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Introduction

One of the most challenging problems in physics is the connection between the
macroscopic and the microscopic world, that is between classical and quantum
mechanics. In principle a macroscopic system should be described as a collec-
tion of microscopic ones, so that classical mechanics should be derived from
quantum theory by means of suitable approximations. At a first glance the so-
lution of the problem is not straightforward: indeed there are deep differences
between the classical and the quantum description of the physical world.

In classical mechanics the state of an elementary physical system, for instance
a point particle, is given by specifying its position ¢ (a point in its configura-
tion space) and its velocity ¢. The time evolution in the time interval [tg, 7]
is given by a a path ¢(s)sef,,q in the configuration space, which is determined
by the Hamilton’s least action principle:

t
35i0) = 0. Sila) = | Llato).i(s))ds.
Lo
S(q) denotes the action functional, £ is the Lagrangian of the system.
In quantum mechanics the state of a d-dimensional particle is represented
by a unitary vector ¢ in the complex separable Hilbert space L?(R?), the so-
called “wave function”, while is time evolution is described by the Sc-hrodinger
equation:
{ ihd = Ay + Ve 0
$(0,7) = v (v)
where A is the reduced Planck constant, m > 0 is the mass of the particle
and F' = —VV is an external force. It is important to recall that in quantum
mechanics, because of Heisenberg’s uncertainty principle, there are observables
which are “incompatible”: the measurement of one destroys the information
about the measurement of the other. Position and velocity are the typical
example of a couple of incompatible observables, as a consequence the concept
of trajectory makes no sense in quantum theory.

In 1942 R.P. Feynman [59], following a suggestion by Dirac [54], pro-
posed an heuristic but very suggestive representation for the solution of the
Schrodinger equation. Feynman’s original aim was to give a Lagrangian formu-
lation of quantum mechanics and to introduce in it the concept of trajectory.
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According to Feynman the wave function of the system at time ¢ evaluated at
the point € R? is given as an “integral over histories”, or as an integral over
all possible paths 7 in the configuration space of the system with finite energy
passing in the point z at time ¢:

Yt z) =« const/ e%S’t(“r)%(,y(O))D7 " (2)
{Y(t)=x}

Si(7) is the classical action of the system evaluated along the path -

Si(7) = S:(7) / Vi (s)ds, 3)

Si= [ ks )

and Dy is an heuristic Lebesgue “flat” measure on the space of paths. Formula
(2) lacks of rigor: indeed neither the “infinite dimensional Lebesgue measure”,
nor the normalization constant in front of the integral are well defined. Nev-
ertheless even if more than 50 years have passed since Feynman’s original
proposal, formula (2) is still fascinating. First of all it creates a connection
between the classical description of the physical world and the quantum one.
Indeed it allows, at least heuristically, to associate a quantum evolution to
each classical Lagrangian. Moreover an heuristic application of the stationary
phase method for oscillatory integrals allows the study of the behavior of the
solution of the Schrodinger equation taking into account that A is small. In-
deed the integrand is strongly oscillating and the main contributions to the
integral should come from those paths v that make stationary the phase func-
tion S(7). These, by Hamilton’s least action principle, are exactly the classical
orbits of the system.

Inspired by Feynman’s work some time later Kac [70, 71| noted that that by
considering the heat equation

Su(t,z) = LAu(t,z) — Vu(t, z)
{ u(0, ) = ug(x) (5)

instead of equation (1), it is possible to replace the heuristic expression (2)

with a well defined integral on the space of continuous paths with respect to
the Wiener measure W:

u(t,z) = / uo(w(t) + a:)effot Viwls)+e)ds gup () (6)
Jw(0)=0

Such an interpretation is not possible for the heuristic “Feynman measure”
e D, Indeed Cameron [40] proved that the latter cannot be realized as
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a complex o— additive measure, even on very nice subsets.

As a consequence mathematicians tried to realize it as a linear continuous
functional on a sufficiently rich Banach algebra of functions. In order to mirror
the features of the heuristic Feynman measure, such a functional should have
some properties:

1. It should behave in a simple way under “translations and rotations in
path space”, reflecting the fact that D~ is a “flat” measure.

2. It should satisfy a Fubini type theorem, concerning iterated integrations
in path space.

3. It should be approximable by finite dimensional oscillatory integrals,
allowing a sequential approach in the spirit of Feynman’s original work.

4. Tt should be related to probabilistic integrals with respect to the Wiener
measure, allowing an “analytic continuation approach to Feynman path
integrals from Wiener type integrals”.

5. It should be sufficiently flexible to allow a rigorous mathematical im-
plementation of an infinite dimensional version of the stationary phase
method and the corresponding study of the semiclassical limit of the
quantum mechanics.

Nowadays several implementation of this program can be found in the physical
and in the mathematical literature, for instance by means of analytic contin-
uation of Wiener integrals [40, 83, 69, 97, 72, 55, 77, 82, 100, 45, 95], or as
an infinite dimensional distribution in the framework of Hida calculus [63, 52,
via “complex Poisson measures” [78, 1], or via non standard analysis [7] or as
a infinite dimensional oscillatory integral. The latter method is particularly
interesting as it is the only one by which a development of an infinite dimen-
sional stationary phase method has been performed. Such an approach has
its roots in a work by Ito [67, 68] and was developed by S. Albeverio and R.
Hoegh-Krohn [12, 13], D.Elworthy and A.Truman [57], S. Albeverio and Z.
Brzezniak [4, 5]. Indeed, when the potential V' is of the following form

Vie) = 5o 0%+ Vile), 7

where Q? is a positive definite symmetric d x d matrix and V; is the Fourier
transform of a complex bounded variation measure on R?, Albeverio and
Hgegh-Krohn define in [12] the Feynman integral as a functional on a suit-
able Hilbert space of paths by means of a Parseval type formula (previous
work in this direction is due to K. Ito). In [57] Elworthy and Truman de-
fine the Feynman functional by means of a sequential approach. The “infinite



dimensional oscillatory integral” they propose is defined as the limit of a se-
quence of finite dimensional oscillatory integrals. They can also prove that,
for the class of function considered in [12], the infinite dimensional oscillatory
integral can be explicitly computed by means of the Parseval type formula
proposed by Albeverio and Hgegh-Krohn. Such an approach allows a rigor-
ous implementation of an infinite dimensional version of the stationary phase
method and was further developed in [13, 5] and [2, 3] in connection with the
study of the asymptotic behavior of the integral in the limit 7 | 0.

In this thesis we show some new developments of the infinite dimensional os-
cillatory integrals-Feynman path integrals theory.

e In the first chapter we recall the definitions of finite and infinite dimen-
sional oscillatory integrals and their application to the rigorous mathe-
matical realization of the Feynman functional and the representation of
the solution of the Schrodinger equation.

e In the second chapter we show that the infinite dimensional oscillatory
integrals are a flexible tool and can be used to give a rigorous mathe-
matical realization of an Hamiltonian version of the Feynman heuristic
formula, a “phase space Feynman path integral”. We prove that under
suitable assumptions it represents the solution of a Schrodinger equa-
tion in which the classical potential V' depends both on position and on
momentum.

e In the third chapter we show that it is possible to generalize the definition
of infinite dimensional oscillatory integrals in order to deal with complex-
valued phase functions. We apply such a functional to the solution of
a stochastic Schrodinger equation appearing in the theory of continuous
quantum measurement: the Schrodinger-Belavkin equation.

e In the fourth chapter we focus on the finite dimensional case and prove
that it is possible to enlarge the class of phase functions for which the cor-
responding finite dimensional oscillatory integral can be explicitly com-
puted in terms of an absolutely convergent integral. In the particular
case where the phase function is an homogeneous even polynomial, we
give the detailed asymptotic expansion of the oscillatory integrals in frac-
tional powers of the small parameter i and give conditions for either the
convergence or the Borel summability of the expansion.

e In the fifth chapter we generalize some results of the fourth chapter to
the infinite dimensional case. We show that when the phase function
is the sum of a quadratic term plus a quartic perturbation, the corre-
sponding infinite dimensional oscillatory integral can still be defined and
computed in terms of an absolutely convergent integral with respect to
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a “true measure” on the space of paths. Such abstract result is then
applied to the representation of the solution of the Schrodinger equation
with a classical potential V' of the type “harmonic oscillator plus quar-
tic perturbation”, that is V(x) = %23?2 + Az*, A > 0. Moreover under
suitable assumptions, we prove the Borel summability of the asymptotic
expansion of the solution in a power series of the coupling constant \.
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Chapter 1

Oscillatory integrals and the
Schrodinger equation

In this chapter we recall some known results, that is the definitions of finite-
and infinite dimensional oscillatory integrals and the main theorems about
them, for more details we refer to [12, 57, 4]. In the following we will denote
by H a (finite or infinite dimensional) real separable Hilbert space, whose
elements are denoted by =,y € H and the scalar product with (x,y). We are
going to define the oscillatory integral on the Hilbert space H

/ e%‘k(“)f(:c)d:c, (1.1)
Ju

where /i is a non vanishing real parameter, ® and f are respectively suitable
real-valued and complex-valued smooth functions. We remark that even in
finite dimensions (dim(#) = n) the integral (4.1) in general is not well defined
in Lebesgue sense, unless [,y | f(z)|dz < +oco. The study of finite dimensional
oscillatory integrals of the above form is already a classical topic, largely devel-
oped in connections with various problems in mathematics and physics. Well
known examples of simple integrals of the above form are the Fresnel integrals
of the theory of wave diffraction and Airy’s integrals of the theory of rainbow,
see e.g. [34]. The theory of Fourier integral operators [64, 65, 78] also grew
out of the investigation of oscillatory integrals. It allows the study of existence
and regularity of a large class of elliptic and pseudoelliptic operators and pro-
vides constructive tools for the solutions of the corresponding equations. In
particular one is interested in discussing the asymptotic behavior of the above
integrals when the parameter A is sent to 0, in a mathematical idealization.
The method of stationary phase provides a tool for such investigations and
has many applications, such as the study of the classical limit of quantum
mechanics (see [58, 13, 4]). In the general case of degenerate critical points of
the phase function ®, the theory of unfoldings of singularities is applied, see



[24, 56].

The extensions of the definition of oscillatory integrals on an infinite dimen-
sional Hilbert space 4 and the implementation of a corresponding infinite-
dimensional version of the stationary phase method has a particular interest
in connection with the rigorous mathematical definition of the “Feynman path
integrals”.

The definition of such integrals is divided into two main steps: first of all a
finite dimensional oscillatory integral is defined as the limit of a sequence of
absolutely convergent integrals. In the second step the infinite dimensional
oscillatory integral is defined as the limit of a sequence of finite dimensional
oscillatory integrals.

In the first and in the second sections, we shall recall the main result on the
finite and respectively infinite dimensional oscillatory integrals. In the third
section we shall show how the latter can be applied to give a rigorous math-
ematical meaning to Feynman’s heuristic formula (2) and to represent the
solution of the Schrodinger equation (1).

1.1 Finite dimensional oscillatory integrals

Let us assume that # = R™ and define the oscillatory integral [64, 65]

/ e%é(“”)f(m)dm.
RN

In the whole chapter i > 0 is a fixed parameter (we call it i because of its
interpretation in the context of applications to quantum mechanics). The
following definition is taken from [57] and is a modification of one given in
[65].

Definition 1. The oscillatory integral of function f : R — C with respect to a
phase function ® is well defined if and only if for each test function ¢ € S(R")
such that ¢(0) = 1 the limit

lim e%q)(“:)f(:rw(ex)da: (1.2)
e—0 RN
exists and is independent of ¢. In this case the limit is called the oscillatory
of f with respect to ® and denoted by [on ew®@) f(x)da

The particular case in which the phase function ® is a quadratic form is
well studied. This particular type of oscillatory integrals are called “Fresnel
integrals”. In this case it is convenient to include into the definition of the
oscillatory integral the “multiplication factor” (2mih)~%™(*)/2 which will be
useful in the extension of such a definition to the infinite dimensional case. Let



us denote by @ an invertible symmetric operator from RY to R and define
the “Fresnel integral”

/e?Lﬁ(m’Qm)f(x)dx

Definition 2. A function f : R — C is called Fresnel integrable with respect
to Q if and only if for each ¢ € S(R™) such that ¢(0) =1 the limit

lim (2ik) "2 / 37 (095) £(2) b(ex)da (1.3)

e—0

exists and 1s independent of ¢. In this case the limit is called the Fresnel
integral of f with respect to () and denoted by

/e?Lﬁ(m’Q“)f(x)dx (1.4)

The description of the full class of Fresnel integrable functions is not easy,
but one can find some interesting subsets of it.
Let us consider the space M(R") of complex bounded variation measures on
RN endowed with the total variation norm. M(RY) is a Banach algebra,
where the product of two measures p * v is by definition their convolution:

pxv(E) = /]RN pu(E — z)v(dx), p,v € M(RY)

and the unit element is the Dirac measure J,.
Let F(RY) be the space of functions f : RY — C which are the Fourier
transforms of complex bounded variation measures puy € M(RY):

Fla) = [ e mud), g ME).

One can prove that when ®(z) = (z,Qxz) and f € F(R"), then the Fresnel
integral of f with respect to ) is well defined and can be computed by means
of a well defined integral, which is convergent in Lebesgue’s sense.

Theorem 1. Let f € F(R"), then f is Fresnel integrable and its Fresnel
integral with respect to @) is given by:

/ezL-ra,(“’vQ“)f(x)da: = (det Q)*l/2 /eghm’Q]“mf(da). (1.5)

where (det Q)2 = (| det Q|)/2e'™mQ)/2 | Ind(Q) being the number of negative
ergenvalues of the operator (), counted with their multiplicity.
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For the proof see [57], see also [12, 4].
In an analogous way one can define the “normalized Fresnel integral” by in-
troducing a normalization factor:

Definition 3. A function f : R* — C is called Fresnel integrable with respect
to @ if and only if for each ¢ € S(R™) such that ¢(0) = 1 the limit

lirr&(?wih)fnﬂ(det Q)% /e;‘z<$’Q$>f(m)¢(em)dm (1.6)
€E—>

exists and is independent of ¢. In this case the limit is called the normalized
Fresnel integral of f with respect to () and denoted by

e
/ et Q) f (1) da (1.7)

One can easily see that f is Fresnel integrable with respect to () in the
sense of definition 2 if and only if f is Fresnel integrable with respect to @)
in the sense of definition 3 and the two Fresnel integrals are related by a
multiplication factor:

Q 1
[ et o) = (et @)t [0 p(ada (18)

Theorem 1 in this case assumes the following form:

Theorem 2. Let f € F(R"), then f is Fresnel integrable and its normalized
Fresnel integral with respect to @) is given by:

Q —in —1
[Feieen aan = [ 0@y (a0 (19)

Note that if we substitute into the latter the function f = 1, we have

eriWQ“)f(m)dm = 1. For this reason the integral of definition 3 is called
“normalized”.

The choice of a suitable normalization factor, that is the choice between def-
inition 2 and definition 3, will be important in the extension of the theory to
the infinite dimensional case.

1.2 Infinite dimensional oscillatory integrals

Let us consider an infinite dimensional real separable Hilbert space H and
an invertible, densely defined and self-adjoint operator ¢ on H. The infinite
dimensional oscillatory integral on ‘H with quadratic phase function %(T, Qx)
is defined as the limit of a sequence of finite dimensional oscillatory integrals
(defined in the previous section) [57, 4].
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Definition 4. A function f : H — C is called Fresnel integrable with respect
to @ if and only for each sequence {P,},en of projectors onto n-dimensional
subspaces of H, such that P, < P,y and P, — I strongly as n — oo, (I
being the identity operator in H), the finite dimensional approximations of the
Fresnel integral of f with respect to )

[ et ayapu)
P, H

are well defined (in the sense of definition 2) and the limit

lim e2n{Pr:QPut) £ (P 2 d(P,a) (1.10)
exists and is independent on the sequence {P,}.
In this case the limit is called the Fresnel integral of f with respect to (Q and
15 denoted by

/ efﬁ(m’Q’"’)f(x)dx
H

It is not easy to characterize the full class of integrable functions, but under
suitable assumptions on the operator () it is possible to generalize theorem 1
to the infinite dimensional case.

Let us denote by M(#) the Banach space of the complex bounded variation
measures on H, endowed with the total variation norm, that is:

peMH), |ull= SUPZ u(E)

where the supremum is taken over all sequences { F;} of pairwise disjoint Borel
subsets of #, such that U;F; = H. M(H) is a Banach algebra, where the
product of two measures p * v is by definition their convolution:

pxv(E) = /H,u(E — z)v(dz), v e M(H)

and the unit element is the vector dy.
Let F(#) be the space of complex functions on H which are Fourier transforms
of measures belonging to M(#H), that is:

FiH—C  fa) = /H @91 (dB) = iy (o).

F(H) is a Banach algebra of functions, where the product is the pointwise
one, the unit element is the function 1, i.e. 1(z) = 1 Vx € H, and the norm is

given by [|f[| = [[us]-
The following result holds:



Theorem 3. Let us assume that f € F(H) and (Q — I) is a trace class
operator (I being the identity operator). Then [ is Fresnel integrable with
respect to () and the corresponding Fresnel integral is given by the following
Cameron Martin-Parseval type formula:

/e%@’QI)f(m)dm = (det Q)~'/? / e*%<a’Q71a>uf(da) (1.11)
. JH
where det Q = | det Qe ™ ™4 € js the Fredholm determinant of the operator Q,
| det Q| its absolute value and Ind(Q) is the number of negative eigenvalues of
the operator @), counted with their multiplicity.

For the proof see [4, 57].
In an analogous way it is possible to define the normalized infinite dimensional
oscillatory integral as the limit of a sequence of finite dimensional oscillatory
integrals (in the sense of definition 3)

Definition 5. A function f : H — C is called Fresnel integrable with respect
to Q if and only for each sequence {P,},en of projectors onto n-dimensional
subspaces of H, such that P, < P,y and P, — I strongly as n — oo, (I
being the identity operator in H ), the finite dimensional approximations of the
Fresnel integral of f with respect to )

PnQP” i
/ €ﬁ<Pn$,Qan>f(Pn.’l',')d(an)’
JPyH

are well defined (in the sense of definition 3) and the limit

P

PnQPn
lim e#w”'“’QP"“’)f(Pnaj)d(Pnaj) (1.12)
n— 00 Pn%
exists and is independent on the sequence {P,}.
In this case the limit is called the normalized Fresnel integral of f with respect
to Q and is denoted by

Q .
/627}‘1<$’Q$>f(m)dm

H

In this case, if f € F(H), then it is possible to prove a formula similar to
(1.11) even if @ — I is not trace class:

Theorem 4. Let us assume that f € F(H). Then f is Fresnel integrable
with respect to Q (in the sense of definition 5 and the corresponding normal-
i1zed Fresnel integral is given by the following Cameron-Martin-Parseval type
formula:

Q )
| et s = [ e e () (1.13)
H

H



Such a result shows that in the infinite dimensional case the normalization
constant in the finite dimensional approximations plays a crucial role and def-
initions 4 and 5 are not equivalent. Indeed definition 5 and theorem 4 make
sence even if the operator () — I is not trace class. In fact it is possible to
introduce different normalization constants in the finite dimensional approx-
imations and the properties of corresponding infinite dimensional oscillatory
integrals are related to the trace properties of @) — I and its powers [5]. More
precisely, for any p € N, let us consider the Schatten class 7,(#) of bounded
linear operators L in H such that

1Ll = (Te(L L))

is finite. (7,(H),|| - |l,) is a Banach space. For any p € N and L € T,(#) one
defines the regularized Fredholm determinant det, : I + T,(H) — R:

(- Q)
det ) (Q) = det (Q exp Y f) Q=1-1, LeT,(H),
J=0 -
where det denotes the usual Fredholm determinant. det(y) is called Carleman
determinant.

Forpe N, (Q —I) € Ti(H) let us define the normalized quadratic form on H

N,(Q)(x) = (z,Qx) + ihTri (Qf,j.)j, r€H (1.14)
J=0

For generic p € N let us define the class p normalized oscillatory integral:

Definition 6. Let p € N, ) a bounded linear operator in H, f : H — C.
The class p normalized oscillatory integral of the function f with respect to
the operator Q is well defined if for each sequence {P,},en of projectors onto
n-dimensional subspaces of H, such that P, < P,y and P, — I strongly as
n — oc, (I being the identity operator in H ), the normalized finite dimensional
approximations

/ e Vo (PRRPI) £ (P 2)d(Pyx), (1.15)
nH

are well defined (in the sense of definition 2 and the limit

lim e2n Mo (PaQPa)(Pat) £( P 2V dl( P, ) (1.16)
n— 00 . Pn?'l

exists and is independent on the sequence {P,}.

In this case the limit is denoted by

Q i
”/ eﬁ“’Q’"’)f(a:)da:

H



If @ — I is not a trace class operator, then the quadratic form (1.14) is not
well defined and the right hand side of (1.15) makes sense thanks to the fact
that all the function are restricted on finite dimensional subspaces. Neverthe-
less the limit (1.16) can make sense, as the following result shows.

Theorem 5. Let us assume that f € F(H), (Q—1I) € T,(H) and det)(Q) # 0
. Then the class-p normalized oscillatory integral of the function f with respect
to the operator () exists and is given by the following Cameron-Martin-Parseval
type formula:

Q .
» / 39 f(2)da = [det (@) / e F@@70), (1), (1.17)
JH JH

1.3 Application to the Schrodinger equation

In the setting explained in section 1.2 one can give a rigorous mathematical
interpretation of formula (2) in terms of an infinite dimensional oscillatory
integral on a suitable Hilbert space of paths.

Let us consider the so-called Cameron-Martin space H;, that is the space
of absolutely continuous functions vy : [0,#] — R?, ~(t) = 0, such that
[ [4(s)[2ds < oo, endowed with the following scalar product

t
(1) = [ 319 o).
Jo
Let us consider the Schrodinger equation in L?(R?)
70 W= Hy (1.18)
’L _— = .
ot
with initial datum t;—¢ = t¢y and quantum mechanical Hamiltonian H =
—%A + 120z + Vi(z), where z € R, Q% > 0 is a positive d x d matrix,

Vi € F(RY) and ¢y € F(RY) N L*(R?).
By considering the operator Q = I — L on H, given by

wiszU@mﬂwm

and the function v : H, — C

t t
MwE/WW@+@%+%W/V@%, Y€ H,
J0 J0

formula (2)



can be interpreted as the infinite dimensional oscillatory integral on H, (in the
sense of definition 4)

/ 75 UL =500 (4(0) + ). (1.19)
Hy

By analyzing the spectrum of the operator L (see [57] for more details) one

can easily verify that L is trace class and I — L is invertible. The following
holds:

Theorem 6. Let 1y € F(RY)NLAHR?Y) and let V, € F(R?Y). Then the function
f: H; — C given by

F(7) = e 7y (v(0) + )

is the Fourier transform of a complex bounded variation measure py on H; and
the infinite dimensional oscillatory integral of f with respect to Q =1 — L

[0 5(0) + )i
H;

is well defined (in the sense of definition 4) and it is equal to

det (I — L)]/Q/ 675h<7’(’7f‘)71"’>uf(d7).

Hi

Moreover it is a representation of the solution of equation (1.18) evaluated at
x € RY at time t.

For a proof see [57].

Remark 1. With the same tecnique it is possible to deal with potentials of the
type “harmonic oscillator plus linear perturbation”.

Remark 2. It is important to note that if Vi € F(R?), then V; is bounded. As
a consequence the only unbounded potentials for which the Feynman functional
of [12, 57, 4] can be rigorously defined are those of harmonic oscillator type.
The extension to unbounded potentials which are Laplace transforms of bounded
measures [6, T4] also does not cover the case of potentials which are polynomials
of degree larger than 2.

Remark 3. The case of time-dependent potentials has been handled by means
of analytic continuation in mass (see [69] Ch 14-18 for more details).
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Chapter 2

Phase Space Feynman Path
integrals

Let us recall that Feynman’s original aim was to give a Lagrangian formulation
of quantum mechanics. On the other hand an Hamiltonian formulation could
be preferable from many points of view. For instance the discussion of the
approach from quantum mechanics to classical mechanics, i.e the study of the
behavior of physical quantities taking into account that A is small, is more
natural in an Hamiltonian setting (see, e.g. , [4, 78] for a discussion of this
behavior). In other words the “phase space” rather then the “configuration
space” is the natural framework of classical mechanics.

As a consequence one is tempted to propose a “phase space Feynman path
integral” representation for the solution of the Schrodinger equation (1), that
is the heuristic formula:

it) = const [ R g(0))dady. 2.1)

. q(t):,’r,

Here the integral is meant on the space of paths ¢(s),p(s), s € [0,¢] in the
phase space of the system (g(s)secjo, is the path in configuration space and
p(5)scpo is the path in momentum space) and S is the action functional in
the Hamiltonian formulation:

S(q.p) = / (s)p(s) — Hg(s), p(s)))ds,

(H being the classical Hamiltonian of the system). The aim of this chapter
is to give a rigorous mathematical realization of the heuristic formula (2.1) in
terms of a well defined infinite dimensional oscillatory integral and to prove
that, under suitable assumptions on the initial datum vy and on the classical
potential V', it gives a representation of the solution of the Schrodinger equa-
tion (1). In particular we show that by means of this functional the case in
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which the potential V' depends explicitly both on position and on momentum
can be handled.

We note that an approach of phase space Feynman path integrals via ana-
lytic continuation of “phase space Wiener integrals” has been presented by I.
Daubechies and J. Klauder [49]. Analytic continuation was also used in other
“path space” approaches, see [83, 69, 41] and references therein. Our approach
is more direct in the spirit of [12].

2.1 Lie-Trotter product formula

We first recall an abstract version of the Lie-Trotter product formula.

Lemma 1. Let A and B be self-adjoint operators in a Hilbert space H and let
A+ B be essentially self-adjoint on D(A) N D(B). Then

s — lim (eitA/neitB/n)n — ei(A+B)t7 teR (2.2)

n—0o0

Here s — lim is the strong operator limit!. For a proof and a discussion of
this lemma see e.g. [43, 90].

Let H = L?(R¢) and let us consider a potential V' depending both on the
position and on the momentum in the following way: V = V;(z) + Vi(p).
Vi is defined as a self-adjoint operator is H, with its natural domain as a
multiplication operator. V5 is the operator in H with domain

D(Va(p)) = {¢ € H [a = Va(a)p(a) € H}

where 1/3 is the Fourier transform of . It coincides with the operator defined
by functional calculus as V5 (p), with p the self-adjoint operator —iAV in H. V
is then the sum, as a self-adjoint operator in , of the self-adjoint operators V;
and V5. We assume that the functions V; and V5 are such that the correspond-
ing operators have a common dense domain of essentially self-adjointness D.
This is the case, e.g., when V; € L*(R?) + L>*(R?), V5 is bounded measurable,
and D = C°(R?) or D = S(R?). We assume, in order to apply lemma 1, that
Vi, V5 are such that — ;;A+V2 and —%A#—V] + V5 are essentially self-adjoint
on D. We denote by H the closure of the latter operator. H (which we also
write simply as —%A + Vi + V3), is then the quantum Hamiltonian.

As a self-adjoint operator on H, H/h is the generator of an one-parameter
group U(t),er of unitary operators, denoted by

_it(p%/2m4V)
3

LA sequence (A, )nen of linear operators A,, : D C H — H with a common domain D in
a Hilbert space (H,]|| - ||) converges strongly to an operator A is for each ¢ € D, one has
lim,, o ||Anty) — AY|| = 0.

12



Given an initial vector ¢y € H, the solution of the Cauchy problem

= —LH
{ ¥(0, ) = o(x) (2.3)

7 2/9m
is given by ¢(t) = e~ e +V)w0.

By lemma 1 we have

_it(p%/2m4V) . ie(@2/2m4Vo) (V) \ P t
€ g =s— lim (e g e , €= —
n—00 n
7it(p2/2m+v) . 7ie(p2/2m+V2) zeVl d
W(t) = e m e = lim ( h ) Yo, Yo € C°(R?),

(see e.g. [43, 91] for related uses of the Lie-Trotter formula).

By shifting from the position representation to the momentum representation
and vice versa and assuming that V; and V5 are continuous, we can write in
the strong L?(R?)-sense, for all ¢ > 0:

ie(p%,1/2m+v2 (Pnfl))
Y(to) = lim [ TS

n— 00 JRd

TPn—1

_deVy ie(p2/2m+4Vy)  ie(Vy)
(e (e e ) ™ ) () £

) _iepp 1 /2mAVa(Pn_1))  ieVi(ep 1)
= lim e iz e R
n—oo JR2d

ie(p®/2m4Vy)  ie(Vy) ZTP% 1 . —ifn=1Pn—1
((e R e h ) 77%)(7‘71 1)7 @rh)IZ  (27h)il? Adpn1dxy,

1 2nd
= lim ( ) :
n—00 27 h

2
_ )2
f%zyggium $)+Va (py)—p; L)

(2.4)

Jrena €

where z,, = .

)wo(%) [T} dpjda;,

Remark 4. The integrals above are to be understood as limits as A 1 R?,
n — oo in the L*(R*™) sense of the corresponding integrals over A*™, with
A bounded (see [83]). Formula (2.4) holds first as a strong L?-limit, but
then(possibly by subsequences) also for Lebesgue a.e.x. in R, It also follows
from this that (2.4) gives the solution to the Cauchy problem (2.3).
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The latter expression suggests the following formula for the limit:

b(t, ) = const / FS@D) g (g(0)) dgdp (2.5)

. q(t)::L‘

S(a.p) = / p()i(s) — Hq(s), p(s))ds

which does not yet have a mathematical meaning. It will be rigorously defined
in the following sections.

2.2 Phase space Feynman functional

Let us consider again the expression (2.5) in the particular case of the free
particle, namely when the Hamiltonian is just the kinetic energy: H = p*/2m.
In this case we have heuristically

Y(t,x) = const/ e Jo () =p()* [2m)ds yy, (4/(0))dgdp (2.6)

q(t)=z

We can give to this expression a precise meaning: under suitable hypothesis

on the initial wave function 1)y, it is an infinite dimensional oscillatory integral.
From now on we will assume for notational simplicity that m = 1, but but the
whole discussion can be generalized to arbitrary m.
Following [98, 98], let us introduce the Hilbert space H; x L;, namely the space
of paths in the d—dimensional phase space (¢(s), p(s))sefo,4, such that the path
(q(s))scpo,q belongs to the Cameron Martin space #H,;, namely to the space of
the absolutely continuous functions ¢ from [0 t] to Rd such that ¢(t) = 0 and
G € L5(]0,t],R?), with inner product (g, g2) fﬂ a1 (: s)ds, while the path
in the momentum space (p(s))se0,q belongs to £, = 52([0 7‘] ]Rd). Hy x Ly is
an Hilbert space with the natural inner product

t t
@5:Q.P) = [ i5Qs+ [ po)P(s)ds.
Jo Jo
Let us introduce the following bilinear form:

lq,p; Q. P] =

Jo d(s)P(s)ds + [} p(s)Q(s)ds — [) p(s)P(s)ds = (g, p; A(Q, P)),

where A is the following operator in ‘H; x L;,:
AQ. P = ([ P, QGs) - Pl (2.7)
t
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A(Q
AlQ

, P) is densely defined, e.g. on C'([0,%];R?) x C1(]0,#];R?). Moreover
(Q, P

) is invertible with inverse given by

3

ATHQ, P)(s) = (/t Pl + Q(s), O(5)) (2.8)

(on the range of A).
Now expression (2.5) can be realized rigorously as the normalized Fresnel in-
tegral (5):

P

A

| ey q(0) + )dadp
Hix Ly

where ¢ + 2 denotes the translated path ¢(s) — ¢(s) + =.

In this case the heuristic expression (2.5) is well defined through Lie-Trotter

product formula, namely as the limit of a sequence of finite dimensional in-

tegrals, as we saw in the previous section. We are going now to show that it

is also the limit of a sequence of finite dimensional oscillatory integrals in the

sense of definition 5.

Let us consider a sequence of partitions 7, of the interval [0, ] into n subin-

tervals of amplitude € = t/n:

to=0,t1 =¢€,...,1;, =1€,...,t, =ne =1.

To each 7, we associate a projector P, : H; X Ly —: H; x L; onto a finite
dimensional subspace of H; x L;, namely the subspace of polygonal paths. In
other words each projector P, acts on a phase space path (q,p) € H; x L; in
the following way:

Po(q,p)(s) =

(220 X (5) (€t 0) + S (5 — )Y S ().

t,
fif o p(s)ds g,
where D = ﬁ = p '/;i—l p(S)dS.

Theorem 7. For each n € N, P, is a projector in H; X L;. Moreover for
n — oo P, = I as a bounded operator.

Proof. e P, is symmetric, indeed for all (Q, P) € H; x L, and all (¢q,p) €
Ht X Et

(t:) —q(tiy)

ti — 1

ds+

QPR = [ Q)Y o)
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n

+ /(; P(s) Z X[tiq,ti}(s)pids = Z (at:) — a(ti 1) (Q(t:) — Q(tifl)_‘_

i=1 ti =t

n 5 p(s)ds [ P(s)ds
+Z B t;, — t'l:] - <PW(Q7 P)? Q;p>

i=1
e P2 =P, indeed

P2(q,p)(s) =

(a9 (i) + S s 1) ) S X (1)

= Pu(q,p)(s)

e Y(q,p) € Hy x Ly, ||Pu(a,p) — (a,p)|| = 0 as n — oc:

Let us consider the subset K C H, x L;, K = {(q,p) € H; x L4
| P.(q,p) — (¢,p)|| = 0, n — oo}. It is enough to prove that the closure
of K is H; x L;. To prove this it is sufficient to show that IC is a closed
subspace of H; x L£; and contains a dense subset of H; x £;. This follows
from the density of the piecewise linear paths in H; and the density of
the piecewise constant paths in £; (see e.g. [96]).

O

Theorem 8. Let the function (q,p) — Yo(x + q(0)), ¥o € S(R?), be Fresnel
integrable with respect to A (with A defined by (2.7)). Then the phase space
Feynman path integral, namely the limait

lim (2mif) "(det(P,AP,))"? / e (P02} AP 02 ) (24(0))d P (g, p)
Pn (?‘[t X,Ct)

n—o0

(2.9)
coincides with the limit (2.4), namely with the solution of the Schrddinger
equation with a free Hamiltonian.

Proof. The result follows by direct computation, indeed:

/ eZLﬁ<P"(q’p)’APn(q’p)>'l/)0(.T —+ q(O))dPn(QJp)
J Pp(Hex L)

_ > . -
Ly (%o o)
“\Varr e x dp;dz;,
( 2mh Jrand tho (o) H D;ar;
and the two limits (2.4) and (2.9) coincide. Indeed (2.9) is a pointwise limit by

hypothesis. On the other hand (2.4) is a limit in the L, sense, hence, passing
if necessary to a subsequence, it is also a pointwise limit. O
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Remark 5. The latter result is equivalent to the “traditional” formulation of
the Feynman path integral in the configuration space. Indeed it can be o0b-
tained by means of Fubini theorem [12] and an integration with respect to the
momentum variables:

2
: L 2nd —deynod (__P;, M)
f ( ) /2 L © e Yo(zo) | [ dpida;
JR2 i

n—oo \\/271h pls
1 nd i€ n—1 (""j+17-"’j)2 n—l
= lim ( ) / e B i M (x da.
n—oo \\/2711h Jgnd 0( U)H J

The latter expression yields tfhe Feynman functional on the configuration space,
i.e.  heuristically constfefo’ﬁ(q(s)@(s))dsdq, (L being the classical Lagrangian
density).

Remark 6. The integration with respect to the momentum variables might
seem to be superfluous, but it is very useful when we introduce a potential
depending on the momentum.

Theorem 9. Let us consider a semibounded potential V' depending explicitly
on the momentum: V = V(p) and the corresponding quantum mechanical
Hamiltonian H = —%A+V(p). Let us suppose H 1s an essentially self-adjoint

operator on Lo(R?). Let the function (q,p) — el VI (Do (2 + q(0))
be Fresnel integrable with respect to the operator A, with A defined by (2.7).
Then the solution to the Schriodinger equation

b = —LH
g AR 2.10)

15 given by the phase space path integral

lim (27if) "%(det(P,AP,))"? / e 77 (P (@:p):APa(a.0))
n—00 . Pn(Htht)

e~ i I VPN i (3 1 (0))d Py (g, p)

Proof. We can proceed in a completely analogous way as in the proof of the-
orem 8, therefore we shall omit the details. 0

2.3 The phase space Feynman-Kac formula

Let us consider a classical potential V' depending both on the position Q € R?
and on the momentum P € RY, but of the special form: V = V(Q,P) =
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Vi(Q) + Va(P) (The general case presents problems due to the non commuta-
tivity of the quantized expression of ) and P), for a different approach with
more general Hamiltonians see [93]. Moreover let us suppose the function
f:Hx Ly —C

F(q,p) = to(x + q(0))e 7 Jo Via@rploNds -y e S(RY)

is the Fourier transform of a complex bounded variation measure z1y on H; X L;:

f(g,p) ZL . "7, (Q, P).
. t XLt

Under additional assumptions on V; and V5 we shall see that the phase
space Feynman path integral of the function f can be computed and is given
by

/ e (a7 Aan) g =5 Jo Vet p()dsy (. g(0) + 2)dgdp =
Hex Ly

= / e%mqyp;fl’l(q,p))dﬂf(q’p)_ (2.11)
He XLy

This follows from the previous section together with the following

Lemma 2. Let us consider a potential V(Q,P) = Vi(Q) + Vo(P) and an
initial wave function 1y such that Vi, 1y € F(R?) and the function P(8)seo —

f(f Vao(p(s))ds € F(Ly). Then the functional

flg,p) = Yoz + q((]))e*% JEVia(s)+a,p(s))ds

belongs to F(H; x Ly)

Proof. f(q,p) is the product of two functions: the first, say f;, depends only
on the first variable ¢, while the second f; depends only on the variable p,
more precisely

fi(a) = e+ q(O))e RV py(p) = ¢ R O,

Under the given hypothesis on V; and vy, fi belongs to F(#H;). The proof
is given for instance in [12]. For f; one must pay more attention: indeed the
same proof given for f; does not work, as f5 is defined on a different Hilbert
space and we have to require explicitly that fot Va(p(s))ds € F(L;). Under this
hypothesis one can easily prove that (see again [12]) fo € F(L;).

Now if fy = fiy, € F(H:), fi can be extended to a function, denoted again by
f1,in F(H;x Ly): it is the Fourier transform of the product measure on H; x £,

of 117, (dg) and 8o(dp). The same holds for fo = jiz,: fo = (0(dq) s, (dp)).
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Finally, as F(H; x L;) is a Banach algebra, the product of two elements f; f5
is again an element of F(#H; x L;): more precisely it is the Fourier transform
of the convolution of the two measures in M(H; x L;) corresponding to f; and
fa respectively, and the conclusion follows. O

The next theorem shows that the above oscillatory integral (2.11) gives the
solution to the Schrédinger equation (2.12).

Theorem 10. Let us consider the following Hamiltonian

2

H(Q:P) = 1 4 11(Q) + V()

in L?(R?) and the corresponding Schridinger equation

) = —LHp
{ 77b(0a-7/‘)h: Zbo(.’l?), e RY (2.12)

Let us suppose that Vi, € F(R?) and f(ng(p(s))ds € F(Ly). Then the
solution to the Cauchy problem (2.12) is given by the phase space Feynman
path integral:

/ 30N g~ [V (a4 WD) g 00) 4 1) g
JoHex Ly

Proof. We follow the proof given by Elworthy and Truman in [57].

For 0 < u < tlet pu,(Vi,2) = pu, Vi(Vi,2) = v, 0t (Vo) = 0l and po(y) be
the measures on H; x L;, whose Fourier transforms when evaluated at (q,p) €
H, x Ly are Vi(z+q(u)), exp ( —i f; Vi(x+ q(s))ds) , eXp ( —i f; Vg(p(s))ds)

and 1o(g(0) + 7).
We set

U (1) do(x) = / 3 @A) o [ VA0 VDM (4(0) + ) dgdp
J o Hix Ly

and

Us(t)t(z) = / o3 @A) o~ [ Vapds 0 (q(0) + ) dgdp
. ?'[tX,Ct

By section 3 we have:

U(t)o() = / BB D) (gt x puo(6))(dadp). (2.13)

Hex L
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Now, if {g, : a < u < t} is a family in M(H; x L;), we shall let fab oy du
denote the measure on H; x L, given by :

b
f—>/ / f(q,p)dpa(q, p)du
Ja - ?'[tX,Ct
whenever it exists.

Since for any continuous path ¢ we have

Vita) exp (= [ Vitato)ds)an

e (=i [ itatnas) =11 [

the following relation holds

¢
vh =68 — 7/ (pty * V5)du (2.14)
0

where d, is the Dirac measure at 0 € H,.
Applying this relation to (2.13) we obtain:

Uein(a) = |

t
. —ih A1
_Z/ / e 2 ((I’ILA (Q7p)>(776 * /’L’u,(‘/IJ :Ij) *k V’Z *k I[,Lo('l/)))(dqdp)du
Hex Lt

_ UO 1/)0 _ 7/ / iﬁ q,p;A qp))ef%lf,f Vi(q(s)+z)ds
He XLy

o Iy Val ')))d"”Vl(q(u) + )1 (q(0) + x)dqdpdu

Now we have, by Fubini theorem for Fresnel integrals[12]

h <q7p;A*1(q,p)> (7’]6 * Mo (’lp)) (dqdp)

/ o (0P AP gk [ Via(s)+a)ds ok [2 Valp(s)))ds,
Hex Ly

Vi(q(u) + 2)1ho(q(0) + x)dgdp

:/ e IPA@P)H yxey i Jo " Vilals)+a)ds o= 4 fo " Valp(s DV (g(0) + )
Hi—uX Lty

e ar (@11 A@ )y x 2y o= 7 Jo Ve(pi( f“q/)o(q]( ))dg1dprdqdp

Here ¢ € H; , and ¢, € H, are the integration variables, and H, denotes the
Cameron-Martin space of paths v : [0, s] — R¢.
We have:

[Hu X Loy

U(t)iho(x) = Uo(t)tho(x) — Z/o U(t = u)(Villp(u)tho) () du
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= Up(t)to(x) — i/olU(U)(‘GUU(—U)Uo(t)%)(Jf)du

The iterative solution of the latter integral equation is the convergent Dyson
perturbation series for U(t) with respect to Uy(t), which proves the theorem.
O
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Chapter 3

Application to a stochastic
Schrodinger equation

In this chapter we show that it is possible to generalize the definition of infinite
dimensional oscillatory integrals in order to deal with complex-valued phase
functions. We prove a Cameron-Martin-Parseval type formula which is the
generalization of theorem 3 to the complex case. We apply these results to the
representation of the solution of a particular type of stochastic Schrodinger
equation, of some importance in the quantum theory of continuous measure-
ments: the Schrodinger-Belavkin equation.

3.1 Oscillatory integrals with complex-valued
phase function

Let H be a real separable Hilbert space. We shall denote by HC its complexifi-
cation. An element x € H® is a couple of vectors x = (21, z5), with 2,2, € H,
or with a different notation x = x; + ix9. The multiplication of the vector
x € HC for the pure imaginary scalar i = \/—1 is given by iz = (—xy, 71).

A linear operator A : D(A) C H — H can be extended to a linear operator
denoted again by A on H®:

A:D(A) C H® — HS, D(A) = D(A) +iD(A),
Az = A(xq,19) = (Axq, Axy).

In an analogous way a vector y € H can be seen as the element (y,0) € H".
Let dim(H) = 1, i.e. H =R, H® = C. Then, for any f € F(R), f = fi,
and any complex constant o € C, o # 0, I'm(«) > 0, one can easily prove the
following equality

—ih .2

/eé%mzf(x)d:r =a ' / e puy(de) (3.1)
R R
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The proof is completely similar to the proof of theorem 1.
More generally, given a € C, @ # 0,Im(«) > 0 and f € R

/e%“geﬂmf(m)dm —a /2 /eﬁ(miﬂ)Quf(dm) (3.2)
JR JR

Such a result can be generalized to the infinite dimensional case [9]:

Theorem 11. Let H be a real separable Hilbert space, let y € H be a vector in
H and let Ly and Ly be two self-adjoint, trace class commuting operators on H
such that I + Ly is invertible and Ly is non negative. Let moreover f . H — C
be the Fourier transform of a complex bounded variation measure jiy on H:

@) = isle), o) = /% ) 1 ().

Then the infinite dimensional oscillatory integral (with complex phase)

/ 3 @ (4L)1) ) F (1
H

18 well defined and it is given by

/e;h<$:(’+L)I>e<ya$>f(m)dm = det(I + L)U?/ e%mkfiy,(”ﬁ)’l(kfiy)mf(dk)
H

H
(3.3)
(L being the operator on the complezification H® of the real Hilbert space H
given by L = Ly + iL,).

Proof. First of all one can notice that both sides of equation (3.3) are well
defined. Indeed one can easily prove that (I + L) : Hc — Hc is invertible, if
(I + L,) is invertible and that det(/ + L) exists as L is trace class.

On the other hand the function f:H — C

fa) = e metaelelnng(s)

wherey € Hand g € F(H), g(x) = f1,(x), py € M(H) is the Fourier transform
of a complex bounded variation measure puy on H, f = jiy. In fact py is the
convolution of i, and the measure v, with v(dz) = ey W)=y Ly )y (d),
where i, is the Gaussian measure on H with covariance operator Ly/h. By
theorem 3 the Fresnel (or Feynman path) integral of f with respect to the
operator @ = (I + Ly)/h is well defined and it is given by:

/62;<w,(r+mw>f(x)dx _ /e;gxz,(rmme;h<w,rqz>e<y,z>g(x)dx
H H
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= det(I + L, )]/2/ e (o L)) s v(da)

— det(I + L) 1/2//

:det(I+L1)1/2/ / e72ih<m+z,(I+L1)*1(fr,+z)>e%(nyglyrm(y,L;lm)uLQ(dx)ﬂg(dz)
(3.4)

Equation (3.3) can be proved by taking the finite dimensional approximation
of the last line of equation (3.4) and of the r.h.s. of (3.3) and showing they
coincide. As Ly and L, are two commuting symmetric trace class operators on
‘H, they have a common spectral decomposition. Thus there exists a complete
orthonormal system {e,} C #H such that

Li(z) = Zan<en,x>en, Ly(z) = an<en,x>en, v EH,

n

@D, (d2)(de)

with a,,b, € R
Let {P,,} be the family of projectors onto the span of the first m eigenvectors

€1, .-, €y, Namely:
m

Ppn(x) = Z(en,x>en

n=1

One can easily see that P, — I as m — oo and L1P,(H) C P,(H),
LyP,,(H) C P,,(H). Moreover the infinite dimensional oscillatory integral

/ e%<:1:,(T+Ll)m>efﬁ(m,ﬁzwe(y,m)g(m)dm
JH

can be computed as

m— o0

lim (Qﬂ_ih)fm/Q / eLh(Pm'r (I+L1)Pmm)eflh(Pm'r LszT)e(y,Pmm)g(me)d(me)
PnH

which, from the Cameron-Martin formula can be seen to be equal to

m

(Ha b ) ]/2(271'7? m/2/ / fzh/ZZn Lan (@nt20)2-R/2 ™ by a2

n=1

e M2 b Y= h N b e (P ) (g © Pp)(d2)
(3.5)
where z,, = (x,¢e,), 2, = (2, €n), Yn = (Y, €n), d(Px) being the m—dimensional
Lebesgue measure on P, H.
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The finite dimensional approximation of the right hand side of equation (3.3)
assumes the following form:

ik ~1/2 ) . o N
(H(an 4 an)> /P Hefzh/QZnﬁ(an-l—zbn) 1(mn—zyn)2(ug o Py)(dz)  (3.6)
n—1 m

By a direct computation one can verify that expressions (3.6) and (3.5) coin-
cide. Now we can pass to the limit and from Lebesgue’s dominated convergence
theorem we have

/efﬁ(m’(”L‘)”e$<“’L2“>€<y’m>g($)d$
H

= det(] + L)~'/? / e72m<k*iy’(l+L)71(k*iy»ug(dk) (3.7)
Jn

m
An analogous result holds also for the normalized Fresnel integral with complex
phase (in the sense of definition 5 in the first chapter).

Theorem 12. Let H be a real separable Hilbert space, let y € H be a vector
i H and let Ly and Ly be two self-adjoint, commuting operators on H such
that I + Ly is invertible and Ly is non negative. Let moreover f : H — C be
the Fourier transform of a complex bounded variation measure jiy on H:

Fa) = ila), f(o) = [ )

Then the infinite dimensional normalized oscillatory integral (with complex
phase)

/ 3 @ (4L)7) 0) F (3 Iy
H

15 well defined and it is given by

/eaﬁa<$7(’+h)$>e<y’w>f(m)dx _ / e72m<k4y,(1+h)*1(1¢—z’y)>uf(dk) (3.8)
u H

(L being the operator on the complezification HE of the real Hilbert space H
given by L = Ly + iL,).

Proof. As in theorem 11, the result can be proved by computing the finite
dimensional approximations of both sides of equation (3.8). m

In the following section we shall see how the latter results can be applied
to the computation of the solution of a stochastic Schrodinger equation.
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3.2 Belavkin equation

In the traditional formulation of quantum mechanics the continuous time evo-
lution described by the Schrodinger equation (1) is valid if the quantum system
is “undisturbed”. On the other hand we should not forget that all the infor-
mations we can have on the state of a quantum particle are the result of some
measurement process. When the particle interacts with the measuring appara-
tus, its time evolution is no longer continuous: the state of the system after the
measurement is the result of a random and discontinuous change, the so-called
“collapse of the wave function”, which cannot be described by the ordinary
Schrodinger equation. Quoting Dirac [54], after the introduction of the Planck
constant f the concept of “large” and “small” are no longer relative: it is
“microscopic”! one object such that the influence on the measuring apparatus
on it cannot be neglected. Let us recall the main features of the traditional
quantum description of the measurement of an observables O. Any observable
A is represented by a self-adjoint operator on the Hilbert space H, whose uni-
tary vectors represents the states of the system. Let us consider for simplicity
the case A is bounded and its spectrum is discrete. Let {a;},en C R and
{ti}ien C H be the corresponding eigenvalues and eigenvectors. According to
the traditional mathematical formulation by von Neumann the consequences
of the measurement are:

1. the decoherence of the state of the quantum system: because of the in-
teraction with the measuring apparatus the initial pure state ¢ becomes
a mixed state, described by the density operator p"™"(t) = >, w;Py,,
where P, denotes the projector operator onto the eigenspace which is
spanned by the vector 1; and w; = |(¢;,%)]?. Considering another ob-
servable B (represented by a bounded self-adjoint operator), its expec-
tation value at time ¢, after the measurement of the observable A (but
without the information of the result of the measurement of A), is given
by

]E(B)f”or — Tr[pprior (t)B]

The existence of the trace is assumed. The transformation mapping 1
to the so-called “prior state” pP"®’(t) is named “prior dynamics” or non
selective dynamics.

2. The so-called “collapse of the wave function”: after the reading of the
result of the measurement (i.e. the real number a;) the state of the
system is the corresponding eigenstate of the measured observable:

o0 = P

a; it

Tt would be more correct the word “quantum” as there exist also macroscopic quantum
systems, but they were unknown at Dirac’s time.
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The expectation value of another observable B of the system at time ¢
(taking into account the information about the value of the measurement
of A) is given by:

B (B|A = ;) = Te[ph* (1) B] = (i, Bih)

The transformation mapping the initial state 1) to one of the so-called
“posterior states” ph?*!(t) is called “posterior dynamics” or selective dy-
namics and depends on the result a; of the measurement of A.

As it is suggested by the collapse of the wave function, the non selective
dynamics maps pure states to mixed states, while the selective one maps pure
states to pure states. The relation between the posterior state and the prior

state is given by:
prmr Z P pgz)ef( )

where P(A = a;) that the outcome of the measurement of A is the eigenvalue
a; and it is given by

P(A = a;) = [(vi, )]
We remark that

E(B przor ZEPOSt B‘A =, )P(A (LZ'), (39)

Such a situation cannot be described by the traditional Schrodinger equation.
There are several efforts to include the process of measurement into the tradi-
tional quantum theory and to deduce from its laws, instead of postulating both
the process of decoherence (see point 1) and the collapse of the wave function
(point 2). In particular the aim of the quantum theory of measurement is a
description of the process of measurement taking into account the properties
of the measuring apparatus, which is handled as a quantum system, and its
interaction with the system submitted to the measurement [50]. Even if also
this approach is not completely satisfactory (also in this case one has to pos-
tulate the collapse of the state of the compound system “measuring apparatus
plus observed system”) it is able to give a better description of the process of
measurement.
An example of this approach is for instance the paper by Caldeira and Legget
[39], where the Lindblad equation for the evolution of the density operator p,
describing the process of decoherence (i.e. the prior dynamics) is heuristically
derived:

2 prior __ l[ prior] - nkT

ot TR Z
The authors show how equation (3.10) is a consequence of the interaction of
the system with a ensemble of oscillators representing for instance the normal

2. [z, 7)) (3.10)
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modes of an electromagnetic field or of the vibrations of the atoms in a crys-
tal. H is the Hamiltonian of the system, k is Boltzmann constant, 7" is the
temperature of the crystal and 7 is a damping constant.

Another interesting result of the quantum theory of measurement is the so-
called “Zeno effect”, which seems to forbid a satisfactory description of con-
tinuous measurements. Indeed if a sequence of “ideal”? measurements of an
observable A with discrete spectrum is performed and the time interval be-
tween two measurements is sufficiently small, then the observed system does
not evolve. In other words a particle whose position is continuously monitored
cannot move. This result is in apparent contrast with the experience: indeed
in a bubble chamber repeated measurements of the position of microscopical
particles are performed without “freezing” their state. For a detailed descrip-
tion of the quantum Zeno paradox see for instance [81, 42, 86.

In the physical and in the mathematical literature a class of stochastic Schro-
dinger equations giving a phenomenological description of this situation has
been proposed by several authors, see for instance [33, 27, 28, 53, 79, 60]. We
consider in particular Belavkin equation, a stochastic Schrodinger equation
describing the selective dynamics of a d—dimensional particle submitted to
the measurement of one of its (possible M —dimensional vector) observables,
described by the self-adjoint operator R on L?(R?)

d(t, ) = —LHi(t, z)dt — SR (t, 2)dt + VARY(t, 2)dW (t)
(3.11)
(0, 7) = tho(x) (t,z) € [0,T] x R

where H is the quantum mechanical Hamiltonian, W is an M —dimensional
Brownian motion on a probability space (Q, F,P), dW (t) is the Ito differential
and A > 0 is a coupling constant, which is proportional to the accuracy of
the measurement. In the particular case of the description of the continuous
measurement of position one has R = z, so that equation (3.11) assumes the
following form:

d(t,x) = —LHy(t,2)dt — 32 (t, 2)dt + VAwp(t, 2)dW (t)

(3.12)
1/)(0,’1‘) = 7/)0(7") (7‘,’[‘) S [OaT] X Rda
while in the case of momentum measurement, (R = —ifiV) one has:
dip(t, x) = —LHp(t, x)dt + 22 AQ(t, x)dt — iV AV (t, 2)dW ()
(3.13)

(0, ) = () (t,2) € [0,T] x R?,

2A measurement is called ideal if the correlation between the state of the measuring
apparatus and the state of the system after the measurement is maximal
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Belavkin derives equation (3.11) by modeling the measuring apparatus (but it
is better to say “the informational enviroment”) by means of a one-dimensional
bosonic field and by assuming a particular form for the interaction Hamiltonian
between the field and the system on which the measurement is performed. The
resulting dynamics is such that there exists a family of mutually commuting
Heisenberg operators of the compound system, denoted by X (#);cj0.1:

X(1),X(s)] =0, s¢t€l0,T],

(on a dense domain in L?(R?)). In this description the oncept of trajectory of
X is meaningful, even from a quantum mechanical point of view. Moreover
the “non-demolition principle” is fulfilled: the measurement of any future
Heisenberg operator Z(t) of the system is compatible with the measurement
of the trajectory of X up to time ¢, that is

[Z(t), X(s)] =0, s <t

(on a dense domain in L?(R?)). The measured observable R is connected to
the operator X by the following relation

X(t) = R(t) + \(B, + B;"), (3.14)

(where (B;+ B;) is a quantum Brownian motion [66]). Equation (3.14) shows
how the measurement of X (¢) gives some (indirect and not precise) informa-
tions on the value of R, overcoming the problems of quantum Zeno paradox.
Indeed we are dealing with “unsharp” in spite of “ideal” measurements.

The solution 1 of Belavkin equation is a stochastic process, whose expectation
values have an interesting physical meaning. Let w(s), s € [0,¢] be a continu-
ous path (from [0, ¢] into R™), I a Borel set in the Banach space C([0,t], RM)
endowed with the sup norm, let P be the Wiener measure on C([0, ], RM).
The probability that the observed trajectory of X up to time ¢ belongs to the
subset [ is given by the following Wiener integral:

PX(s) = w(s)eenn € T) = [ [vit.)*Plaw)

Moreover if we measure at time ¢ another observable of the system, denoted
with Z, then its expected value, conditioned to the information that the ob-
served trajectory of X up to time ¢ belongs to the Borel set I, is given by:

BZO1X(5) = w(shioq € 1) = [ LT

P(dw).

(where ¢(t,w) # 0 is assumed).
In other words ¢ (t,w) represents the posterior state and Belavkin equation
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describes the selective dynamics of the system. The non selective dynamics
can be obtained by means of the following generalization of formula (3.9) to
the continuous case:

pprior(t) — / pZOSt(t)]P(X = dw) — / Pz/)(t,w)P(dw) (3.15)
C([0,t],RM) C([0,t],R4)

By means of Ito formula one can verify that the prior state pP""(¢) satisfies
Lindblad equation:

0 Ti0T 1 rior A Ti0T

5 (@) = [H ()] = SR [R, 7 (1]
Analogously to the traditional Schrodinger equation, one can look for a path
integral representation for the solution of Belavkin equation. In fact M.B.
Mensky [79] proposed an heuristic formula for the selective dynamics of a
particle whose position is continuously observed. According to Mensky the
state of the particle at time ¢ if the observed trajectory is the path w(s)cjo.

is given by the “restricted path integrals”

i

vl = /{(> }”S‘(”e*-fot(”(s)““””Sd)(v(O))Dv T (3.16)
J{v(t)=x

One can see that, as an effect of the correction term e o (1(8)=w()%ds que to
the measurement, the paths ~ giving the main contribution to the integral
(3.16) are those closer to the observed trajectory w. In fact by means of the
infinite dimensional oscillatory integrals described in the previous section, it
is possible to prove a Feynman path integral representation of the solution
of Belavkin equation and give a rigorous mathematical meaning to Mensky’s
heuristic formula. Indeed in the particular case of position measurement we
shall prove that the solution of equation (3.12) can be represented by

1/)(75, ’I“) _ /e;h fr: I5(s)|?ds—A f(: \"/(s)+m\2d567% f(: V(y(s)+z)ds

olo ﬁ(v(s)+w)-dW(s)¢o(7(0) +2)dy. (3.17)

In the case of Belavkin equation describing momentum measurement the stochas-
tic term plays the role of a complex random potential depending on the mo-
mentum of the particle. In this case one has to use the phase space Feynman
path integrals described in chapter 2. More precisely by means of a infinite
dimensional oscillatory integral with complex phase on the space of paths in
phase space one can give a rigorous mathematical meaning to the following
heuristic expression:

ot z) = / o E R (GP()~ (320 s [ pls)2d o & [ Va(s)+a)ds

VAPV () g ((0) + @) dgdp.  (3.18)
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3.3 Position measurement

In this section we consider Belavkin equation describing the posterior dynamics
of a quantum particle, whose position is continuously observed:

{ dp = —LHpdt — 22L4dt + /Xy dW (1) 19)
(0, 7) = () t>0, 2 € RY :

where W is an d-dimensional Brownian motion defined on a probability space
(Q,F,P) and dW () denotes the Ito stochastic differential; for each w € Q,
Y(w) € O(0,T),H), H = Ly(R?), and X > 0 is a coupling constant. We
denote the R norm with | | and the scalar product with a-b = 3% a;b;.

Equation (3.19) can also be written in the Stratonovich equivalent form:

{ dip = —LHpdt — Ma2pdt + VAxp o dW (1) (3.20)

Y(0,7) = 9o () t>0, z€R?

The existence and uniqueness of a strong solution of equation (3.19) is proved
in [60]. We shall prove that it can be represented by an infinite dimensional
oscillatory integral on a suitable Hilbert space. We recall the definition of
strong solution in the case of a Schrodinger equation.

Definition 7. A strong solution for the stochastic equation (3.20) is a pre-
dictable process with values in H = L*(R?), such that
Y(t) € D(—i/hH — \|z|?) P-a.s.

P ST @IP + | (=ifH = NP7 dt < o0) =1

P( 7 llal(t) de]]? < 00) =1 and
P a.s. forallt e [0,T]:

$(0,%) = to(x)

Let us consider the Cameron Martin space H; introduced in section 1.3
and let HF be its complexification. Let L : HF — H{ the operator on HF
defined by

t
(. La) =~ [ () s}
0

where a? = —2iAh. The j—th component of Ly,Ly = (L, ..., Ly4), is given
by

t s
(Ly);(s) = 22)71/ ds'/ v (s")ds" j=1,...,d (3.22)
s 0
3
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one can verify (see [57] for more details) that iL : H — H is self-adjoint with
respect to the H;-inner product, it is trace-class and its Fredholm determinant
is given by:

det(I 4+ L) = cos(at).

Moreover (I 4+ L) is invertible and its inverse is given by:

(T + L) '5(5) = % (5) — a / sinfa(s' — )] (') ds'+

t
+sinfa(t — s)] / [cosat] 'acos(as’)y;(s)ds'  j=1,...,d.
0

Let us introduce moreover the vector [ € H; defined by

f/ ds—f/ (3.23)

t
_\/X/(A)T(]T

Given these results, it is possible to apply the theory of the first section and
prove that, under suitable assumptions on the potential V' and the initial
wave function 1y, the heuristic expression (3.17) can be realized as the infinite
dimensional oscillatory integral with complex phase on the Cameron-Martin
space H;:
C(t, 2, w) / 3O LI) 17 =230 [ 3(8)s = [ V(1 0)ds g 0 0) 4 1)y
JH

t (3.24)
where C(t, z,w) = e M’ +VAzw(®) i g constant depending on ¢, © € R, w €
Q. Indeed the integrand exp(Z®) in (3.17), where ®(v) = [} |4(s)[?ds +
20l [ |7(s) + x[2ds — 2ifi [} V/A(7(s) + @) - dW (s) can be rigorously defined
as the functional on the Cameron Martin space H; given by ®(v) = (v, (I +
L)vy) — 2ik(l 2hf o’z - y(s)ds — a?|z|*t — 2/ Az - w(t), where L is the
operator (3 22) and [ is the Vector (3.23).
By means of theorem 11 one can compute the integral (3.24) in terms of
an absolutely convergent integral on H;. Moreover it is possible to prove it
represents the solution of Belavkin equation (3.20) (see [9]).

Theorem 13. Let V' and vy be Fourier transforms of complex bounded varia-
tion measures on RY. Then there exist a (strong) solution to the Stratonovich
stochastic differential equation (3.20) and it is given by the infinite dimensional
oscillatory integral with complex phase (3.24).

Remark 7. The result can be extended to general initial vectors 1y € L*(R?),
using the fact that F(R?) is dense in L*(R?).
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Proof. The proof in divided into 3 steps: in the first two we consider the case
V' = 0. First of all we deal with an approximated problem and we find a rep-
resentation for its solution via a infinite dimensional oscillatory integral, then
we show that the sequence of approximated solutions converges in a suitable
sense to the solution of problem (3.20). In the final step we introduce the
potential V' and show that the right hand side of (3.24) is in fact the solution
of the equation (3.20).

1. The solution of the approximated problem. We approximate the tra-
jectory t — w(t) of the Wiener process by a sequence of smooth curves. More
precisely we consider the sequence of functions ?

t
n / w(s)d s = wy(t), n €N
Ji—1

We have w,, — w uniformly on [0, 7], indeed
SuPsero ) (Wals) = W(s)| =0 asn — oo P a.s.
Let us consider the sequence of approximated problems:

{ dipy, = —LHpydt — N2, dt + Az - 4, d WV, (1) (3.25)

1/)n(07 .’I?) = %(5’3)

where dW,(t) is an ordinary differential, i.e. dW,(t) = @,(t)dt, and we can
also write: _ '
which can be recognized as a family of Schrodinger equations, with a complex
potential, labeled by the random parameter w € 2.
Now we compute a representation of the solution of (3.26) by means of an
infinite dimensional oscillatory integral with complex phase , under suitable
assumptions on the (real) potential V' and on the initial datum ¢, (0, z,w) =
’l/)() (.’E)

We can write equation (3.26) in the following form:

{ wn = _%(7h2A N Z)\h“ﬂ?)wn - %an + \/X-’Ij ’ wnwn(t)

2m

Un(0,2) = o ()

so that we can recognize in it the Schrodinger equation for an anharmonic
oscillator with a complex potential, i.e.

U = — (22 + 2 en — $U,
{ wn((];x)hz 0(37) " (3.28)

3Here we denote, as usual, the trajectory of the Wiener process W (t) as w(t).

(3.27)
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where a? = —2iAh and U = U(t,z,w) = V(2) + ihv/ Az - @, (1).
We introduce the sequence of vectors [,, € H defined by

\/_/ \/_/wn Y(s)ds,

which is given by

0
= \/X/ wp (T)dT. (3.29)

First of all let us consider equation (3.20) with H replaced by the free Hamil-

tonian H = —h?A/2. The following result holds:

Lemma 3. Let ¢y € S(RY). Then the solution of the Cauchy problem:

an( ) - mAw”(f’ T) o )‘|T‘2wn(fa T) + \/XT : Wn(f)"/)n(f, T)
{ Un(0,7) = tho(z), @ €R’ (3.30)

1S given by :

ulta) = [ BT i R8O 3(0) + )y
Hy

(3.31)
(where the right hand side is interpreted as the infinite dimensional oscillatory
integral of 1o (7(0) 4+ x)el" with compler quadratic phase function (v, (I +
L)y)/h, with Hy the Cameron-Martin space, 1, the vector defined by (3.29)
and L the operator defined by (5.22).)

Proof. Formula (3.31) can be realized as

[ A s S50 0) )y =
Hy

,ia2\m‘2t+ﬁT_w (f) L( (I+L) ) ([ »y) 0T 7 a
= e zn  TVATwall e7n s e wg( Ydadry
Ht J R4

where b(«, x) € Hy, precisely:

bla,z)(s) = at — s) — ﬁ(t2 — 5%),

One can directly verify that the function f(y) = [, e ®eit(@) Mahg (a)dex s
the Fourier transform of a measure yu € M(H), that is:

p(dy) = /TR ) €' 1) (1) By () (dy) v
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so we can apply theorem 2 and have:

“le P SRn(t) [ e 1/2, 7 (blo,2) il (T4 1) (ba) i) ]
Y, =€ 2 Wn e det(I+L) /e W) Tt UiT L Gy (o) do
JRd

By simple calculations we get the final result:

dnltor) = [ Gultam)un(o)dy

where G,,(t, x,y) is given by:

=_1 ‘/Xm'wn(t)*q\igzz -ft wn (8) cos(as)ds
Gn(t,.’E, U) - V2rih sin((Lat)e sin(at) 0

6@ fnt \wn(s)Pdse@(fa fot wn(s)-'[: wn (s") sinfa(s’—s)]ds’ds)

(3.32)

_e?(fafot sin(as)wn(s)ds-fg cos(as)wn (s)ds—a cot(at)] fof cos(as)wn (s)ds|?)

e%(cot(at)(\m\zﬂy\z)*s?&i:ﬂ) ) eaﬁy-(cot(at) ! cos(as)wn (s)ds+ [} sin(as)wn (s)ds)

which is, as one can easily directly verify, the fundamental solution to the
approximate Cauchy problem (3.25). ]

2. The convergence of the sequence of approximated solutions. We
will prove the following result:

Lemma 4. The following equation

dip = —LHpdt — Na[*¢dt + Az -podW(t) >0 (3.33)
»(0, 2 |

):wﬂ(x)a 1/)0 ES(Rd)

has a unique strong solution given by the Feynman path integral

bt x) = / e i )P i s /3 S W ) g (00) 1 )y

rigorously realized as the infinite dimensional oscillatory integral with complex
phase on H;

6/\,q:2+\/Xm-w(t)/ e#('y,(I—FL)fy)e(l,fy)efz\m-fotfy(s)dsd)o(,y(o) + 2)dvy
J H,

Moreover it can be represented by the process

vita) = [ Glt.. vy
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where

G(t, z) y) _ 1 a Pﬁaz.w(t)f s“{F(Z:) [4 cos(as)w(s)ds

V2rin \ sin(at)

e-T(fa Otw(s)-f: w(s') sin[a(s’ —s)]ds'ds)

ihX

.eT(*a.fot sin(as)w(s)ds-fg cos(as)w(s)ds—a cot(at)] fof cos(as)w(s)ds|?)

eiﬁ (cot(at)(\a:\ﬂr\y\ )— %) eaﬁy'm(fﬁt cos[a(s—t)]w(s)ds)

Proof. As first we consider the sequence ¥y (t,z) = [Lu Gn(t,z,y)tbo(y)dy
Using the dominated convergence theorem we have ’rhat

P( lim | [t x) — 9t o)) ds — o) —1 (3.34)

n—oo R4

with o (t, z) = [ G(t, z,y)o(y)dy, as:

lim |G, (t,z,y) — G(t,z,y)] = 0

n—o0

for all t € [0, 7] and x,y € RY. Moreover, one can see by a direct computation
that a = v/—2i¢h\ can be chosen is such a way that:

], Gtz y)0oly Jdy|? < C ()" M|y (y) |7, (3.35)

where P(t, x) is a second order polynomial with negative leading coefficient and
C(t) and P(t,z) are continuous functions of the variable ¢t € [0,T]. Applying
the Ito formula to the limit process () we see that it verifies equation (3.33)
for every (t,z,y). Since the kernel G(t,z,y) is F; adapted by construction
it follows that the solution is predictable. By direct computation and using
estimates analogous to (3.35) one can verify that 1) is a strong solution. On
the other hand every 1, (¢, ) is equal to

/ o35 Jo 1F(S)Pds =[5 Iy(s)+a|>ds ,V/X [5(7(8)+)-dom ( sy (7(0) + x)dy =
Hy

—ia2191%t | /o (1) 35 (THD)) o ln ) =i fy @*wy(s)ds
=e " e2s 'Y " Yo (7(0) + x)dy
Hy

= T R t) et (] 4 [)/2 / e =il 1+1) 7 (1=il)) ()

Hy
where pu(dy) is the measure on H whose Fourier transform is the function
7> e BT (4(0) + ).
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We have ||, — I||% — 0 as n — oo, where I(s ff r)dr. Therefore,
by the Lebesgue’s dominated convergence theorem we have that, for every
r € R%:

—ia

l]m,n_>ooe 2)“1 ‘ t+fT UJ" det([ —|— L ]/2 fH Zh ’)’ 7[717(I+L) (777[n)>u(df)/)

— 67“1 ?Ja|” t+f$w()d9’[([—|— L —1/2 fH *lh (v— zl(T+L)*1('yfil))'u(d,y)
(3.36)
Therefore, taking into account the uniqueness of the pointwise limit, we have
shown that:

=[x G(t,z, y)ho(y)dy =
(3.37)
f PQh Jo 17()|ds =X [ (s +I‘2dst0 s)+a)- dw(s)¢0(7(0) + m)d'y.

|

Remark 8. The result can be extended by continuity to all 1y € L*(R?), using
the density of S(R?) in L?(R?).

3. The proof of Feynman-Kac-Ito formula by means of Dyson expan-
sion

In this subsection we generalize our previous results to the case H = —h*A/2+
V' and complete the proof of theorem 13. We follow here the technique of El-
worthy and Truman [57].

We set for ¢t > 0, z € R?:

O(t, 0)ihy(z) = / o35 Jo 17(8)2ds=X [§ [y(s)+al%ds ,—  [§ V(v(s)+a)ds
Hy

VA Jo (r(8)+)-dW (s Dho(7(0) + z)dy  (3.38)
and
O0(t, 0) () _/ e Jo 1P a2 fy @) +alds VA [ OOV 6) g (4(0) 4 ) dy.
Hy
(3.39)

Then we have:

O(t,0)vn(x) = ¢ VR0 [ i i

JH,

e Vs o0 0) 4 )y (3.40)

Let po(¢)) be the measure on H, such that its Fourier transform evaluated in
v € Hyis 1ho(7(0) + ).
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For 0 < u < tlet u,(V,z), vi(V,z) and n%(z) be the measures on H;, whose
Fourier transforms when evaluated at v € H; are respectively V(z + v(u)),

exp ( —i [1V(z+ fy(s))ds>, and exp ( —if! a%*y(s)ds). We shall often write
p = p(V,x), vl = 0E(V,2) and 0t = gl (2) T {iy : a < u < b} is a family in
M(H;), we shall let fab liudu denote the measure on H; given by :

b
f— / . () pu(dvy)du

whenever it exists.
Then, since for any continuous path

exp ( — %/OtV(’y(S))ds> =

. o (3.41)
- / V() exp (¢ / V(y(s))ds ) du,

we have .
vh =6 — —/ (p % V1) du (3.42)
i Jo

where ¢y is the Dirac measure at 0 € H,.
By the Cameron-Martin formula:

O(t, 0)ihy(z) = e 7 —+VAwwlt) Jot (] + L)~/

) / o3 lail, (HL)J((’“*”))(% * v x po(1))) (da)  (3.43)
Hy

Applying to this equality (3.42) we obtain:

O(t,0)th(z) =
67“1 21zl Zte 2Ty rew(t) det([—i—L) 1/2/ e’;h(afil,(l—kL)”(afil))(né */L(](w))(da)‘f‘
Hy

. 4
—%/ e~ VAR det(T 4 1)1/2
7 J0

[ A (V) ) )
Hy

Oo(t, 0)thg(7) — _/ / oor Jo 1(8)2ds—X [ [(s)+al?ds ,— 4 [ V(y(s)+a)ds
H;
eV ol OV (y(u) + 2)tbo (7(0) + z)dydu
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By the Fubini theorem for oscillatory integrals (see [12, 4]), we get that

/ eﬁfot [5(s)|?ds— )‘fo [y(s)+x|%ds f—f V(y(s)+x)ds ffo x)-dW (s )V(’y(u)—i—x)
Hy

Po(y(0) + 2)dy = [, enn hu @R d A [l o) balds i V(o) +a)ds.

VAL AW ()7 () (1) 4 1) / o2 Jo 13 (9)Pds=A f3 171 (5)+72 (w)-+al ds
HO,u

VMo ()2 +2) AW () () (0) 4 vy (1) + ) dryy drys.

Here v, € Hy, and v, € H,; are the integration variables. We denote by H, s
the Cameron-Martin space of paths v : [r, s] — R¢.
Finally we have:

O(t,0)tho(x) = Op(t,0)1he(z) — i/ﬂ/@(t, u)(VOq(u,0)th)(x)du (3.44)

Now the iterative solution of the latter integral equation is the Dyson series
for ©(¢,0), which coincides with the corresponding power series expansion of
the solution of the stochastic Schrodinger equation, which converges strongly
in L2(R?). The equality holds pointwise. On the other hand, following [60], it
is possible to prove that the problem (3.33) has a strong solution that verifies
(3.44) in the L* sense, therefore ©(t,0)ty coincides with the solution ¢ (¢).
This concludes the proof of theorem 13.

0

3.4 Momentum measurement

In this section we study Belavkin’s equation describing the continuous mea-
surement of the momentum p of a d—dimensional quantum particle:

dip(t, x) = —LHp(t, 2)dt + L2 A (t, x)dt — iV AXEV(t, 2)dW ()
(3.45)
(0, ) = () (t,z) € [0,T] x R?
Our main interest is to give a rigorous definition of the solution as a Feynman
path integral defined on the phase space. Once we have defined a Feynman
path integral as a candidate for the solution of (3.45), we still have to prove
that it solves effectively the problem (3.45). When the evolution of the free
particle (i.e. for V' = 0) is considered, equation (3.45) reduces to the following:

dip(t,x) = (A + MENY(t, 2)dt — i/ ARV(E, 2)dWV (1)
(3.46)
¥(0,7) = tho(z) (t,2) € [0,7] x R
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In this situation we derive from our rigorously defined infinite dimensional
oscillatory integral an expression for the solution as a finite dimensional inte-
gral involving the initial data and a Green kernel and prove directly that our
Feynman path integral represents the strong solution for the problem (3.46).
In the more general situation of problem (3.45) we use an analytic result based
on the method of stochastic characteristics to show that our Feynman path
integral is in fact the solution to the Belavkin equation (3.45).

In the first and second subsections we provide the analytic tools to guarantee
that the infinite dimensional oscillatory integral we shall define in the third
subsection gives indeed a solution of problem (3.45).

3.4.1 Existence and uniqueness results

In this subsection we are interested in finding a unique strong solution for
problem (3.45). Let us first introduce the framework in which we will consider
the problem.

Let (2, F,P) be a probability space and W (¢) a d- dimensional standard Brow-
nian motion, we will denote by F; its natural filtration completed with the
null sets of F. Let L?(R?) be the complex Hilbert qpa(‘e of qquare integrable
functions endowed with its natural inner product (f, g) fW r)dx, we
will denote by | - | the corresponding norm induced by the sesqu111near form.
We denote by A the realization of the operator %h—A + 22N in the space
H = L*(R?), with domain D(A) = {f € L*(R?) : Af € LQ(Rd)} C LA(RY). It
is easy to prove the following property:

Proposition 1. The operator A is closed on D(A), is dissipative and generates
a Cy-semigroup e in H. Moreover

oA (EE AN (A A (3.47)

Proof. The first assertion is a straightforward application of the Lumer Phillips
Theorem (see [85]), the operator A being dissipative and with dense domain
in L?(R?). Identity (3.47) is guaranteed by the Trotter product formula (see
[85]) and the fact that A and iA are generators of Cy-contractive semigroups
and commute. O

The domain D(A), endowed with the graph norm is equivalent to the
complex Hilbert space H2(R?) of functions with all the first and second partial
derivatives, defined in distributional sense, in L?(R?). The scalar product in
H?(R?) is given in its natural way (Sobolev space). We will denote with B
the realization of —iv/ ARV in L?(R%), with domain D(B) = {f € L*(R?) :
(=A)zf € L2(R?)}. The graph norm induced by the operator B is equivalent
to the usual norm of the Sobolev space H'(R?).
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Finally we denote by L2,([0,T]; H*(R?)) the space of L?(R?) valued pro-
cesses which are predictable and belong to L?([0,T]; L*(Q; H*(R%))(*). Simi-
larly the space of L*(R?) valued processes that are predictable and belong to
C([0,T]; L*(£2; L*(R?)) is denoted by Cy ([0, T]; L*(R%)). The two spaces are
endowed respectively with the following norms:

T
|U’|2L%V([0,T};H2(Rd));/0 Elu(t) 32 (ray dt

and

2 . 2
|U|CW([0,T};L2(W))— ts[‘;?ﬂ Elu(t)[72 (Rd)

We recall the definition of a strong solution for problem (3.46), see also
[48] for a more general definition:

Definition 8. Given an initial data 1 € H?(R?), we define a solution 1) for
problem (3.46) as a process v € Cy ([0, T]; L>(R%)) N L%, ([0, T); H*(R?)), that
verifies the following equation:

dip(t) = Ap(t)dt + By(t)dW (1) P— a.s.

We can prove the following:

Proposition 2. Problem (3.46) has a unique strong solution that is repre-
sented in mild form as follows:

Y(t) = eapy + / t eDABY(s) dW (s) (3.48)
J0

Proof. We first notice that A admits a spectral decomposition: indeed it can
be diagonalized by means of Fourier transform

Ty L ik /h
W(k) = rh)il ./Rd e U(z)dr

— 7 A ~
Ap(k) = — Vk*(k

Dk) = (g + DR,
therefore it is possible to rearrange the proof of [47][Theorem 4.3.5, pag.79] to
prove the result.

“Note that L*([0,T]; L?(; H?(RY)) ~ L2([0,T] x Q; H?>(R?)) by the Fubini-Tonelli the-
orem (=~ means isomorphism between Hilbert spaces).
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One has that there exist positive constants K (%, A\,m) and C(T) such that:

[ ) [t pu awopa < KR s apras

(3.49)
¢ T
sup E| [ e By(s) dW (s)|* < C’]E/ e =DA By (s)* ds (3.50)
tefo, ] Jo Jo
< O(T) sup Eu(t)?
t€[0,T7]

We will show only the first inequality, as the second follows in a similar way.
Setting A =: 1/(55 +3)A, we have that the graph norm of D(A) is equivalent
to the graph norm of D(A), therefore there exists a positive constant C' (%, A, m)
such that:

/0 E|(—A) ./U/B(tS)ABw(S) dw (s)|* (3.51)
< M/O E(—A)/O/e(”)“‘Bw(s) dw (s)|?

Then for any € > 0 we have:

| EICA Ay [t B aw (o) Pas

/ / AT — eA) 1A AV By (s) P ds dt

7]{21‘ 9 P
k’E —A)12B k)|? dk ds dt
= [ [ e [ A B b ks

2

1 — e K (T—s) —
/ / [(=A)'2By(s, k)|* dk ds
Rd

14 6k‘2

! ME/ (- A)(s) P ds

Now, letting ¢ — 0 and recalling that (3.51) holds, we deduce (3.49) from
the inequality. These are the two key estimates needed to prove, using a
fixed point technique in the spaces L%, ([0, T]; H*(R?)) and Cy, ([0, T]; L*(R%)),
the existence of the mild representation for the solution. But then, having
the regularity implied by the definition of the spaces L?,([0,T]; H*(R?)) and
Cw ([0, T]; L?(R4)), it is possible to apply the Ito formula to ¢ written in the
form (3.48), obtaining that the mild solution is in fact a strong solution. O

<3E/ (—A) 2 By(s)|? ds <
J0
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In the next subsection we are going to prove another characterization of
the strong solution of (3.46): we will show that there exists a strict rela-
tion between the solution of (3.46) and the solution of a classical Schrédinger
equation. To this purpose we will consider Eq.(3.46) in the momentum repre-

sentation: |
) k) = ———— f“”/h x)dx
(k) E h)d/Q,/RdP Y(x)dx

We need this second characterization in order to identify the solution with the
Feynman path integral rigorously defined in subsection 3.4.3.

3.4.2 Solution by the stochastic characteristics method

Applying to both sides of (3.46) the Fourier transform we obtain the following
equation :

dip(k) = —(%H + %Ug)z];(k)dt + VY (k)dW (), (3.52)

where H is the Hamiltonian of the free particle, which in momentum repre-
sentation is simply the multiplication operator:

~ k2 -
Hy(k) = —(k).
9(k) = 5 5(H)
The corresponding Cauchy problem assumes then the following form

dip(k) = —(L £ 4 M2 (k)dt + Nk (k)dW (2)
~ i (3.53)
(0, k) = o (k)

In this section we show that problem (3.53) is equivalent in a suitable sense,
to a deterministic Schrodinger equation expressed in momentum coordinates.
The main tool is a simple application of the stochastic characteristics method
that allows to transform the stochastic partial differential equation into a fam-
ily of deterministic equations. Let us denote by p the function defined by
p(t, k) = exp(— VW, + \k?t).

We can prove the following:

Proposition 3. The strong solution of (3.53) has the following representation:

ZE(t, k‘) — eﬁkW(t)f(Ak2+%§'fm)t,‘/~)0(k) (354)

Proof. The proof is divided in two steps: in the first we will prove that (3.54)
solves problem (3.53) and it is a strong solution, in the second we prove that
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this solution is the unique strong solution.
first step:
Let us consider the following problem:

h2m (3.55)

k2t ~
2m

It is well known that if ¢, € H?(R%), then the solution ¢(t, k) = e~ 2m 1)y (k) of
problem (3.55) belongs to L2(0,T; H*(R%)) N C ([0, T]; L*(R?)). Our intention
is to prove that the function p~'(¢)¢(¢) that corresponds to (3.54), is actually
a solution to problem (3.53). We apply, first formally, the Ito formula to the
function p~L(¢)p(t):

~ Pirk? o AR?
P00t = o [ 1[5+

. |07 (5)6(5) ds (3.56)

+ /Ot VAkp~(s)o(s) dW (s).

Setting (t) = p~ ' (t)p(t) we have that ¢ is a solution to equation (3.53). This
procedure becomes rigorous as long as we can give a meaning to p—!. Notice
that for each fixed ¢ the multiplication operator v AkW (t) — Akt is the gener-
ator of a 'y semigroup, being self adjoint and having the leading term dissipa-
tive, therefore p~'(#) can be regarded as the semigroup e(VARW (1) -Mk20)s oyalyy-
ated at s = 1, see also [60]. Let us take an element ¢ € D(A), then the vector
p (1), which in momentum representation is given by e(ﬁkw(t)’)‘k%)@(k) is
still in D(A) thanks to the properties of commutativity of the generator with
the semigroup. Moreover for every fixed k € R? it is possible to evaluate the
It6 differential of the process eV W20 5(k) [t is easy to prove using the
Fubini Theorem and thanks to the spectral decomposition of p~!(t)e#!!, the
following estimate:

T T
E/ ‘kQEAkW(t)f(/\kLF%k )t¢0(k)‘%2(Rd) dt (357)
0
T _ ~
— / { ) 6—2/\k2tk4w(2)(k)E[QQ\/)\kW(t)] dk} dt <T /d k%bg(k) dk
Jo JR JR

This implies that the identity (3.56) can be understood in the space L*(R?).
So far we have obtained a solution t(t) = p(t)~'¢(t) for equation (3.53)

and the regularity for ¢ is directly inherited from ¢, by the special expression
for ¢: o € L3, (0,T; H*(RY)) N Cyw (0, T; L?(RY)).
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Remark 1. The form (3.54) of the solution shows that it is no longer unitary
pathwise.

second step: Uniqueness of the solution. We will find an a priori esti-
mate for the solution that ensures the uniqueness of the solution. Since the
problem is linear if one finds a continuous dependence on the initial data one
gets immediately that the solution is unique. Now let us consider the solu-
tion ¢ splitted in real part and imaginary part, w 1 + 179, and consider
d()(t), ¥(t)) = d(|1h1(t) 2+ [12(t)|?). The equations solved by the real and the
imaginary parts are respectively:

dipy (1) = L5 0, (t) dt — 24, (t) dt -+ Nk, (1) dWV (t)

dip(t) = FHa1by (1) dt — 2=y () dt + VNkabo(t) dW (1) 0
Now we can apply the Ito formula to |1 (t)|2 and |1 (t)\2:
(1 () = [Reddo[* + 23 [ (dtda(5), b1 (s)) ds — 2 [ (25240 (s), ¢ () ds
+2 [y (VAR (5), 41 (5)) dW () + A fy [k (5))[2 ds.
and
()2 = [Tmaho[* = 23 [y (E=tn(s), Wa(s)) ds — 2 [§(M=da(s), ha(s)) ds

+2 [ (VAR (), () AWV (5) + [i Alktba(s)) [ ds.

thus:

[0 + (12 (0)* = [do]* = [y MIktoa () + [keia(s)]?) ds
+2 [y VAUVE () + [VEda(s)]?) dW (s) (3.59)
+ Jy Ak (5))* + [ka() ) ds.

We recall that ¢ € L%,(0,T; H*(R?)), then the stochastic integral in (3.59) is
a martingale. Thus passing to the expected value in (3.59) we get that:

E([9(#)) = |0l (3.60)

Moreover one reads from identity (3.59) that |¢)(¢)|? is a martingale with re-
spect to the filtration F; and that the solution is unique in the class of strong
solutions. O

Let us denote by {W¥(t), ¢ € [0,T]} the family of random operators defined

W (1) = (t)
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Remark 2. Thanks to estimate (3.60) we can extend each operator ¥(t) to
the whole L?(R?),we will denote its extension again with U(t).

Let ® be the isometry form L?(R?) in the momentum representation to
L(R?) in the coordinate representation, we define:

O(t,0)=d o U(t) o d ' : L*(R?) — L*(R?) (3.61)
for each ¢t € [0,T]. We are now ready to prove the following:

Proposition 4. Problem (3.46) has a unique strong solution with the following
representation formula:

Ut x) = (O 0)o)(z), t>0,2€R (3.62)

Proof. (O(t,0)1y)(z) is a strong solution of problem (3.46) thanks to the prop-
erty of the Fourier transforms. Therefore it has to coincide with the mild rep-
resentation found in proposition 2. O

Remark 3. It is clearly possible to consider Eq.(3.46) starting at time s,
then having that the solution is unique, we can define the random evolution
operator O(t, s) : D(A) — L?(Q; L?>(R%)) that associate any initial data f with
the solution at time t of (3.46) starting at s in 1.

Now let us consider the following Cauchy problem:
dip(s,7) = [—H(— A+ V(2)) + 2 AJ(s, 7)dt
—iVARY - (s, 2)dW (1) (3.63)
$0.7) —tolr)  (s.2) €[0,f xR
One has:

Theorem 14. For given V,V,,,Vy 0, € L¥RY)(°) and ¢y € H*(R?), the
problem (3.63) has a unique strong solution that satisfies the following integral
equation:

Y(t,x) = O(t,0)hg(x) — %/ﬂ O(t, s)V(x)(s,x) ds (3.64)

With L°°(R?) we denote, as usual, the space of integrable functions almost everywhere
bounded. V,,,V,, ., denote the partial derivatives of V' with respect to x;, respectively
TiyTyj-
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Proof. Let us define
PO = i~ 5 [NV ds+ [ B ). (369

Following again [47] or [48] we show that there exist a fix point of T' in
L3, ([0,T]; H?*(R?)) and in Cy ([0, T]; L>(R%)). Then an application of the 1to
formula will complete the proof of the existence of a unique strong solution.
On the other hand it is possible to give a meaning to the expression (3.64)
again by a fixed point argument in the same spaces thanks to estimate (3.57)
and to the boundedness of V. Now we have to show that the integral equation
(3.64) coincides with the mild representation, see also [37].
We have:

Y(t,x) = O(t,0)(z) — —/ O(t, s)V(x)(s, x) ds (3.66)

Let us remind that O(¢,0)¢g(x) is the mild solution of the “free” problem
(3.46), therefore:

O(t, 0)o(x) = sy + / DA BO(s, 0 dW(s)  (3.67)

Also O(t, s)V ()1 (s, x) is the solution at time ¢ of the “free” problem (3.46)
started at time s in the state V(x)y(s, x), therefore:

O(t, s)(Vip(s)) = e AV (s) + /t eIABO(r, s)Vip(s) dW (r)  (3.68)

Thus substituting (3.67) and (3.68) respectively in the first (respectively sec-
ond) term on the right side of (3.66) we obtain:

Y(t,x) = O(t, 0)¢ho(x —/@f9 Yh(s, x) ds
- efA¢0+/0 (=94BO(s,0)1 dW (s)

_%/0 e(ts)AVd)(S)_%/s eABO(r, s)Vip(s) dW (r)] ds

Thanks to the stochastic Fubini Theorem, see [48], we can interchange the
order of the integration in the last term and we get

/ t e =4 BO(s, 0)1 dW (s) — % / t e IABO(r, 5)Vip(s) dW (r) ds
0 " s
- /t (1= g)AB[ (s,0)1h — % /S O(s, r)Vip(r) dr] dW (s)

J0 J0

= /te(ts)ABw(s,x) dW (s)
0
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This gives that (¢, z) defined in (3.66) corresponds the fixed point of I' de-
fined in (3.65) of (3.63), which concludes the proof. O

3.4.3 Solution by means of phase space Feynman path
integrals

In this section we are going to prove that, under suitable assumptions on the
potential V' and on the initial data ¢y the solution to problem (3.63) can be
given by means of an infinite dimensional oscillatory integral: a rigorously
defined “Feynman path integral” on the space of paths in phase space. More
precisely we are going to give a meaning to the following heuristic expression
and to prove it represents the solution to the problem (3.63):

W(t,x) = const/exp <%S(q +,p) — )\/OtPQ(S)dS>
o (VA [ D)V ) ) vula(0) + a)dadp (369

where the integral is meant to be taken on an infinite dimensional space of
paths (q(s),p(s))seo,q in the phase space, such that ¢(t) = 0. The functional
S(q,p) is the classical action of the system evaluated along the path (¢, p):

S@M—A@@ﬂﬁHwﬁﬂ@W&

Expression (3.69) does not make sense as it stands: indeed neither the normal-
ization constant in front of the integral, nor the infinite dimensional Lebesgue
measure dgdp on the space of paths are well defined. The aim of this section
is twofold: first of all by means of the theory of chapter 2 and section 3.1 we
realize the Feynman path integral (3.69) as an infinite dimensional oscillatory
integral with complex phase on a suitable Hlbert space; secondly we show that,
under suitable hypothesis on the potential IV and on the initial data vy, the
so defined (3.69) gives a representation of the solution of the Cauchy problem
(3.63) in the sense of theorem 14.

Let us consider again the Hilbert space H; x L; introduced in chapter 2,
namely the space of paths in the d—dimensional phase space (¢(s), p(s))sco
( where the path (g(s))secjo,q belongs to the Cameron-Martin space H,, while
the path in the momentum space (p(s))se belongs to £, = Ly([0, 1], R%)),
endowed with the natural inner product

<qap;QaP>:/0 Q(S)Q(S)ds+/0 p(s)P(s)ds.
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Let us consider also the complexification of H; x £;, denoted (H,; x £;)®. Let
us introduce the following bilinear form:

[Q7p;Q,P]_/ﬂ Q(S)P(s)ds+/0 p(s)Q(s)dS(l/in)\h)/ﬂ p(s)P(s)ds
= (¢, p; A(Q, P)), (3.70)

where A is the following operator:
A(Q, P)(s) = (/tg P(u)du, Q(s) — (1/m — 2i\k) P(s)). (3.71)

Note that the latter formula makes sense in (H; x £;)®, so expression (3.70) can
be recognized as the restriction on H; x £; of a quadratic form on (H; x £;)°.
A(Q, P) is densely defined, e.g. on C'(]0,#];C%) x C'([0,];C?). Moreover
A(Q, P) is invertible with inverse given by

ATHQ. P)(s) = (/t Pu)du+ (1/m — 2AR)Q(s), O(s)) (3.72)

(on the range of A).

Let us also introduce the vector | = (q,p) € Hy X L;.

Let g : H; x L; — C be the function on H; x £; which is the Fourier transform
of a complex bounded variation measure 1, on H; x L;:

9(q,p) = / e PP (Q, P).
Hex Lt

Then by means of the theory of chapter 2 and section 3.1 one can define (see
[9, 10]) the “complex normalized infinite dimensional oscillatory integral” on
H; x L, of the function e’ g(-) with respect to the operator A:

/ e2%(qm;A(qm))e(hq,mg(q7 p)daqdp.
J Hex Ly

By theorem 12 the integral can be computed interms of a well defined complex
integral on H; x L;:

/ 6%<‘I,p;A(q:P)>e<l;q’p>g(Qap)dqdp = / e72”1<(q’p)7il;A71((q’p)iimdug(q?p)
HixX Lt Hex L

(3.73)
Next we show that the Fresnel integral (3.69) can be defined as the limit of
phase space Feynman path integrals (3.73) and that this limit is the strong
solution of problem (3.53) found in the previous section.
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Solution of Belavkin equation with a free hamiltonian

Let us consider first of all Belavkin equation with a free Hamiltonian H =
p*/2m in its Stratonovich equivalent form:

dy(t,z) = (AEA + AR2A)Y(t, 2)dt — iV ARV Y (t, z) o dW ()
(3.74)
(0, ) = Py (x) (t,z) € [0,] x R?

We associate to (3.74) a sequence of approximated equations of the same type

Ay (t, ) = (ZEA + AR A)ip, (¢, 2)dt — i/ ARV, (1, 2) 0 AW, (1)
(3.75)
(0, ) = ¢o() (t,2) € [0,%] x R

where by W, we mean a smooth approximation of the trajectories of the
Brownian motion, say

t—L1
W,(t)=n / W (s)ds, (3.76)
Ji

so that Wn belongs to L;.

Proposition 5. Let us suppose that the initial data 1 is the Fourier transform
of a finite complex Borel measure g on R, Then the solution 1, of problem
(3.75) has the following representation.:

Un(t, ) = / 62%,,<(qm),A(q,p)>e((qm)’(O,ln»wU(q(g) + z)dqdp
Hex Ly

_ / ¢ @) 01).A (@) 108 . (dgcdp)
Hix Ly

where l, is the vector belonging to L; given by [, = VAW,
Moreover, if 1y € S(R?) (the Schwartz test function space), the integrals can
be explicitly computed:

1 k(i k2 2 -
an(t,m)—W/Rdezhe( L AtV AR W () 7/}()

where g is the Fourier transform of b, t > 0, z € RY.

Remark 4. Heuristically ¢, (t, z) is given by

const/ #8(a+o.p) =2 [y p(s)ds VA fg p(s)Wa (s ($)ds0 (q(0) + x)dgdp
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Proof. (3.75) is a random family of ordinary Schrodinger equations (but with
a complex potential depending on the momentum). Following [8] and [9] (see
chapter 2 and section 3.1) the solution of (3.75) can be given by means of
rigorusly defined phase space Feynman path integrals (3.73).
After the introduction of the vector I,, € Ly, I,, = \/XWH, the heuristic expres-
sion

const/ RS HE) X fy p2(s)ds oV [ p)Wa(5)ds (¢(0) + z)dgdp

can be interpreted as the following rigorously defined infinite dimensional os-
cillatory integral:

/ e%,((q D), A("”’»e("”’)’(”*l"))z/;o(q((]) + z)dqdp
Hex Ly

which is equal to

/ ¢ S (@n) =000, A7 (@) =08 o dadp)
He XLy

where pg is the complex bounded-variation measure on H; x £; whose Fourier
transform is the function (¢, p) — ¥o(q(0) + x)5. Let

1 e
o(a) = g | ¥ dolk)a

then

1 Ok -

wo(Q(0)+m)_W/PhP Yo (k)dk
1 ok (a,kG(0) ~

N W./Rd elﬁel%%(k)dk

where G(0) € H,; is such that (¢, G(0))%, = ¢(0), that is G(0)(s) = (t — s).
With these notations we have:

i(q,Q) 7, 7
Yo(q(0) + ) 27rh (27 h)4/2 /Rd ~/7-[t el OkG(0)/n(dQ) 1o (k)dk
= [ e, @
He

where

1

(2mh) 2 /E e o (K)dkaoym(dQ)dk € B(H,),

Hapg (E) = (27‘(77,

6Such a measure exists if the initial data 1)y, as a function from R? to C is the Fourier
transform of a bounded variation measure on R?. This condition is fulfilled if for instance
Yo € S(RY)
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so that
to(dqdp) = 0o(p) ty, (dq)
We have :

=1 fli)d/2 / 5 G 0)=i(00), A7 (B0 -i(0) . gk
2mh JRd

1 sxk i k 2
Zh (— 2t M2tV AR W, (t)
(27Th)d/2 /Rd ehren 1/) ok

%h’<(q,p)*i(0,ln),A’1((q,p)*i(O,ln))mU (dgdp) (3.77)

®

|

The next step we shall undertake is the proof of the convergence of the solutions
of the approximated problems to the solution of the Cauchy problem (3.74).
Moreover we shall prove that this solution is given by a rigorously defined
infinite dimensional oscillatory integral with complex phase. First of all let us
state the following general result:

Theorem 15. Let f : H; x Ly — C be the Fourier transform of a complex
bounded-variation measure piy on Hy x L. Then the following process, defined
as the phase space Feynman path integral

/ % fo ds*fot p(s)>ds)—X f s)ds \/_ fo f(q)p)dqdp =

/ iU d()p(s)ds+ 5 [ d(s)7ds) 7)\)‘7,2fotzj(s)stfh\/Xfotd(s)dW(s)Mf(dqdp)
Hex L

is the limit in L*(Q,P) of the sequence of processes

/ e (DA 00101 f (g, p)dgdp
Hix Ly

— / e 72“‘7 <(qm)77:([]vln)1‘471 ((q’p)fi(o,ln)»'uf (dqdp)
Hex L

:/ e Uo AIp()dsai Jo d(5)"ds) o =AR [ d(s)?ds—nVX Jo d(s)Wa()ds (g )
Hex Ly
Proof.
‘/ o il (i q( (s)ds+ 5 Jdd —/\h2 Jda(s)2ds—hv/X [ d( (s) f(dqdp)+
Hex Ly
B / oIS B [ 0) 0 eI 01 ()
HixX Lt
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< iy (Hox LOE( /

o~ A2 3 d(s)ds |67h\/x Jo (s)AW (s) __ p=hv/X [y (s)Wa (s)ds \QMf(dqdp)>
Hex Ly

= g (/Ht X»Ct) / 672)\)‘7,2 I zj(s)stE(|efﬁ,\/Xf0t G(s)dW (s) 7€7ﬁ,ﬁf0t Q(s) W (s)ds |2)Mf(dqdp)
JH X Ly

= py(He % Et)/ e 2 Jo () s | o~ 2hVX [ a(s)dW (5) 4
?‘[tX,Ct

+€72nﬁ,fg G(s)Wa(s)ds 264&&(,/‘3 (s)dW (s)+ [} G(3)Wn (s)ds) )11 (dqdp)

— jup(Hy % £t)/ o 2R [l a(s)2ds (eszg q(s)’ds esz; Gn(5)%ds 4
Hex Ly

2 . :
96 o)+ (505 1y (dgdlp)

where, given h € L?(0,t), we define h,, as

s+1/n
hn(s) = n/ h(u)du = h * g,

gn being the mollifier in L'(0,¢) given by g¢,(s) = nXfsst1/n- Note that
|9nllz1 0,4y = 1 and moreover the Young inequality holds:

[hnll 20,0 < gnllrion 1Pl 20,0 = [1PllL20.0)-
Thanks to this inequality one can get easily the following uniform estimate:

o 2R [l d(s)?ds (6%2,\ [l a(s)2ds 1 21X [l an(s)%ds th'QTA f;(q(s)+qn(s))2ds) < 4

and by the dominated convergence theorem we can pass to the limit under the
integral. The conclusion follows from the convergence of ¢, to ¢ in L?(0,1),
see for instance [25]. O

Proposition 6. Let ¢, € S(R?). Then, for each t > 0 and x € R? the
solution 1, (t,x) of the approzimated problem (3.75) converges in L*(Q,P) to
the process

1 jzk _i k2 g2 7
(27rh)d/2 /Rd 'R 6( tht Ak H—\/ka(f))w(](k)dk (378)

which is the strong solution of (3.74).
Moreover it can be represented by a phase space Feynman path integral in the
sense of [8] and chapter 2

/ U AID(6)ds 2 3 (6)75)- i o5 /X oW ) (00 + ) gl
J Hex Ly
(3.79)
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since, as n. — oo, the following infinite-dimensional oscillatory integral on

HtX,Ct

/ 62%,<(qm),A(q,p)>e((qm)’(O,ln»wU(q(g) + 2)dgdp (3.80)
Hex Ly

/ —ih
= e 2
Hix Ly

_ / 7”‘7 fo dg_l_L [‘0 5)2ds) *)\"7;2 fot d(s)stfh\/Xfot q(q)Wn(e)dGMO(dqdp)
Hex Lt

(3.82)

converges in LQ(Q, P) to

/ o U AsIP(s)ds 2[5 0()2ds) g =M [ d(s)2ds =BV [ AW )y dod) (3.83)
Hix Ly

_ / ﬁ fn dsf— fn 5)2ds) /\f;p(s)zdseﬁfgp(s)dW(s)wO(q(O) + T)dqdp
He XLy

Proof. By direct application of the It6 formula one can check that (3.78) is
the strong solution of the Cauchy problem (3.74). Moreover one can verify by
a direct calculation that the infinite dimensional integral (3.83) is equal to the
finite dimensional integral (3.78).

The convergence in L?(Q2,P) of the sequence of processes (3.82) to the process
(3.83) follows from theorem 15. O

Remark 5. Heuristically the solution (3.79) can be written as

const/ i S(rrp) X Jy v ()5 VX Jo PV () (4(0) + ) dgelp. (3.84)

The introduction of the potential

Now we generalize the previous results to a more general class of quantum
mechanical Hamiltonians H = —h*A/2m + V(z). We consider the Belavkin
equation (3.63) in its Stratonovich equivalent form

dip(s,x) = [ L(—LA+V(2)) + M2AY (s, 2)dt

—iVARY (s, 2) o dW (s)

(3.85)
¥(0,2) = o(x) (s,7) €10, x R
and the sequence of approximated Cauchy problems
dipn(s,7) = [~L(= A+ V(2)) + MN2AJ, (s, 2)dt
—iVARY - (s, 2) 0 dW,(s) (3.56)

Un(0,2) = tho(x) (s,2) € [0,] x R

)



Proposition 7. Let V : R — R be the Fourier transform of a finite complex
Borel measure on R? and let 1)y € S(RY). Then the solution to the Cauchy
problem (3.63) is given by equation (5.69).

Proof. Let us set

ot z) = / o E R GP()— P (3)2)ds—A [ pls)2d o & [ V(a(s)+a)ds

) e\/Xf;p(s).dW(s)d)O (7(0) + x)dqdp7 (387)

O(t, 0)1hy(z) = / o3 o A()p(3) —gp(9)?)ds =X [y p(s)?ds ,V/X [ p(s)-dW (s)

+tho(7(0) + x)dqgdp, (3.88)

Un(t, m) = / e (Jo ((s)p(s) g p(s)*)ds X [§ p(5)°ds o [y V(a(s)+a)ds

eV P Wal)ds o (0(0) + 2)dgdp, (3.89)

On(t, 0)iby(z) = / o7 o (G()p(8) = gp(5)*)ds =X [ p(s)?ds ,V/X [ p(s)- W (s)ds
+tho(v(0) + z)dgdp, (3.90)

So far we have proved that (3.90) and (3.88) are the solutions of the Cauchy
problems (3.75) and (3.74) respectively. We are going to prove that (3.89) is
the solution of (3.86) and that it converges in L?(Q,P) to (3.87), which is a
representation of the solution of (3.85).

Let po(¢)) be the measure on H; x L, such that its Fourier transform evaluated
in vy € H is Yy(q(0) + z).

For 0 < u <t let u,(Vp,x) and v§(Vp, ) be the measures on H; x L;, whose
Fourier transforms when evaluated at (q,p) € H; x L; are respectively Vy(z +
q(u)), and exp ( — L[ Vo(z + q(s))ds). We shall use the short notation
po = py(Vo,z) and v = v§i(Vo,z). If {p, : a < u < b} is a family in
M(H,; x L), we shall let fab tudu denote the measure on H; x L; given by :

b
f—>/ / f(q,p)pu(dgdp)du
a Htxﬁt
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whenever it exists.
Then, since for any continuous path ¢ € H;

exp (- ﬁ/ (s))ds) =

] o (3.91)
~ 3 | vatata ))exp(—%/o Vila(s))ds ) du,

we have

-t
vy =00 — %/0 (g * vy )du (3.92)

where §, is the Dirac measure at 0 € H.
By the formula (3.73) we have:

ot ) = / o3 (00)AW@D)) (@) 00)) o~ & Ji V(a(s)+2)ds
Hix Ly

Ao(1(0) + 2)dgdp (3.93)

Hix Ly

7zﬁ
_/ ¢ (@) 0. A (@) HOLD o () (dgdp)
HixX Lt
__/ / e S (@n) =0 A (@)=L (4 0 5 1o () (dgdp)du
'Hw(ﬁt

(t 0 wn — —/ / Lﬁ 4:0),A(4:p)) ((4:P),(0,ln)) o — L[V (g(s)+z)ds
7-[,5><£t
V(g(u) + 2)0(q(0) + o)dgdpdu (3.94)

As H; X Et = (H[O,u} X £[0,u}) D (H[u,t} X E[uyﬂ), where by /H[r,s} we denote
the Cameron Martin space of path v : [r,s] — R? and by L}, the space
LQ[Ta s] , by setting (q,p) = (q1.D1, G2, p2) Where (q1,p1) € Hio,u) X 'C[O,u} and

(QQapQ) € H[’u,,ﬂ X 'C[u,t}a 1 (S) = q(S) - Q(U), 5 € [U,U], QQ(S) = Q(S), s € [U,t],
by Fubini theorem for Feynman path integrals [12] we have

/ e#<(Q:p);A(Q:p)>e<(Q:p);(0l e n fO +£E dsv( (u) + ’I;)wo(q(o) + ’I’,')dqdp

Hex Ly

— / e%((tn D2), A(q2,p2)>e((q2m2),(0,ln,2))v(q2 (u)+x) / eLh((m ,01),A(q1,p1))
Hiu 41X Llu.1] S Ho.u1XLio,u)

(@), (0ln)) =5 fof V(ql(quZ(un)dswﬂ(C]1(0) + q2(u) + 2)dgi1dpdgadps  (3.95)
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so that the expression (3.94) assumes the following form:

_—
Un(t, ) = ©,(t, 0)ho(x) — % / On(t, u)V(x)th, (u, z)du (3.96)
L Jo
By Lebesgue’s dominated convergence theorem and by theorem 15 the latter
expression converges as n — 0o to

Y(t,x) = O(t,0)(z) — %/0 O(t,u)V(x)(u, x)du (3.97)

Now the iterative solutions of the integral equations (3.96) and (3.97) are con-
vergent Dyson series for ¢, and v respectively, which by theorem 14 coincide
with the corresponding power series expansions of the solution of the stochas-
tic Schrodinger equations (3.86) and (3.85).

|
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Chapter 4

Generalized Fresnel integrals

In this chapter we focus on the finite dimensional oscillatory integrals and
generalize the results of section 1.1 by including more general phase functions

.
Our aim is in fact the definition and the study of oscillatory integrals of the

form
e
RN

where the phase function @ is a smooth function bounded at infinity by a a
polynomial P(z) on R", Im(h) < 0, i # 0, and f is a suitable real-valued
smooth function. The results we obtain will be generalized to the infinite di-
mensional case in the next chapter and applied to an extension of the class of
phase functions for which the Feynman path integral had been defined before.
Moreover we are interested in discussing the asymptotic behavior of the above
integrals when the parameter i goes to 0. If the phase function ® is quadratic,
then the above integral reduces to a Fresnel integral (see section 1.1), while if
®(x) = z® one has Airy integrals. We also mention that the problem of defini-
tion and study of integrals of the form (4.1) but with & € C, Im(h) < 0 and ®
lower bounded has also been discussed. The convergence of the integral in this
case is a simple matter, so the analysis has concentrated on a “perturbation
theoretical” computation of the integral, like in [30, 31], resp. on a Laplace
method for handling the i — 0 asymptotics, see, e.g. [17, 23, 4, 87] (the latter
method has some relations with the stationary phase method).

In section 4.1 we introduce the notations, recall some known results and prove
the existence of the oscillatory integral (4.1). In section 4.2 we prove that when
f belongs to a suitable class of functions, this generalized Fresnel integral can
be explicitly computed by means of an absolutely convergent Lebesgue inte-
gral. We prove a representation formula of the Parseval type (theorem 18)
(similar to the one which was exploited in [12] in the case of quadratic phase
functions), as well as a formula (corollary 1 to theorem 18) giving the integral

St~

‘D(m)f(x)dx, (4.1)
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in terms of analytically continued absolutely convergent integrals. Even if our
main interest came from the case ii € R\ {0}, both formulas are valid for all
h € C with I'm(h) < 0, B # 0. In the last section we consider the integral
(4.1) in the particular case P(z) = Aoy (z, ..., ), where Agys is a completely
symmetric strictly positive covariant tensor of order 2M on RV, compute its
detailed asymptotic power series expansion (in powers of i'/?M for Im(h) < 0,
h # 0) in the limit of “strong oscillations”, i.e. i — 0. In particular we find
explicit assumptions on the integrand f which are sufficient for having conver-
gent, resp. Borel summable, expansions.

4.1 Definition of the generalized Fresnel inte-
gral

Let us consider a finite dimensional real Hilbert space H, dim(H) = N,

and let us identify it with RY. We will denote its elements by =z € RV,

x = (x1,...,xy). We recall the definition of oscillatory integrals given by

Hormander [64, 65] (see section 1.1) and propose a related, more general defi-
nition of oscillatory integral in the Y-sense.

Definition 9. Let ® be a continuous real-valued function on RN . The oscil-
latory integral on RN | with h € R\ {0},

[ e s
JRN

is well defined if for each test function ¢ € S(RY), such that ¢(0) = 1, the
limit of the sequence of absolutely convergent integrals

lim e%é(“:)qﬁ(ex)f(x)dx,
el0 JpN

exists and is independent on ¢. In this case the limit is denoted by

/ e%é(“”)f(m)dm.
RN

If the same holds only for ¢ such that $(0) =1 and ¢ € X, for some subset
Y of S(RY), we say that the oscillatory integral exists in the L-sense and we
shall denote it by the same symbol.

Let us consider the space M(RY) of complex bounded variation measures
on RY endowed with the total variation norm and the space F(R") of functions
f : RN — C which are the Fourier transforms of complex bounded variation
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measures puy € M(RY). We recall that if there exists a self-adjoint linear
isomorphism @ : RY — R" such that the phase function @ is given by ®(z) =
(z,Qz) and f € F(RV), then the oscillatory integral [,y e Q%) f(1)dx can
be explicitly computed by means of the following Parseval-type formula (see
section 1.1, theorem 1):

/ e%@’Qw)f(a:)da: =
RN

= (2mih) N2 Q)| det(Q) /2 / e By (d,) (4.2)

JRN

where Ind(@Q) is the number of negative eigenvalues of the operator @), counted
with their multiplicity.

In the following we shall generalize this result to more general phase func-
tions @, in particular those given by an even polynomial P(z) in the variables
Tiyeo, TNE

P(T) = AQM(.T,...,.T) +A2M,](.7},...,.’L') + ... +A](7}) +A0, (43)
where A are ky,-order covariant tensors on RY:

ARV xRY x ... xRY > R
kfr;irmes

and the leading term, namely Agys(z, ..., x), is a 2My,-order completely sym-
metric positive covariant tensor on RY. First of all, following the methods
used by Hérmander [64, 65], we prove the existence of the following general-
ized Fresnel integral:

/ e ®@ f(z)dz (4.4)
JRN
for suitable ®. We recall the definition of symbols (see [64]).

Definition 10. A C* map f : RY — C belongs to the space of symbols
SH(RN), where n,\ are two real numbers and 0 < X\ < 1, if for each a =

(ay,...,an) € ZN there exists a constant C,, € R such that

do don

PRI W}”‘ < O (14 ||y e, x| = oo, (4.5)
where o = |ay| + |ag| + - - + |an].

One can prove that SY is a Fréchet space under the topology defined by
taking as seminorms | f|, the best constants C, in (4.5) (see [64]). The space
increases as n increases and A decreases. If f € ST and g € SV, then fg €
Sy We denote |, Sy by S5°. We shall see that S5° is included in the class
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for which the generalized Fresnel integral (4.4) is well defined.

We say that a point # = x, € R" is a critical point of the phase function
:RY - R & e Cif &(x.) =0. Let C(P) be the set of critical points of
®. In fact we have:

Theorem 16. Let ® be a real-valued C? function on RY with the critical set
C(®) being finite. Let us assume that for each N € N there ezists a k € N such

that % is bounded for |x| — oco. Let f € ST, with n,A € R, 0 < A < 1.

Then the generalized Fresnel integral (4.4) exists for each h € R\ {0}.

Proof. We follow the method of Hormander [64], see also [57, 13, 4].
Let us suppose that the phase function ®(z) has [ stationary points ¢y, . .., ¢,
that is
Vo(e) =0, i=1,...,1
Let us choose a suitable partition of unity 1 = Zi:o Xi, where y;, 1 =1,...,1,
are C$°(RY) functions constant equal to 1 in a open ball centered in the
q‘rationary poin’r (’Z reqpectively and yo = 1 — Zﬁ:] xi- Each of the integrals
= [ane (x)f(x)dz, i =1,...,1, is well defined in Lebesgue sense
since sz € C’O(RN). Let Iy = [on en® @y () f(x)dz. To see that I is a

well defined oscillatory integral let us introduce the operator Lt with domain
D(L*) in L*(RY) given by

+ . Xo(7)
L7g(x) =— h|v¢(T)|2V®(m)Vg(m)
ve D) = {g e R, | 20T v0 Vi) € 2(RY)

while its adjoint in L?(RY) is given by

. Xo(®) Xo()
LI () = i oy V)V () + i div (WV@(m))f(m)
for f € LQ(RN) N C* such that

‘ f(z)g(@) |z
|V‘1’ x)[?
Let us choose ¢ € S(RY), such that ¢(0) = 1. Tt is easy to see that if f € S}

then f., defined as f.(v) := 1(ex) f(x), belongs to ST NS(RY), for any ¢ > 0.
By iterated application of the Stokes formula, we have:

Vo(r) ’I“‘ — 0 as |z| = 0o,Vg € D(L™).

[ et i@ = [ LHEO) (e (o
.RN .RN
:/ e;‘b(m)Lff(:r)d:r:/ e%‘b(m)kaﬁ(:c)d:c. (4.6)
RN RN
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Now for k sufficiently large the last integral is absolutely convergent and we
can pass to the limit € — 0 by the Lebesgue dominated convergence theorem.
Considering 3! _ I;(f) we have, by the existence result proved for I, and the
additivity property of oscillatory integrals, that [,y e%‘b(m)f(x)dx is well de-
fined and equal to 31_, I;(f). m

Remark 9. If C(®) has countably many non accumulating points {z°}ien,
the same method yields [ en®@ f(x)dr = 32 Li(f) provided this sum con-
verges.

There are partial extensions of the above construction in the case of critical
points which form a submanifold in RY [56], or are degenerate [24], see also

[44].

Remark 10. In particular we have proved the existence for f € S3°, 0 < A <
1, of the oscillatory integrals [ ei“Mf(a?)da?, with M arbitrary. For M = 2 one
has the Fresnel integral of [13], for M = 3 one has Airy integrals [65].

Remark 11. If ® is of the form (5.3), then the generalized Fresnel integral
(4.4) also exists, even in Lebesgue sense, for h € C with Im(h) < 0, as an

analytic function in h, as easily seen by the fact that the integrand is bounded

by |f| exp(THl®).

4.2 Generalized Parseval equality and analytic
continuation
In this section we prove that, for a suitable class of functions f : RV — C,

the generalized Fresnel integral (4.4) can be explicitly computed by means of
a generalization of formula (4.2).

Lemma 5. Let P : RN — R be given by (5.3). Then the Fourier transform of
the distribution ew?(®):

F(k) —/ e rerP@dy B eR\ {0} (4.7)
RN
1s an entire bounded function and admits the following representation:

F(k) — eiN7r/4M / eieiﬂ/“MIc.,'r,e%P(ei"'/‘”\/’m)d‘,E7 h>0 (48)
JRN

or
F(k) = eiN”/4M/ gl T Mk g Pl M) gy h <0 (4.9)
RN

63



Remark 12. The integral on the r.h.s. of (4.8) is absolutely convergent as

P%P(ei’*/“McL‘) — Pf%AQM(m,...,m)P%(AQM,l(ei"/4M:1:,...,ei’T/4M$)+...+A1(mei"/4M)+A0)

A similar calculation shows the absolute convergence of the integral on the

r.h.s. of (4.9).

Proof. (of lemma 5) Formulas (4.8) and (4.9) can be proved by using the ana-

lyticity of ek”%P(z), z € C, and a change of integration contour (see appendix

A for more details). Representations (4.8) and (4.9) show the analyticity
properties of F(k), k € C. By a study of the asymptotic behavior of F(k)
as |k| — oo we conclude that F is always bounded (see appendix A for more
details). i

Remark 13. A representation similar to (4.8) holds also in the more general
case h € C, Im(h) <0, i # 0. By setting h = |h|e'®, ¢ € [, 0] one has:
F(k) = / ek en @) gy =
RN

i jei(m/AM+¢/2M) p 0 & i(m/4M+¢/2M)
:elN(ﬂ/4M+¢/2M)/ ele ka:ehP(e :1:)d:1j (410)
RN

(see appendiz A for more details).

By mimicking the proof of equation (4.8) (appendix A) one can prove in
the case h > 0 the following result (a similar one holds also in the case i < 0):

Theorem 17. Let us denote by A the subset of the complex plane
A={eCl|0<arg(&) <n/aM} C C, (4.11)

and let A be its closure. Let f :7RN — C be a Borel function defined for all y
of the form y = Az, where A € A and x € RY , with the following properties:

1. the function X — f(A\x) is analytic in A and continuous in A for each
reRY, |z] =1,

2. for allz € RY and all § € (0,7/4M)
|f(e2)] < AG(a),

where A € R and G : RY — R is a positive function satisfying bound (a)
or (b) respectively:
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(a) if P is as in the general case defined by (5.3)

1

G(z) < B>
(b) if P is homogeneous, i.e. P(x) = Aoy (z,. .., 7),

Gla) < 5 A nmg (),
where g(t) = Ot~ N*9), 6§ >0, as t — oo.

Then the limit of reqularized integrals:

ligl e%P(“’eiF)f(me“)dm, O<e<mw/4M, h>0

15 given by:
ein/le/ e%P(ei”/4M$)f(ei”/4Mm)dm (4.12)
RN

The latter integral is absolutely convergent and it is understood in Lebesque
sense.

The class of functions satisfying conditions (1) and (2) in theorem 17 in-
cludes for instance the polynomials of any degree and the exponentials. In
the case f € S} for some n, A, one is tempted to interpret expression (4.12)
as an explicit formula for the evaluation of the generalized Fresnel integral
f e%P(I)f(m)dm, h > 0, whose existence is assured by theorem 16. This is,
however, not necessarily true for all f € S° satisfying (1) and (2). Indeed
the definition 9 of oscillatory integral requires that the limit of the sequence
of regularized integrals exists and is independent on the regularization. The
identity

lim E%P(T)f(l')w(ﬁ.’lj)d.’lj — eiNﬂ/4M/ e%P(eiWMMm)f(ein-/éleﬂ)dx, h>0

e—0 RN RN

can be proved only by choosing regularizing functions ¢ with ¢(0) = 1 and
Y in the class ¥ consisting of all ¢ € § which satisfy (1) and are such that
|4 (e”x)| is bounded as |z| — oo for each § € (0, 7/4M). In fact we will prove
that expression (4.12) coincides with the oscillatory integral (4.4), i.e. one can
take ¥ = S(R"), by imposing stronger assumptions on the function f. First
of all we show that the representation (4.8) for the Fourier transform of e#?(®)
allows a generalization of equation (4.2). Let us denote by D C C the lower
semiplane in the complex plane

D={zeC|Im(z) <0} (4.13)
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Theorem 18. Let f € F(RY), f = [iy. Then the generalized Fresnel integral

1= e

1s well defined and it is given by the formula of Parseval’s type:
[ e tws = [ Fougan) (4.14)
RN RN
where F(k) is given by (4.10) (see lemma 5 and remark 13)
F(k) = / ke (@) gy
RN

The integral on the r.h.s. of (4.14) is absolutely convergent (hence it can be
understood in Lebesgue sense).

St

P@) f(2)da, he D\ {0}

Proof. Let us choose a test function ¢ € S(RV), such that ¢(0) = 1 and let
us compute the limit

I(f) = lim e%P(m)z/)(ex)f(:c)d:c

el0 JRN

By hypothesis f(2) = [~ €*ps(dk), = € R, and substituting in the previous
expression we get :

I(f) =1lim [ er’® ik, (dk) ) do.
() =tim [ e Opgen)( [ ) ds

el0

By Fubini theorem (which applies for any € > 0 since the integrand is bounded
by |¢)(ex)| which is dz-integrable, and /s is a bounded measure) the r.h.s. is

T L p(y) ika
16151 - </RNPE P(ex)e dm),uf(dk)
_lim / / k— ae)d(a)dap(dk) (4.15)
RN JRN

FJ,U

(here we have used the fact that the integral with respect to z is the Fourier

transform of eyw(ex) and the inverse Fourier transform of a product is
a convolution). Now we can pass to the limit using the Lebesgue bounded
convergence theorem and get the desired result:

i [ R (e f(a)do = [ F(k)ug(ab),

Eiﬂ JRN JRN

where we have used that [¢)(a)da = (27)V4(0) and lemma 5, which assures
the boundedness of F'(k). O
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Corollary 1. Let i = |hle”, ¢ € [-7,0], h #0, f € F(RY), f = iy be such
that Yo € RN

ehasin(e/AM+0/20) |y 1 (dk) < AG(a), (4.16)
RN

where A € R and G : RY — R is a positive function satisfying bound (1) or
(2) respectively:

1. if P is defined by (5.3),

Gz) < e B>

2. if P is homogeneous, i.e. P(x) = Ao (x,...,2):
Glr) < ebtatemeaalg(|y)
where g(t) = Ot~ N*9), 6§ >0, as t — oo.

Then f extends to an analytic function on CV and its generalized Fresnel
integral (4.4) is well defined and it is given by

/ e%P(a:)f(m)dm — iN(T/AM+¢/2M) / e%P(ei("/4M+¢/2M):r)f(ei(ﬂ/4M+¢/2M)m)dm
JRN JRN

Proof. By bound (4.16) it follows that the Laplace transform f*: CY — C,
7 (2) = [un € pp(dk), of puy is a well defined entire function such that, for
r € RV, fF(ix) = f(z). By theorem 18 the generalized Fresnel integral can
be computed by means of the Parseval type equality

/ eiﬁp(m)f(a:)da: = / F(k)ps(dk) =
JRN

JRN
_ iN(r/4M+¢/2M) / ( / ikaei(x/1M6/200) L p(ein/AM+6/2) ) dr) ()
RN

RN

By Fubini theorem, which applies given the assumptions on the measure /i,
this is equal to

: i i(m/AM+¢/2M) o i(m/AM A+ /2M)
ezN(7r/4M+¢/2M) ehP(e x) elkaze [Lf(dk‘)(]’]" —
RN RN

:eiN(w/4M+¢/2M)/ e%P(ei(’f/‘“‘“d’/?f"f).q:)fL(Z-evi(7r/4M+¢>/21v[)I)djj
RN

_ez’N(ﬂ/4M+¢/2M)/ e%P(ei(”/4M+¢/2M)m)f(ei(ﬂ/4M+¢/2M)m)dm

JRN

and the conclusion follows. O
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4.3 Asymptotic expansion

In this section we study the asymptotic expansion of the generalized Fresnel
integrals (4.4) in the particular case where the phase function ®(x) is homo-
geneous and strictly positive:

é(x) = Agy(z, ... x),

where Aoyt RY x RY x --- x RV — R is a completely symmetric strictly
positive 2M,,—order covariant tensor on RY. Under suitable assumptions on
the function f, we prove either the convergence or the Borel summability of
the asymptotic expansion. In the general case one would have to consider
the type of degeneracy of the phase function, cf. [24, 56, 13, 4]. We leave
the investigation of the corresponding expansions in our setting for a further
publication.

Let us assume first of all N = 1 and study the asymptotic behavior of the
integral:

/oo G fa)de,  he D\ {0}

Theorem 19. Let us consider a function f € F(R), which is the Fourier

transform of a bounded variation measure jiy on the real line satisfying the
following bounds for alll € N, p € RY, h € D\ {0}:

1.

T‘2M 1

/ R e g R | (dk) < F(Dg(p)e ™

where ¢ € R, F(l) is a constant depending on [, g : R — R is a smooth
function of polynomial growth as p — 400

where A, ¢, C(l, M) € R.

Then the generalized Fresnel integral
I(h) = /Pﬁ (@) d, he D\ {0}
JR

(with D given by (4.13)) admits the following asymptotic expansion in powers
of BY/M

-1

Z e’ h,/Mlﬂ(ﬂ)f@j)(O) + R (N) (4.17)

I(h) =
() 2! 2M

o i/
M

j=0
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with |R,(h)| < ‘hg/z ”\h\"/Mp"M)F(1+2") (where A, c,C(n, M) are the

2n!

constants in (2)). If the constant C(n, M) satisfies the bound

1 42y 1
i "), vaeN (4.18)

C(n, M) < (2n)!F< -

then the series given by (4.17) for n — oo has a positive radius of convergence,

while if

142
i ”) . VneN  (4.19)

C(n, M) < (27”L)!F(1Jr M>F( 2M

then the expansion (4.17) is Borel summable in the sense of, e.q., [84, 62] and
determines I(h) uniquely.

Moreover if f € F(R) instead of (1), (2) satisfies the following “moment
condition”:

/ o'yl (de) < C'(1, M) AL, AceR (4.20)

for alll € N, where C'(1, M) ~ F(l(l — ﬁ)) as | — oo (where ~ means that

the quotient of the two sides converges to 1 as | — o0), then the asymptotic
expansion (4.17) has a finite radius of convergence.

Proof. First of all we recall that the integral [ P#f(’l“)(]’l“ is a well defined
convergent integral also for all i € C with I'm(%) < 0, thanks to the exponen-
tial decay of e#*”" and to the boundedness of f (cf Remark 11). Moreover it
is an analytic function of the variable i € C in the domain I'm(h) < 0 as one
can directly verify the Cauchy-Riemann conditions.

Let us compute the asymptotic expansion of this integral, considered as a
function of i € C, valid for A € D\ {0}.

By formula(4.14) we have

/e;wwf(m)dm = h”QM/FQM(h]/QMk)W(dk), (4.21)
R

where, if i = |h|e", ¢ € [-m, 0], B/?M = |h|1/2M 612M and Fyp (k) =
Jr €*ve ™ 72 which, for lemma 5, is equal to Fyy, = efam Je gikae T =M g

Such a representation assures the analyticity of Fyy. We can now expand
Forr(RY?ME) in a convergent power series in h'/2Mk around A = 0:

Fi) (0)

hn/QMkn
n! o

NE

FQM(h]/QMk) —

i
[en}



The ny,—derivative of Fy can be explicitly evaluated by means of the repre-
sentation (5.6):

o

F0) = (1 (1) [ e
J0

that is F(™(0) = 0 if n is odd, while if n is even we have
F(Qj)(o) — 2€i(2j+1)7r/2M(_1)j /oc pgje,pmwdp.
Jo
By means of a change of variables one can compute the latter integral explic-

itly:
2j ,—p? RS AR 1425
ple dp = / t2 dt = —F( :
/0 2M 2M 2M

By substituting into (4.21) we get:

pi/2m nl oy 1+2j o ,
I(h) — (27+1)7r/2MF< ) 1 -7h-7/M/ k)2 dk R, =
0 =5 g ar ) IR [ (k) (ak) +
hl/ZM 1y . 1425\ .. .
_ L (2_7+1)7r/2MF< : )h.y/Mf(QJ)(O) + R, (4.22)
M pr 27' 2M
where
h1/2M 1 - 1+2j o .
R, /ZQ_ (2j+1) /2MF< 57 )(71).7;7/.7/]\4(]{)2.7”]0((1@.
j>n

If assumption (4.20) is satisfied, one can verify by means of Stirling’s formula
that the series (4.22) of powers of i!/™ has a finite radius of convergence.

In the more general case in which assumptions (1),(2) are satisfied, we can
nevertheless prove a suitable estimate for R,,, indeed:

R, = 2RV/2M gin/2M / S (1) / " e Ao M () =
0

i>n

_ h]/QMem/QMeinw/ZM;hn/M
2n — 1!

o) 1 i ) ) o .
/an/ an/ (l_t)(anl)(eikpthl/ZMe”/‘lM_i_efzkpthl/ZMe MM)dteipZMdp,uf(dk).
0 0
(4.23)

By Fubini theorem and assumptions (1) and (2) we get the uniform estimate

in h:

AYM C(n, M) /142
2M 2n! 2M
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If assumption (4.18) is satisfied, then the latter becomes
‘ﬁ‘]/M

R, < o
Rl < 307

ACn‘h‘n/M,

and the series has a positive radius of convergence, while if assumption (4.19)
holds, we get the estimate

hi| /M ,
R, < %Ac”F(l + %) TRES

This and the analyticity of I(%) in Im(%A) < 0 by Nevanlinna theorem [84]
assure the Borel summability of the power series expansion (4.17). ]

These results can be easily generalized to the study of N-—dimensional oscil-
latory integrals:

In(h) = ./RN erdom (@) f(ydz, he D\ {0} (4.24)

with A,y a completely symmetric 2My,-order covariant tensor on RY such
that Aoy (x,...,2) > 0 unless x = 0.

Theorem 20. Let f € F(RY) be the Fourier transform of a bounded variation
measure [ty admitting moments of all orders.
Let us suppose f satisfies the following conditions, for all | € N:

1.

I‘QM—1

[ kel ) < P@ga)e=™ ", v e RY,
JRN

where ¢ € R, F(l) is a positive constant depending on I, g : Rt — R is
a positive function with polynomial growth.

B1/2M gim[4M

| [ (ku)lete pp(dk)| < AdC(l, M, N)
RN

for allu € Sy_1, p € RT, h e D\ {0}, where A,c,C(Il, M,N) € R (and
Sn_1 is the (N — 1)-spherical hypersurface of radius 1 and centered at
the origin).

then the oscillatory integral (4.24) admits (for h € D\ {0}) the following
asymptotic expansion in powers of i'/*M :

iNm/am n—1 (Z)l ‘ [+ N
Iv(h :hN/ZMei ) pimjam lhl/QMF<—>
v(7) IM > T, IM

/ / (k) P(u) 55 A0 s (dk) + R, (4.25)
RN JSy_1
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with |R,| < A’\h\"/QM(c’)”C(nf’N)F 2N ) where A' ¢ € R are suitable con-

stants and C'(n, M, N) is the constant in (2). If C(n, M, N) satisfies the fol-
lowing bound:

n+ Ny-!
C(n, M, N) < !F( ) 4.26
(n. M, V) < mir (2 (4.26)
then the series has a positive radius of convergence, while if
n n+ Ny-1
M, N) < ,!r(1 )r( ) 4.2
Cln )=l o) M 5w (4.27)

then the expansion is Borel summable in the sense of, e.g. [84, 62] and deter-
mines I(h) uniquely.

Moreover if f € F(RY) instead of (1) and (2) satisfies the following moment
condition:

[ Jallyle) < ca.anads acer (4.28)
RN

for alll € N, where C'(I, M) ~ F(l(l - ﬁ)) as | — oo, then the asymptotic

expansion has a finite radius of convergence.

Proof. Let F(k) = Jin e’k eidon (7). then by theorem 21 the oscillatory
integral (4.24) is given by:

/ R A (51n0) () — N2 / FRY2M k) (k) (4.29)

JRN

By lemma 5 Fis given by

F(hl/QMk) _ eiN7r/4M/ eiﬁ1/2Mkfr,ei”/4Me*AgM(m,...,m)dx
JRN

Where, if i = |h|e’®, ¢ € [~7,0], h'/?M = |p|1/2M¢i¢/2M | By representing the
latter absolutely convergent integral using polar coordinates in RY we get:

oo
~ . +1/2M inm/4M _2M 4. -
F(h]/QMk) _61N7r/4M/ / i e pu g —p AZM(u,...,u)pN 1ddeN7]
SN,] 0

where d)y_; is the Riemann-Lebesgue measure on the N — 1-dimensional
spherical hypersurface Sy 1, * = pu, p = |z|, u € Sy_1 is a unitary vector.
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We can expand the latter integral in a power series of i/2M:
F(hl/ZMk) —

oo 00 N
_ iNm/4M (4) imJAMNL3#1/2M 1 1 _—p*M Agrs(u,...u) N—1 _
e /SN 1 /0 5 —l! (e VR P (ku)'e p" dpdQy 4

_ 7N7r/4MZ 17r/4M hz/2M/ (ku)l/oopH'NlepQMAW(“’“"")ddeN1:
! Sn_1 0

ezN7r/4M o (Z)l ) l—|— N N
Y /z7r/4M lhl/QMF<—> / ku lP 217 ()
o S (L) [ g
(4.30)
where P(u) = Aop(u, ..., u) is a strictly positive continuous function on the

compact set Sy_1, so that it admits an absolute minimum denoted by m. This
gives

Ny -1
[ ) Pl 5 dty ] < b 50 () = [ e (X)
JSN-1
(4.31)
The latter inequality and the Stirling formula assure the absolute convergence

of the series (4.30). We can now insert this formula into (4.29) and get:

/ e%AQM(mV""m)f(m)dm =

iNT n—-1 ,.
eiNT/AM (_)l(Pivr/4M)lhl/2MF(l+N)
2M I ' 2M

— hN/QM

[ [ trp 5t stan) + Ry (122)

By estimate (4.31) and Stirling’s formula one can easily verify that if assump-
tion (4.28) is satisfied, then the latter series in powers of 4'/2™ has a strictly
positive radius of convergence.

Equation (4.32) can also be written in the following form:

/ e%AzM(mv""w)f(ﬂ?)dm =

1N7r/4M n-1 1

_ pN/2M L z7r/4M hl/ZMF<l + N)
2M Py l' 2M
/ w)” = 0 F0)dOy_1 + R, (4.33)
SN X aul N-—1 n -
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where —f( ) denotes the I, partial derivative of f at 0 in the direction u,
and

N\
R, = hN/QMeiNﬂ/4M/ / / Z (lZ_')(eiﬂ/4M)lhl/2Mpl(ku)l
RN J Sn_4 :
2MAzM( u)pr]ddeN,hu'f(dk). (434)

In the more general case in which assumptions (1) and (2) are satisfied we can
prove the asymptoticity of the expansion (4.32), indeed

Rn — hN/QMeiNﬂ'/élM (Z)n (eiﬂ'/él]\/[)nhn/?]\/[/ / /‘OO
n—1! RN JSy 1 J0

1 .
/ (1 B t)nfleik'llﬂthUQMem/AlMe*ﬂQMAQM(u""’U)(k)?[,)inH—NildtddeN,],Lbf(dk)
J0

(4.35)
By assumptions (1), (2) and Fubini theorem the latter is bounded by
A Ny Cwiw C(n, M,N) _n+ N
< N/2 ( ) |(nN)/2M T My ( )
Ral< e g ) o o o

If assumption (4.26) is satisfied, then the latter becomes
|Rn‘ S AWN/QF(N> |h| (n+N) /QMCnm n;]-é\]
M 2

and the series has a positive radius of convergence, while if assumption (4.27)
holds, we get the estimate

A N n+N
R, < 2 N/QF( ) f|(n+N)/2M n ’2—F<1 _)
Ral = 377 y) U o

This and the analyticity of the In (%) in Im(%) < 0 (cf. Remark 11) by Nevan-
linna theorem [84] assure the Borel summability of the power series expansion
(4.17). O
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Chapter 5

Feynman path integrals for
polynomially growing potentials

In the first three chapters we have seen that the infinite dimensional oscillatory
integrals are a powerful tool and can be used to give a rigorous mathematical
meaning to a large class of “Feynman path integral representations”. In section
1.3 we have seen the application to the the Schrodinger equation with an
anharmonic oscillator potential

1
V(z) = §m-92m+v](m), (5.1)

where Q2 is a positive definite symmetric d x d matrix and V; is the Fourier
transform of a complex bounded variation measure on R?. In chapter 2 the
“phase space Feynman path integrals” give a representation of the solution of
a Schrodinger equation in which the potential depends both on position and on
momentum. In chapter 3 the solution of a class of stochastic Schrodinger equa-
tion is represented by an infinite dimensional oscillatory integral with complex
phase.

The main problem of these techniques is the fact that the class of unbounded
potentials for which a Feynman path integral representation for the solution
of the corresponding Schrodinger equation exists is not very rich. Indeed the
perturbation V; to the harmonic oscillator potential in equation (5.1) has to
belong to the class of Fourier transforms of measures, so that is bounded. It is
possible to deal with linear potentials V5(x) = Cz (see remark 1 in section 1.3)
and extension to Laplace transforms of measures has been given in [6, 74], but
even this approach does not cover the case of potentials which are polynomials
of degree larger than two.

In this chapter we give a partial solution to this problem and develop a Feyn-
man path integral representation for the solution of the Schrédinger equation
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for an anharmonic oscillator potential of the type
1 2
V(z) = 3% O%x + \C(x,x, x, ), (5.2)

where C'is a completely symmetric positive fourth order covariant tensor on R?
and A > 0is a coupling constant. If d = 1, (5.2) reduces to V (z) = 1Q%z?+Az".
In the first and in the second sections we extend the class of functions for which
a generalized infinite dimensional oscillatory integral can be computed and
prove a Parseval type equality. In addition we propose an analytic continua-
tion formula which shows a direct connection between the infinite dimensional
oscillatory integral and the Wiener integral. In the third section we consider
the Schrodinger equation for a d- dimensional quantum particle under the ac-
tion of the anharmonic oscillator potential (5.2), we give a functional integral
representation for the solution of the corresponding Schrodinger equation and
show that the so defined functional is analytic in the coupling constant A € C
for Im(\) < 0, continuous for A € R and coincides for A < 0 with a well defined
infinite dimensional oscillatory integral. We prove moreover the Borel summa-
bility of the asymptotic Dyson expansion (in powers of the coupling constant
A) for the scalar product (@, e’i%H%), where H is the quantum mechanical
Hamiltonian H = —% +V and ¢, ¢y € L?(R?) are suitable vectors.

5.1 A generalized oscillatory integral

In this section and in the following one, by means of the techniques of chapter
4, we shall generalize formulas (1.5) and (1.11) to a larger class of phase
functions.
Let us deal first of all with the finite dimensional case, i.e. dim(H) = N. Let
A:HXxHXxHXxH — R be a completely symmetric and positive fourth
order covariant tensor on H. After the introduction of an orthonormal basis
in H, the elements x € H can be identified with N-—ple of real numbers,
ie. * = (r1,...,2n), and the action of the tensor A on the 4-ple (x,x,x,x)
is represented by an homogeneous fourth order polynomial in the variables
Tiyeo, TNE

P(z) = Az, z,z,x) = Z Aot mTjTRT Ty (5.3)

jik lm

with Qjkim € R.
We are going to define the following generalized Fresnel integral:

/ezzhfr,-(IB)me
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where I, B are N x N matrices, I being the identity, A € R, f € F(R") and
h > 0.

Lemma 6. Let P: RY — R be given by (5.3). Then the Fourier transform of

. . . ( )I —1
the distribution %e - P(@) .

i

Sa(I-Bx
AN iha €25 o P@) N
k)= /Rwe @rin) e @ (5:5)

is a bounded complez-valued entire function on RY admitting, if A is strictly
positive, the following representations

jeim/4
. in 1€ z-(I-B)z )
ezNﬂ/8 fRN ele /8. wP(QthrWegP(m)de A<0 (5 6)

je—im/4
; —im e e (1B A
e~ iNT/8 fRN pie "/Pkae 2h —5P(@) N A>0

(2mih)N/2

F(k) =

(&

Moreover, for general A > 0, if A < 0 and (I — B) is symmetric strictly positive
then F(k) can also be represented by

F(k) = / pieia T eRP@ N g = et ke R P@ e B (5.7)

RN (27Th)N/2 . ’
where B denotes the expectation value with respect to the centered Gaussian
measure on RN with covariance operator hi.

Proof. For the proof of the representation (5.6) and of the boundedness of F
see chapter 4, where a more general case is handled. From the representations
(5.6) and (5.7) the analyticity of F(k), k € CV follows immediately.
Let us here prove representation (5.7) in the particular case B = 0 and P of
the special form P(x) = Z;VZI a;xy, with a; > 0. This is sufficient to show the
main ideas of the proof, the general case is handled in appendix A.
In this case one has to study the following integral on the real line:

ikjx; e’ >‘a:1:
j(kj)E/Rek] ]WS ]Jd.Z'], k:(kl,...,kN),kjER

and then one has

L 2 iAo 4, .
Moreover, as e2»"ie™# “% is an even function, we have I;(k;) = I; +(k;) +

Ly (—k;), with



In the following we will parametrize a complex number z € C by means of its
modulus p and its phase 0 € [0,27), i.e. z = pe®.

Since the integrand in I; (k) is oscillating, a priori it is not clear that I; . (k)
exists, even as an improper Riemann integral. For this reason we look at
the corresponding integral in the upper halfplane of C with a “regularizing
parameter” 0 < ¢ < 7/4, which we send to zero at the end. For each R > 0
let us consider the closed path in the complex plane composed by three pieces:

Y1, Y2, V3, where

y(R)={2€C | 0<p<R, 0=c¢}
n(R)={z€C | p=R, e<6O<u/4)
w(R)={2€C | 0<p<R, 0=r/4}

2 —iX, . 4
j a;j%j

for some small 0 < € < 7/4. From the analyticity of z; — ekizieam e h U

k; € C, and the Cauchy theorem we have:

. i 2 —iX, .4
/ eijZje#zje 3 a5z dzj = 07
Y1Uy2Uys

that is

/4
ihon. 4,2 —iX .4 . ik Rei? i R2,2i0  —i\, pa4if
/ GZszJGQHZJe a3 aJZJde 7R/ GZkJRe e2hRe e h ajR%e ezﬂdg
m 0

R
. o im)d 2 im)2 A 4
— 6”/4/ ekire ™ eaml T IR gy = () (5.8)
Jo

Now we take the limit as R — 4o00. The second integral converges to 0, as
it is easy to verify by using the methods presented in appendix A. Hence we
have:

oC
. s 1,2 —iA 4 . b ppim/4 1 2 iw /2 A a4
lim e'ki%igan®ie n %% dz; = 61”/4/ ethipe ™ g aR P T iy P
0

R—x "

The r.h.s. is independent of €, hence the limit of the Lh.s. for € | 0 (e entering
in the definition of v, (R)) also exists and is equal to the r.h.s.
So we get :

oo
J i in 1 i 2pim/2  ZiXg . dein
]JH-(kj) :em/4/ ekire /47. emrr’ e ajpte dp

0

/oo ikpeinsd L Rajpt g (5.9)
= e ———¢e2h gh " P ]
0 V2mh
so that (with k = (ky,..., Ky),€ RY

N 1

n iei™/4k.x 2 P(x n
P = T[0) + L) = [ e nei o € 2

j=1 Ry

_ ]E[ez'e”/“kq:ei%P(z)] (5.10)
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(where E is the expectation with respect to the Gaussian measure on RY of
mean zero and variance h*T). m

Remark 14. A careful reading of this proof shows that the second part of
the statement, that is representation (5.7), is valid if and only if the degree
of P is 4, but cannot be generalized to polynomial functions of higher (even)
degree. In fact the proof is based on the analyticity of the integrand and on a
deformation of the contour of integration into a region of the complex plane in
which the real part of the leading term of the polynomial, that is of Re(—iXaz?),
is negative, where X < 0, a > 0. By setting z = pe'® one can immediately verify
that this condition is satisfied if and only if 0 < 0 < w/4. By considering a
polynomial of higher even degree 2M this condition becomes 0 < 0 < 7 /2M and
if M > 2 the angle 0 = w/4 is no longer included. This angle is fundamental
. 2

i 2 —p
: : e2r” : in/4 - —im/4 _e2k
as the oscillatory function Ok evaluated in z = pe gives e [COLEL

that is the density of the normal distribution with mean zero and variance h?,
multiplied by the factor e /*. These considerations also show the necessity of
considering A < 0.

Remark 15. We note that to have A = 0 is equivalent to take P = 0. In this
case by a deformation of the integration contour one has immediately:

LCE'CE
pik-o €2h Ny —
SRy (2mih)N/?
e 2n

ik-zei™/4 N ik-ze
= > ———d"'x =Ele
/ T T = He

We are going to apply these results to the definition of the generalized
Fresnel integral (5.4).

Theorem 21. (“Parseval equality”) Let f € F(RY), f = jy. Then the
generalized Fresnel integral

in/4

| =e2®k  (5.11)

I(f)Z/ ez (I-Blag
RN

18 well defined and it is given by:

WP f(2)da

/ eon(=B)e e 32 P@) £ (1) dy = / F(k) s (dk), (5.12)
RN

RN

where F(k) is given by equation (5.6) if A in (5.3) is strictly positive, or by
equation (5.7) if A > 0, X < 0 and (I — B) is symmetric strictly positive.
The integral on the r.h.s. of (5.12) is absolutely convergent (hence it can be
understood in Lebesgue sense).
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Proof. Let us choose a test function ¢ € S(R"V), such that ¢(0) = 1 and let
us compute the limit

62)‘7 v (I-B)x —i)\

PPy (en) f(n) do

I(f) = lim

elo Jpn (2mik)N/2 ‘

By hypothesis f(z) = jif(z) = [pn € ps(dk) and substituting into the previ-
ous expression we get :

Sg(I-B)zx )

€2h —iX .

(f) = lim o @ (ex) /RNe puy(dk)da

By Fubini theorem (which applies for any € > 0 since the integrand is bounded
by |¢(ex)| which is dz-integrable, and /s is a bounded measure) the r.h.s. is

7

h

li ez’ v (I~ B 7i’\P('r) ikx
N slir(Ill RN ( / (27r77?)N/2 ' Plex)e dx)uf(dk)
/ / k— ae)p(a)dops(dk) (5.13)
F»LU RN JRN ’

(here we have used the fact that the integral with respect to x is the Fourier

z-(I—B)z i\
transform of %e 7o P(z)

Y(ex) and the inverse Fourier transform of a

product is a convolution). Now we can pass to the limit using the Lebesgue
bounded convergence theorem and get the desired result:

€2ﬁ z(I-B)x —iA

. P(x) _ n
i [ e e e = [ F (kg (a),

where we have used that [¢)(a)da = (27)V¢(0) and lemma 6, which assures
the boundedness of F. O

Corollary 2. Let (I — B) be symmetric and strictly positive, A < 0 and f €
F(RY), f =iy such that Vo € RN the integral [ e’gkm|uf|(dk‘) is convergent

and the positive function g : R* — R, defined by g(z) = e B« i e*§k1|,uf|(dk)
is summable with respect to the centered Gaussian measure on RN with covari-
ance hl.

Then f extends to an analytic function on CN and the corresponding general-
1zed Fresnel integral is well defined and it is given by

ear v (I-B)z —iA p i\ p(y B: 4
[ e O s = BRI ). (514
N mLh
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Proof. By the assumption on the measure p it follows that its Laplace trans-

form fL: CN — C, f*(2) = [on €™ uy(dk), is a well defined entire function
such that f¥(iz) = f(z), v € RY. By theorem 21 the generalized Fresnel
integral can be computed by means of Parseval equality

i

esrv (=B . . N
[ e e = [ Pt =

:/ E[e’ 7™ ean® B w POy (dk)
RN

By Fubini theorem, which applies given the assumptions on the measure /i,
this is equal to

RN
E[PQhI Bme%P(a:)f(eiﬂ/élm)] (515)

and the conclusion follows. O

Remark 16. The latter theorem shows that, under suitable assumptions on
the function f, the generalized Fresnel integral (5.4) can be explicitly computed
by means of a Gaussian integral. By mimicking the proof of lemma 6 one can
be tempted to generalize equation (5.14) to a larger class of functions, that are
analytic in a suitable region of CN , but do not belong to F(RY) (see in chapter
4 the comment following theorem 17 for more details). In fact this is not
possible, as the definition 9 of oscillatory integral requires that the limit of the
sequence of reqularized integrals exists and is independent of the regularization.
Let us consider the subset of the complex plane

A={£eC|0<arg(é) <n/4} C C, (5.16)

and let A be its closure. The identity

. e =2 p(g) _ z-Bz 2 P(x) ¢( im/4
1%/AN%MMQH f () ex)da = BeshaBreR P f(ein/ig)]
(with (I — B) symmetric strictly positive and A < 0) can only be proved by
choosing a regularizing function ¢ € S, ¥(0) = 1, such that the function
z = (zx) is analytic for = € A and continuous for z € A for each x € RV.
Moreover one has to assume that |1(e?x)| is bounded as |x| — oo for each

6 € (0,7/4).
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5.2 Infinite dimensional generalized oscillatory
integrals

Let H be a real separable infinite dimensional Hilbert space, with inner product
(, )and norm | |. Let v be the finitely additive cylinder measure on , defined
by its characteristic functional 7(z) = e~ 217", Let || || be a “measurable” norm
on M, that is || || is such that for every € > 0 there exist a finite-dimensional

projection P, : H — H, such that for all P 1L P, one has
v({z € 1 |P@)] > e}) <.

where P and P, are called orthogonal (P L P,) if their ranges are orthogonal
in (H,(,)). One can easily verify that || || is weaker than | |. Denoted by B
the completion of A in the || ||-norm and by i the continuous inclusion of H
in B, one can prove that y = voi ! is a countably additive Gaussian measure
on the Borel subsets of B. The triple (i, 1, B) is called an abstract Wiener
space [61, 75]. Given y € B* one can easily verify that the restriction of y to
‘H is continuous on H, so that one can identify B* as a subset of 2. Moreover
B* is dense in ‘H and we have the dense continuous inclusions B* C ‘H C B.
Each element y € B* can be regarded as a random variable n(y) on (B, u). A
direct computation shows that n(y) is normally distributed, with covariance
ly|?>. More generally, given y;,y, € B*, one has

/B n(y)n(ya)dp = (y1, y2).

The latter result allows the extension to the map n : H — L*(B, i), because
B* is dense in H. Given an orthogonal projection P in H, with

n

P(z) = Z<€i;$>€i

i=1

for some orthonormal ey, ..., e, € H, the stochastic extension P of P on B is
well defined by

i=1
Given a function f : H — By, where (By,|| ||z,) is another real separable
Banach space, the stochastic extension f of f to B exists if the functions
fo P:B— B converge to f in probability with respect to p as P converges
strongly to the identity in H. If g : B — B; is continuous and f := g|3, then
one can prove [61] that the stochastic extension of f is well defined and it is
equal to g p—a.e. In this setting it is possible to extend the results of the
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previous section to the infinite dimensional case.

Let A : HXxHXHXxH — R be acompletely symmetric positive covariant tensor
operator on H such that the map V : H — R", 2 — V(z) = A(z,z,z,x) is
continuous in the || || norm. As a consequence V' is continuous in the | |-
norm, moreover it can be extended by continuity to a random variable V on
B, with V|3 = V. By the previous considerations, the stochastic extension
V of V : H — R exists and coincides with V : B — R p—a.e. Moreover for
any increasing sequence of n—dimensional projectors P, in H, the farmly of
bounded random variables ¢i%V°"(*) = ¢izV"(") converges p—a.e. to exV ().
In addition, for any h € H the sequence of random variables

Z hm(el), hz = <€Z', h>
i=1

converges in L*(B, u1), and by subsequences a.e., to the random variable n(h).
Let us consider a self-adjoint trace class operator B : H — H. The quadratic
form on H x H:

r € H — (x, Bx)

can be extended to a random variable on B, denoted again by ( -, B - ). Indeed
for each increasing sequence of finite dimensional projectors P, converging
strongly to the identity, P,(z) = ., e;(e;, z) ({€;} being a CONS in H), the
sequence of random variables

we By {ei, Bejhn(es) (w)n(e;) ()

i,j=1

is a Cauchy sequence in L'(B, it). By passing if necessary to a subsequence, it
converges to (-, B - ) u—a.e.

Let us assume that the largest eigenvalue of B is strictly less than 1 (or, in
other words, that (I-B) is strictly positive). Then one can prove that the
random variable g( - ) := el B) is p-summable. Indeed by considering a
CONS {e;} made of eigenvectors of the operator B, b; being the corresponding

eigenvalues, the sequence of random variables
n i BoC wis go(w) = e D bl @)

converges to g(w) p-a.e..
On the other hand one has

n

/B- H/ \lh/ﬁ dr; = (1_[1(1 _ bi))71/2

1=

so that [ g,du converges, as n — oo, to (det(I — B))~Y/2, where det(I — B)
denotes the Fredholm determinant of (I — B), which is well defined as B is
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trace class. Moreover 0 < g, < g,.1 for each n . It follows that, as n — oo,
[ gndp — [ gdu = (det(I — B))~'/2. By an analogous reasoning one can prove
that for any y € H, the sequence of random variables f,,:

w = fn(u_)) — 62?:1 yin(ez)( )625 ” z([n(el)(wﬂz

where y; = (y,

F(-) = e )

i), converges p—a.e. as n goes to oo to the random variable
1
25

e;
e2r{ B ) and that

/ Fudys — / fdu = (det(I — B)) Pe3w=B 7 (5.17)

(see [75, 72]). The following result follows:

Lemma 7. Let B : H — H be a self adjoint and trace class operator such
that I — B 1is strictly positive, let k € H and A < 0. Then for any increasing
sequence P, of projectors onto n-dimensional subspaces of H such that P, T 1
strongly as n — oo, the following sequence of finite dimensional integrals:

Fn(k) = (271'7,77,)”/2/ ei(Pnk,an>eLh(Pn'r (I— B)Pn’l‘>e iz V(P"T)d(Pn.’E)
Py

converges, as n — o0, to the Gaussian integral on B:

imw/4

F(l{}) = E[ein(k)(w)e e%(w,ﬁw)ei%f/(w)] (518)

(E being the expectation with respect to p on B)

Proof. By lemma 6 one has

(27”:]5,)771/2 / oi(Pnk,Pnt) oo (Pua (I—B)in)efi%V(Pnz)d(an) _
M
(27_‘_71)771/2 / e’i(Pnk,an>eiﬂ'/4eflh<PnT Pn'l‘>eLh<Pn’I‘ BPnT>e7%V(Pn’I‘)d(an) (519)
PoH

Let us introduce an orthonormal base {e;} of H such that P, is the projector
onto the span of the first n vectors. Each element P,z € P,H can be repre-
sented as an n—ple of real numbers (z1,...,x,), where z; = (z, ¢;). The latter
integral can be written in the following form:

; ix/d _ 1 5w .2 1 xn
(271'71)”/2/ el Liz1 kizie! / e~ 2k im1 T oo 2inj=1 BijTitj
n

D n
2> A RRTIT TR
e ﬁZz],k,h,fl ijkhtilyj Lk hdl‘l . d_’]jn
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where BZ] = <€Z', Bej> and Aijkh = A(ei, €5, €k, eh).
On the other hand, this coincides with the Gaussian integral on (B, p):

e S kin(e) @)™/ o gn S0 feisBeg)m(en)(@)n(e) (@) g VoPa ()]

By Lebesgue’s dominated convergence theorem (which holds because of the
assumption on the strict positivity of the operator I — B) this converges as

n — oo to _ )
E[ein(k)(w)e“"/“e#(w,Buﬁei%V(M)].

and the conclusion follows. O

The above result allows to generalize theorem 21 to the infinite dimensional
case.

Theorem 22. Let B be self-adjoint trace class, (I — B) strictly positive, A < 0
and f € F(H), f = [iy, and let us suppose that the bounded variation measure
py satisfies the following assumption

/H AEUB 1 (dk) < oo, (5.20)

Then the infinite dimensional oscillatory integral

/ 62%'<m’(IiB)m>eii%A(m’m’m’m)f(.’E)d.’]? (521)
H
exists and is given by:

/E[ei”(’“)(“’)e”“efz’lrz“‘”’?“’)eigv(”)]ﬂ,f(dk)
H

Proof. By definition, choosing an increasing sequence of finite dimensional
projectors P, on H, with P, 1 I strongly as n — oo, the oscillatory integral
(5.21) is given by:

n—0o0

lim (2mih) /2 / 2 Pn (1= BYPuz) o i3 AP P, Pa o) (P ) Py, (5.22)
JPpH

Let f": P,H — C be the function defined by f"(y) = f(y), y € P,H. One can
easily verify that f" € F(P,H), f" = ji}f, where p} is the bounded variation
measure on P,H defined by p}(I) = pg(P,'T), I being a Borel subset of P,H,
indeed:

() = fly) = /H ) 1 (dl) =

= / Py Puk) ) (dk) = / ekl 1 (d P, k) (5.23)
H nH
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where y = P,y. By theorem 21 the limit (5.22) is equal to
lim G (Pok) ' (AP, k), (5.24)
n—oo fp q !
where GG, : P,H — C is given by:
Gn(Pnk) _ (27rh)7”/2 / ei(Pnk,an)ei”/“efﬁ(an,(IfB)an)ei%A(an,an,Pnfr,,Pnfr,)dpnx
JP,u

This, on the other hand (see the proof of lemma 7) is equal to

R (PaR) @)™ gy S8y Bignle)@)n(e)(@) iV (@)

Y

where V" = V o P,. By substituting the latter expression into (5.24) we have

lim e (P k) (@)™ g5 228 i1 Binlen)(@)n(e; (@) gin V7 ()] WHdP,k) =

n—oo Pn?'l

= lim R (PR o3 01 Bunle)@n(e)@) gV @) . (k) =
n o JH

= lim | F,(k)p(dk) (5.25)

By lemma 7 and the dominated convergence theorem, applicable to the integral
with respect to zi7, due to assumption (5.20), we then get

/F(k))uf(dk‘)_/E[em(k)(w)einMe2lh<w’Bw>€i2V(w)]Mf(dk)
JH JH

and the conclusion follows. O

Corollary 2 can be generalized to the infinite dimensional case. Indeed due
to the assumption (5.20) the function f on the real Hilbert space H can be
extended to those vectors y € HC in the complex Hilbert space HC of the form
y=z2x, v € H, 2 € C as the integral

/ ezz(m,k)uf(dk)
JH

is absolutely convergent. Moreover the latter can be uniquely extended to a
random variable on B, denoted again by f, by

[ w) = flzw) = / =)y (dk),  w e B. (5.26)
H

Moreover the random variable e2r( 8 ) f2(.) belongs to LY(B, y1) if Im(z)? <
1/2.
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Theorem 23. Let B : H — H be self-adjoint trace class, I — B strictly positive,
A <0 and f € F(H) be the Fourier transform of a bounded variation measure
pr satisfying assumption (5.20). Then the infinite dimensional oscillatory
integral (5.21) is well defined and it is given by:

/ 6%@’(’7B)I>€7i%A($’w’w’w)f(.’L‘)d.’I} — E[ei%f/(w)e%@u,ﬁw)f(eiﬂ/élw)] (527)
H

Proof. By theorem 22 the infinite dimensional oscillatory integral (5.21) can
be computed by means of the Parseval-type formula:

/ e%(m,(lfB)ﬂefi%A(m,m,m,m)f(x)dx —
J H
_ / E[ein(k)(w)ei"/‘le%(w,Bw)ei%V(w)]uf(dk) (528)
JH

By Fubini theorem, which can be applied under the assumption (5.20), the
integral on the r.h.s. of (5.28) is equal to

1>~

Ele’

>t

V() g 2 (,50) / nB@ (k)] =
JH

i

— ]E[ez ﬁ’\7/(11.;)e%(m,Bm)fe“r/4 (w)] — E[ei%V(w)eﬁ(w,Bw>f(eiﬂ/élw)]

The integral on the r.h.s. is absolutely convergent as \ei%‘?| — land e ’B'>f‘3i7r/4 €
LY(B, i) as Im(e™/*) = 1/V/2. O

Remark 17. In the simpler case A = 0, under the above assumptions on the
function f and the operator B, the infinite dimensional oscillatory integral
(given by (5.27) with V- = 0) can also be explicitly computed by means of the
absolutely convergent integrals:

/ e f(w)dr = " up(dk) o (5:29)

;/ o k(1B
\/det(I — B) H
In fact, by means of different methods (see section 2), equation (5.29) can be

proved even without the assumption on the positivity of the operator (I — B)
(it suffices that (I — B) be invertible).

Remark 18. So far we have proved, under suitable assumptions on the func-
tion f : H — C and the operator B, that, if A < 0, the infinite dimensional
generalized Fresnel integral (5.21)

[F()\) / 62—%@,(17B)z)efi%A(a:,a:,a:,a:)f(x)dx
H
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on the Hilbert space H 1is exactly equal to a Gaussian integral on B:

/\

[G()\) = / ]E[ein(k)(w)eiwﬂe%(w,l?w) irv ]qu(dk)
H
(theorem 22), and to
I*(\) = Elé’ i3 V(W) g5 (w, B) £ (i)

(theorem 23). One can easily verify that 1¢ and I are analytic functions of
the complex variable )\ in the region of the complex \ plane {Im(\) > 0},
while they are continuous in {Im(\) = 0} and coincide with I™ in {Im(\) =

0, Re(A\) < 0}.

5.3 Application to the Schrodinger equation

Let us consider the Schrodinger equation
Ly = Hy (5.30)
1N— = .
dt

on L?(R?) for an anharmonic oscillator Hamiltonian H of the following form:

h? 1
H = ——A—l— 237923:—4—)\0(3: T, X, 1), (5.31)

where C' is a completely symmetric positive fourth order covariant tensor on
R?, Q is a positive symmetric d x d matrix, A > 0 a positive constant. It is well
known, see [91], that H is essentially self-adjoint on C§°(R?). By means of the
results of the previous section we are going to give mathematical meaning to
the “Feynman path integral” representation of the solution of equation (5.30):

Wit z) = / e+ Iy B ARG ADA AN g (o (1)) Doy
. 'y(O):{L‘

as the analytic continuation (in the parameter A) of an infinite dimensional
generalized oscillatory integral on a suitable Hilbert space.

Let us consider the Cameron-Martin space! H,, that is the Hilbert space of
absolutely Continuous paths v : [0,#] — R?, with (0) = 0 and inner product
(71, 72) fﬂ F1(s s)ds. The cylindrical Gaussian measure on H; with co-
variance operator ’rhe 1dent1ty extends to a g-additive measure on the Wiener

'With an abuse of notation we ‘call here Cameron-Martin space the space of paths ~
belonging to the Sobolev space H(]t’)z([(Lt]7 R?) such that v(0) = 0, while in the first three

chapters with the same name we denoted the space of paths vy € H(]t’f([07t], R?) such that

~(t) = 0.
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space Oy = {w € C([0,#]; R?) | v(0) = 0}: the Wiener measure W. (i, H;, C;)
is an abstract Wiener space.

Let us consider moreover the Hilbert space H = R? x H,, and the Banach
space B = R? x C; endowed with the product measure N(dz) x W (dw), N
being the Gaussian measure on R? with covariance equal to the d x d identity
matrix. (i, H, B) is an abstract Wiener space.

Let us consider two vectors ¢, 1, € L*(R?) N F(R?). We are going to define
the following infinite dimensional oscillatory integral on H:

“/ é(m)eﬁ Jo ¥(9)%ds , =55 [[(7(5)+2) Q2 (v(s) +a)ds
RdXHf

e%C(fy(s)+,1:,fy(s)+m,fy(s)+m,’y(s)+m)dsz/)O (')/(t) + .Z')d.Z'D’}/” (532)

Let us consider the operator B : H — H given by:

(z,7) — (y,m) = B(z,

¢
y:t92x+92/ v(s)ds, n(s) = Q% ts—— //92 r)drdu (5.33)
0

and the fourth order tensor operator A given by:

A((x1, M), (w2, 72), (23,73), (T4, 71)) =

t
= / C(71(s) + 21,72(8) + 2, 73(8) + 23, 7a(8) + z4)ds.  (5.34)
0
Let us consider moreover the function f : H — C given by

fla,y) = (2mih)¥2e 37157 §(2) o (v(1) + ) (5.35)

With these notations expression (5.32) can be written in the following form:

/ Lﬁ("’l‘ ‘H'ﬂ ) 7%(( 1'7) B(mﬁ/))67%A((mﬁ/)7(7717)7(7717)7(7717))f(x’fy)dxdr}/ (536)
H

Under suitable assumptions on €, A\ the theory of the latter section applies,
as we shall see below. In the following we will denote by €;, 7 =1,...,d, the
eigenvalues of the matrix 2.

Theorem 24. Let us assume that A < 0, and that for each i = 1,...,d the
following inequalities are satisfied

QZTL < g, 1— Qz tan(QZf) > 0. (537)

Let ¢,y € L?(RY) N F(RY). Let pg be the complex bounded variation measure
on R such that jig = o. Let g be the complex bounded variation measure
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‘ 2

on R? such that fiy(r) = (2min)¥2e 2" $(x). Assume in addition that the
measures [lo, [1g satisfy the following assumption:

/ / B2 tan(Qt)z (y+cos(Qt)*1m)(1fQtan(Qt))*l(ercos(Qt)*la:)
Rd J R4

0/ (d) 14 (dy) < 50 (5.38)

Then the function f : H — C, given by (5.35) is the Fourier transform of a
bounded variation measure piy on H satisfying

/e%«ym) =B )|y | (dydn) < (5.39)
H

(B being given by (5.33)) and the infinite dimensional oscillatory integral
(5.36) is well defined and is given by:

/ ( / i@y V(1)) g i (Vo(s) +2)22 (ol )+ 2)ds
RdXHt RdXCt

ez’% JL c(Vhw(s)+z,vVhw(s)+z,vVhw(s)+z,vVhAw(s) +x dsW(dw) Zh'/ (]T) Mf(dyd'}/)-

This is also equal to
(7)d/2/ ei% fr; C(Vhw(s)+z,vVhw(s)+z,vVhw(s)+z,vVhw(s)+x)ds
Rdx(’f

e 2% frf(‘/ﬁw(s)”)m(‘/E“’(S)“”)dsé(e”/‘lx)wg(em“\/ﬁw(t) + ™) W (dw)d.
(5.41)

Proof. By the assumptions on ¢, one can easily verify that the function
(2mih)%?e 55 1#” () is the Fourier transform of the bounded variation mea-
sure on R? x H, which is the product measure pg(dx) x 8o (d7y), where §y(dy) is
the measure on H; concentrated on the vector 0 € H;. Analogously the func-
tion (x,7) +— to(y(t) + x) is the Fourier transform of the bounded variation
measure p,; on RY x H given by :

[ rmtdndn = [ )i (ds),
Rex Hy JRIx Hy

where G; is the vector in H given by Gy(s) = 5. As F(R? x H) is a Banach
algebra, the product f(z,7) := (2mih)%2e =le” g(x)y(v(t) + =) still belongs
to F(R? x H), in fact it is the Fourier transform of the convolution pu; =
(g % 69) * py. A direct computation shows that p, satisfies assumptions
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(5.20) of theorem 22, that is (5.39), if and only if py and p, satisfy (5.38).
By simple calculations one can verify that the operator B given by (5.33)
is bounded symmetric and trace class. Moreover if assumptions (5.37) are
satisfied, I — B is positive definite (see appendix B for more details).

A direct computation shows that the function V : H — R,

Viz,v) = Al(z,7), (x,7), (z,7), (x,7))

is continuous in the norm of the Banach space B and extends to a function V'
on it.
By applying theorem 22 and theorem 23 the conclusion follows. O

Remark 19. The class of states ¢,y € L*(RY)NF(R?) satisfying assumption
(5.38) is sufficiently rich. Indeed both ¢ and 1y can be chosen in two dense
subsets of the Hilbert space L?(R%). More precisely one can take for instance

Yo € S(RY) of the form ty(z) = P(m)e*a%, and ¢ € S(R?) of the form

o(z) = Q(a:)e’“”(g_g“"’)m, with «, B, > 0 and with P,Q arbitrary polynomials.
Moreover a and 3 have to satisfy the following conditions, for alli =1,...,d:

1 1
ﬂQi 2(]7(2,‘ tan(Qit)

1 1 t H(Qit)+Qi
o §<]fQitan(Q,—t)> > 0) (5.42)
(intan(Qit) N (tan(Q,—t)+Qi)> (intan(Q,-t) B l) - ( . >2

aQ,— QQ,' ﬂw,— 2 QCOS(Qit)

Let us denote respectively by Dy and Do the set of vectors ¢ and by of the
above form. It is easy to see that both Dy and Dy are dense in L*(R?).

> ()

The oscillatory integral (5.36) can heuristically be written in the following
form:

0) = [ o) / 45100y (1(0)) Dryd”
R {vv(t)==}

and interpreted as a rigorous realization of the Feynman path integral rep-
resenting the inner product between the vector ¢ € L*(R?) and the solution
of the Schridinger equation (5.30) with initial datum y. However the infi-
nite dimensional oscillatory integral (5.36) is well defined only if A < 0. By
the considerations in remark 18 the absolutely convergent integrals (5.40) and
(5.41) are analytic functions of the complex variable A if Im(\) > 0, con-
tinuous in Im(A) = 0 and coinciding with (5.36) if A < 0. We shall prove
that when A > 0 the Gaussian integrals (5.40) and (5.41) represent the inner
product (¢, (t)), where () is the solution of the Schrédinger equation. We
will prove moreover the Borel summability of the formal Dyson expansion for

(¢, 9(1)).
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Lemma 8. Let A =0, 1, ¢ € S(R?). Let o, resp piy, be such that fig = 1y,
resp. fig(x) = (2mih)#?e 2wV §(x).  Assume moreover that po, js satisfy
condition (5.38). Then the scalar product between ¢ and the solution 1, of
the Schraodinger equation with initial datum g is given by:

<¢= 1/)f> = / (/ eiei"/4\/ﬁ(m-y+n(7)(w))
JRIxH, ~ JRIXCy

o3 {(@w),B(z, DW (dw)—

2
|z

E )Z/Qd )uf(dydv) (5.43)

where iy is the complex bounded variation measure on R? x H, whose Fourier
transform is the function f : H — C, given by f(x,7) := (ZWih)d/Qe’#‘m‘2</§(:r)w(’y(t)+
x) and B is the continuous extension on R x C; of the operator (5.33).

Proof. In order to avoid the use of a complicated notation we assume d = 1.
The proof holds in a completely similar way in the case d > 1. As 9y €
S(R?), the solution of the Schrodinger equation with A = 0, i.e. with the free
Hamiltonian, and initial datum ¢, is given by

[ Q ; s
w(t,m) _ (27”:71)—1/2 m/ﬂgeﬁsﬁm(cosﬁt(aﬁ+yz)2$y)¢0(y)dy’ (5‘44)

t>0,r € R, so that

<¢ wt> 27T2h 1/2”911197‘ /¢ ezrwsmm(C"SQt(m2+y2)*2my)z/}0(y)dydx

(5.45)
Let (2mih)!/2e =5 (/5(3:) = [o € us(dk) and y(y) = [ e"Ypuo(dl), so that
(5.45) becomes:
zel”/‘l\/_mk zhtanﬂﬂQ Qtaan’r i\/ﬁei‘"/4ml
e e cosqi dk dl)dzx.
\/('OSQ / V2 // Md)( Jio(cl])

A direct computation (see appendix B) shows that the latter expression is
exactly equal to the integral (5.43), that is to

/ ( / i€ ™ VA kta4n(Gh(w))
. RXH,& . RdXCt
1z]”

(), B, >>W(dw)(2 )d/th")uf(dyd’y) (5.46)

2
\

(where G(s) = Is and n has been defined in section 5.2) and the conclusion
follows. =
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Remark 20. By Fubini’s theorem expression (5.43) is also equal to
(7)d/2/ 6% JL(Vhw(s)+2)9% (VAw(s)+x)ds
Rdx(’f
d(e™x )by (™ V Iw(t) + e )W (dw)dz  (5.47)
Lemma 9. Let A = 0 and vy € S(R?), such that for each x € R?

/d ek (KT QM) ) () |dk < oo, (5-48)
R

Then the solution 1, of the Schridinger equation (5.30) is an analytic function
in the variable z € C* and its value in z = €™z, x € R is given by:

wt(eiw/élx) — ¢0(€iﬂ/4$+€iﬂ/4\/ﬁW(t)) %(( ~Vhw),B(z,Vhw)) W(dw)
Cy

Proof. In order to avoid the use of a complicated notation we assume d = 1.
The proof holds in a completely similar way in the case d > 1.

Since ¥y € S(R), A = 0, one has (5.44). By Parseval’s equality this is also
equal to

1 iQ tan(Qt) 2 ihtan(Q)k2 ke~
€T = 67 2h 67 20 € cos Qt k
V() cos 2t ,/R Volk)d

The analyticity of v¢y(z), z € C, follows by Morera and Fubini theorems.
Moreover 1), (¢""/*x) is given by

. 1 Q tan(Q#)z> ifitan(Q)k2 i/ 4y ~
wt(elﬂ'/ﬁlx) — ST / 67 20 € cosQt 'l/)o(l{;)dk (549)
cos 1t R

On the other hand, by Fubini’s theorem (which holds thanks to the assumption
(5.48)), one has:

. . 2 .t .
%(e”“m + ™ T (t))en Jo (‘/E“’(S)”)ZdSW(dw) =

/w 7k,rpz7r/4 taa: / 6022 (f 2( fo s)ds 7kfpz7r/4 W(dw)dl{;
Cy

(5.50)

By a direct computation (see appendix B) the latter expression is equal to
(5.49) and the conclusion follows. O
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Theorem 25. Let ¢,y € S(R?) satisfy assumption (5.38). Then the power
series expansions (in powers of \) of the expression (5.41) coincides with
the Dyson expansion for the scalar product between ¢ and the solution of the
Schridinger equation (5.30).

Proof. In order to avoid a complicated notation we assume d = 1, but the
proof is valid also in the case d > 1.

First of all one can easily verify that expression (5.41) is an analytic function
of the variable A € C in the upper halfplane I'm(\) > 0 and continuous in
A € R. By expanding it in power series of A around A = 0 we have for any
N € N, that (5.41) is equal to:

~— 1 iAyn [ ! -
)4/2 (£ dsi--- [ d / hw(s; 1
Q ; n! ( h ) / B /0 " RxCy H(\/_M(SZ) o
O 45 3 (e 1Yo (€7 V hw (1) + €™ )W (dw)dx + Ry, (5.51)

with Ry a remainder term. Because of the symmetry of the integrand, (5.51)

is equal to
7)\ & 4
d51 H(\/ﬁw(&) + )
RXCt i=1
n_

5F \/ﬁ (s)+=) qu¢( im/4 ) ( 17r/4\/_w( )+e”/43:)W(dw)dx+RN (5.52)

where A, = {(s1,...,8,) € [0,t]" : 0 < 59 < --- < 5, < t}. The integral
over R x C} can be evaluated by partitioning the interval [0,¢] into n + 1
subintervals [sg = 0, s1], [s1, 2], -+ s [Sn_1 Snls [Sns Sns1 = t]. Let us denote by
wi ¢ [8i, Six1] = R the Wiener process on the interval [s;, s;11], w;i(s;) = 0, by
C; the space of continuous paths on [s;, s;11] and by Ei, .., the expectation
with respect to the Wiener measure on it. With these notations expression
(5.52) becomes

(i)d/? (=) /- / s, [ ool 0 B (VR (1) +

+ :1:6”/4)46 3 Js" (Vho(s +”)2dSIE[51752}[(\/%”/4%(32) + Vhe™ A wg(s1) 4+ ze ™)

eTh f;12(\/ﬁwl(s)++\/ﬁwo(sl)+$)2ds . ']E[s [6 L fqn (Vhwn (s)+VR 7, Li(sig1)+)2ds

(e”/%wasHl) +em/g)] ]+ Ry
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By lemma 8 and lemma 9 the latter expression is equal to

N-1

Z (—777,)\)”/ T ~/And81 . d$n<¢7 e*i%Hovefi@Hov .

=0

S

(sn— gn 1)

. .efl HOV n)HOZbO) + RN

and, by the change of variables s; =t — s,,1 4, to

— 1 z)\ (t=sn) (s )
- n Sn — gn 1
Z / / dsy -+ dsy(p, e 7 Ve oy
n=0 An
;(s2=51)
e R e i oy 4 Ry
where Hy = —%QA + “”%21 is the harmonic oscillator Hamiltonian and V' (z) =

2. The latter expression is Dyson’s expansion for the scalar product between
¢ and the solution 1), of the Schrodinger equation (5.30) with Hamiltonian
H = Hy + AV and the conclusion follows. O

Theorem 26. Let A > 0, and let ¢,1py € S(RY) satisfy assumption (5.38).
Then the scalar product between ¢ and the solution of the Schrodinger equation

(5.30) with initial datum gy is given by the absolutely convergent integrals
(5.40) and (5.41).

Proof. Let us consider the anharmonic oscillator Hamiltonian H given by
(5.31). H is a positive selfadjoint operator and generates an analytic semigroup
T:(t) =e 5, t >0,z C, Re(z) > 0 (see for instance [91]). Given ¢ > 0
and ¢,y € L*(R%), the function F : D — C, where D = {z € C, Re(z) > 0}
and D is the closure of D,

F(z) = (¢, T%(t)¢o) (5.53)

is analytic in D and continuous in D. If z = i, F(z) is the scalar product
between ¢ and the solution ¢ (#) of the Schrodinger equation (5.30) with initial
datum v, while if 2 € R", F(z) is the scalar product between ¢ and the
solution of the heat equation

0 z
—p=—ZH .54
5 S HY (5.54)

In this case F'(z) can be computed by means of the Feynman-Kac formula (see
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for instance [92]):

F(Z) — /Rd ¢(‘,E)/C 67% f(f( hzw(s)+2)Q% (Vhzw(s)+x)ds
t

,zA fo hzw(s)+z,Vhzw(s)+z,Vhzw(s)+z,Vhzw(s)+z dew (\/_w( ) + x)W(dw)da:
¢(\/ET)/ e*gfhfo'(\/ﬁw(s)+:1:)§22(\/ﬁw(s)+:1:)ds

Ct
.3
22 (L O(Vhw(s)+, \/_w(9)+T\/_w(€)+'r Vhw(s)+x dew (\/_w( )+\/_37) (dw)da:
(5.55)

By the assumptions on the vectors ¢, 1y, the r.h.s. of (5.55) makes sense for
2z € D. Moreover, by the analytlclty of the semigroup T%(t), it represents for
2 =i the scalar product (¢, e & 7)), that is:

¢(ei7r/4m)/ o Jo (Vhw(s)+2)02 (Vhw(s) +a)ds
Ct

fo \/_w (s)+z,Vhw(s)+z,Vhw(s)+z,Vhw(s)+z dsw (\/7#”/4 ( )+ Pz7r/4m)I/V(dw)daj
(5.56)

This coincides with expression (5.41) and the conclusion follows. O

Theorem 27. Let A > 0, and let ¢,y € S(R?) satisfy assumption

/ / (3Cos[Q1-+8)] L) (1-(1-+8)82 tan[2(t+45)]) 1 (y--cos[2t-+10)] L)
Rd JRA

pttsn @ @) gy (dy) < oo (5.57)

for some § > 0. Then the Dyson expansion for the scalar product between ¢
and the solution of the Schrédinger equation (5.30) with initial datum 1y is
Borel summable.

Proof. By theorems 25 and 26 it is sufficient to show the Borel summability
of the power series expansions (in powers of \) of expression (5.41).

In order to avoid a complicated notation we assume d = 1, but the proof is
valid also in the case d > 1.

As already remarked before lemma 3, the expression (5.41) is an analytic
function of the variable A € C in the upper halfplane I'm(\) > 0 and continuous
in A € R. Moreover the rest Ry of its asymptotic expansion (5.51) is equal to:

A= [ (Lo B 0 [ [ TRt o

2
|z

hw(s)+x)2ds jiet™/*(z- n(7)(w) € 2h
57 Iy (Vs(a) ) e ™/ 4 () w(ded )/‘f(d?ldV)
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Ry satisfies the following uniform estimate in Im(\) > 0:

m= [ ([ () [ e [ oy TVt + o
> | = — TREE s w(si) +x
N R4 x Hy RXCtN_l! h’ 0 ' 0 N-_

1
/ du(l _ U)N 1 7ﬂ fO (Vhw(s)+x) 4dg62h fo (Vhiw(s)+)%ds
0
||

2) )uf(dudv)\

< [ANRN = /de]- /deN/ / +e)7ds
N RdXHf Rx(’f

ﬁ x- n w :
H( (s;) 4+ z)te 2 VAlEytn()( ))W(du))(Q )d/2d7~|uf|(dyd7) (5.58)
=1

By denoting G; the vector in Cf C H, equal to Gi(s) = 10,55, (|Gilu, = i),
the Gaussian integral

e?ei”/“('ry—k\fn( w) W(dw)

N =]

5 I @6 TT (w(si) + ) e 2 VEEBOE) W (do) £ gy —
[ H< (5) + ) o
N s P,@f
_ e )46772\/5(1-1/%(7)(&)))W(dw)’idm
-/I%X(wf H (27T)d/2
is equal to
h h
Hox (1580 = B) (G ), i B (G \[% \[
ﬁ
4
(5.59)
det([ - B)
where

2

Dy, ...Dy e = (—1)"Hy(z1,...,20|7)e "
By the assumption (5.57) on 1)y, ¢ involving a § > 0, we have

/ e(1+0) 5 (v),(T=B) " (v.9)) sl (dydy) <
HixR

By using this and the estimate on Hermite polynomials H,, derived in [88] (
formula (2.9) ) we see that expression (5.59) is bounded by

149
acNH5,+1 ( + ) 2N,
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where a, ¢ > 0 are suitable constants. By inserting such an estimate into (5.58)
and by using the identity 2N! = 22N N!(N — 1/2)!/\/7, we have:

[Ry| < ACYNMN!

This and the analyticity of (5.41) in I'm(A) > 0, by Nevanlinna theorem [84],
assure the Borel summability of asymptotic expansion (5.51). ]

5.4 Concluding remarks

There are relations between our approach in the definition of the Feynman
integral and those in [40, 72, 55, 83]. Indeed formula (5.41) often appears in
the literature for a more restricted class of potentials and initial conditions.
We would like however to underline that here we achieved to prove (5.41)
and related formulas for potentials of polynomial growth. This involves our
extension of the definition of infinite dimensional oscillatory integrals (in the
spirit of [12, 57, 4]) to a class of phase functions much larger than the usual
“quadratic + Fourier transform of measure”. In [40, 72, 55, 83] the authors
define the Feynman functional by means of a Gaussian integral depending on
a parameter (which in some cases can be identified with the mass m), prove
the analyticity of such a functional in a suitable region of the complex plane
and show that when it approaches the imaginary axis the corresponding func-
tional gives a representation of the solution of the Schrodinger equation for a
restricted class of potentials. In work of the euclidean approach to quantum
field theory, the representation of solution of the perturbed heat equation via
a Feynman-Kac formula and integrals with respect to Gaussian (Wiener resp.
Orstein-Uhlenbeck) measures are used to provide via an “analytic continu-
ation in time” solutions of the Schrodinger equation. In [32] this approach
provides a semiclassical expansion for the Schrodinger equation. In our case,
under suitable assumptions on the initial datum )y, we prove that the infinite
dimensional oscillatory integral we define coincides with a Gaussian integral.
In the case of the quartic potential V = A\z* we prove that the Gaussian
integral representing the solution of the Schrodinger equation is an analytic
function of the complex variable A in the upper halfplane which coincides for
A < 0 with a well defined infinite dimensional oscillatory integral. We plan
to use our representation for discussing rigorously asymptotic expansions in
fractional powers of /i (semiclassical expansions).
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Appendix A

The Fourier transform of e’ (@)

A.1 Proof of lemma 5

Let us denote D the region of the complex plane:
D c C, D={zeC|Im(z) <0}

Let us assume £ is a complex variable belonging to the region D\ {0}. We are
going to compute the Fourier transform of enP@),
Let us introduce the polar coordinates in RV :

—
/ ezk wehP(w)dT —
RN

+oc )
:/ </ kI f(f15ees ¢N—1)€%P(¢1 ----- ¢N71)(T)TN71dT>dQN,1 (Al)
SN—1 0

where instead of N Cartesian coordinates we use N — 1 angular coordinates
(¢1,...,¢n_1) and the variable r = |z|. Sy_; denotes the (N —1)-dimensional
spherical surface, dQ2y_; is the measure on it, P, .4y ,)(r) is a 2My, order
polynomial in the variable r with coefficients depending on the N — 1 angular
variables (¢1,...,¢n_1), namely:

P(T) = TQMAQM(i, PPN i) + ’I“QMi]AQM,] (i, ey i) + ...+
2 Tl 2 Tl
r
++7"A1<?|) +A0:
= aom (01, .. ., ¢N71)T2M + aonr—1 (s .., ¢N—])T2M7]+

+...+a1(¢1,...,¢N71)r+a0
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where asp (1, ..., ¢n_1) > 0 for all (¢1,...,dn_1) € Sy_1.
Let us focus on the integral

“+oc .
/ ei\k\ff(ﬁm,~~~’¢N71)€%7’(¢1 ----- ¢N,1)(7")7~N*1dr7 (A.3)
J 0

which can be interpreted as the Fourier transform of the distribution on the

real line _
F(T) — (—)(T)T‘Nile%p(dﬂ ----- 4’]\],1)(7')7

with O(r) = 1 for r > 0 and ©(r) = 0 for » < 0. Let us introduce
the notation k' = kf(¢1,...,on 1), ar = ar(Pr,...,dn 1), k = 0,...,2M,
P'(r) =32M apr® and e C, h = |hle’, with —7 < ¢ < 0.

Let us consider the complex plane and set z = pe?. If Im(h) < 0 the integral
(A.3) is absolutely convergent, while if & € R\ {0} it needs a regularization.
If heR, h >0 we have

oo i i) i pl
/ eFrenP OpN=1dr — lim R zenP (@) N1, (A4)
0 10 J z=peic
while if B <0
+oo ) i DI Sl i pl
/ R renP OpN=1dr — lim R zenP (@) N1, (A.5)
0 el0 ), pe—ie

We deal first of all with the case h € R, fi > 0 ( the case i < 0 can be handled
in a completely similar way). Let

NnR) ={z€C | 0<p<R O=¢}

WB)={2€C | p=R ¢<f<n/aM)
13(R)={2€C | 0<p<R, 0=7/4M}

From the analyticity of the integrand and the Cauchy theorem we have

/ eik’zeéP’(z)ZNfle —0.
71 (R)Ur2(R)Us(R)

In particular:
_ m/AM o 0
1 i pl i poif i pt i 1

‘ / ok zeEP(z)ZNfle‘ :RN‘ / ik Re?® £ P! (Re?®) iNO g9
Jy2(R) Je

w/4M )

< RN/ efk’Rsin(G)ef%Zifl ap RF sin(k0) g9
€

w/4AM
N/ o 4AM p2M o 2M—1 1 pk
< RN/ e R0 gm0 o= 2 0 g (AL6)
€
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where k" a; k=1,...,2M — 1 are suitable constants. We have used the fact
that if & € [0,7/2] then 2o < sin(a) < . The latter integral can be explicitly

computed and gives:
R (*

7e(a2M%R2M+k”R+ZiZf1 a%Rk) - e*ﬁ(agMﬂR2M+k/lR+ziM171 a’kR’“)

hm =
4M 2M—1 )’
UQMERQM + k”R + Zk:] (L;CRIC

which converges to 0 as R — oco. We get

ik'z L P/(2) N1 ik'z L P'(2) N1
/ e 2en P () N1, — / eFzenP'(2) N1,
Z:p@iF z:pei(‘“’/‘”\/{)

By taking the limit as € | 0 of both sides one gets:
+oo . +oo ) . )
/ kT o7 P (1) N=1 g, _ JiNm/iM / eikpem/“”e%P’(rew/“M)qudp
0 Jo

By substituting into (A.12) we get the final result:
F(k) _/ etk T o5 P(2) g0 — eiNﬂ/AlM/ pie’ ™ Mk o g P/ M) g (A7)
RN RN
In the case A < 0 an analogous reasoning gives:

F(k)—/ eime;P(z)dm_eiNn/th/ pie ™Mk g Ple T/ M) g (A.8)
RN RN

The analyticity of F(k) is trivial in the case Im(h) < 0, and follows from
equations (A.7) and (A.8) when i € R\ {0}

If I'm(h) < 0 a representation of type (A.7) still holds. By setting h = |hi|e?,
with —m < ¢ < 0 and by deforming the integration contour in the complex z
plane, one gets

= [ ottt =
RN

] jet(m/AM+¢/2M) [0 0 L i(m/AM+¢/2M)
— ezN(w/4M+¢/2M) / ele kmeh’P(e T)d.’lj (A9)
JRN

A.2 The boundedness of F(k) as |k| — .

Let us consider the distribution e# ) and its Fourier transform F(k) =
Jon €*%ea?@dz. Let us focus on the case i € R\ {0} (in the case Im(h) < 0

~ i I'm(h)
|F| is trivially bounded by [.y |er?®@|dz = [, e 177 "Wy < +00). Let us
assume for notation simplicity that & = 1, the general case can be handled in a

P(x
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completely similar way. In order to study fRN e™*7e'P(*) dx one has to introduce
a suitable regularization. Chosen ¢ € S(R"), such that (0) = 1 we have

e’P@(ex) — P, in S'(RY) as ¢ — 0,

F(k) = lim ekt P @)y (ex) da.

e—0 RN

Let us consider first of all the case N = 1 and P(x) = 2? /2m. The unique

real stationary point of the phase function ®(z) = kx+2*" is ¢;, = — kT Let
X1 be a positive C* function such that x;(z) = 1if |z — x| <1/2, x1(2) =0
if |2 —cx] >1and 0 < xi(z) <1if1/2 < |z —c¢,| < 1. Let xo =1 — x31. Then
F(k) = Li(k) + Iy(k), where Io(k) = lim o [ e*7e™"/2my(2)1h(ex)dz and
I (k) = [ e*#e™™ /2my (z)dx. For the study of the boundedness of |F(k)]| as
|k| — oo it is enough to look at I, since one has, by the choice of xi, that
|I;] < 2. By repeating the same reasoning used in the proof of theorem 16 I,
can be computed by means of Stokes formula:

lim eikmei“’mﬂmxg(x)w(éx)dx =ilime /e”“"e7 ™ 7X0( )Y (€m)d:r+

e—0 e—0 k + r2M-1

tkx iz M/Zm_(L)
+1 11_1% e'e o \E g g Y(ex)dr (A.10)

Both integrals are absolutely convergent and, by dominated convergence, we
can take the limit ¢ — 0, so that

; 2 M d Y
Iy(k) =i /e””e” /Qm—(Xoi(ﬂ)dm =

dox \k + x2M-1
_i/Pikai:BQM/Qm( XE](T) )d’l" / lka}PZCIJ2M/2m((2M 1) ( ) M 2)(]7,
. ’ ’ k._‘_mQMf] . (k+T2M 1) ’
Thus:
cp—1/2 cp+1
Iy(k) <2 7‘(1 2 7‘(1
Lo (k)| < /Fkl k 4+ p2M-1 T + /pk+1/2 k 4+ p2M-1 T+
cr—1/2 p2M—2 +00 p2M—2
+(2M—1)/ —_— (2M—1)/ — _ldx
o (k + 22M-1)2 412 (k + 22M-1)2

By a change of variables it is possible to see that both integrals remain bounded
as |k| — oco. Let us consider for instance the first one:

/Ck]/Q
. (kal

1 T 1-1/2k2M—1 1
At
k + x2M—1 kI g 1M
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The latter integral diverges logarithmically as |k| — oo, so that the r.h.s. goes
c—1/2 | g2M-2

to 0 as |k| — oo. Let us consider the integral [ dr. By a

— 0o

change of variables it is equal to

m2M72

Ckfl/Q
/oo (k_i_xQMfl)Q

L/11/2k2Ml1‘ yQM—Q ‘(]y
k] oo (1 +y2M )2

The latter integral diverges as O(k) as |k| — oo, so that the r.h.s. remains
bounded as |k| — oco. By such considerations we can deduce that |F(k)| is
bounded as |k| — oc.

A similar reasoning holds also in the case N = 1 and P(z) = S g,z is a
generic polynomial. Indeed for |k| sufficiently large the derivative of the phase
function ®'(x) = k + P'(z) has only one simple real root, denoted by ¢;. One
can repeat the same reasoning valid for the case P(x) = 2*¥ /2M and prove
that for |k| — oc one has | [ e***F@)qz| < C ( where C is a function of the
coefficients a; of P at most with polynomial growth).

The general case RY can also be essentially reduced to the one-dimensional
case. Indeed let use consider a generic vector & € RV, k = |k|u;, and study
the behavior of F(k) as |k| — oo. By choosing as orthonormal base u1, ..., uy
of RN, where u, = k/|k|, we have

do =

Flk) =Tim [ Q@m0 (eny) - (ey)

e—0 JRN-1

where ¢y € S(R), ¥(0) = 1; z; = x - u;, Py, y(x1) is the polynomial
in the variable x; with coefficients depending on powers of the remaining
N — 1 variables x,, ..., zy, obtained by considering in the initial polynomial
P(x1,29,...,zy) all the terms containing some power of z;. The polynomial
() in the N —1 variables xo, ..., xy is given by P(xy, 29, ..., 2N)— Puy. 2y (21).
Let us set I°(k, za,...,ay) = [; €'F@1eiPraon@)ip(ex)day. By the previous
considerations we know that, for each € > 0, |I°(k, xo,...,xy)| is bounded by
a function of G(zs,...,zy) of polynomial growth. By the same reasonings as
in the proof of theorem 16 we can deduce that the oscillatory integral (A.11)
is a well defined bounded function of k.
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A.3 Proof of lemma 6

Let us study the Fourier transform of the complex-valued distribution

e#m-(lfl?)a:

=i p(z) N
SRR e R
(2mih)N/2 ‘ ’ ’ ’

where (I — B) is symmetric and strictly positive, A < 0 and P is given by
(5.3):

POy N

F(k)/RNe We w P@ g
Without loss of generality we can assume that the quadratic form x- (I — B)x
is equal to x - x, as it can always be reduced to this form by a change of
coordinates.
Let us compute the N —dimensional integral defining F(k) by introducing the
polar coordinates in R :

. ez —i
ezk-mieT P(m)d,r —
/RN (27Tih)N/2

+oc LTQ
_ ilk[rf(@1,edn—1) __C7" “2P(r), N-14 )dQ A 19
/SN1 </0 e (27m'h)N/2€ r r)dQy -1 (A12)

where instead of N Cartesian coordinates we use N — 1 angular coordinates
(¢1,...,¢n_1) and the variable r = |z|. Sy_; denotes the (N —1)-dimensional
spherical surface, dQ2y_; is the Haar measure on it, f(¢1,...,énx 1) = (k -
x)/|k|r, P(r) is a fourth order polynomial in the variable r with coefficients
depending on the N — 1 angular variables (¢q,...,¢x_1), namely:

P(r) :7«4A(i T i)

x| ||

:T4(L(¢],...,¢N,]) (A13)

| ]

where a(¢1,...,¢n_1) > 0 for all (¢1,...,0n_1) € Sy_1. Let us focus on the

integral
400 i
[ e e
0 (2mih)N/2

This can be interpreted as the Fourier transform of the distribution on the real
line

2
—iX _
5 P(r),rN ]dT.

ip2
e’

_ N-1 A Pp(r)
F(r)y=0(r)r (27r7jh)N/26 R ;
with 6(r) = 1 if r > 0 6(r) = 0 otherwise, A < 0 and P(r) = ar*, a > 0:
e ikr e’ —iA p(p) N—1
e W@ h T dr. (A14)
0 LIy
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Let us consider the complex plane and set z = re?’. We have

i .2

+o00 57T
ikr €% =Ap(r) N-14. _
/0 e 7(27”'71)]\7/26 h r dr =
i ,2
. e2r? —i)
=i e O ZApi) N-1y
a0 & mimpneS T
R ] LPZBZiF ] ]
1 . ikpeic €N —AP(peic) N-1,Nie
i | i predp (A1)
Given:
1(R)={z€C 0<p<R, 0O=¢}

1(R)={2€C | p=R, e<O0<m/4—¢}
13(R)={2€C | 0<p<R, O0=7/4—¢}
with € > 0 small, from the analyticity of the integrand and the Cauchy theorem
we have

/ e ot
n(RUp(R)Us(r)  (2miR)
In particular:

2
;D‘P(z) N-1 _
/ 27mﬁ N/2 ' 2 e =

1260

T € 2
RN o pik e e R o P(Re?) iNG g9
B 27r77?)N/2 l ‘

— sm(29) R2

w/4—e
< RN / efkRsin(())e o h (aR*sin(40)) 1o
=i (2h)N/2

—26 RZ

< RN " Pfk’RHLP%(aR“%)GdG_‘_
=0 et ’

w/4—e =20 p2

N _22qR? —k'rRg_ €™ A(—aR18)p
+ R%Yen //8 € Weﬁ = do

BAR'\- Z R k'R)m/8 _ (322 R'— ZR>—k'R)e

RN { <€( Th 6(7 )
~ (2rh)N2 (3 pt — Z Rz _piR) *
BAR! (R -K' R)(n/4—¢) _ (R R' (~ )R~k R)m/8
)} (a6

€ wh
i
(SRt — 2R2 + —k'R)

where £’ € R is a suitable constant. We have used the fact that if o € [0, 7/2]
then 2o < sin(r) < o, while if & € [r/2, 7] then sin(a) > 2 — 2a.. From the
last line one can deduce that

ke €T o 2 P() ,N-1
e lz| — 0 R —
o O 0 R
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so that

o 22

i eﬁz =i _ ; €2h =i _
/ ezkz . N/Qe 5 P(z)ZN ]dZ — / ezkz : N/2€ 5 P(z)ZN ]dZ
speic (2mih) smpeitn/a—e) (2mih)

By taking the limit as € | 0 of both sides one gets:

too B#TQ —iX too ir/4 672_‘7112p2 —i) ir/4
/ ezkr (2 ~h)N/2 e n P(T)TNfldT — / ezkpe & (2 h)N/Qe +~ P (pe )prldp
0 e 0 ™
(A.17)

By substituting into (A.12) we get the final result:

) ﬁmm .
ezk-fr, € e ﬁ’\P('r)d:Ij
Jox & @rin) 2

AT > 2h —1i im
— ele /4k-mP76TAP(me /4)d.’I,‘
Jan OLE
— E[Piei"/“k-m

e h P h](A18)
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Appendix B

Some explicit calculations

B.1 The positivity of the operator I — B

Let us study the spectrum of the self-adjoint operator B on #H given by (5.33).
In order to avoid the use of too many indexes we will assume d = 1, but our
reasonings remain valid also in the case d > 1. A positive real number ¢; and
a vector (x;,,) € H are respectively an eigenvalue and an eigenvector of B if
and only if:

Q%2 + Q2 [0 (s)ds = ¢y
Q%) (ts — & fo [,y (r)drdu = ¢y(s)

More precisely the vector (z;,7;) € H solves the following system:

1022, + Q2 f(: Y(s)ds = ¢x;
ai(s) + QPy(s) = Q%
7(0) =0

() =0

By a direct calculation one can verify that the latter system indeed admits a
(unique) solution if and only if C) satisfies the following equation

Q Qt
—tan— =1

VR

A graphical representation of the position of the solutions shows that the
operator B is trace class. Moreover if the conditions (5.37) are fulfilled the
maximum eigenvalue of B is strictly less than 1, so that (I — B) is positive
definite.
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B.2 Estimate of a Gaussian integral.

Let us consider the following function F': H — C given by
F(y,n) = / eIyt V() (@) 5 (@) B@w)) N (da) W (dw).
Rdth

Let us assume (), ¢ satisfy assumption (5.37). By a direct computation and by
Fubini theorem, F'is equal to

F(y,n) = (2r) % Ny -2 U0 [ Vhnm)(w) g fi Q2w(s)ds
Rd o
o5 lo w(S)QZw(S)dSW(dw)dx
— (27{')7% e\/ﬁl’yefir([%tnz)a} e\/ﬁn(n)(W)en(UZ)(w)e%<w’LwW(du})d,’l’," (Bl)
JRrd Je,

where L : H; — H, is the operator given by

Lfy(s):—// Q2 (s")ds"ds'
0 Jt

and v, € Hy is the vector given by v,(s) = Q%*x(ts — 2—2) One can easily verify
that L is symmetric and trace class. Indeed by denoting by o?, v respectively
the eigenvalues and the eigenvectors of the operator L, we have

—%(s) = a™y(s),  (0) = 0,7(t) = 0

Without loss of generality we can assume Q? is diagonal with eigenvalues QZ,
it =1,...d. The components v;, i = 1,...d, of the eigenvector v corresponding
to the eigenvalue o? are equal to

QiS

i(s) = A;si .
vi(s) ; sin >

By imposing the condition () = 0, we have Q;t/a = 7/2 + nym, n; € Z.
The possible a2 are of the form o? = Q?t?/(n; + §)*x%. It follows that the
operator I — L is positive definite if and only if Q;t < /2 for alli = 1,...d.
Moreover the Fredholm determinant of I can easily be computed by means of
the equality cosz = [[(1 — W) and it is equal to det cos Q.

By the considerations in section 4 the function G : R® — R given by

Gz) = [ eVmmE)n()@) ez Loy (dy) (B.2)
JCy

is equal to
L st (1-1) (Vhnso,)

vdet cos Qt /
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where (I — L)' is given by

(I L) 'y(s)=Q" [/ sin[Q(s — s)]¥(s")ds" + sin(Qs)7(0)]+
Jo
t
+ sin(2s)[cos(Qt)] ! / sin[Q(t — s)]y(s)ds" (B.3)
Jo
Moreover by direct computation we see that

G(T) = ;eéh/ﬁﬂaufmil\/ﬁme%az(ft92+Qtan Qt)x

B v det cos Qt

By inserting this into (B.1), we have

(v (1=1) ' Vhn) (B.4)

(QW)fd/Q L(Vhn,(I—L)"Vhn) Vhzy  —ta(I-Qtan Q)z (v, ,(I—L)~'Vhn)
F(y,n) = ——=ez'V"l" " g eVt 3 Tz, (1= h M da;

Vdetcos Qf JRd
In particular by taking n = Gy, 8 € C, G; € Hy, G4(s) = zs, z € R? we get

2
e%z(ﬂqtanﬁt)z

V/det(cos Qt — Qsin Qt)

y+B cos Q1 (1—cos Qt)2)(1—Q tan Qt) ! (y+B cos Qt~1(1—cos Nt)z) (B 5)

F(y,n) =

h
ezt
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Appendix C

Borel-summable asymptotic
expansions

Let V' C C a domain in the complex plane, such that 0 € 9V and
zeV=Vte (0,1], tzeV

Let us denote V := V U {0}. Both V and V will be called angular neighbor-
hoods of zero. A domain U C C, such that U is the closure of an angular
neighborhood of zero, will be called closed angular neighborhood.

Definition 11. Let V an angular neighborhood of zero. An asymptotic se-
quence of functions (¢;)ien for z — 0in V is a sequence of functions ¢; : V —
C, which do not vanish in 'V and such that for every ¢ € N:

li ¢7J+1
1m
z—0 ¢

(2) =0

i

In the following we shall focus on the asymptotic sequence (in any angular
neighborhood of zero) ¢,(z) = 2%, n € N, for fixed & > 0 and denote by
C[z'/*] the space of formal power series with complex coefficients

f(z) = Zanz”/k, {a,} € C, k> 0. (C.1)
n=0

Definition 12. A formal power series f is called a (2'/*—) asymptotic expan-
sion for a function f:V — C as 2 — 0 in an angular neighborhood V if for
each closed angular neighborhood U with U C V' and any N € N, there exists
a number C(N) > 0 such that

N
VeeU : |f(z) =) anz"*| < C(N)|z"¥]. (C.2)

n=0

In this case we write f ~ f, z—=01inV.
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For more details see [62]

Remark 21. [t is important to recall that the domain V' in definition 12 plays
a crucial role, indeed the existence of an expansion depends strongly on V.

Remark 22. An asymptotic expansions is not necessarily convergent (and
usually this is the case!). Indeed condition (C.3) means that for fized N the
function f in approximated by the sum Z;V:O an2"* for z sufficiently small,
while if the formal power series (C.1) is convergent in some domain V to an
analytic function f then the following holds:

N

. . o n/k —
VzeV : ]\;g?)o\f(z) Zanz |=0 (C.3)

n=0

which means that for fixed z € V' the function f in approximated by the sum
ZN an2™* for N sufficiently large.

n=0

It is easy to see that if a function f admits an (z/%—) asymptotic expansion
in a given domain, then it is unique. On the other hand different functions
can have the same asymptotic expansion, for instance the function f(z) =
0 and g(z) = e'/V? have both a zero asymptotic expansion in the domain
{z € C, |z| < r}\[0,7]. In other words, if an asymptotic expansion is not
convergent (and this is often the case) it does not characterize uniquely a
function f asymptotically equivalent to it. In order to construct an 1 to 1
correspondence between formal power series and functions one can apply a
very powerful summation tool: Borel summability. It works as follows:

1. transform the given power series f into another convergent power series

B:;
2. compute the analytic function B obtained in this way;

3. apply an integral transform mapping the analytic function B to analytic
function f

4. the function f (the so called sum of f) obtained in this way has the
power series f we started

In order to apply Borel summability method it is necessary to impose stronger
conditions on the coefficients.

Definition 13. Given s > 0, a formal power series f(z) = S a2k €
C[2'/*] belongs to the s-Gevrey classes C[z'/*], if exist two constants C, M > 0,
such that

VneN: Ja,| < CM™(T(1+n/k))?,

where 1" is the Fuler Gamma function.
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The Gevrey classes are connected via the following transform acting on
formal series:

Definition 14. The map B, : C[z'/*], — C[z'/*], , defined by

o0

n/k np/k
]Bp’k[z Z I'(1+ np/k T+ np/k)’ (C4)

n=0 n=0

is called the (formal) (p, k)— Borel transform.

It is important to note that the (s, k)—Borel transform maps C[z'/*], to
convergent series.
We can now define the concept of Borel summability:

Definition 15. A formal power series f(z) = > a2k is called p—Borel
summable to the sum f if f is an holomorphic function on'V for some angular
neighborhood of zero V', f ~ f as z — 0 in V and the following procedure is
possible:

1. The (1, k)—Borel transform B, 4 [f] (t) has nonzero radius of convergence
and thus converges in a neighborhood of zero to some function B(-).

2. This holomorphic function admits an analytic continuation (denoted again
by the symbol B(-)) onto some open neighborhood of R

3. the Laplace transform of B gives a representation of f on a subset of V:

f(z) = & /0 T Bt ar (C.5)

Z .

In other words if an asymptotic series is Borel summable to a function f,
it characterizes uniquely f, even if it is not convergent.
The following criterion for Borel summability is due to F. Nevanlinna [84], see
also [94] :

Theorem 28. Let k> 0, R € (0,+00] and define Dp := {z € C : Re(1/z) >
1/R} if R # oo and Dg := {z € C : Re(z) > 0} else.

Let f be an holomorphic function admitting an asymptotic expansion with
respect to the asymptotic sequence (2 n/k in the domain Dy, i.e. such that
f(2) ~ 3% Jan2™* = f and 3A > 0,p > 0 Ve > 0,z € {Re(1/2) > e+1/R},
p>p,neN:

n—1

() = S | < AD(L+ n/k)p 2]

=0

Then the asymptotic power series f 18 Borel summable to the function f.
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