelerations is remarkable for both symmetric and unsymmetric
interface conditions (no wonder in that). Evidence is that the symmetric interface condition
(i.e. the use of the same operator on both sides of the interface) provides a faster convergence,
which becomes more evident for small values of h (see Figure 2).

4.2 Influence of the position of the interface

In the previous tests the two subdomains where symmetric with respect to the interface. In
the second series of tests we compare the performance of the four algorithms when the position
of the interface changes. We choose h = 1/12, and we consider two different positions of the
interface, at x = 1/3, and = = 2/3, yielding the following decompositions:

Q =1[0,1/3] x [0,1]%, Qo =[1/3,2] x [0,1]?

and
0= [Oa 2/3] x [Oa 1]2, Qg = [2/352] X [O’ 1]2'

13



h=1/8 . h=1/12
10 T 10 T

—o— Krylov NS

10° - 10° -

,_.
S,
"

e,

residual (log)
5

residual (log)
-
5

,_.
A
"

e

10° - 10° -

10 . . . . . . . 1070

h=1/16 h=1/20

10 10

Iter S

—&— Krylov NS

10° + 10°

H
5

¥
107

10 - 10 -

residual (log)
residual (log)

H
5

10° -

10° - 10°

10
L L L L L L L 10 L L L L L L
o 10 20 30 40 50 60 70 80 o 20 40 60 80 100 120 140
iterations iterations

10

Figure 2: Convergence history of the different algorithms for different mesh sizes: from top
left h=1/8, h=1/12, h=1/16, h = 1/20.

Q4 Tterative S | Iterative NS | Krylov S | Krylov NS
[0,1/3] x [0, 1]? 37 43 15 17
[0,2/3] x [0, 1]? 36 41 14 17

[0,1] x [0, 1]? 36 41 11 17

Table 2: Iteration counts for different position of the interface, h = 1/12

We report in Table 2 the iteration counts for the four algorithms, which appear to be quite

insensitive to the position of the interface, and, consequentely, to the size of the subdomains.
We stop the iterations when the residual error has norm less that 10~7. Only the Krylov
algorithm with symmetric interface conditions shows a certain increase in the number of
iteration, which is in any case low: this algorithm remains in fact the fastest one.

5 Other interface conditions used in DDM methods for the
harmonic Maxwell’s system

In this section we give a brief survey of other interface conditions proposed in literature for the
harmonic Maxwell system, always in the framework of non—overlapping domain decomposition
methods. We apply to these interface conditions the analysis we made in Section 2 and we
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Figure 3: Convergence history of the different algorithms with respect to the mesh size:
from top left Iterative Symmetric, Iterative Non-Symmetric, Krylov Symmetric, Krylov Non-
Symmetric

note that for all of them the iterative procedure (6) fails to converge, in the presence of
evanescent modes. We will keep throughout this section the notations used in Section 2.

B. Despres - P. Joly - J.E. Roberts [5]

The earliest non—overlapping domain decomposition algorithm for Maxwell system has been
proposed in [5], where the interface operator is given by

SB = ST = jwl. (24)

In [5], the authors, considering a decomposition into an arbitrary number of subdomains and
a boundary condition of radiative type at finite distance, show that the proposed algorithm
converges weakly in H(curl ,Q;), (j = 1,..,N) to the solution of the single domain problem,
and that u} and curl u} X n converge to u; and curl u; X n respectively. The convergence
properties of this algorithm depend heavily on the boundary condition, as it allows to control
the energy on the outer boundaries by means of the energy on the inner ones.

For the interface operator (24) the Fourier analysis shows that the iterative procedure (6)
converges only for propagative modes, while for the evanescent ones the convergence rate is
exactly 1.
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In fact, in this case we have Mg = M = N2, where

1 k¥ — k3 2kiko

Ne——"
(A +iw)? | 2kiks k3 —kF |’

and the eigenvalues of N are
N i
A +iw)?’

If |k|? < w? then A = i\/w? — [Kk|? and
+ [k[? w?
| = < <1
(Vw? = k? +w)? (Vo - [k* +w)?
On the other hand if |k|? > w? then ) is real and

| :t‘ _ |k|2
A2 4+ w?

Thus, the algorithm (4) with the interface conditions proposed in [5] does not converge for
evanescent modes. However, the boundary condition (a radiation at finite distance) considered
by the authors does not allow evenescent modes to come into the system: thus, the above
result is not in contradiction with their work.

P. Chevalier [2]

To improve the convergence of the algorithm introduced in [5], P. Chevalier proposed in his
thesis [2] the use of the interface operator

Sp = St = iwl + (curl rcurl r, (25)

¢ € C being a complex parameter to be tuned, which consists in adding to Després’ interface
conditions a space derivative of second order in the direction tangential to the interface,
following what is done in literature for Helmholtz equations (see for instance [2] and [6]).

In [2] there is neither an accurate analysis of the algorithm, nor a clear tuning of the parameter
¢, and we show here that, differently from the case of Helmholtz equation, the use of the second
order transmission condition does not guarantee convergence for evanescent modes.

In fact, we have again Mp = My = N?, with

N = [R—w? T+ AR+ iwl)] =R+ w?I + A((R +iwl)]
= [(M + 1R+ (idw — I A = )R+ (idw + w?)I].

If AC # +1

Idw — w?

A+ 1

X -1

= I|.
A +1

I]*l [R iIdw + w?

[R+ v
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Setting a = ”}\"E_“l’z and b= ”}\“&t‘f,

N = 351(R+al) H(R+DD)

AC—1 1 k% +a k’lkz k% + b —klkg
AHLalkP+a® | fiky k24a || —kiko K2 +D

NS k2b+ k3a+ab —kiko(a —b)
MATalkP+a® | _kiko(a —b)  kPa + k3b+ ab

k‘%b + k%a + ab —k‘lkz(a — b)
—kiko(a —b)  kla+k3b+ab
v~ = b(|k|? + a), hence the eigenvalues of N are

The eigenvalues of the matrix [ ] are y© = a(|k|? + b) and

e L o I e N
YA AT VANTE D) Wy

It is now easy to observe that when A is real |p~| = 1, and the algorithm does not converge
for evanescent modes.

F. Collino - G. Delbue - P. Joly - A. Piacentini [3]

The Fourier analysis in Section 2 (Lemma 1 and Remark 1) shows that the operator linking
nxuxntocurl uxnis

T (curl ux n) + (w? — curlpeurl P)n x u x n = 0, (26)

where 7 is a pseudodifferential operator corresponding, in the Fourier space, to the multi-
plication by A(|k|) = 1/|k|? — w?: due to its non-locality, this operator cannot be used in
practice.

Another interface condition, based on a zero-th order Taylor expansion of the function A(|k|)
in the neighborhood of |k| = 0, has then been proposed in [3], where the interface operators
are given by

. a —
Sp=8r=—iws(I+ —curl peurl r)- (27)
w
Taking o = —1 this interface condition coincides with our symmetric interface conditions for

p = zg If B € R then Rep = 0 and we have from Section 2.1 that p = 1 for evanescent

modes.

Notice however that the authors assume /w? — |k[? ~ w, which amounts to take into
account, at once, only propagative modes, and, among them, only the ones with very small
space frequency. Our approach differs a fortiori from this latter one, since we do not impose
any restriction on the spatial frequency |k|2.

Numerical experiments

In Figure 4 we compare the convergence history of the iterative procedure with the following
interface conditions: optimized symmetric (i.e. (7) with pr = pp given by (10)), optimized
unsymmetric (i.e. (7) with pp = r and pr = ig, r given in (17) and ¢ given in (18)), the
interface condition (24) and the one introduced by P. Chevalier (25) with { = i/2w. We apply
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them to the model problem (23) and also to a similar one with a radiation condition on the
whole boundary
curl curlu — w?u="F in Q =1[0,2] x [0,1] x [0, 1]
(28)
curluxn +iwu, =0 on 09).

Problem (23) h=1/12

, Problem (28) h=1/12
10 T T

10°

—5— Optimized Symmetric
—— O Non
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Figure 4: Convergence history for different interface conditions. Problem (23) (left) and
Problem (28) (right): Iterative algorithm.
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Figure 5: Convergence history for different interface conditions, Problem (23): Krylov algo-
rithm.

We plot the residual for the first 80 iterations since its norm is greater that 10-8. For
the model problem (23) the interface conditions (24) and (25) do not converge (note that the
boundary condition in (23) differs from the one considered in [5]). For the model problem
(28) the convergence of the four algorithms is very slow. In this case the fastest one is the
one that uses the optimized unsymmetric interface conditions.

Finally, in Figure 5 we compare the convergence histories for the different interface condi-
tions when the Krylov algorithm is applied to problem (23). Notice that none of the interface
conditions (24) and (25) has been previously used in such a framework. All algorithms con-
verge, and the ones with optimized conditions are faster. In this case the fastest one is the
one that uses the optimized symmetric interface conditions.
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6 Conclusions

We proposed and analyzed two families of second order interface conditions to be used in the
framework of non-overlapping domain decomposition methods for the time-harmonic Maxwell
equations. These conditions have been derived by means of a Fourier analysis: the first family
depends on a complex parameter while the second family depends on two real parameters.
These parameters have been optimized, by minimizing the convergence rate of the method.
The resulting interface operators have been applied to two different algorithms in the case
of a two domains decomposition: the first algorithm is an iterative procedure of fixed point
type and the second one is a Krylov subspace method. The numerical solution of some test
problems has been addressed in order to validate the two algorithms: in both cases we ob-
tained a convergent method. In particular, the Krylov subspace procedure, based on GMRES
iterations, appears to be very efficient. Finally, we compared these optimized interface condi-
tions with other conditions proposed in literature: evidence is that the optimized conditions
provide more efficient and robust algorithms.

References

[1] A. Bossavit, Computational Electromagnetism. Variational Formulation, Complementarity, Edge Ele-
ments, vol. 2 of Electromagnetism Series, Academic Press, San Diego, CA, 1998.

[2] P. CHEVALIER, Méthodes numériques pour les tubes hyperfréquences. Résolution par décomposition de
domaine, PhD thesis, Université Paris VI, 1998.

[3] P. CoLLINO, G. DELBUE, P. JoLY, AND A. PIACENTINI, A new interface condition in the non-overlapping
domain decomposition for the Mazwell equations, Comput. Methods Appl. Mech. Engrg., 148 (1997),
pp. 195-207.

[4] B. Despris, Domain decomposition method and the Helmholtz problem, in First International Conference
on Mathematical and Numerical Aspects of Wave Propagation (Strasbourg, 1991), Philadelphia, PA,
1991, SIAM, pp. 44-52.

[6] B. DEsPrES, P. JoLy, AND J. E. ROBERTS, A domain decomposition method for the harmonic Mazwell
equations, in Iterative methods in linear algebra (Brussels, 1991), Amsterdam, 1992, North-Holland,
pp. 475-484.

[6] M. J. GANDER, F. MaGouLESs, AND F. NATAF, Optimized schwarz methods without overlap for the
Helmholtz equation, STAM J. Sci. Comput., 24 (2002), pp. 38-60.

[7] P.-L. LioNs, On the Schwarz alternating method. III: a variant for nonoverlapping subdomains, in Third
International Symposium on Domain Decomposition Methods for Partial Differential Equations , held
in Houston, Texas, March 20-22, 1989, T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds.,
Philadelphia, PA, 1990, STAM.

[8] P. MONK, Finite Element Methods for Mazwell’s Equations, Oxford University Press, Oxford, 2003.
[9] J. NEDELEC, Mized finite elements in R®, Numer. Math., 35 (1980), pp. 315-341.

[10] J. NEDELEC, Eléments finis miztes incompressibles pour ’équation des Stokes dans R®, Numer. Math.,
39 (1982), pp. 97-112.

[11] J.-C. NEDELEC, Acoustic and Electromagnetic Equations, Springer, New York, 2001.

[12] A. QUARTERONI AND A. VALLI, Domain Decompostion Methods for Partial Differential Equations, Oxford
University Press, 1999.

[13] H. VAN DER VORST AND J. MELISSEN, A Petrov-Galerkin type method for solving Az = b, where A is
symmetric compler, IEEE Trans. Mag., 26 (1990), pp. 706-708.

19



