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IntrodutionOne of the most hallenging problems in physis is the onnetion between themarosopi and the mirosopi world, that is between lassial and quantummehanis. In priniple a marosopi system should be desribed as a olle-tion of mirosopi ones, so that lassial mehanis should be derived fromquantum theory by means of suitable approximations. At a �rst glane the so-lution of the problem is not straightforward: indeed there are deep di�erenesbetween the lassial and the quantum desription of the physial world.In lassial mehanis the state of an elementary physial system, for instanea point partile, is given by speifying its position q (a point in its on�gura-tion spae) and its veloity _q. The time evolution in the time interval [t0; t℄is given by a a path q(s)s2[t0;t℄ in the on�guration spae, whih is determinedby the Hamilton's least ation priniple:ÆSt(q) = 0; St(q) = Z tt0 L(q(s); _q(s))ds:S(q) denotes the ation funtional, L is the Lagrangian of the system.In quantum mehanis the state of a d-dimensional partile is representedby a unitary vetor  in the omplex separable Hilbert spae L2(Rd), the so-alled \wave funtion", while is time evolution is desribed by the S-hr�odingerequation: � i~ ��t = � ~22m� + V   (0; x) =  0(x) (1)where ~ is the redued Plank onstant, m > 0 is the mass of the partileand F = �rV is an external fore. It is important to reall that in quantummehanis, beause of Heisenberg's unertainty priniple, there are observableswhih are \inompatible": the measurement of one destroys the informationabout the measurement of the other. Position and veloity are the typialexample of a ouple of inompatible observables, as a onsequene the oneptof trajetory makes no sense in quantum theory.In 1942 R.P. Feynman [59℄, following a suggestion by Dira [54℄, pro-posed an heuristi but very suggestive representation for the solution of theShr�odinger equation. Feynman's original aim was to give a Lagrangian formu-lation of quantum mehanis and to introdue in it the onept of trajetory.iii



Aording to Feynman the wave funtion of the system at time t evaluated atthe point x 2 Rd is given as an \integral over histories", or as an integral overall possible paths  in the on�guration spae of the system with �nite energypassing in the point x at time t: (t; x) = \ onst Zfj(t)=xg e i~St() 0((0))D 00 (2)St() is the lassial ation of the system evaluated along the path St() � SÆt ()� Z t0 V ((s))ds; (3)SÆt () � m2 Z t0 j _(s)j2ds; (4)and D is an heuristi Lebesgue \at" measure on the spae of paths. Formula(2) laks of rigor: indeed neither the \in�nite dimensional Lebesgue measure",nor the normalization onstant in front of the integral are well de�ned. Nev-ertheless even if more than 50 years have passed sine Feynman's originalproposal, formula (2) is still fasinating. First of all it reates a onnetionbetween the lassial desription of the physial world and the quantum one.Indeed it allows, at least heuristially, to assoiate a quantum evolution toeah lassial Lagrangian. Moreover an heuristi appliation of the stationaryphase method for osillatory integrals allows the study of the behavior of thesolution of the Shr�odinger equation taking into aount that ~ is small. In-deed the integrand is strongly osillating and the main ontributions to theintegral should ome from those paths  that make stationary the phase fun-tion S(). These, by Hamilton's least ation priniple, are exatly the lassialorbits of the system.Inspired by Feynman's work some time later Ka [70, 71℄ noted that that byonsidering the heat equation� ��tu(t; x) = 12�u(t; x)� V u(t; x)u(0; x) = u0(x) (5)instead of equation (1), it is possible to replae the heuristi expression (2)with a well de�ned integral on the spae of ontinuous paths with respet tothe Wiener measure W :u(t; x) = Z!(0)=0 u0(!(t) + x)e� R t0 V (!(s)+x)dsdW (!) (6)Suh an interpretation is not possible for the heuristi \Feynman measure"e i~St()D. Indeed Cameron [40℄ proved that the latter annot be realized asiv



a omplex �� additive measure, even on very nie subsets.As a onsequene mathematiians tried to realize it as a linear ontinuousfuntional on a suÆiently rih Banah algebra of funtions. In order to mirrorthe features of the heuristi Feynman measure, suh a funtional should havesome properties:1. It should behave in a simple way under \translations and rotations inpath spae", reeting the fat that D is a \at" measure.2. It should satisfy a Fubini type theorem, onerning iterated integrationsin path spae.3. It should be approximable by �nite dimensional osillatory integrals,allowing a sequential approah in the spirit of Feynman's original work.4. It should be related to probabilisti integrals with respet to the Wienermeasure, allowing an \analyti ontinuation approah to Feynman pathintegrals from Wiener type integrals".5. It should be suÆiently exible to allow a rigorous mathematial im-plementation of an in�nite dimensional version of the stationary phasemethod and the orresponding study of the semilassial limit of thequantum mehanis.Nowadays several implementation of this program an be found in the physialand in the mathematial literature, for instane by means of analyti ontin-uation of Wiener integrals [40, 83, 69, 97, 72, 55, 77, 82, 100, 45, 95℄, or asan in�nite dimensional distribution in the framework of Hida alulus [63, 52℄,via \omplex Poisson measures" [78, 1℄, or via non standard analysis [7℄ or asa in�nite dimensional osillatory integral. The latter method is partiularlyinteresting as it is the only one by whih a development of an in�nite dimen-sional stationary phase method has been performed. Suh an approah hasits roots in a work by Ito [67, 68℄ and was developed by S. Albeverio and R.H�egh-Krohn [12, 13℄, D.Elworthy and A.Truman [57℄, S. Albeverio and Z.Brze�zniak [4, 5℄. Indeed, when the potential V is of the following formV (x) = 12x �
2x + V1(x); (7)where 
2 is a positive de�nite symmetri d � d matrix and V1 is the Fouriertransform of a omplex bounded variation measure on Rd , Albeverio andH�egh-Krohn de�ne in [12℄ the Feynman integral as a funtional on a suit-able Hilbert spae of paths by means of a Parseval type formula (previouswork in this diretion is due to K. Ito). In [57℄ Elworthy and Truman de-�ne the Feynman funtional by means of a sequential approah. The \in�nitev



dimensional osillatory integral" they propose is de�ned as the limit of a se-quene of �nite dimensional osillatory integrals. They an also prove that,for the lass of funtion onsidered in [12℄, the in�nite dimensional osillatoryintegral an be expliitly omputed by means of the Parseval type formulaproposed by Albeverio and H�egh-Krohn. Suh an approah allows a rigor-ous implementation of an in�nite dimensional version of the stationary phasemethod and was further developed in [13, 5℄ and [2, 3℄ in onnetion with thestudy of the asymptoti behavior of the integral in the limit ~ # 0.In this thesis we show some new developments of the in�nite dimensional os-illatory integrals-Feynman path integrals theory.� In the �rst hapter we reall the de�nitions of �nite and in�nite dimen-sional osillatory integrals and their appliation to the rigorous mathe-matial realization of the Feynman funtional and the representation ofthe solution of the Shr�odinger equation.� In the seond hapter we show that the in�nite dimensional osillatoryintegrals are a exible tool and an be used to give a rigorous mathe-matial realization of an Hamiltonian version of the Feynman heuristiformula, a \phase spae Feynman path integral". We prove that undersuitable assumptions it represents the solution of a Shr�odinger equa-tion in whih the lassial potential V depends both on position and onmomentum.� In the third hapter we show that it is possible to generalize the de�nitionof in�nite dimensional osillatory integrals in order to deal with omplex-valued phase funtions. We apply suh a funtional to the solution ofa stohasti Shr�odinger equation appearing in the theory of ontinuousquantum measurement: the Shr�odinger-Belavkin equation.� In the fourth hapter we fous on the �nite dimensional ase and provethat it is possible to enlarge the lass of phase funtions for whih the or-responding �nite dimensional osillatory integral an be expliitly om-puted in terms of an absolutely onvergent integral. In the partiularase where the phase funtion is an homogeneous even polynomial, wegive the detailed asymptoti expansion of the osillatory integrals in fra-tional powers of the small parameter ~ and give onditions for either theonvergene or the Borel summability of the expansion.� In the �fth hapter we generalize some results of the fourth hapter tothe in�nite dimensional ase. We show that when the phase funtionis the sum of a quadrati term plus a quarti perturbation, the orre-sponding in�nite dimensional osillatory integral an still be de�ned andomputed in terms of an absolutely onvergent integral with respet tovi



a \true measure" on the spae of paths. Suh abstrat result is thenapplied to the representation of the solution of the Shr�odinger equationwith a lassial potential V of the type \harmoni osillator plus quar-ti perturbation", that is V (x) = 
22 x2 + �x4, � � 0. Moreover undersuitable assumptions, we prove the Borel summability of the asymptotiexpansion of the solution in a power series of the oupling onstant �.
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Chapter 1Osillatory integrals and theShr�odinger equationIn this hapter we reall some known results, that is the de�nitions of �nite-and in�nite dimensional osillatory integrals and the main theorems aboutthem, for more details we refer to [12, 57, 4℄. In the following we will denoteby H a (�nite or in�nite dimensional) real separable Hilbert spae, whoseelements are denoted by x; y 2 H and the salar produt with hx; yi. We aregoing to de�ne the osillatory integral on the Hilbert spae HZH e i~�(x)f(x)dx; (1.1)where ~ is a non vanishing real parameter, � and f are respetively suitablereal-valued and omplex-valued smooth funtions. We remark that even in�nite dimensions (dim(H) = n) the integral (4.1) in general is not well de�nedin Lebesgue sense, unless RRN jf(x)jdx < +1. The study of �nite dimensionalosillatory integrals of the above form is already a lassial topi, largely devel-oped in onnetions with various problems in mathematis and physis. Wellknown examples of simple integrals of the above form are the Fresnel integralsof the theory of wave di�ration and Airy's integrals of the theory of rainbow,see e.g. [34℄. The theory of Fourier integral operators [64, 65, 78℄ also grewout of the investigation of osillatory integrals. It allows the study of existeneand regularity of a large lass of ellipti and pseudoellipti operators and pro-vides onstrutive tools for the solutions of the orresponding equations. Inpartiular one is interested in disussing the asymptoti behavior of the aboveintegrals when the parameter ~ is sent to 0, in a mathematial idealization.The method of stationary phase provides a tool for suh investigations andhas many appliations, suh as the study of the lassial limit of quantummehanis (see [58, 13, 4℄). In the general ase of degenerate ritial points ofthe phase funtion �, the theory of unfoldings of singularities is applied, see1



[24, 56℄.The extensions of the de�nition of osillatory integrals on an in�nite dimen-sional Hilbert spae H and the implementation of a orresponding in�nite-dimensional version of the stationary phase method has a partiular interestin onnetion with the rigorous mathematial de�nition of the \Feynman pathintegrals".The de�nition of suh integrals is divided into two main steps: �rst of all a�nite dimensional osillatory integral is de�ned as the limit of a sequene ofabsolutely onvergent integrals. In the seond step the in�nite dimensionalosillatory integral is de�ned as the limit of a sequene of �nite dimensionalosillatory integrals.In the �rst and in the seond setions, we shall reall the main result on the�nite and respetively in�nite dimensional osillatory integrals. In the thirdsetion we shall show how the latter an be applied to give a rigorous math-ematial meaning to Feynman's heuristi formula (2) and to represent thesolution of the Shr�odinger equation (1).1.1 Finite dimensional osillatory integralsLet us assume that H = Rn and de�ne the osillatory integral [64, 65℄ZRN e i~�(x)f(x)dx:In the whole hapter ~ > 0 is a �xed parameter (we all it ~ beause of itsinterpretation in the ontext of appliations to quantum mehanis). Thefollowing de�nition is taken from [57℄ and is a modi�ation of one given in[65℄.De�nition 1. The osillatory integral of funtion f : Rn ! C with respet to aphase funtion � is well de�ned if and only if for eah test funtion � 2 S(Rn)suh that �(0) = 1 the limitlim�!0ZRN e i~�(x)f(x)�(�x)dx (1.2)exists and is independent of �. In this ase the limit is alled the osillatoryof f with respet to � and denoted by RRN e i~�(x)f(x)dxThe partiular ase in whih the phase funtion � is a quadrati form iswell studied. This partiular type of osillatory integrals are alled \Fresnelintegrals". In this ase it is onvenient to inlude into the de�nition of theosillatory integral the \multipliation fator" (2�i~)�dim(H)=2, whih will beuseful in the extension of suh a de�nition to the in�nite dimensional ase. Let2



us denote by Q an invertible symmetri operator from RN to RN and de�nethe \Fresnel integral" Z e i2~ hx;Qxif(x)dxDe�nition 2. A funtion f : Rn ! C is alled Fresnel integrable with respetto Q if and only if for eah � 2 S(Rn) suh that �(0) = 1 the limitlim�!0(2�i~)�n=2 Z e i2~ hx;Qxif(x)�(�x)dx (1.3)exists and is independent of �. In this ase the limit is alled the Fresnelintegral of f with respet to Q and denoted byfZ e i2~ hx;Qxif(x)dx (1.4)The desription of the full lass of Fresnel integrable funtions is not easy,but one an �nd some interesting subsets of it.Let us onsider the spae M(RN ) of omplex bounded variation measures onRN endowed with the total variation norm. M(RN ) is a Banah algebra,where the produt of two measures � � � is by de�nition their onvolution:� � �(E) = ZRN �(E � x)�(dx); �; � 2 M(RN )and the unit element is the Dira measure Æ0.Let F(RN ) be the spae of funtions f : RN ! C whih are the Fouriertransforms of omplex bounded variation measures �f 2 M(RN ):f(x) = ZRN eik�x�f(dk); �f 2 M(RN ):One an prove that when �(x) = 12hx;Qxi and f 2 F(Rn), then the Fresnelintegral of f with respet to Q is well de�ned and an be omputed by meansof a well de�ned integral, whih is onvergent in Lebesgue's sense.Theorem 1. Let f 2 F(Rn), then f is Fresnel integrable and its Fresnelintegral with respet to Q is given by:fZ e i2~ hx;Qxif(x)dx = (detQ)�1=2 Z e�i~2 h�;Q�1�i�f(d�): (1.5)where (detQ)1=2 = (j detQj)1=2ei�Ind(Q)=2, Ind(Q) being the number of negativeeigenvalues of the operator Q, ounted with their multipliity.3



For the proof see [57℄, see also [12, 4℄.In an analogous way one an de�ne the \normalized Fresnel integral" by in-troduing a normalization fator:De�nition 3. A funtion f : Rn ! C is alled Fresnel integrable with respetto Q if and only if for eah � 2 S(Rn) suh that �(0) = 1 the limitlim�!0(2�i~)�n=2(detQ) 12 Z e i2~ hx;Qxif(x)�(�x)dx (1.6)exists and is independent of �. In this ase the limit is alled the normalizedFresnel integral of f with respet to Q and denoted bygZ Qe i2~ hx;Qxif(x)dx (1.7)One an easily see that f is Fresnel integrable with respet to Q in thesense of de�nition 2 if and only if f is Fresnel integrable with respet to Qin the sense of de�nition 3 and the two Fresnel integrals are related by amultipliation fator:gZ Qe i2~ hx;Qxif(x)dx = (detQ) 12fZ e i2~ hx;Qxif(x)dx (1.8)Theorem 1 in this ase assumes the following form:Theorem 2. Let f 2 F(Rn), then f is Fresnel integrable and its normalizedFresnel integral with respet to Q is given by:gZ Qe i2~ hx;Qxif(x)dx = Z e�i~2 h�;Q�1�i�f(d�): (1.9)Note that if we substitute into the latter the funtion f = 1, we havefR Qe i2~ hx;Qxif(x)dx = 1. For this reason the integral of de�nition 3 is alled\normalized".The hoie of a suitable normalization fator, that is the hoie between def-inition 2 and de�nition 3, will be important in the extension of the theory tothe in�nite dimensional ase.1.2 In�nite dimensional osillatory integralsLet us onsider an in�nite dimensional real separable Hilbert spae H andan invertible, densely de�ned and self-adjoint operator Q on H. The in�nitedimensional osillatory integral on H with quadrati phase funtion 12hx;Qxiis de�ned as the limit of a sequene of �nite dimensional osillatory integrals(de�ned in the previous setion) [57, 4℄.4



De�nition 4. A funtion f : H ! C is alled Fresnel integrable with respetto Q if and only for eah sequene fPngn2N of projetors onto n-dimensionalsubspaes of H, suh that Pn � Pn+1 and Pn ! I strongly as n ! 1, (Ibeing the identity operator in H), the �nite dimensional approximations of theFresnel integral of f with respet to QgZPnHe i2~ hPnx;QPnxif(Pnx)d(Pnx);are well de�ned (in the sense of de�nition 2) and the limitlimn!1 gZPnHe i2~ hPnx;QPnxif(Pnx)d(Pnx) (1.10)exists and is independent on the sequene fPng.In this ase the limit is alled the Fresnel integral of f with respet to Q andis denoted by fZHe i2~ hx;Qxif(x)dxIt is not easy to haraterize the full lass of integrable funtions, but undersuitable assumptions on the operator Q it is possible to generalize theorem 1to the in�nite dimensional ase.Let us denote by M(H) the Banah spae of the omplex bounded variationmeasures on H, endowed with the total variation norm, that is:� 2 M(H); k�k = supXi j�(Ei)j;where the supremum is taken over all sequenes fEig of pairwise disjoint Borelsubsets of H, suh that [iEi = H. M(H) is a Banah algebra, where theprodut of two measures � � � is by de�nition their onvolution:� � �(E) = ZH �(E � x)�(dx); �; � 2 M(H)and the unit element is the vetor Æ0.Let F(H) be the spae of omplex funtions onH whih are Fourier transformsof measures belonging to M(H), that is:f : H ! C f(x) = ZH eihx;�i�f(d�) � �̂f (x):F(H) is a Banah algebra of funtions, where the produt is the pointwiseone, the unit element is the funtion 1, i.e. 1(x) = 1 8x 2 H, and the norm isgiven by kfk = k�fk.The following result holds: 5



Theorem 3. Let us assume that f 2 F(H) and (Q � I) is a trae lassoperator (I being the identity operator). Then f is Fresnel integrable withrespet to Q and the orresponding Fresnel integral is given by the followingCameron Martin-Parseval type formula:fZ e i2~ hx;Qxif(x)dx = (detQ)�1=2 ZH e� i~2 h�;Q�1�i�f(d�) (1.11)where detQ = j detQje��i Ind Q is the Fredholm determinant of the operator Q,j detQj its absolute value and Ind(Q) is the number of negative eigenvalues ofthe operator Q, ounted with their multipliity.For the proof see [4, 57℄.In an analogous way it is possible to de�ne the normalized in�nite dimensionalosillatory integral as the limit of a sequene of �nite dimensional osillatoryintegrals (in the sense of de�nition 3)De�nition 5. A funtion f : H ! C is alled Fresnel integrable with respetto Q if and only for eah sequene fPngn2N of projetors onto n-dimensionalsubspaes of H, suh that Pn � Pn+1 and Pn ! I strongly as n ! 1, (Ibeing the identity operator in H), the �nite dimensional approximations of theFresnel integral of f with respet to Q^Z PnQPnPnH e i2~ hPnx;QPnxif(Pnx)d(Pnx);are well de�ned (in the sense of de�nition 3) and the limitlimn!1 ^Z PnQPnPnH e i2~ hPnx;QPnxif(Pnx)d(Pnx) (1.12)exists and is independent on the sequene fPng.In this ase the limit is alled the normalized Fresnel integral of f with respetto Q and is denoted by gZ QH e i2~ hx;Qxif(x)dxIn this ase, if f 2 F(H), then it is possible to prove a formula similar to(1.11) even if Q� I is not trae lass:Theorem 4. Let us assume that f 2 F(H). Then f is Fresnel integrablewith respet to Q (in the sense of de�nition 5 and the orresponding normal-ized Fresnel integral is given by the following Cameron-Martin-Parseval typeformula: gZ QH e i2~ hx;Qxif(x)dx = ZH e� i~2 h�;Q�1�i�f(d�): (1.13)6



Suh a result shows that in the in�nite dimensional ase the normalizationonstant in the �nite dimensional approximations plays a ruial role and def-initions 4 and 5 are not equivalent. Indeed de�nition 5 and theorem 4 makesene even if the operator Q � I is not trae lass. In fat it is possible tointrodue di�erent normalization onstants in the �nite dimensional approx-imations and the properties of orresponding in�nite dimensional osillatoryintegrals are related to the trae properties of Q� I and its powers [5℄. Morepreisely, for any p 2 N , let us onsider the Shatten lass Tp(H) of boundedlinear operators L in H suh thatkLkp = (Tr(L�L)p=2)1=pis �nite. (Tp(H); k � kp) is a Banah spae. For any p 2 N and L 2 Tp(H) onede�nes the regularized Fredholm determinant det(p) : I + Tp(H)! R:det(p)(Q) = det�Q exp p�1Xj=0 (I �Q)jj �; Q = I � L; L 2 Tp(H);where det denotes the usual Fredholm determinant. det(2) is alled Carlemandeterminant.For p 2 N , (Q� I) 2 T1(H) let us de�ne the normalized quadrati form on H: Np(Q)(x) = hx;Qxi + i~Tr p�1Xj=0 (Q� I)jj ; x 2 H (1.14)For generi p 2 N let us de�ne the lass p normalized osillatory integral:De�nition 6. Let p 2 N, Q a bounded linear operator in H, f : H ! C .The lass p normalized osillatory integral of the funtion f with respet tothe operator Q is well de�ned if for eah sequene fPngn2N of projetors onton-dimensional subspaes of H, suh that Pn � Pn+1 and Pn ! I strongly asn!1, (I being the identity operator in H), the normalized �nite dimensionalapproximations gZPnHe i2~Np(PnQPn)(Pnx)f(Pnx)d(Pnx); (1.15)are well de�ned (in the sense of de�nition 2 and the limitlimn!1 gZPnHe i2~Np(PnQPn)(Pnx)f(Pnx)d(Pnx) (1.16)exists and is independent on the sequene fPng.In this ase the limit is denoted bypgZ QH e i2~ hx;Qxif(x)dx7



If Q� I is not a trae lass operator, then the quadrati form (1.14) is notwell de�ned and the right hand side of (1.15) makes sense thanks to the fatthat all the funtion are restrited on �nite dimensional subspaes. Neverthe-less the limit (1.16) an make sense, as the following result shows.Theorem 5. Let us assume that f 2 F(H), (Q�I) 2 Tp(H) and det(p)(Q) 6= 0. Then the lass-p normalized osillatory integral of the funtion f with respetto the operator Q exists and is given by the following Cameron-Martin-Parsevaltype formula:pgZ QH e i2~ hx;Qxif(x)dx = [det(p)(Q)℄�1=2 ZH e� i~2 h�;Q�1�i�f(d�): (1.17)1.3 Appliation to the Shr�odinger equationIn the setting explained in setion 1.2 one an give a rigorous mathematialinterpretation of formula (2) in terms of an in�nite dimensional osillatoryintegral on a suitable Hilbert spae of paths.Let us onsider the so-alled Cameron-Martin spae Ht, that is the spaeof absolutely ontinuous funtions  : [0; t℄ ! Rd , (t) = 0, suh thatR t0 j _(s)j2ds <1, endowed with the following salar produth1; 2i = Z t0 _1(s) � _2(s)ds;Let us onsider the Shr�odinger equation in L2(Rd)i~ ��t = H (1.18)with initial datum  jt=0 =  0 and quantum mehanial Hamiltonian H =�~22 � + 12x
2x + V1(x), where x 2 Rd , 
2 � 0 is a positive d � d matrix,V1 2 F(Rd) and  0 2 F(Rd) \ L2(Rd).By onsidering the operator Q = I � L on Ht given byh; Li � Z t0 (s)
2(s)ds;and the funtion v : Ht ! Cv() � Z t0 V1((s) + x)ds+ 2x
2 Z t0 (s)ds;  2 Ht;formula (2)\ onst Zfj(t)=xg e i~ R t0 ( 12 _(s)2� 12(s)
2(s)�V1((s)))ds 0((0))D 008



an be interpreted as the in�nite dimensional osillatory integral on Ht (in thesense of de�nition 4)fZ Hte i2~ h;(I�L)ie� i~v() 0((0) + x)d: (1.19)By analyzing the spetrum of the operator L (see [57℄ for more details) onean easily verify that L is trae lass and I � L is invertible. The followingholds:Theorem 6. Let  0 2 F(Rd)\L2(Rd) and let V1 2 F(Rd). Then the funtionf : Ht ! C given by f() = e� i~ v() 0((0) + x)is the Fourier transform of a omplex bounded variation measure �f on Ht andthe in�nite dimensional osillatory integral of f with respet to Q � I � LfZ Hte i2~ h;(I�L)ie� i~v() 0((0) + x)d:is well de�ned (in the sense of de�nition 4) and it is equal todet(I � L)�1=2 ZHt e�i~2 h;(I�L)�1i�f(d):Moreover it is a representation of the solution of equation (1.18) evaluated atx 2 Rd at time t.For a proof see [57℄.Remark 1. With the same tenique it is possible to deal with potentials of thetype \harmoni osillator plus linear perturbation".Remark 2. It is important to note that if V1 2 F(Rd), then V1 is bounded. Asa onsequene the only unbounded potentials for whih the Feynman funtionalof [12, 57, 4℄ an be rigorously de�ned are those of harmoni osillator type.The extension to unbounded potentials whih are Laplae transforms of boundedmeasures [6, 74℄ also does not over the ase of potentials whih are polynomialsof degree larger than 2.Remark 3. The ase of time-dependent potentials has been handled by meansof analyti ontinuation in mass (see [69℄ Ch 14-18 for more details).
9
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Chapter 2Phase Spae Feynman PathintegralsLet us reall that Feynman's original aim was to give a Lagrangian formulationof quantum mehanis. On the other hand an Hamiltonian formulation ouldbe preferable from many points of view. For instane the disussion of theapproah from quantum mehanis to lassial mehanis, i.e the study of thebehavior of physial quantities taking into aount that ~ is small, is morenatural in an Hamiltonian setting (see, e.g. , [4, 78℄ for a disussion of thisbehavior). In other words the \phase spae" rather then the \on�gurationspae" is the natural framework of lassial mehanis.As a onsequene one is tempted to propose a \phase spae Feynman pathintegral" representation for the solution of the Shr�odinger equation (1), thatis the heuristi formula:\ (t; x) = onst Zq(t)=x e i~S(q;p) 0(q(0))dqdp": (2.1)Here the integral is meant on the spae of paths q(s); p(s), s 2 [0; t℄ in thephase spae of the system (q(s)s2[0;t℄ is the path in on�guration spae andp(s)s2[0;t℄ is the path in momentum spae) and S is the ation funtional inthe Hamiltonian formulation:S(q; p) = Z t0 ( _q(s)p(s)�H(q(s); p(s)))ds;(H being the lassial Hamiltonian of the system). The aim of this hapteris to give a rigorous mathematial realization of the heuristi formula (2.1) interms of a well de�ned in�nite dimensional osillatory integral and to provethat, under suitable assumptions on the initial datum  0 and on the lassialpotential V , it gives a representation of the solution of the Shr�odinger equa-tion (1). In partiular we show that by means of this funtional the ase in11



whih the potential V depends expliitly both on position and on momentuman be handled.We note that an approah of phase spae Feynman path integrals via ana-lyti ontinuation of \phase spae Wiener integrals" has been presented by I.Daubehies and J. Klauder [49℄. Analyti ontinuation was also used in other\path spae" approahes, see [83, 69, 41℄ and referenes therein. Our approahis more diret in the spirit of [12℄.2.1 Lie-Trotter produt formulaWe �rst reall an abstrat version of the Lie-Trotter produt formula.Lemma 1. Let A and B be self-adjoint operators in a Hilbert spae H and letA+B be essentially self-adjoint on D(A) \D(B). Thens� limn!1(eitA=neitB=n)n = ei(A+B)t; t 2 R (2.2)Here s� lim is the strong operator limit1. For a proof and a disussion ofthis lemma see e.g. [43, 90℄.Let H = L2(Rd) and let us onsider a potential V depending both on theposition and on the momentum in the following way: V = V1(x) + V2(p).V1 is de�ned as a self-adjoint operator is H, with its natural domain as amultipliation operator. V2 is the operator in H with domainD(V2(p)) = f 2 H j �! V2(�) ̂(�) 2 Hgwhere  ̂ is the Fourier transform of  . It oinides with the operator de�nedby funtional alulus as V2(p), with p the self-adjoint operator �i~r in H. Vis then the sum, as a self-adjoint operator in H, of the self-adjoint operators V1and V2. We assume that the funtions V1 and V2 are suh that the orrespond-ing operators have a ommon dense domain of essentially self-adjointness D.This is the ase, e.g., when V1 2 L2(Rd)+L1(Rd), V2 is bounded measurable,and D = C10 (Rd) or D = S(Rd). We assume, in order to apply lemma 1, thatV1, V2 are suh that � ~22m�+V2 and � ~22m�+V1+V2 are essentially self-adjointon D. We denote by H the losure of the latter operator. H (whih we alsowrite simply as � ~22m�+ V1 + V2), is then the quantum Hamiltonian.As a self-adjoint operator on H, H=~ is the generator of an one-parametergroup U(t)t2R of unitary operators, denoted byU(t) = e� it~H = e� it(p2=2m+V )~ :1A sequene (An)n2N of linear operators An : D � H ! H with a ommon domain D ina Hilbert spae (H; k � k) onverges strongly to an operator A is for eah  2 D, one haslimn!1 kAn �A k = 0. 12



Given an initial vetor  0 2 H, the solution of the Cauhy problem� _ = � i~H  (0; x) =  0(x) (2.3)is given by  (t) = e� it(p2=2m+V )~  0.By lemma 1 we havee� it(p2=2m+V )~ = s� limn!1�e� i�(p2=2m+V2)~ e� i�(V1)~ �n; � � tn (t) = e� it(p2=2m+V )~  0 = limn!1�e� i�(p2=2m+V2)~ e� i�V1~ �n 0;  0 2 C10 (Rd);(see e.g. [43, 91℄ for related uses of the Lie-Trotter formula).By shifting from the position representation to the momentum representationand vie versa and assuming that V1 and V2 are ontinuous, we an write inthe strong L2(Rd)-sense, for all t > 0: (t; x) = limn!1ZRd e� i�(p2n�1=2m+V2(pn�1))~ �^�e� i�V1~ �e� i�(p2=2m+V2)~ e� i�(V1)~ �n�1 0�(p1) ei xpn�1~(2�~)d=2 dpn�1= limn!1ZR2d e� i�(p2n�1=2m+V2(pn�1))~ e� i�V1(xn�1)~ ���e� i�(p2=2m+V2)~ e� i�(V1)~ �n�1 0�(xn�1) ei xpn�1~(2�~)d=2 e�i xn�1pn�1~(2�~)d=2 dpn�1dxn�1= limn!1� 1p2�~�2nd�RR2nd e� i�~ Pn�1j=0 � p2j2m+V1(xj)+V2(pj)�pj (xj+1�xj)� � 0(x0)Qn�1j=0 dpjdxj; (2.4)where xn � x.Remark 4. The integrals above are to be understood as limits as � " Rd ,n ! 1 in the L2(R2nd) sense of the orresponding integrals over �2nd, with� bounded (see [83℄). Formula (2.4) holds �rst as a strong L2-limit, butthen(possibly by subsequenes) also for Lebesgue a.e.x. in Rd . It also followsfrom this that (2.4) gives the solution to the Cauhy problem (2.3).13



The latter expression suggests the following formula for the limit: (t; x) = onst Zq(t)=x e i~S(q;p) 0(q(0))dqdp (2.5)S(q; p) = Z t0 p(s) _q(s)�H(q(s); p(s))dswhih does not yet have a mathematial meaning. It will be rigorously de�nedin the following setions.2.2 Phase spae Feynman funtionalLet us onsider again the expression (2.5) in the partiular ase of the freepartile, namely when the Hamiltonian is just the kineti energy: H = p2=2m.In this ase we have heuristially (t; x) = onst Zq(t)=x e i~ R t0 (p(s) _q(s)�p(s)2=2m)ds 0(q(0))dqdp (2.6)We an give to this expression a preise meaning: under suitable hypothesison the initial wave funtion  0, it is an in�nite dimensional osillatory integral.From now on we will assume for notational simpliity that m = 1, but but thewhole disussion an be generalized to arbitrary m.Following [98, 98℄, let us introdue the Hilbert spae Ht�Lt, namely the spaeof paths in the d�dimensional phase spae (q(s); p(s))s2[0;t℄, suh that the path(q(s))s2[0;t℄ belongs to the Cameron Martin spae Ht, namely to the spae ofthe absolutely ontinuous funtions q from [0; t℄ to Rd suh that q(t) = 0 and_q 2 L2([0; t℄;Rd), with inner produt hq1; q2i = R t0 _q1(s) _q2(s)ds, while the pathin the momentum spae (p(s))s2[0;t℄ belongs to Lt = L2([0; t℄;Rd). Ht � Lt isan Hilbert spae with the natural inner produthq; p;Q;P i = Z t0 _q(s) _Q(s)ds+ Z t0 p(s)P (s)ds:Let us introdue the following bilinear form:[q; p;Q;P ℄ =R t0 _q(s)P (s)ds+ R t0 p(s) _Q(s)ds� R t0 p(s)P (s)ds = hq; p;A(Q;P )i;where A is the following operator in Ht � Lt,:A(Q;P )(s) = (Z st P (u)du; _Q(s)� P (s)): (2.7)14



A(Q;P ) is densely de�ned, e.g. on C1([0; t℄;Rd) � C1([0; t℄;Rd). MoreoverA(Q;P ) is invertible with inverse given byA�1(Q;P )(s) = (Z st P (u)du+Q(s); _Q(s)) (2.8)(on the range of A).Now expression (2.5) an be realized rigorously as the normalized Fresnel in-tegral (5): Ẑ AHt�Lte i2~ hq;p;A(q;p)i 0(q(0) + x)dqdpwhere q + x denotes the translated path q(s)! q(s) + x.In this ase the heuristi expression (2.5) is well de�ned through Lie-Trotterprodut formula, namely as the limit of a sequene of �nite dimensional in-tegrals, as we saw in the previous setion. We are going now to show that itis also the limit of a sequene of �nite dimensional osillatory integrals in thesense of de�nition 5.Let us onsider a sequene of partitions �n of the interval [0; t℄ into n subin-tervals of amplitude � � t=n:t0 = 0; t1 = �; : : : ; ti = i�; : : : ; tn = n� = t:To eah �n we assoiate a projetor Pn : Ht � Lt !: Ht � Lt onto a �nitedimensional subspae of Ht � Lt, namely the subspae of polygonal paths. Inother words eah projetor Pn ats on a phase spae path (q; p) 2 Ht � Lt inthe following way:Pn(q; p)(s) =�Pni=1 �[ti�1;ti℄(s)�q(ti�1) + (q(ti)�q(ti�1)ti�ti�1 (s� ti�1)�;Pni=1 �[ti�1;ti℄(s)pi�;where pi = R titi�1 p(s)dsti�ti�1 = 1� R titi�1 p(s)ds.Theorem 7. For eah n 2 N, Pn is a projetor in Ht � Lt. Moreover forn!1 Pn ! I as a bounded operator.Proof. � Pn is symmetri, indeed for all (Q;P ) 2 Ht � Lt and all (q; p) 2Ht � LthQ;P ;Pn(q; p)i = Z t0 _Q(s) nXi=1 �[ti�1;ti℄(s)(q(ti)� q(ti�1)ti � ti�1 ds+15



+ Z t0 P (s) nXi=1 �[ti�1;ti℄(s)pids = nXi=1 (q(ti)� q(ti�1)(Q(ti)�Q(ti�1)ti � ti�1 ++ nXi=1 R titi�1 p(s)ds R titi�1 P (s)dsti � ti�1 = hPn(Q;P ); q; pi� P 2n = Pn, indeedP 2n(q; p)(s) =�Pni=1 �[ti�1;ti℄(s)�q(ti�1) + (q(ti)�q(ti�1)ti�ti�1 (s� ti�1)�;Pni=1 �[ti�1;ti℄(s)pi�= Pn(q; p)(s)� 8(q; p) 2 Ht � Lt, kPn(q; p)� (q; p)k ! 0 as n!1:Let us onsider the subset K � Ht � Lt, K = f(q; p) 2 Ht � Lt :kPn(q; p)� (q; p)k ! 0 ; n!1g. It is enough to prove that the losureof K is Ht � Lt. To prove this it is suÆient to show that K is a losedsubspae of Ht�Lt and ontains a dense subset of Ht�Lt. This followsfrom the density of the pieewise linear paths in Ht and the density ofthe pieewise onstant paths in Lt (see e.g. [96℄).Theorem 8. Let the funtion (q; p) !  0(x + q(0)),  0 2 S(Rd), be Fresnelintegrable with respet to A (with A de�ned by (2.7)). Then the phase spaeFeynman path integral, namely the limitlimn!1(2�i~)�nd(det(PnAPn))1=2Z Pn(Ht�Lt)e i2~ hPn(q;p);APn(q;p)i 0(x+q(0))dPn(q; p)(2.9)oinides with the limit (2.4), namely with the solution of the Shr�odingerequation with a free Hamiltonian.Proof. The result follows by diret omputation, indeed:fZ Pn(Ht�Lt)e i2~ hPn(q;p);APn(q;p)i 0(x + q(0))dPn(q; p)= � 1p2�~�2nd ZR2nd e� i�~ Pn�1j=0 � p2j2 �pj (xj+1�xj)� � 0(x0) n�1Yj=0 dpjdxj;and the two limits (2.4) and (2.9) oinide. Indeed (2.9) is a pointwise limit byhypothesis. On the other hand (2.4) is a limit in the L2 sense, hene, passingif neessary to a subsequene, it is also a pointwise limit.16



Remark 5. The latter result is equivalent to the \traditional" formulation ofthe Feynman path integral in the on�guration spae. Indeed it an be ob-tained by means of Fubini theorem [12℄ and an integration with respet to themomentum variables:limn!1� 1p2�~�2nd ZR2nd e� i�~ Pn�1j=0 � p2j2m�pj (xj+1�xj)� � 0(x0) n�1Yj=0 dpjdxj= limn!1� 1p2�i~�nd ZRnd e� i�~ Pn�1j=0 m (xj+1�xj )22�2  0(x0) n�1Yj=0 dxjThe latter expression yields the Feynman funtional on the on�guration spae,i.e. heuristially onst R eR t0 L(q(s); _q(s))dsdq, (L being the lassial Lagrangiandensity).Remark 6. The integration with respet to the momentum variables mightseem to be superuous, but it is very useful when we introdue a potentialdepending on the momentum.Theorem 9. Let us onsider a semibounded potential V depending expliitlyon the momentum: V = V (p) and the orresponding quantum mehanialHamiltonian H = �~22 �+V (p). Let us suppose H is an essentially self-adjointoperator on L2(Rd). Let the funtion (q; p) ! e� i~ R t0 V (Pn(p(s)))ds 0(x + q(0))be Fresnel integrable with respet to the operator A, with A de�ned by (2.7).Then the solution to the Shr�odinger equation� _ = � i~H  (0; x) =  0(x);  0 2 S(Rd) (2.10)is given by the phase spae path integrallimn!1(2�i~)�nd(det(PnAPn))1=2Z Pn(Ht�Lt)e i2~ hPn(q;p);APn(q;p)ie� i~ R t0 V (Pn(p(s)))ds 0(x + q(0))dPn(q; p)Proof. We an proeed in a ompletely analogous way as in the proof of the-orem 8, therefore we shall omit the details.2.3 The phase spae Feynman-Ka formulaLet us onsider a lassial potential V depending both on the position Q 2 Rdand on the momentum P 2 Rd , but of the speial form: V = V (Q;P ) =17



V1(Q) + V2(P ) (The general ase presents problems due to the non ommuta-tivity of the quantized expression of Q and P ), for a di�erent approah withmore general Hamiltonians see [93℄. Moreover let us suppose the funtionf : Ht � Lt ! Cf(q; p) =  0(x+ q(0))e� i~ R t0 V (q(s)+x;p(s))ds;  0 2 S(Rd)is the Fourier transform of a omplex bounded variation measure �f onHt�Lt:f(q; p) = ZHt�Lt eihq;p;Q;P id�f(Q;P ):Under additional assumptions on V1 and V2 we shall see that the phasespae Feynman path integral of the funtion f an be omputed and is givenby fZ Ht�Lte i2~ hq;p;A(q;p)ie� i~ R t0 V (q(s)+x;p(s))ds (0; q(0) + x)dqdp == ZHt�Lt e�i~2 hq;p;A�1(q;p)id�f(q; p): (2.11)This follows from the previous setion together with the followingLemma 2. Let us onsider a potential V (Q;P ) = V1(Q) + V2(P ) and aninitial wave funtion  0 suh that V1;  0 2 F(Rd) and the funtion p(s)s2[0;t℄ !R t0 V2(p(s))ds 2 F(Lt). Then the funtionalf(q; p) =  0(x + q(0))e� i~ R t0 V (q(s)+x;p(s))dsbelongs to F(Ht � Lt)Proof. f(q; p) is the produt of two funtions: the �rst, say f1, depends onlyon the �rst variable q, while the seond f2 depends only on the variable p,more preiselyf1(q) =  0(x+ q(0))e� i~ R t0 V1(q(s)+x)ds; f2(p) = e� i~ R t0 V2(p(s))ds:Under the given hypothesis on V1 and  0, f1 belongs to F(Ht). The proofis given for instane in [12℄. For f2 one must pay more attention: indeed thesame proof given for f1 does not work, as f2 is de�ned on a di�erent Hilbertspae and we have to require expliitly that R t0 V2(p(s))ds 2 F(Lt). Under thishypothesis one an easily prove that (see again [12℄) f2 2 F(Lt).Now if f1 = �̂f1 2 F(Ht), f1 an be extended to a funtion, denoted again byf1, in F(Ht�Lt): it is the Fourier transform of the produt measure onHt�Ltof �f1(dq) and Æ0(dp). The same holds for f2 = �̂f2: f2 = \(Æ0(dq)�f2(dp)).18



Finally, as F(Ht � Lt) is a Banah algebra, the produt of two elements f1f2is again an element of F(Ht � Lt): more preisely it is the Fourier transformof the onvolution of the two measures inM(Ht�Lt) orresponding to f1 andf2 respetively, and the onlusion follows.The next theorem shows that the above osillatory integral (2.11) gives thesolution to the Shr�odinger equation (2.12).Theorem 10. Let us onsider the following HamiltonianH(Q;P ) = P 22 + V1(Q) + V2(P )in L2(Rd) and the orresponding Shr�odinger equation� _ = � i~H  (0; x) =  0(x); x 2 Rd (2.12)Let us suppose that V1;  0 2 F(Rd) and R t0 V2(p(s))ds 2 F(Lt). Then thesolution to the Cauhy problem (2.12) is given by the phase spae Feynmanpath integral:fZ Ht�Lte i2~ hq;p;A(q;p)ie� i~ R t0 (V1(q(s)+x)+V2(p(s)))ds 0(q(0) + x)dqdpProof. We follow the proof given by Elworthy and Truman in [57℄.For 0 � u � t let �u(V1; x) � �u; �tu(V1; x) � �tu, �tu(V2) � �tu and �0( ) bethe measures on Ht�Lt, whose Fourier transforms when evaluated at (q; p) 2Ht�Lt are V1(x+ q(u)); exp �� i R tu V1(x+ q(s))ds�; exp �� i R tu V2(p(s))ds�and  0(q(0) + x).We setU(t) 0(x) =fZ Ht�Lte i2~ hq;p;A(q;p)ie� i~ R t0 (V1(q(s)+x)+V2(p(s)))ds 0(q(0) + x)dqdpand U0(t) 0(x) =fZ Ht�Lte i2~ hq;p;A(q;p)ie� i~ R t0 V2(p(s)))ds 0(q(0) + x)dqdpBy setion 3 we have:U(t) 0(x) = ZHt�Lt e�i~2 hq;p;A�1(q;p)i(�t0 � �t0 � �0( ))(dqdp): (2.13)19



Now, if f�u : a � u � tg is a family in M(Ht � Lt), we shall let R ba �ududenote the measure on Ht � Lt given by :f ! Z ba ZHt�Lt f(q; p)d�u(q; p)duwhenever it exists.Sine for any ontinuous path q we haveexp �� i Z t0 V1(q(s))ds� = 1� i Z t0 V1(q(u)) exp�� i Z tu V1(q(s))ds�duthe following relation holds�t0 = Æ0 � i Z t0 (�u � �tu)du (2.14)where Æ0 is the Dira measure at 0 2 Ht.Applying this relation to (2.13) we obtain:U(t) 0(x) = ZHt�Lt e�i~2 hq;p;A�1(q;p)i(�t0 � �0( ))(dqdp)�i Z t0 ZHt�Lt e�i~2 hq;p;A�1(q;p)i(�t0 � �u(V1; x) � �tu � �0( ))(dqdp)du= U0(t) 0(x)� i Z t0 fZ Ht�Lte i2~ hq;p;A(q;p)ie� i~ R tu V1(q(s)+x)dse� i~ R t0 V2(p(s)))dsV1(q(u) + x) 0(q(0) + x)dqdpduNow we have, by Fubini theorem for Fresnel integrals[12℄fZ Ht�Lte i2~ hq;p;A(q;p)ie� i~ R tu V1(q(s)+x)dse� i~ R t0 V2(p(s)))ds�V1(q(u) + x) 0(q(0) + x)dqdp=fZ Ht�u�Lt�ue i2~ hq;p;A(q;p)iHt�u�Lt�ue� i~ R t�u0 V1(q(s)+x)dse� i~ R t�u0 V2(p(s)))dsV1(q(0) + x)eR Hu�Lue i2~ hq1;p1;A(q1;p1)iHu�Lue� i~ R u0 V2(p1(s)))ds 0(q1(0))dq1dp1dqdpHere q 2 Ht�u and q1 2 Hu are the integration variables, and Hs denotes theCameron-Martin spae of paths  : [0; s℄! Rd .We have: U(t) 0(x) = U0(t) 0(x)� i Z t0 U(t� u)(V1U0(u) 0)(x)du20



= U0(t) 0(x)� i Z t0 U(u)(V1U0(�u)U0(t) 0)(x)duThe iterative solution of the latter integral equation is the onvergent Dysonperturbation series for U(t) with respet to U0(t), whih proves the theorem.
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Chapter 3Appliation to a stohastiShr�odinger equationIn this hapter we show that it is possible to generalize the de�nition of in�nitedimensional osillatory integrals in order to deal with omplex-valued phasefuntions. We prove a Cameron-Martin-Parseval type formula whih is thegeneralization of theorem 3 to the omplex ase. We apply these results to therepresentation of the solution of a partiular type of stohasti Shr�odingerequation, of some importane in the quantum theory of ontinuous measure-ments: the Shr�odinger-Belavkin equation.3.1 Osillatory integrals with omplex-valuedphase funtionLet H be a real separable Hilbert spae. We shall denote by HC its omplexi�-ation. An element x 2 HC is a ouple of vetors x = (x1; x2), with x1; x2 2 H,or with a di�erent notation x = x1 + ix2. The multipliation of the vetorx 2 HC for the pure imaginary salar i = p�1 is given by ix = (�x2; x1).A linear operator A : D(A) � H ! H an be extended to a linear operatordenoted again by A on HC :A : D(A) � HC ! HC ; D(A) = D(A) + iD(A);Ax = A(x1; x2) = (Ax1; Ax2):In an analogous way a vetor y 2 H an be seen as the element (y; 0) 2 HC .Let dim(H) = 1, i.e. H = R, HC = C . Then, for any f 2 F(R), f = �̂f ,and any omplex onstant � 2 C , � 6= 0, Im(�) � 0, one an easily prove thefollowing equality fZRe i�2~x2f(x)dx = ��1=2 ZR e�i~2� x2�f(dx) (3.1)23



The proof is ompletely similar to the proof of theorem 1.More generally, given � 2 C , � 6= 0,Im(�) > 0 and � 2 RfZRe i�2~x2e�xf(x)dx = ��1=2 ZR e�i~2� (x�i�)2�f(dx) (3.2)Suh a result an be generalized to the in�nite dimensional ase [9℄:Theorem 11. Let H be a real separable Hilbert spae, let y 2 H be a vetor inH and let L1 and L2 be two self-adjoint, trae lass ommuting operators on Hsuh that I +L1 is invertible and L2 is non negative. Let moreover f : H ! Cbe the Fourier transform of a omplex bounded variation measure �f on H:f(x) = �̂f(x); f(x) = ZH eihx;ki�f(dk):Then the in�nite dimensional osillatory integral (with omplex phase)fZHe i2~ hx;(I+L)xiehy;xif(x)dxis well de�ned and it is given byfZHe i2~ hx;(I+L)xiehy;xif(x)dx = det(I + L)�1=2 ZH e�i~2 hk�iy;(I+L)�1(k�iy)i�f(dk)(3.3)(L being the operator on the omplexi�ation HC of the real Hilbert spae Hgiven by L = L1 + iL2).Proof. First of all one an notie that both sides of equation (3.3) are wellde�ned. Indeed one an easily prove that (I + L) : HC ! HC is invertible, if(I + L1) is invertible and that det(I + L) exists as L is trae lass.On the other hand the funtion f : H ! Cf(x) = e� 12~ hx;L2xiehy;xig(x)where y 2 H and g 2 F(H), g(x) = �̂g(x), �g 2 M(H) is the Fourier transformof a omplex bounded variation measure �f on H, f = �̂f . In fat �f is theonvolution of �g and the measure �, with �(dx) = e~2 hy;L�12 yi�i~hy;L�12 xi�L2(dx),where �L2 is the Gaussian measure on H with ovariane operator L2=~. Bytheorem 3 the Fresnel (or Feynman path) integral of f with respet to theoperator Q = (I + L1)=~ is well de�ned and it is given by:fZHe i2~ hx;(I+L1)xif(x)dx = fZHe i2~ hx;(I+L1)xie� 12~ hx;L2xiehy;xig(x)dx24



= det(I + L1)�1=2 ZH e�i~2 hx;(I+L1)�1xi�g � �(dx)= det(I + L1)�1=2 ZH ZH e�i~2 hx+z;(I+L1)�1(x+z)i�g(dz)�(dx)= det(I + L1)�1=2 ZH ZH e�i~2 hx+z;(I+L1)�1(x+z)ie~2 hy;L�12 yi�i~hy;L�12 xi�L2(dx)�g(dz)(3.4)Equation (3.3) an be proved by taking the �nite dimensional approximationof the last line of equation (3.4) and of the r.h.s. of (3.3) and showing theyoinide. As L1 and L2 are two ommuting symmetri trae lass operators onH, they have a ommon spetral deomposition. Thus there exists a ompleteorthonormal system feng � H suh thatL1(x) =Xn anhen; xien; L2(x) =Xn bnhen; xien;  2 H;with an; bn 2 R.Let fPmg be the family of projetors onto the span of the �rst m eigenvetorse1; :::; em, namely: Pm(x) = mXn=1hen; xienOne an easily see that Pm ! I as m ! 1 and L1Pm(H) � Pm(H),L2Pm(H) � Pm(H). Moreover the in�nite dimensional osillatory integralfZHe i2~ hx;(I+L1)xie� 12~ hx;L2xiehy;xig(x)dxan be omputed aslimm!1(2�i~)�m=2 ZPmH e i2~ hPmx;(I+L1)Pmxie� 12~ hPmx;L2Pmxiehy;Pmxig(Pmx)d(Pmx)whih, from the Cameron-Martin formula an be seen to be equal to( mYn=1 anbn)�1=2(2�~)�m=2 ZPmH ZPmH e�i~=2Pmn=1 a�1n (xn+zn)2�~=2Pmn=1 b�1n x2n�e�~=2Pmn=1 b�1n y2n�i~Pmn=1 b�1n ynxnd(Pmx)(�g Æ Pm)(dz) (3.5)where xn = hx; eni, zn = hz; eni, yn = hy; eni, d(Pmx) being them�dimensionalLebesgue measure on PmH. 25



The �nite dimensional approximation of the right hand side of equation (3.3)assumes the following form:� mYn=1(an + ibn)��1=2 ZPmH e�i~=2Pmn=1(an+ibn)�1(xn�iyn)2(�g Æ Pm)(dx) (3.6)By a diret omputation one an verify that expressions (3.6) and (3.5) oin-ide. Now we an pass to the limit and from Lebesgue's dominated onvergenetheorem we havefZHe i2~ hx;(I+L1)xie� 12~ hx;L2xiehy;xig(x)dx= det(I + L)�1=2 ZH e�i~2 hk�iy;(I+L)�1(k�iy)i�g(dk) (3.7)An analogous result holds also for the normalized Fresnel integral with omplexphase (in the sense of de�nition 5 in the �rst hapter).Theorem 12. Let H be a real separable Hilbert spae, let y 2 H be a vetorin H and let L1 and L2 be two self-adjoint, ommuting operators on H suhthat I + L1 is invertible and L2 is non negative. Let moreover f : H ! C bethe Fourier transform of a omplex bounded variation measure �f on H:f(x) = �̂f(x); f(x) = ZH eihx;ki�f(dk):Then the in�nite dimensional normalized osillatory integral (with omplexphase) fZHe i2~ hx;(I+L)xiehy;xif(x)dxis well de�ned and it is given byfZHe i2~ hx;(I+L)xiehy;xif(x)dx = ZH e�i~2 hk�iy;(I+L)�1(k�iy)i�f(dk) (3.8)(L being the operator on the omplexi�ation HC of the real Hilbert spae Hgiven by L = L1 + iL2).Proof. As in theorem 11, the result an be proved by omputing the �nitedimensional approximations of both sides of equation (3.8).In the following setion we shall see how the latter results an be appliedto the omputation of the solution of a stohasti Shr�odinger equation.26



3.2 Belavkin equationIn the traditional formulation of quantum mehanis the ontinuous time evo-lution desribed by the Shr�odinger equation (1) is valid if the quantum systemis \undisturbed". On the other hand we should not forget that all the infor-mations we an have on the state of a quantum partile are the result of somemeasurement proess. When the partile interats with the measuring appara-tus, its time evolution is no longer ontinuous: the state of the system after themeasurement is the result of a random and disontinuous hange, the so-alled\ollapse of the wave funtion", whih annot be desribed by the ordinaryShr�odinger equation. Quoting Dira [54℄, after the introdution of the Plankonstant ~ the onept of \large" and \small" are no longer relative: it is\mirosopi"1 one objet suh that the inuene on the measuring apparatuson it annot be negleted. Let us reall the main features of the traditionalquantum desription of the measurement of an observables O. Any observableA is represented by a self-adjoint operator on the Hilbert spae H, whose uni-tary vetors represents the states of the system. Let us onsider for simpliitythe ase A is bounded and its spetrum is disrete. Let faigi2N � R andf igi2N � H be the orresponding eigenvalues and eigenvetors. Aording tothe traditional mathematial formulation by von Neumann the onsequenesof the measurement are:1. the deoherene of the state of the quantum system: beause of the in-teration with the measuring apparatus the initial pure state  beomesa mixed state, desribed by the density operator �prior(t) = PiwiP i ,where P i denotes the projetor operator onto the eigenspae whih isspanned by the vetor  i and wi = jh i;  ij2. Considering another ob-servable B (represented by a bounded self-adjoint operator), its expe-tation value at time t, after the measurement of the observable A (butwithout the information of the result of the measurement of A), is givenby E (B)priort = Tr[�prior(t)B℄The existene of the trae is assumed. The transformation mapping  to the so-alled \prior state" �prior(t) is named \prior dynamis" or nonseletive dynamis.2. The so-alled \ollapse of the wave funtion": after the reading of theresult of the measurement (i.e. the real number ai) the state of thesystem is the orresponding eigenstate of the measured observable:�(t)postai = P i:1It would be more orret the word \quantum" as there exist also marosopi quantumsystems, but they were unknown at Dira's time.27



The expetation value of another observable B of the system at time t(taking into aount the information about the value of the measurementof A) is given by:E post(BjA = ai)t = Tr[�postai (t)B℄ = h i; B iiThe transformation mapping the initial state  to one of the so-alled\posterior states" �postai (t) is alled \posterior dynamis" or seletive dy-namis and depends on the result ai of the measurement of A.As it is suggested by the ollapse of the wave funtion, the non seletivedynamis maps pure states to mixed states, while the seletive one maps purestates to pure states. The relation between the posterior state and the priorstate is given by: �prior(t) =Xi P (A = ai)�postai (t)where P (A = ai) that the outome of the measurement of A is the eigenvalueai and it is given by P (A = ai) = jh i;  ij2:We remark that E (B)priort =Xi E post(BjA = ai)P (A = ai); (3.9)Suh a situation annot be desribed by the traditional Shr�odinger equation.There are several e�orts to inlude the proess of measurement into the tradi-tional quantum theory and to dedue from its laws, instead of postulating boththe proess of deoherene (see point 1) and the ollapse of the wave funtion(point 2). In partiular the aim of the quantum theory of measurement is adesription of the proess of measurement taking into aount the propertiesof the measuring apparatus, whih is handled as a quantum system, and itsinteration with the system submitted to the measurement [50℄. Even if alsothis approah is not ompletely satisfatory (also in this ase one has to pos-tulate the ollapse of the state of the ompound system \measuring apparatusplus observed system") it is able to give a better desription of the proess ofmeasurement.An example of this approah is for instane the paper by Caldeira and Legget[39℄, where the Lindblad equation for the evolution of the density operator �,desribing the proess of deoherene (i.e. the prior dynamis) is heuristiallyderived: ��t�prior = 1i~ [H; �prior℄� �kT~2 [x; [x; �prior℄℄: (3.10)The authors show how equation (3.10) is a onsequene of the interation ofthe system with a ensemble of osillators representing for instane the normal28



modes of an eletromagneti �eld or of the vibrations of the atoms in a rys-tal. H is the Hamiltonian of the system, k is Boltzmann onstant, T is thetemperature of the rystal and � is a damping onstant.Another interesting result of the quantum theory of measurement is the so-alled \Zeno e�et", whih seems to forbid a satisfatory desription of on-tinuous measurements. Indeed if a sequene of \ideal"2 measurements of anobservable A with disrete spetrum is performed and the time interval be-tween two measurements is suÆiently small, then the observed system doesnot evolve. In other words a partile whose position is ontinuously monitoredannot move. This result is in apparent ontrast with the experiene: indeedin a bubble hamber repeated measurements of the position of mirosopialpartiles are performed without \freezing" their state. For a detailed desrip-tion of the quantum Zeno paradox see for instane [81, 42, 86℄.In the physial and in the mathematial literature a lass of stohasti Shr�o-dinger equations giving a phenomenologial desription of this situation hasbeen proposed by several authors, see for instane [33, 27, 28, 53, 79, 60℄. Weonsider in partiular Belavkin equation, a stohasti Shr�odinger equationdesribing the seletive dynamis of a d�dimensional partile submitted tothe measurement of one of its (possible M�dimensional vetor) observables,desribed by the self-adjoint operator R on L2(Rd)8<: d (t; x) = � i~H (t; x)dt� �2R2 (t; x)dt+p�R (t; x)dW (t) (0; x) =  0(x) (t; x) 2 [0; T ℄� Rd (3.11)where H is the quantum mehanial Hamiltonian, W is an M�dimensionalBrownian motion on a probability spae (
;F ;P), dW (t) is the Ito di�erentialand � > 0 is a oupling onstant, whih is proportional to the auray ofthe measurement. In the partiular ase of the desription of the ontinuousmeasurement of position one has R = x, so that equation (3.11) assumes thefollowing form:8<: d (t; x) = � i~H (t; x)dt� �2x2 (t; x)dt+p�x (t; x)dW (t) (0; x) =  0(x) (t; x) 2 [0; T ℄� Rd ; (3.12)while in the ase of momentum measurement, (R = �i~r) one has:8<: d (t; x) = � i~H (t; x)dt+ �~22 � (t; x)dt� ip�~r (t; x)dW (t) (0; x) =  0(x) (t; x) 2 [0; T ℄� Rd : (3.13)2A measurement is alled ideal if the orrelation between the state of the measuringapparatus and the state of the system after the measurement is maximal29



Belavkin derives equation (3.11) by modeling the measuring apparatus (but itis better to say \the informational enviroment") by means of a one-dimensionalbosoni �eld and by assuming a partiular form for the interation Hamiltonianbetween the �eld and the system on whih the measurement is performed. Theresulting dynamis is suh that there exists a family of mutually ommutingHeisenberg operators of the ompound system, denoted by X(t)t2[0;T ℄:[X(t); X(s)℄ = 0; s; t 2 [0; T ℄;(on a dense domain in L2(Rd)). In this desription the onept of trajetory ofX is meaningful, even from a quantum mehanial point of view. Moreoverthe \non-demolition priniple" is ful�lled: the measurement of any futureHeisenberg operator Z(t) of the system is ompatible with the measurementof the trajetory of X up to time t, that is[Z(t); X(s)℄ = 0; s < t(on a dense domain in L2(Rd)). The measured observable R is onneted tothe operator X by the following relationX(t) = R(t) + �(Bt +B+t ); (3.14)(where (Bt+B+t ) is a quantum Brownian motion [66℄). Equation (3.14) showshow the measurement of X(t) gives some (indiret and not preise) informa-tions on the value of R, overoming the problems of quantum Zeno paradox.Indeed we are dealing with \unsharp" in spite of \ideal" measurements.The solution  of Belavkin equation is a stohasti proess, whose expetationvalues have an interesting physial meaning. Let !(s); s 2 [0; t℄ be a ontinu-ous path (from [0; t℄ into RM ), I a Borel set in the Banah spae C([0; t℄;RM )endowed with the sup norm, let P be the Wiener measure on C([0; t℄;RM ).The probability that the observed trajetory of X up to time t belongs to thesubset I is given by the following Wiener integral:P(X(s) = !(s)s2[0;t℄ 2 I) = ZI j (t; !)j2P (d!):Moreover if we measure at time t another observable of the system, denotedwith Z, then its expeted value, onditioned to the information that the ob-served trajetory of X up to time t belongs to the Borel set I, is given by:E (Z(t)jX(s) = !(s)s2[0;t℄ 2 I) = ZI h (t; !); Z (t; !)ij (t; !)j2 P (d!):(where  (t; !) 6= 0 is assumed).In other words  (t; !) represents the posterior state and Belavkin equation30



desribes the seletive dynamis of the system. The non seletive dynamisan be obtained by means of the following generalization of formula (3.9) tothe ontinuous ase:�prior(t) = ZC([0;t℄;RM ) �post! (t)P(X 2 d!) = ZC([0;t℄;Rd) P (t;!)P (d!) (3.15)By means of Ito formula one an verify that the prior state �prior(t) satis�esLindblad equation:��t�prior(t) = 1i~ [H; �prior(t)℄� �2 [R; [R; �prior(t)℄℄:Analogously to the traditional Shr�odinger equation, one an look for a pathintegral representation for the solution of Belavkin equation. In fat M.B.Mensky [79℄ proposed an heuristi formula for the seletive dynamis of apartile whose position is ontinuously observed. Aording to Mensky thestate of the partile at time t if the observed trajetory is the path !(s)s2[0;t℄is given by the \restrited path integrals" (t; x; [a℄) = \ Zf(t)=xg e i~St()e�� R t0 ((s)�!(s))2ds�((0))D " (3.16)One an see that, as an e�et of the orretion term e�� R t0 ((s)�!(s))2ds due tothe measurement, the paths  giving the main ontribution to the integral(3.16) are those loser to the observed trajetory !. In fat by means of thein�nite dimensional osillatory integrals desribed in the previous setion, itis possible to prove a Feynman path integral representation of the solutionof Belavkin equation and give a rigorous mathematial meaning to Mensky'sheuristi formula. Indeed in the partiular ase of position measurement weshall prove that the solution of equation (3.12) an be represented by (t; x) =fZ e i2~ R t0 j _(s)j2ds�� R t0 j(s)+xj2dse� i~ R t0 V ((s)+x)dseR t0 p�((s)+x)�dW (s) o((0) + x)d: (3.17)In the ase of Belavkin equation desribing momentummeasurement the stohas-ti term plays the role of a omplex random potential depending on the mo-mentum of the partile. In this ase one has to use the phase spae Feynmanpath integrals desribed in hapter 2. More preisely by means of a in�nitedimensional osillatory integral with omplex phase on the spae of paths inphase spae one an give a rigorous mathematial meaning to the followingheuristi expression: (t; x) =fZ e i~ (R t0 ( _q(s)p(s)� 12m p(s)2)ds�� R t0 p(s)2dse� i~ R t0 V (q(s)+x)ds� ep� R t0 p(s)�dW (s) 0((0) + x)dqdp: (3.18)31



3.3 Position measurementIn this setion we onsider Belavkin equation desribing the posterior dynamisof a quantum partile, whose position is ontinuously observed:� d = � i~H dt� �jxj22  dt+p�x dW (t) (0; x) =  0(x) t � 0; x 2 Rd (3.19)where W is an d-dimensional Brownian motion de�ned on a probability spae(
;F ;P) and dW (t) denotes the Ito stohasti di�erential; for eah ! 2 
, (!) 2 C([0; T ℄;H), H = L2(Rd), and � > 0 is a oupling onstant. Wedenote the Rd norm with j j and the salar produt with a � b = Pdi=1 aibi.Equation (3.19) an also be written in the Stratonovih equivalent form:� d = � i~H dt� �jxj2 dt+p�x Æ dW (t) (0; x) =  0(x) t � 0; x 2 Rd (3.20)The existene and uniqueness of a strong solution of equation (3.19) is provedin [60℄. We shall prove that it an be represented by an in�nite dimensionalosillatory integral on a suitable Hilbert spae. We reall the de�nition ofstrong solution in the ase of a Shr�odinger equation.De�nition 7. A strong solution for the stohasti equation (3.20) is a pre-ditable proess with values in H = L2(Rd), suh that (t) 2 D(�i=~H � �jxj2) P-a.s.P� R T0 (k (t)k2 + k(�i=~H � �jxj2) k2) dt <1� = 1P� R T0 kjxj (t) dtk2 <1� = 1 andP a.s. for all t 2 [0; T ℄:(d = � i~H dt� �jxj2 dt+p�x �  Æ dW (t) t � 0; x 2 Rd (0; x) =  0(x) (3.21)Let us onsider the Cameron Martin spae Ht introdued in setion 1.3and let HCt be its omplexi�ation. Let L : HCt ! HCt the operator on HCtde�ned by h1; L2i = �a2 Z t0 1(s) � 2(s)ds;where a2 = �2i�~. The j�th omponent of L,L = (L1; : : : ; Ld), is givenby (L)j(s) = 2i�~ Z ts ds0 Z s00 j(s00)ds00 j = 1; : : : ; d (3.22)32



one an verify (see [57℄ for more details) that iL : H ! H is self-adjoint withrespet to the Ht-inner produt, it is trae-lass and its Fredholm determinantis given by: det(I + L) = os(at):Moreover (I + L) is invertible and its inverse is given by:[(I + L)�1℄j(s) = j(s)� a Z ts sin[a(s0 � s)℄j(s0)ds0++sin[a(t� s)℄ Z t0 [os at℄�1a os(as0)j(s0)ds0 j = 1; : : : ; d:Let us introdue moreover the vetor l 2 Ht de�ned byhl; i = �p�Z t0 !(s) � _(s)ds = p�Z t0 (s) � dW (s); (3.23)l(s) = p� Z ts !(�)d�:Given these results, it is possible to apply the theory of the �rst setion andprove that, under suitable assumptions on the potential V and the initialwave funtion  0, the heuristi expression (3.17) an be realized as the in�nitedimensional osillatory integral with omplex phase on the Cameron-Martinspae Ht:C(t; x; !)gZHte i2~ h;(I+L)iehl;ie�2�x�R t0 (s)dse� i~ R t0 V ((s)+x)ds 0((0) + x)d(3.24)where C(t; x; !) = e��jxj2+p�x�!(t) is a onstant depending on t, x 2 Rd , ! 2
. Indeed the integrand exp( i2~�) in (3.17), where �() � R t0 j _(s)j2ds +2i~� R t0 j(s) + xj2ds � 2i~ R t0 p�((s) + x) � dW (s) an be rigorously de�nedas the funtional on the Cameron Martin spae Ht given by �() = h; (I +L)i � 2i~hl; i � 2~ R t0 a2x � (s)ds� a2jxj2t � 2i~p�x � !(t); where L is theoperator (3.22) and l is the vetor (3.23).By means of theorem 11 one an ompute the integral (3.24) in terms ofan absolutely onvergent integral on Ht. Moreover it is possible to prove itrepresents the solution of Belavkin equation (3.20) (see [9℄).Theorem 13. Let V and  0 be Fourier transforms of omplex bounded varia-tion measures on Rd . Then there exist a (strong) solution to the Stratonovihstohasti di�erential equation (3.20) and it is given by the in�nite dimensionalosillatory integral with omplex phase (3.24).Remark 7. The result an be extended to general initial vetors  0 2 L2(Rd),using the fat that F(Rd) is dense in L2(Rd).33



Proof. The proof in divided into 3 steps: in the �rst two we onsider the aseV � 0. First of all we deal with an approximated problem and we �nd a rep-resentation for its solution via a in�nite dimensional osillatory integral, thenwe show that the sequene of approximated solutions onverges in a suitablesense to the solution of problem (3.20). In the �nal step we introdue thepotential V and show that the right hand side of (3.24) is in fat the solutionof the equation (3.20).1.The solution of the approximated problem. We approximate the tra-jetory t! !(t) of the Wiener proess by a sequene of smooth urves. Morepreisely we onsider the sequene of funtions 3n Z tt� 1n !(s)d s � !n(t); n 2 N :We have !n ! ! uniformly on [0; T ℄, indeedsups2[0;T ℄ jWn(s)�W (s)j ! 0 as n!1 P a.s.Let us onsider the sequene of approximated problems:� d n = � i~H ndt� �jxj2 ndt+p�x �  ndWn(t) n(0; x) =  0(x) (3.25)where dWn(t) is an ordinary di�erential, i.e. dWn(t) = _!n(t)dt, and we analso write: � _ n = � i~H n � �jxj2 n +p�x �  n _!n(t) n(0; x) =  0(x) (3.26)whih an be reognized as a family of Shr�odinger equations, with a omplexpotential, labeled by the random parameter ! 2 
.Now we ompute a representation of the solution of (3.26) by means of anin�nite dimensional osillatory integral with omplex phase , under suitableassumptions on the (real) potential V and on the initial datum  n(0; x; !) = 0(x).We an write equation (3.26) in the following form:� _ n = � i~(�~2�2m � i�~jxj2) n � i~V  n +p�x �  n _!n(t) n(0; x) =  0(x) (3.27)so that we an reognize in it the Shr�odinger equation for an anharmoniosillator with a omplex potential, i.e.� _ n = � i~(�~2�2m + a22 jxj2) n � i~U n n(0; x) =  0(x) (3.28)3Here we denote, as usual, the trajetory of the Wiener proess W (t) as !(t).34



where a2 = �2i�~ and U = U(t; x; !) = V (x) + i~p�x � _!n(t).We introdue the sequene of vetors ln 2 H de�ned byhln; i = p�Z t0 (s) � _!n(s)ds = �p� Z to !n(s) � _(s)ds;whih is given by ln(s) = p�Z ts !n(�)d�: (3.29)First of all let us onsider equation (3.20) with H replaed by the free Hamil-tonian H = �~2�=2. The following result holds:Lemma 3. Let  0 2 S(Rd). Then the solution of the Cauhy problem:� _ n(t; x) = i~2 � n(t; x)� �jxj2 n(t; x) +p�x � _!n(t) n(t; x) n(0; x) =  0(x); x 2 Rd (3.30)is given by : n(t; x) =gZHte i2~ R t0 j _(s)j2ds�� R t0 j(s)+xj2dsep� R t0 ((s)+x)� _!n(s)ds 0((0) + x)d(3.31)(where the right hand side is interpreted as the in�nite dimensional osillatoryintegral of  0((0) + x)ehln ;i with omplex quadrati phase funtion h; (I +L)i=~, with Ht the Cameron-Martin spae, ln the vetor de�ned by (3.29)and L the operator de�ned by (3.22).)Proof. Formula (3.31) an be realized asgZHte i2~ R t0 j _(s)j2ds�� R t0 j(s)+xj2dsep� R t0 ((s)+x)� _!n(s)ds o((0) + x)d == e�ia2jxj2t2~ +p�x�!n(t)gZHte i2~ h;(I+L)iehln;i ZRd ei��xeihb(�;x);i ~ 0(�)d�dwhere b(�; x) 2 Ht, preisely:b(�; x)(s) = �(t� s)� xa22~ (t2 � s2);One an diretly verify that the funtion f() � RRd ei��xeihb(�;x);i ~ 0(�)d� isthe Fourier transform of a measure � 2 M(H), that is:�(d) = ZRd ei��x ~ 0(�)Æb(�;x)(d)d�35



so we an apply theorem 2 and have: n = e�ia2jxj2t2~ +p��!n(t) ZRd ei��x det(I+L)�1=2e�i~2 hb(�;x)�iln ;(I+L)�1(b(�;x)�iln)i ~ 0(�)d�By simple alulations we get the �nal result: n(t; x) = ZRd Gn(t; x; y) 0(y)d ywhere Gn(t; x; y) is given by:Gn(t; x; y) � 1p2�i~q asin(at)ep�x�!n(t)� p�axsin(at) �R t0 !n(s) os(as)dse i~�2 R t0 j!n(s)j2dse i~�2 (�a R t0 !n(s)�R ts !n(s0) sin[a(s0�s)℄ds0ds)�e i~�2 (�a R t0 sin(as)!n(s)ds�R t0 os(as)!n(s)ds�a ot(at)j R t0 os(as)!n(s)dsj2)e i2~ (ot(at)(jxj2+jyj2)� 2x�ysin(at) ) � eap�y�(ot(at) R t0 os(as)!n(s)ds+R t0 sin(as)!n(s)ds) (3.32)
whih is, as one an easily diretly verify, the fundamental solution to theapproximate Cauhy problem (3.25).2.The onvergene of the sequene of approximated solutions. Wewill prove the following result:Lemma 4. The following equation� d = � i~H dt� �jxj2 dt+p�x �  Æ dW (t) t > 0 (0; x) =  0(x);  0 2 S(Rd) (3.33)has a unique strong solution given by the Feynman path integral (t; x) =fZ e i2~ R t0 j _(s)j2ds�� R t0 j(s)+xj2dsep� R t0 ((s)+x)�dW (s) 0((0) + x)drigorously realized as the in�nite dimensional osillatory integral with omplexphase on Hte��jxj2+p�x�!(t)gZHte i2~ h;(I+L)iehl;ie�2�x�R t0 (s)ds 0((0) + x)dMoreover it an be represented by the proess (t; x) = ZRd G(t; x; y) 0(y)dy36



where G(t; x; y) = 1p2�i~r asin(at)ep�x�!(t)� p�axsin(at) �R t0 os(as)!(s)dse i~�2 (�a R t0 !(s)�R ts !(s0) sin[a(s0�s)℄ds0ds)�e i~�2 (�a R t0 sin(as)!(s)ds�R t0 os(as)!(s)ds�a ot(at)j R t0 os(as)!(s)dsj2)e i2~� ot(at)(jxj2+jyj2)� 2x�ysin(at)�eap�y� 1sin(at) (R t0 os[a(s�t)℄!(s)ds)Proof. As �rst we onsider the sequene  n(t; x) = RRd Gn(t; x; y) 0(y)dy.Using the dominated onvergene theorem we have that :P� limn!1ZRd j n(t; x)� ~ (t; x)j2dx! 0� = 1 (3.34)with ~ (t; x) = RRG(t; x; y) 0(y)dy, as:limn!1 jGn(t; x; y)�G(t; x; y)j ! 0for all t 2 [0; T ℄ and x; y 2 Rd . Moreover, one an see by a diret omputationthat a = p�2i~� an be hosen is suh a way that:j ZRd Gn(t; x; y) 0(y)dyj2 � C(t)eP (t;x)k 0(y)k2; (3.35)where P (t; x) is a seond order polynomial with negative leading oeÆient andC(t) and P (t; x) are ontinuous funtions of the variable t 2 [0; T ℄. Applyingthe Itô formula to the limit proess ~ (t) we see that it veri�es equation (3.33)for every (t; x; y). Sine the kernel G(t; x; y) is Ft adapted by onstrutionit follows that the solution is preditable. By diret omputation and usingestimates analogous to (3.35) one an verify that ~ is a strong solution. Onthe other hand every  n(t; x) is equal togZHte i2~ R t0 j _(s)j2ds�� R t0 j(s)+xj2dsep� R t0 ((s)+x)� _!n(s)ds 0((0) + x)d == e�ia2jxj2t2~ +p�x�!n(t)gZHte i2~ h;(I+L)iehln;ie�i R t0 a2x�(s)ds 0((0) + x)d= e�ia2jxj2t2~ +p�x�!n(t) det(I + L)�1=2 ZHt e�i~2 h�iln;(I+L)�1(�iln)i�(d)where �(d) is the measure on H whose Fourier transform is the funtion ! e�i R t0 a2x�(s)ds 0((0) + x). 37



We have jjln � ljj2H ! 0 as n ! 1, where l(s) = p� R ts !(r)d r. Therefore,by the Lebesgue's dominated onvergene theorem, we have that, for everyx 2 Rd :limn!1 e�ia2jxj2t2~ +p�x�!n(t) det(I + L)�1=2 RHt e�i~2 h�iln;(I+L)�1(�iln)i�(d)= e�ia2jxj2t2~ +p�x!(t) det(I + L)�1=2 RHt e�i~2 h�il;(I+L)�1(�il)i�(d) (3.36)Therefore, taking into aount the uniqueness of the pointwise limit, we haveshown that: (t; x) = RRG(t; x; y) 0(y)dy =fRHte i2~ R t0 j _(s)j2ds�� R t0 j(s)+xj2dseR t0 ((s)+x)�dW (s) 0((0) + x)d: (3.37)
Remark 8. The result an be extended by ontinuity to all  0 2 L2(Rd), usingthe density of S(Rd) in L2(Rd).3.The proof of Feynman-Ka-Ito formula by means of Dyson expan-sionIn this subsetion we generalize our previous results to the ase H = �~2�=2+V and omplete the proof of theorem 13. We follow here the tehnique of El-worthy and Truman [57℄.We set for t > 0, x 2 Rd :�(t; 0) 0(x) =gZHte i2~ R t0 j _(s)j2ds�� R t0 j(s)+xj2dse� i~ R t0 V ((s)+x)ds� ep� R t0 ((s)+x)�dW (s) 0((0) + x)d (3.38)and�0(t; 0) 0(x) =gZHte i2~ R t0 j _(s)j2ds�� R t0 j(s)+xj2dsep� R t0 ((s)+x)�dW (s) 0((0) + x)d:(3.39)Then we have:�(t; 0) 0(x) = e�ia2jxj2t2~ +p�x�!(t)gZHte i2~ h;(I+L)iehl;ie�i R t0 a2x�(s)ds� e�i R t0 V (x+(s))ds 0((0) + x)d (3.40)Let �0( ) be the measure on Ht suh that its Fourier transform evaluated in 2 Ht is  0((0) + x). 38



For 0 � u � t let �u(V; x); �tu(V; x) and �tu(x) be the measures on Ht, whoseFourier transforms when evaluated at  2 Ht are respetively V (x + (u));exp �� i R tu V (x+ (s))ds�; and exp �� i R tu a2x(s)ds�. We shall often write�u � �u(V; x); �tu � �tu(V; x) and �tu � �tu(x) If f�u : a � u � bg is a family inM(Ht), we shall let R ba �udu denote the measure on Ht given by :f ! Z ba ZHt f()�u(d)duwhenever it exists.Then, sine for any ontinuous path exp �� i~ Z t0 V ((s))ds� =1� i~ Z t0 V ((u)) exp�� i~ Z tu V ((s))ds�du; (3.41)we have �t0 = Æ0 � i~ Z t0 (�u � �tu)du (3.42)where Æ0 is the Dira measure at 0 2 Ht.By the Cameron-Martin formula:�(t; 0) 0(x) = e�ia2jxj2t2~ +p�x�!(t) det(I + L)�1=2� ZHt e�i~2 h��il;(I+L)�1(��il)i(�t0 � �t0 � �0( ))(d�) (3.43)Applying to this equality (3.42) we obtain:�(t; 0) 0(x) =e�ia2jxj2t2~ +p�x�!(t) det(I + L)�1=2 ZHt e�i~2 h��il;(I+L)�1(��il)i(�t0 � �0( ))(d�)+� i~ Z t0 e�ia2jxj2t2~ +p�x�!(t) det(I + L)�1=2� ZHt e�i~2 h��il;(I+L)�1(��il)i(�t0 � �u(V; x) � �tu � �0( ))(d�)du= �0(t; 0) 0(x)� i~ Z t0 gZHte i2~ R t0 j _(s)j2ds�� R t0 j(s)+xj2dse� i~ R tu V ((s)+x)dsep� R t0 ((s)+x)�dW (s)V ((u) + x) 0((0) + x)ddu39



By the Fubini theorem for osillatory integrals (see [12, 4℄), we get thatgZHte i2~ R t0 j _(s)j2ds�� R t0 j(s)+xj2dse� i~ R tu V ((s)+x)dsep� R t0 ((s)+x)�dW (s)V ((u) + x)� 0((0) + x)d = gRHu;te i2~ R tu j _2(s)j2ds�� R tu j2(s)+xj2dse� i~ R tuu V (2(s)+x)ds�ep� R tu(2(s)+x)�dW (s)V (2(u) + x)℄ZH0;ue i2~ R u0 j _1(s)j2ds�� R u0 j1(s)+2(u)+xj2ds�ep� R u0 (1(s)+2(u)+x)�dW (s) 0(1(0) + 2(u) + x)d1d2:Here 1 2 H0;u and 2 2 Hu;t are the integration variables. We denote by Hr;sthe Cameron-Martin spae of paths  : [r; s℄! Rd .Finally we have:�(t; 0) 0(x) = �0(t; 0) 0(x)� i Z t0 �(t; u)(V�0(u; 0) 0)(x)du (3.44)Now the iterative solution of the latter integral equation is the Dyson seriesfor �(t; 0), whih oinides with the orresponding power series expansion ofthe solution of the stohasti Shr�odinger equation, whih onverges stronglyin L2(Rd). The equality holds pointwise. On the other hand, following [60℄, itis possible to prove that the problem (3.33) has a strong solution that veri�es(3.44) in the L2 sense, therefore �(t; 0) 0 oinides with the solution  (t).This onludes the proof of theorem 13.3.4 Momentum measurementIn this setion we study Belavkin's equation desribing the ontinuous mea-surement of the momentum p of a d�dimensional quantum partile:8<: d (t; x) = � i~H (t; x)dt+ �~22 � (t; x)dt� ip�~r (t; x)dW (t) (0; x) =  0(x) (t; x) 2 [0; T ℄� Rd (3.45)Our main interest is to give a rigorous de�nition of the solution as a Feynmanpath integral de�ned on the phase spae. One we have de�ned a Feynmanpath integral as a andidate for the solution of (3.45), we still have to provethat it solves e�etively the problem (3.45). When the evolution of the freepartile (i.e. for V = 0) is onsidered, equation (3.45) redues to the following:8<: d (t; x) = ( i~2m�+ �~22 �) (t; x)dt� ip�~r (t; x)dW (t) (0; x) =  0(x) (t; x) 2 [0; t℄� Rd (3.46)40



In this situation we derive from our rigorously de�ned in�nite dimensionalosillatory integral an expression for the solution as a �nite dimensional inte-gral involving the initial data and a Green kernel and prove diretly that ourFeynman path integral represents the strong solution for the problem (3.46).In the more general situation of problem (3.45) we use an analyti result basedon the method of stohasti harateristis to show that our Feynman pathintegral is in fat the solution to the Belavkin equation (3.45).In the �rst and seond subsetions we provide the analyti tools to guaranteethat the in�nite dimensional osillatory integral we shall de�ne in the thirdsubsetion gives indeed a solution of problem (3.45).3.4.1 Existene and uniqueness resultsIn this subsetion we are interested in �nding a unique strong solution forproblem (3.45). Let us �rst introdue the framework in whih we will onsiderthe problem.Let (
;F ;P) be a probability spae andW (t) a d- dimensional standard Brow-nian motion, we will denote by Ft its natural �ltration ompleted with thenull sets of F . Let L2(Rd) be the omplex Hilbert spae of square integrablefuntions endowed with its natural inner produt hf; gi = RRd f(x)g(x)dx, wewill denote by j � j the orresponding norm indued by the sesquilinear form.We denote by A the realization of the operator i~ ~22m� + �~22 � in the spaeH = L2(Rd), with domain D(A) = ff 2 L2(Rd) : �f 2 L2(Rd)g � L2(Rd). Itis easy to prove the following property:Proposition 1. The operator A is losed on D(A), is dissipative and generatesa C0-semigroup etA in H. MoreoveretA = e( i~2m�)te(�~22 �)t (3.47)Proof. The �rst assertion is a straightforward appliation of the Lumer PhillipsTheorem (see [85℄), the operator A being dissipative and with dense domainin L2(Rd). Identity (3.47) is guaranteed by the Trotter produt formula (see[85℄) and the fat that � and i� are generators of C0-ontrative semigroupsand ommute.The domain D(A), endowed with the graph norm is equivalent to theomplex Hilbert spae H2(Rd) of funtions with all the �rst and seond partialderivatives, de�ned in distributional sense, in L2(Rd). The salar produt inH2(Rd) is given in its natural way (Sobolev spae). We will denote with Bthe realization of �ip�~r� in L2(Rd), with domain D(B) = ff 2 L2(Rd) :(��) 12f 2 L2(Rd)g. The graph norm indued by the operator B is equivalentto the usual norm of the Sobolev spae H1(Rd).41



Finally we denote by L2W ([0; T ℄;H2(Rd)) the spae of L2(Rd) valued pro-esses whih are preditable and belong to L2([0; T ℄;L2(
;H2(Rd))(4). Simi-larly the spae of L2(Rd) valued proesses that are preditable and belong toC([0; T ℄;L2(
;L2(Rd)) is denoted by CW ([0; T ℄;L2(Rd)). The two spaes areendowed respetively with the following norms:juj2L2W ([0;T ℄;H2(Rd)) _=Z T0 E ju(t)j2H2 (Rd) dtand juj2CW ([0;T ℄;L2(Rd)) _= supt2[0;T ℄ E ju(t)j2L2 (Rd)We reall the de�nition of a strong solution for problem (3.46), see also[48℄ for a more general de�nition:De�nition 8. Given an initial data  0 2 H2(Rd), we de�ne a solution  forproblem (3.46) as a proess  2 CW ([0; T ℄;L2(Rd)) \ L2W ([0; T ℄;H2(Rd)), thatveri�es the following equation:8<: d (t) = A (t)dt+B (t)dW (t) P � a.s. (0) =  0We an prove the following:Proposition 2. Problem (3.46) has a unique strong solution that is repre-sented in mild form as follows: (t) = etA 0 + Z t0 e(t�s)AB (s) dW (s) (3.48)Proof. We �rst notie that A admits a spetral deomposition: indeed it anbe diagonalized by means of Fourier transform~ (k) = 1(2�~)d=2 ZRd e�ikx=~ (x)dxfA (k) = �( i2m~ + �2 )k2 ~ (k);therefore it is possible to rearrange the proof of [47℄[Theorem 4:3:5, pag.79℄ toprove the result.4Note that L2([0; T ℄;L2(
;H2(Rd)) ' L2([0; T ℄� 
;H2(Rd )) by the Fubini-Tonelli the-orem (' means isomorphism between Hilbert spaes).42



One has that there exist positive onstants K(~; �;m) and C(T ) suh that:Z T0 E j(�A) Z t0 e(t�s)AB (s) dW (s)j2dt � K(~; �;m)2 Z T0 E j(�A) (s)j2 ds(3.49)supt2[0;T ℄ E j Z t0 e(t�s)AB (s) dW (s)j2 � CE Z T0 je(t�s)AB (s)j2 ds (3.50)� C(T ) supt2[0;T ℄ E j (t)j2We will show only the �rst inequality, as the seond follows in a similar way.Setting �A =: 1=( i2m~+ �2 )A, we have that the graph norm of D(A) is equivalentto the graph norm ofD( �A), therefore there exists a positive onstant C(~; �;m)suh that: Z T0 E j(�A) Z t0 e(t�s)AB (s) dW (s)j2 (3.51)� C(~; �;m)2 Z T0 E j(� �A) Z t0 e(t�s)AB (s) dW (s)j2Then for any " > 0 we have:Z T0 E j(� �A)(I � � �A)�1 Z t0 e(t�s) �AB (s) dW (s)j2 dt= Z T0 E Z t0 j(� �A)1=2(I � � �A)�1e(t�s) �A(� �A)1=2B (s)j2 ds dt= Z T0 ZRd k2E Z t0 e�k2(t�s)(1 + �k2)2 j ^(� �A)1=2B (s; k)j2 dk ds dt= 12 Z T0 ZRd E 1 � e�k2(T�s)(1 + �k2)2 j ^(� �A)1=2B (s; k)j2 dk ds� 12E Z T0 j(� �A)1=2B (s)j2 ds � C 0(~; �;m)2 E Z T0 j(�A) (s)j2 dsNow, letting �! 0 and realling that (3.51) holds, we dedue (3.49) fromthe inequality. These are the two key estimates needed to prove, using a�xed point tehnique in the spaes L2W ([0; T ℄;H2(Rd)) and CW ([0; T ℄;L2(Rd)),the existene of the mild representation for the solution. But then, havingthe regularity implied by the de�nition of the spaes L2W ([0; T ℄;H2(Rd)) andCW ([0; T ℄;L2(Rd)), it is possible to apply the Itô formula to  written in theform (3.48), obtaining that the mild solution is in fat a strong solution.43



In the next subsetion we are going to prove another haraterization ofthe strong solution of (3.46): we will show that there exists a strit rela-tion between the solution of (3.46) and the solution of a lassial Shr�odingerequation. To this purpose we will onsider Eq.(3.46) in the momentum repre-sentation: ~ (k) = 1(2�~)d=2 ZRd e�ikx=~ (x)dxWe need this seond haraterization in order to identify the solution with theFeynman path integral rigorously de�ned in subsetion 3.4.3.3.4.2 Solution by the stohasti harateristis methodApplying to both sides of (3.46) the Fourier transform we obtain the followingequation : d ~ (k) = �( i~H + �y22 ) ~ (k)dt+p�y ~ (k)dW (t); (3.52)where H is the Hamiltonian of the free partile, whih in momentum repre-sentation is simply the multipliation operator:H ~ (k) = k22m ~ (k):The orresponding Cauhy problem assumes then the following form8<: d ~ (k) = �( i~ k22m + �k22 ) ~ (k)dt+p�k ~ (k)dW (t)~ (0; k) = ~ 0(k) (3.53)In this setion we show that problem (3.53) is equivalent in a suitable sense,to a deterministi Shr�odinger equation expressed in momentum oordinates.The main tool is a simple appliation of the stohasti harateristis methodthat allows to transform the stohasti partial di�erential equation into a fam-ily of deterministi equations. Let us denote by � the funtion de�ned by�(t; k) = exp(�p�kWt + �k2t).We an prove the following:Proposition 3. The strong solution of (3.53) has the following representation:~ (t; k) = ep�kW (t)�(�k2+ i~ k22m )t ~ 0(k) (3.54)Proof. The proof is divided in two steps: in the �rst we will prove that (3.54)solves problem (3.53) and it is a strong solution, in the seond we prove that44



this solution is the unique strong solution.�rst step:Let us onsider the following problem:8>><>>: d�(k) = � i~ k22m�(k)dt�(0; k) = ~ 0(k) (3.55)It is well known that if ~ 0 2 H2(Rd), then the solution �(t; k) = e� i~ k2t2m ~ 0(k) ofproblem (3.55) belongs to L2(0; T ;H2(Rd)) \C([0; T ℄;L2(Rd)). Our intentionis to prove that the funtion ��1(t)�(t) that orresponds to (3.54), is atuallya solution to problem (3.53). We apply, �rst formally, the Itô formula to thefuntion ��1(t)�(t):��1(t)�(t) = ~ 0 � Z t0 i~h k22m + �k22 i��1(s)�(s) ds (3.56)+ Z t0 p�k��1(s)�(s) dW (s):Setting ~ (t) = ��1(t)�(t) we have that  is a solution to equation (3.53). Thisproedure beomes rigorous as long as we an give a meaning to ��1. Notiethat for eah �xed t the multipliation operator p�kW (t)��k2t is the gener-ator of a C0 semigroup, being self adjoint and having the leading term dissipa-tive, therefore ��1(t) an be regarded as the semigroup e(p�kW (t)��k2t)s evalu-ated at s = 1, see also [60℄. Let us take an element ' 2 D(�), then the vetor��1(t)', whih in momentum representation is given by e(p�kW (t)��k2t) ~'(k) isstill in D(�) thanks to the properties of ommutativity of the generator withthe semigroup. Moreover for every �xed k 2 Rd it is possible to evaluate theItô di�erential of the proess e(p�kW (t)��k2t) ~'(k). It is easy to prove using theFubini Theorem and thanks to the spetral deomposition of ��1(t)e i~H , thefollowing estimate:E Z T0 jk2ep�kW (t)�(�k2+ i~k2)t ~ 0(k)j2L2(Rd) dt (3.57)= Z T0 fZRd e�2�k2tk4 ~ 20(k)E [e2p�kW (t)℄ dkg dt � T ZRd k4 ~ 20(k) dkThis implies that the identity (3.56) an be understood in the spae L2(Rd).So far we have obtained a solution ~ (t) = �(t)�1�(t) for equation (3.53)and the regularity for ~ is diretly inherited from �, by the speial expressionfor ~ : ~ 2 L2W (0; T ;H2(Rd)) \ CW (0; T ;L2(Rd)).45



Remark 1. The form (3.54) of the solution shows that it is no longer unitarypathwise.seond step: Uniqueness of the solution. We will �nd an a priori esti-mate for the solution that ensures the uniqueness of the solution. Sine theproblem is linear if one �nds a ontinuous dependene on the initial data onegets immediately that the solution is unique. Now let us onsider the solu-tion ~ splitted in real part and imaginary part, ~ =  1 + i 2, and onsiderdh ~ (t); ~ (t)i = d(j 1(t)j2+ j 2(t)j2). The equations solved by the real and theimaginary parts are respetively:d 1(t) = 1~ k22m 2(t) dt� �k22  1(t) dt+p�k 1(t) dW (t)d 2(t) = �1~ k22m 1(t) dt� �k22  2(t) dt+p�k 2(t) dW (t) (3.58)Now we an apply the Itô formula to j 1(t)j2 and j 2(t)j2:j 1(t)j2 = jRe ~ 0j2 + 2 1~ R t0 h k22m 2(s);  1(s)i ds� 2 R t0 h�k22  1(s);  1(s)i ds+2 R t0 hp�k 1(s);  1(s)i dW (s) + � R t0 jk 1(s))j2 ds:andj 2(t)j2 = jIm ~ 0j2 � 2 1~ R t0 h k22m 1(s);  2(s)i ds� 2 R t0 h�k22  2(s);  2(s)i ds+2 R t0 hp�k 2(s);  2(s)i dW (s) + R t0 �jk 2(s))j2 ds:thus: j 1(t)j2 + j 2(t)j2 = j ~ 0j2 � R t0 �(jk 1(s)j2 + jk 2(s)j2) ds+2 R t0 p�(jpk 1(s)j2 + jpk 2(s)j2) dW (s)+ R t0 �(jk 1(s))j2 + jk 2(s))j2) ds: (3.59)We reall that ~ 2 L2W (0; T ;H2(Rd)), then the stohasti integral in (3.59) isa martingale. Thus passing to the expeted value in (3.59) we get that:E(j ~ (t)j2) = j ~ 0j2 (3.60)Moreover one reads from identity (3.59) that j ~ (t)j2 is a martingale with re-spet to the �ltration Ft and that the solution is unique in the lass of strongsolutions.Let us denote by f	(t); t 2 [0; T ℄g the family of random operators de�nedby 	(t) ~ 0 = ~ (t) 46



Remark 2. Thanks to estimate (3.60) we an extend eah operator 	(t) tothe whole L2(Rd),we will denote its extension again with 	(t).Let � be the isometry form L2(Rd) in the momentum representation toL(Rd) in the oordinate representation, we de�ne:�(t; 0) _=� Æ	(t) Æ ��1 : L2(Rd)! L2(Rd) (3.61)for eah t 2 [0; T ℄. We are now ready to prove the following:Proposition 4. Problem (3.46) has a unique strong solution with the followingrepresentation formula: (t; x) = (�(t; 0) 0)(x); t � 0; x 2 Rd (3.62)Proof. (�(t; 0) 0)(x) is a strong solution of problem (3.46) thanks to the prop-erty of the Fourier transforms. Therefore it has to oinide with the mild rep-resentation found in proposition 2.Remark 3. It is learly possible to onsider Eq.(3.46) starting at time s,then having that the solution is unique, we an de�ne the random evolutionoperator �(t; s) : D(A)! L2(
;L2(Rd)) that assoiate any initial data f withthe solution at time t of (3.46) starting at s in  0.Now let us onsider the following Cauhy problem:8>><>>: d (s; x) = [� i~(� ~22m�+ V (x)) + �~22 �℄ (s; x)dt�ip�~r �  (s; x)dW (t) (0; x) =  0(x) (s; x) 2 [0; t℄� Rd (3.63)One has:Theorem 14. For given V; Vxi; Vxi;xj 2 L1(Rd)(5) and  0 2 H2(Rd), theproblem (3.63) has a unique strong solution that satis�es the following integralequation:  (t; x) = �(t; 0) 0(x)� i~ Z t0 �(t; s)V (x) (s; x) ds (3.64)5With L1(Rd ) we denote, as usual, the spae of integrable funtions almost everywherebounded. Vxi ; Vxi;xj denote the partial derivatives of V with respet to xi, respetivelyxi; xj . 47



Proof. Let us de�ne�( )(t) = etA 0 � i~ Z t0 e(t�s)AV  (s) ds+ Z t0 e(t�s)AB (s) dW (s): (3.65)Following again [47℄ or [48℄ we show that there exist a �x point of � inL2W ([0; T ℄;H2(Rd)) and in CW ([0; T ℄;L2(Rd)). Then an appliation of the Itôformula will omplete the proof of the existene of a unique strong solution.On the other hand it is possible to give a meaning to the expression (3.64)again by a �xed point argument in the same spaes thanks to estimate (3.57)and to the boundedness of V . Now we have to show that the integral equation(3.64) oinides with the mild representation, see also [37℄.We have:  (t; x) = �(t; 0) 0(x)� i~ Z t0 �(t; s)V (x) (s; x) ds (3.66)Let us remind that �(t; 0) 0(x) is the mild solution of the \free" problem(3.46), therefore:�(t; 0) 0(x) = etA 0 + Z t0 e(t�s)AB�(s; 0) 0 dW (s) (3.67)Also �(t; s)V (x) (s; x) is the solution at time t of the \free" problem (3.46)started at time s in the state V (x) (s; x), therefore:�(t; s)(V  (s)) = e(t�s)AV  (s) + Z ts e(t�r)AB�(r; s)V  (s) dW (r) (3.68)Thus substituting (3.67) and (3.68) respetively in the �rst (respetively se-ond) term on the right side of (3.66) we obtain: (t; x) = �(t; 0) 0(x)� i~ Z t0 �(t; s)V (x) (s; x) ds= etA 0 + Z t0 e(t�s)AB�(s; 0) 0 dW (s)� i~ Z t0 e(t�s)AV  (s)� i~ Z ts e(t�r)AB�(r; s)V  (s) dW (r)℄ dsThanks to the stohasti Fubini Theorem, see [48℄, we an interhange theorder of the integration in the last term and we getZ t0 e(t�s)AB�(s; 0) 0 dW (s)� i~ Z ts e(t�r)AB�(r; s)V  (s) dW (r) ds= Z t0 e(t�s)AB[�(s; 0) 0 � i~ Z s0 �(s; r)V  (r) dr℄ dW (s)= Z t0 e(t�s)AB (s; x) dW (s) 48



This gives that  (t; x) de�ned in (3.66) orresponds the �xed point of � de-�ned in (3.65) of (3.63), whih onludes the proof.3.4.3 Solution by means of phase spae Feynman pathintegralsIn this setion we are going to prove that, under suitable assumptions on thepotential V and on the initial data  0 the solution to problem (3.63) an begiven by means of an in�nite dimensional osillatory integral: a rigorouslyde�ned \Feynman path integral" on the spae of paths in phase spae. Morepreisely we are going to give a meaning to the following heuristi expressionand to prove it represents the solution to the problem (3.63): (t; x) = onst Z exp� i~S(q + x; p)� � Z t0 p2(s)ds�� exp�p�Z t0 p(s)dW (s)� 0(q(0) + x)dqdp (3.69)where the integral is meant to be taken on an in�nite dimensional spae ofpaths (q(s); p(s))s2[0;t℄ in the phase spae, suh that q(t) = 0. The funtionalS(q; p) is the lassial ation of the system evaluated along the path (q; p):S(q; p) = Z t0 [p(s) _q(s)�H(p(s); q(s))℄ds:Expression (3.69) does not make sense as it stands: indeed neither the normal-ization onstant in front of the integral, nor the in�nite dimensional Lebesguemeasure dqdp on the spae of paths are well de�ned. The aim of this setionis twofold: �rst of all by means of the theory of hapter 2 and setion 3.1 werealize the Feynman path integral (3.69) as an in�nite dimensional osillatoryintegral with omplex phase on a suitable Hlbert spae; seondly we show that,under suitable hypothesis on the potential V and on the initial data  0, theso de�ned (3.69) gives a representation of the solution of the Cauhy problem(3.63) in the sense of theorem 14.Let us onsider again the Hilbert spae Ht � Lt introdued in hapter 2,namely the spae of paths in the d�dimensional phase spae (q(s); p(s))s2[0;t℄( where the path (q(s))s2[0;t℄ belongs to the Cameron-Martin spae Ht, whilethe path in the momentum spae (p(s))s2[0;t℄ belongs to Lt = L2([0; t℄;Rd)),endowed with the natural inner produthq; p;Q;P i = Z t0 _q(s) _Q(s)ds+ Z t0 p(s)P (s)ds:49



Let us onsider also the omplexi�ation of Ht �Lt, denoted (Ht �Lt)C . Letus introdue the following bilinear form:[q; p;Q;P ℄ = Z t0 _q(s)P (s)ds+ Z t0 p(s) _Q(s)ds� (1=m� 2i�~) Z t0 p(s)P (s)ds= hq; p;A(Q;P )i; (3.70)where A is the following operator:A(Q;P )(s) = (Z st P (u)du; _Q(s)� (1=m� 2i�~)P (s)): (3.71)Note that the latter formula makes sense in (Ht�Lt)C , so expression (3.70) anbe reognized as the restrition on Ht�Lt of a quadrati form on (Ht�Lt)C .A(Q;P ) is densely de�ned, e.g. on C1([0; t℄; C d) � C1([0; t℄; C d). MoreoverA(Q;P ) is invertible with inverse given byA�1(Q;P )(s) = (Z st P (u)du+ (1=m� 2i�~)Q(s); _Q(s)) (3.72)(on the range of A).Let us also introdue the vetor l = (�q; �p) 2 Ht � Lt.Let g : Ht�Lt ! C be the funtion on Ht�Lt whih is the Fourier transformof a omplex bounded variation measure �g on Ht � Lt:g(q; p) = ZHt�Lt eihq;p;Q;P id�g(Q;P ):Then by means of the theory of hapter 2 and setion 3.1 one an de�ne (see[9, 10℄) the \omplex normalized in�nite dimensional osillatory integral" onHt � Lt of the funtion ehl;�ig(�) with respet to the operator A:fZ Ht�Lte i2~ hq;p;A(q;p)iehl;q;pig(q; p)dqdp:By theorem 12 the integral an be omputed interms of a well de�ned omplexintegral on Ht � Lt:fZ Ht�Lte i2~ hq;p;A(q;p)iehl;q;pig(q; p)dqdp = ZHt�Lt e�i~2 h(q;p)�il;A�1((q;p)�il)id�g(q; p)(3.73)Next we show that the Fresnel integral (3.69) an be de�ned as the limit ofphase spae Feynman path integrals (3.73) and that this limit is the strongsolution of problem (3.53) found in the previous setion.50



Solution of Belavkin equation with a free hamiltonianLet us onsider �rst of all Belavkin equation with a free Hamiltonian H =p2=2m in its Stratonovih equivalent form:8<: d (t; x) = ( i~2m�+ �~2�) (t; x)dt� ip�~r (t; x) Æ dW (t) (0; x) =  0(x) (t; x) 2 [0; t℄� Rd (3.74)We assoiate to (3.74) a sequene of approximated equations of the same type8<: d n(t; x) = ( i~2m�+ �~2�) n(t; x)dt� ip�~r n(t; x) Æ dWn(t) (0; x) =  0(x) (t; x) 2 [0; t℄� Rd (3.75)where by Wn we mean a smooth approximation of the trajetories of theBrownian motion, say Wn(t) = n Z t� 1nt W (s)ds; (3.76)so that _Wn belongs to Lt.Proposition 5. Let us suppose that the initial data  0 is the Fourier transformof a �nite omplex Borel measure �0 on Rd . Then the solution  n of problem(3.75) has the following representation: n(t; x) =fZ Ht�Lte i2~ h(q;p);A(q;p)ieh(q;p);(0;ln)i 0(q(0) + x)dqdp= ZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i�0(dqdp)where ln is the vetor belonging to Lt given by ln = p� _Wn.Moreover, if  0 2 S(Rd) (the Shwartz test funtion spae), the integrals anbe expliitly omputed: n(t; x) = 1(2�~)d=2 ZRd eix�k~ e(� i~ k22m t��k2t+p�kWn(t)) ~ 0(k)dkwhere ~ 0 is the Fourier transform of  0, t > 0, x 2 Rd .Remark 4. Heuristially  n(t; x) is given byonst Z e i~S(q+x;p)�� R t0 p2(s)dsep� R t0 p(s) _Wn(s)ds 0(q(0) + x)dqdp51



Proof. (3.75) is a random family of ordinary Shr�odinger equations (but witha omplex potential depending on the momentum). Following [8℄ and [9℄ (seehapter 2 and setion 3.1) the solution of (3.75) an be given by means ofrigorusly de�ned phase spae Feynman path integrals (3.73).After the introdution of the vetor ln 2 Lt, ln = p� _Wn, the heuristi expres-sion onst Z e i~S(q+x;p)�� R t0 p2(s)dsep� R t0 p(s) _Wn(s)ds 0(q(0) + x)dqdpan be interpreted as the following rigorously de�ned in�nite dimensional os-illatory integral:fZ Ht�Lte i2~ h(q;p);A(q;p)ie(q;p);(0;ln)i 0(q(0) + x)dqdpwhih is equal toZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i�0(dqdp)where �0 is the omplex bounded-variation measure on Ht�Lt whose Fouriertransform is the funtion (q; p)!  0(q(0) + x)6. Let 0(x) = 1(2�~)d=2 ZRd eixk~ ~ 0(k)dk;then  0(q(0) + x) = 1(2�~)d=2 ZRd eixk~ ei q(0)k~ ~ 0(k)dk == 1(2�~)d=2 ZRd eixk~ ei hq;kG(0)i~ ~ 0(k)dkwhere G(0) 2 Ht is suh that hq; G(0)iHt = q(0), that is G(0)(s) = (t � s).With these notations we have: 0(q(0) + x) = 1(2�~)d=2 ZRd eixk~ ZHt eihq;QiHtÆkG(0)=~(dQ) ~ 0(k)dk= ZHt eihq;QiHt� 0(dQ)where � 0(E) = 1(2�~)d=2 ZE eixk~ ~ 0(k)ÆkG(0)=~(dQ)dk E 2 B(Ht);6Suh a measure exists if the initial data  0, as a funtion from Rd to C is the Fouriertransform of a bounded variation measure on Rd . This ondition is ful�lled if for instane 0 2 S(Rd) 52



so that �0(dqdp) = Æ0(p)� 0(dq)We have : n(t; x) = ZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i�0(dqdp) (3.77)= 1(2�~)d=2 ZRd eixk~ ei~2 h(( (kG(0)~ ;0)�i(0;ln);A�1( (kG(0)~ ;0)�i(0;ln))i ~ 0dk= 1(2�~)d=2 ZRd eixk~ e(� i~ k22m t��k2t+p�kWn(t)) ~ 0dkThe next step we shall undertake is the proof of the onvergene of the solutionsof the approximated problems to the solution of the Cauhy problem (3.74).Moreover we shall prove that this solution is given by a rigorously de�nedin�nite dimensional osillatory integral with omplex phase. First of all let usstate the following general result:Theorem 15. Let f : Ht � Lt ! C be the Fourier transform of a omplexbounded-variation measure �f on Ht�Lt. Then the following proess, de�nedas the phase spae Feynman path integralZ e i~ (R t0 p(s) _q(s)ds�R t0 p(s)2ds)�� R t0 p2(s)dsep� R t0 p(s)dW (s)f(q; p)dqdp :=ZHt�Lt e�i~(R t0 _q(s)p(s)ds+ 12m R t0 _q(s)2ds)e��~2 R t0 _q(s)2ds�~p� R t0 _q(s)dW (s)�f(dqdp)is the limit in L2(
;P) of the sequene of proessesfZ Ht�Lte i2~ h(q;p);A(q;p)ieh(q;p);(0;ln)if(q; p)dqdp= ZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i�f(dqdp)= ZHt�Lt e�i~(R t0 _q(s)p(s)ds+ 12m R t0 _q(s)2ds)e��~2 R t0 _q(s)2ds�~p� R t0 _q(s) _Wn(s)ds�f(dqdp)Proof.E���� ZHt�Lt e�i~(R t0 _q(s)p(s)ds+ 12m R t0 _q(s)2ds)e��~2 R t0 _q(s)2ds�~p� R t0 _q(s)dW (s)�f(dqdp)+� ZHt�Lt e�i~(R t0 _q(s)p(s)ds+ 12m R t0 _q(s)2ds)e��~2 R t0 _q(s)2ds�~p� R t0 _q(s) _Wn(s)ds�f(dqdp)���2�53



� �f(Ht�Lt)E� ZHt�Lt e�2�~2 R t0 _q(s)2dsje�~p� R t0 _q(s)dW (s)�e�~p� R t0 _q(s) _Wn(s)dsj2�f(dqdp)�= �f(Ht�Lt) ZHt�Lt e�2�~2 R t0 _q(s)2dsE (je�~p� R t0 _q(s)dW (s)�e�~p� R t0 _q(s) _Wn(s)dsj2)�f(dqdp)= �f (Ht � Lt) ZHt�Lt e�2�~2 R t0 _q(s)2dsE (je�2~p� R t0 _q(s)dW (s)++e�2~p� R t0 _q(s) _Wn(s)ds � 2e�~p�(R t0 _q(s)dW (s)+R t0 _q(s) _Wn(s)ds)j)�f(dqdp)= �f(Ht � Lt) ZHt�Lt e�2�~2 R t0 _q(s)2ds�e2~2� R t0 _q(s)2ds + e2~2� R t0 _qn(s)2ds+�2e~2�2 R t0 ( _q(s)+ _qn(s))2ds��f(dqdp)where, given h 2 L2(0; t), we de�ne hn ashn(s) = n Z s+1=ns h(u)du = h � gngn being the molli�er in L1(0; t) given by gn(s) = n�[s;s+1=n℄. Note thatkgnkL1(0;t) = 1 and moreover the Young inequality holds:khnkL2(0;t) � kgnkL1(0;t)khkL2(0;t) = khkL2(0;t):Thanks to this inequality one an get easily the following uniform estimate:e�2�~2 R t0 _q(s)2ds�e2~2� R t0 _q(s)2ds + e2~2� R t0 _qn(s)2ds � 2e~2�2 R t0 ( _q(s)+ _qn(s))2ds� � 4and by the dominated onvergene theorem we an pass to the limit under theintegral. The onlusion follows from the onvergene of _qn to _q in L2(0; t),see for instane [25℄.Proposition 6. Let  0 2 S(Rd). Then, for eah t � 0 and x 2 Rd thesolution  n(t; x) of the approximated problem (3.75) onverges in L2(
;P) tothe proess 1(2�~)d=2 ZRd eixk~ e(� i~ k22m t��k2t+p�kW (t)) ~ 0(k)dk (3.78)whih is the strong solution of (3.74).Moreover it an be represented by a phase spae Feynman path integral in thesense of [8℄ and hapter 2fZ Ht�Lte i~ (R t0 _q(s)p(s)ds� 12m R t0 p(s)2ds)�� R t0 p(s)2dsep� R t0 p(s)dW (s) 0(q(0) + x)dqdp(3.79)54



sine, as n ! 1, the following in�nite-dimensional osillatory integral onHt � Lt fZ Ht�Lte i2~ h(q;p);A(q;p)ieh(q;p);(0;ln)i 0(q(0) + x)dqdp (3.80)= ZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i�0(dqdp) (3.81)= ZHt�Lt e�i~(R t0 _q(s)p(s)ds+ 12m R t0 _q(s)2ds)e��~2 R t0 _q(s)2ds�~p� R t0 _q(s) _Wn(s)ds�0(dqdp)(3.82)onverges in L2(
;P) toZHt�Lt e�i~(R t0 _q(s)p(s)ds+ 12m R t0 _q(s)2ds)e��~2 R t0 _q(s)2ds�~p� R t0 _q(s)dW (s)�0(dqdp) (3.83)=fZ Ht�Lte i~ (R t0 _q(s)p(s)ds� 12m R t0 p(s)2ds)�� R t0 p(s)2dsep� R t0 p(s)dW (s) 0(q(0) + x)dqdpProof. By diret appliation of the Itô formula one an hek that (3.78) isthe strong solution of the Cauhy problem (3.74). Moreover one an verify bya diret alulation that the in�nite dimensional integral (3.83) is equal to the�nite dimensional integral (3.78).The onvergene in L2(
;P) of the sequene of proesses (3.82) to the proess(3.83) follows from theorem 15.Remark 5. Heuristially the solution (3.79) an be written asonst Z e i~S(q+x;p)�� R t0 p2(s)dsep� R t0 p(s)dW (s) 0(q(0) + x)dqdp: (3.84)The introdution of the potentialNow we generalize the previous results to a more general lass of quantummehanial Hamiltonians H = �~2�=2m + V (x). We onsider the Belavkinequation (3.63) in its Stratonovih equivalent form8>><>>: d (s; x) = [� i~(� ~22m�+ V (x)) + �~2�℄ (s; x)dt�ip�~r �  (s; x) Æ dW (s) (0; x) =  0(x) (s; x) 2 [0; t℄� Rd (3.85)and the sequene of approximated Cauhy problems8>><>>: d n(s; x) = [� i~(� ~22m�+ V (x)) + �~2�℄ n(s; x)dt�ip�~r �  n(s; x) Æ dWn(s) n(0; x) =  0(x) (s; x) 2 [0; t℄� Rd (3.86)55



Proposition 7. Let V : Rd ! R be the Fourier transform of a �nite omplexBorel measure on Rd and let  0 2 S(Rd). Then the solution to the Cauhyproblem (3.63) is given by equation (3.69).Proof. Let us set (t; x) =fZ e i~ (R t0 ( _q(s)p(s)� 12m p(s)2)ds�� R t0 p(s)2dse� i~ R t0 V (q(s)+x)ds� ep� R t0 p(s)�dW (s) 0((0) + x)dqdp; (3.87)�(t; 0) 0(x) =fZ e i~ (R t0 ( _q(s)p(s)� 12m p(s)2)ds�� R t0 p(s)2dsep� R t0 p(s)�dW (s)�  0((0) + x)dqdp; (3.88) n(t; x) =fZ e i~ (R t0 ( _q(s)p(s)� 12m p(s)2)ds�� R t0 p(s)2dse� i~ R t0 V (q(s)+x)ds� ep� R t0 p(s)� _Wn(s)ds 0((0) + x)dqdp; (3.89)�n(t; 0) 0(x) =fZ e i~ (R t0 ( _q(s)p(s)� 12m p(s)2)ds�� R t0 p(s)2dsep� R t0 p(s)� _Wn(s)ds�  0((0) + x)dqdp; (3.90)So far we have proved that (3.90) and (3.88) are the solutions of the Cauhyproblems (3.75) and (3.74) respetively. We are going to prove that (3.89) isthe solution of (3.86) and that it onverges in L2(
;P) to (3.87), whih is arepresentation of the solution of (3.85).Let �0( ) be the measure on Ht�Lt suh that its Fourier transform evaluatedin  2 H is  0(q(0) + x).For 0 � u � t let �u(V0; x) and �u0 (V0; x) be the measures on Ht � Lt, whoseFourier transforms when evaluated at (q; p) 2 Ht �Lt are respetively V0(x+q(u)); and exp � � i~ R u0 V0(x + q(s))ds�. We shall use the short notation�u � �u(V0; x) and �u0 � �u0 (V0; x). If f�u : a � u � bg is a family inM(Ht � Lt), we shall let R ba �udu denote the measure on Ht � Lt given by :f ! Z ba ZHt�Lt f(q; p)�u(dqdp)du56



whenever it exists.Then, sine for any ontinuous path q 2 Htexp�� i~ Z t0 V0(q(s))ds� =1� i~ Z t0 V0(q(u)) exp�� i~ Z u0 V0(q(s))ds�du; (3.91)we have �t0 = Æ0 � i~ Z t0 (�u � �u0 )du (3.92)where Æ0 is the Dira measure at 0 2 H.By the formula (3.73) we have: n(t; x) =fZ Ht�Lte i2~ h(q;p);A(q;p)ieh(q;p);(0;ln)ie� i~ R t0 V (q(s)+x)ds�  0((0) + x)dqdp (3.93)= ZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i(�t0 � �0( ))(dqdp)= ZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i�0( )(dqdp)� i~ Z t0 ZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i(�u � �u0 � �0( ))(dqdp)du= �n(t; 0) 0(x)� i~ Z t0 ZHt�Lt e i2~ h(q;p);A(q;p)ieh(q;p);(0;ln)ie� i~ R u0 V (q(s)+x)dsV (q(u) + x) 0(q(0) + x)dqdpdu (3.94)As Ht � Lt = (H[0;u℄ � L[0;u℄) � (H[u;t℄ � L[u;t℄), where by H[r;s℄ we denotethe Cameron Martin spae of path  : [r; s℄ 7! Rd and by L[r;s℄ the spaeL2[r; s℄ , by setting (q; p) = (q1; p1; q2; p2) where (q1; p1) 2 H[0;u℄ � L[0;u℄ and(q2; p2) 2 H[u;t℄ � L[u;t℄, q1(s) = q(s) � q(u); s 2 [0; u℄, q2(s) = q(s); s 2 [u; t℄,by Fubini theorem for Feynman path integrals [12℄ we haveZHt�Lt e i2~ h(q;p);A(q;p)ieh(q;p);(0;ln)ie� i~ R u0 V (q(s)+x)dsV (q(u) + x) 0(q(0) + x)dqdp= ZH[u;t℄�L[u;t℄ e i2~ h(q2;p2);A(q2;p2)ieh(q2;p2);(0;ln;2)iV (q2(u)+x) ZH[0;u℄�L[0;u℄ e i2~ h(q1;p1);A(q1;p1)ieh(q1;p1);(0;ln;1)ie� i~ R u0 V (q1(s)+q2(u)+x)ds 0(q1(0) + q2(u) + x)dq1dp1dq2dp2 (3.95)57



so that the expression (3.94) assumes the following form: n(t; x) = �n(t; o) 0(x)� i~ Z t0 �n(t; u)V (x) n(u; x)du (3.96)By Lebesgue's dominated onvergene theorem and by theorem 15 the latterexpression onverges as n!1 to (t; x) = �(t; 0) 0(x)� i~ Z t0 �(t; u)V (x) (u; x)du (3.97)Now the iterative solutions of the integral equations (3.96) and (3.97) are on-vergent Dyson series for  n and  respetively, whih by theorem 14 oinidewith the orresponding power series expansions of the solution of the stohas-ti Shr�odinger equations (3.86) and (3.85).
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Chapter 4Generalized Fresnel integralsIn this hapter we fous on the �nite dimensional osillatory integrals andgeneralize the results of setion 1.1 by inluding more general phase funtions�.Our aim is in fat the de�nition and the study of osillatory integrals of theform ZRN e i~�(x)f(x)dx; (4.1)where the phase funtion � is a smooth funtion bounded at in�nity by a apolynomial P (x) on Rn , Im(~) � 0, ~ 6= 0, and f is a suitable real-valuedsmooth funtion. The results we obtain will be generalized to the in�nite di-mensional ase in the next hapter and applied to an extension of the lass ofphase funtions for whih the Feynman path integral had been de�ned before.Moreover we are interested in disussing the asymptoti behavior of the aboveintegrals when the parameter ~ goes to 0. If the phase funtion � is quadrati,then the above integral redues to a Fresnel integral (see setion 1.1), while if�(x) = x3 one has Airy integrals. We also mention that the problem of de�ni-tion and study of integrals of the form (4.1) but with ~ 2 C , Im(~) < 0 and �lower bounded has also been disussed. The onvergene of the integral in thisase is a simple matter, so the analysis has onentrated on a \perturbationtheoretial" omputation of the integral, like in [30, 31℄, resp. on a Laplaemethod for handling the ~! 0 asymptotis, see, e.g. [17, 23, 4, 87℄ (the lattermethod has some relations with the stationary phase method).In setion 4.1 we introdue the notations, reall some known results and provethe existene of the osillatory integral (4.1). In setion 4.2 we prove that whenf belongs to a suitable lass of funtions, this generalized Fresnel integral anbe expliitly omputed by means of an absolutely onvergent Lebesgue inte-gral. We prove a representation formula of the Parseval type (theorem 18)(similar to the one whih was exploited in [12℄ in the ase of quadrati phasefuntions), as well as a formula (orollary 1 to theorem 18) giving the integral59



in terms of analytially ontinued absolutely onvergent integrals. Even if ourmain interest ame from the ase ~ 2 R n f0g, both formulas are valid for all~ 2 C with Im(~) � 0, ~ 6= 0. In the last setion we onsider the integral(4.1) in the partiular ase P (x) = A2M (x; : : : ; x), where A2M is a ompletelysymmetri stritly positive ovariant tensor of order 2M on RN , ompute itsdetailed asymptoti power series expansion (in powers of ~1=2M , for Im(~) � 0,~ 6= 0) in the limit of \strong osillations", i.e. ~ ! 0. In partiular we �ndexpliit assumptions on the integrand f whih are suÆient for having onver-gent, resp. Borel summable, expansions.4.1 De�nition of the generalized Fresnel inte-gralLet us onsider a �nite dimensional real Hilbert spae H, dim(H) = N ,and let us identify it with RN . We will denote its elements by x 2 RN ,x = (x1; : : : ; xN ). We reall the de�nition of osillatory integrals given byH�ormander [64, 65℄ (see setion 1.1) and propose a related, more general de�-nition of osillatory integral in the �-sense.De�nition 9. Let � be a ontinuous real-valued funtion on RN . The osil-latory integral on RN , with ~ 2 R n f0g,ZRN e i~�(x)f(x)dx;is well de�ned if for eah test funtion � 2 S(RN ), suh that �(0) = 1, thelimit of the sequene of absolutely onvergent integralslim�#0 ZRN e i~�(x)�(�x)f(x)dx;exists and is independent on �. In this ase the limit is denoted byZRN e i~�(x)f(x)dx:If the same holds only for � suh that �(0) = 1 and � 2 �, for some subset� of S(RN ), we say that the osillatory integral exists in the �-sense and weshall denote it by the same symbol.Let us onsider the spae M(RN ) of omplex bounded variation measureson RN endowed with the total variation norm and the spae F(RN ) of funtionsf : RN ! C whih are the Fourier transforms of omplex bounded variation60



measures �f 2 M(RN ). We reall that if there exists a self-adjoint linearisomorphism Q : RN ! RN suh that the phase funtion � is given by �(x) =hx;Qxi and f 2 F(RN ), then the osillatory integral RRN e i~ hx;Qxif(x)dx anbe expliitly omputed by means of the following Parseval-type formula (seesetion 1.1, theorem 1):ZRN e i2~ hx;Qxif(x)dx == (2�i~)N=2e��i2 Ind(Q)j det(Q)j�1=2 ZRN e� i~2 hx;Q�1xi�f(dx; ) (4.2)where Ind(Q) is the number of negative eigenvalues of the operator Q, ountedwith their multipliity.In the following we shall generalize this result to more general phase fun-tions �, in partiular those given by an even polynomial P (x) in the variablesx1; : : : ; xN :P (x) = A2M (x; : : : ; x) + A2M�1(x; : : : ; x) + : : :+ A1(x) + A0; (4.3)where Ak are kth-order ovariant tensors on RN :Ak : RN � RN � : : :� RN| {z }k�times ! Rand the leading term, namely A2M(x; : : : ; x), is a 2Mth-order ompletely sym-metri positive ovariant tensor on RN . First of all, following the methodsused by H�ormander [64, 65℄, we prove the existene of the following general-ized Fresnel integral: ZRN e i~�(x)f(x)dx (4.4)for suitable �. We reall the de�nition of symbols (see [64℄).De�nition 10. A C1 map f : RN ! C belongs to the spae of symbolsSn� (RN ), where n; � are two real numbers and 0 < � � 1, if for eah � =(�1; : : : ; �N) 2 ZN there exists a onstant C� 2 R suh that���� d�1dx�11 : : : d�Ndx�N1 f ���� � C�(1 + jxj)n��j�j; jxj ! 1; (4.5)where j�j = j�1j+ j�2j+ � � �+ j�N j:One an prove that Sn� is a Fr�ehet spae under the topology de�ned bytaking as seminorms jf j� the best onstants C� in (4.5) (see [64℄). The spaeinreases as n inreases and � dereases. If f 2 Sn� and g 2 Sm� , then fg 2Sn+m� . We denote Sn Sn� by S1� . We shall see that S1� is inluded in the lass61



for whih the generalized Fresnel integral (4.4) is well de�ned.We say that a point x = x 2 RN is a ritial point of the phase funtion� : RN ! R, � 2 C1, if �0(x) = 0. Let C(�) be the set of ritial points of�. In fat we have:Theorem 16. Let � be a real-valued C2 funtion on RN with the ritial setC(�) being �nite. Let us assume that for eah N 2 N there exists a k 2 N suhthat jxjN+1jr�(x)jk is bounded for jxj ! 1. Let f 2 Sn� , with n; � 2 R, 0 < � � 1.Then the generalized Fresnel integral (4.4) exists for eah ~ 2 R n f0g.Proof. We follow the method of H�ormander [64℄, see also [57, 13, 4℄.Let us suppose that the phase funtion �(x) has l stationary points 1; : : : ; l,that is r�(i) = 0; i = 1; : : : ; l:Let us hoose a suitable partition of unity 1 =Pli=0 �i, where �i, i = 1; : : : ; l,are C10 (RN ) funtions onstant equal to 1 in a open ball entered in thestationary point i respetively and �0 = 1 �Pli=1 �i. Eah of the integralsIi(f) � RRN e i~�(x)�i(x)f(x)dx, i = 1; : : : ; l, is well de�ned in Lebesgue sensesine f�i 2 C0(RN ). Let I0 � RRN e i~�(x)�0(x)f(x)dx. To see that I0 is awell de�ned osillatory integral let us introdue the operator L+ with domainD(L+) in L2(RN ) given byL+g(x) = �i~ �0(x)jr�(x)j2r�(x)rg(x)g 2 D(L+) � ng 2 L2(RN ); ��� �0(x)jr�(x)j2r�(x)rg(x) 2 L2(RN )owhile its adjoint in L2(RN ) is given byLf(x) = i~ �0(x)jr�(x)j2r�(x)rf(x) + i~ div � �0(x)jr�(x)j2r�(x)�f(x)for f 2 L2(RN ) \ C1 suh that���f(x)g(x)jxjNjr�(x)j2 r�(x) � x���! 0 as jxj ! 1; 8g 2 D(L+):Let us hoose  2 S(RN ), suh that  (0) = 1. It is easy to see that if f 2 Sn�then f�, de�ned as f�(x) :=  (�x)f(x), belongs to Sn+1� \S(RN ), for any � > 0.By iterated appliation of the Stokes formula, we have:ZRN e i~�(x) (�x)f(x)�0(x)dx = ZRN L+(e i~�(x)) (�x)f(x)dx= ZRN e i~�(x)Lf�(x)dx = ZRN e i~�(x)Lkf�(x)dx: (4.6)62



Now for k suÆiently large the last integral is absolutely onvergent and wean pass to the limit �! 0 by the Lebesgue dominated onvergene theorem.ConsideringPli=0 Ii(f) we have, by the existene result proved for I0 and theadditivity property of osillatory integrals, that RRN e i~�(x)f(x)dx is well de-�ned and equal to Pli=0 Ii(f).Remark 9. If C(�) has ountably many non aumulating points fxigi2N,the same method yields RRN e i~�(x)f(x)dx =P1i=0 Ii(f) provided this sum on-verges.There are partial extensions of the above onstrution in the ase of ritialpoints whih form a submanifold in RN [56℄, or are degenerate [24℄, see also[44℄.Remark 10. In partiular we have proved the existene for f 2 S1� , 0 < � �1, of the osillatory integrals R eixMf(x)dx, with M arbitrary. For M = 2 onehas the Fresnel integral of [13℄, for M = 3 one has Airy integrals [65℄.Remark 11. If � is of the form (5.3), then the generalized Fresnel integral(4.4) also exists, even in Lebesgue sense, for ~ 2 C with Im(~) < 0, as ananalyti funtion in ~, as easily seen by the fat that the integrand is boundedby jf j exp( Im(~)j~j2 �).4.2 Generalized Parseval equality and analytiontinuationIn this setion we prove that, for a suitable lass of funtions f : RN ! C ,the generalized Fresnel integral (4.4) an be expliitly omputed by means ofa generalization of formula (4.2).Lemma 5. Let P : RN ! R be given by (5.3). Then the Fourier transform ofthe distribution e i~P (x):~F (k) = ZRN eik�xe i~P (x)dx; ~ 2 R n f0g (4.7)is an entire bounded funtion and admits the following representation:~F (k) = eiN�=4M ZRN eiei�=4Mk�xe i~P (ei�=4Mx)dx; ~ > 0 (4.8)or ~F (k) = e�iN�=4M ZRN eie�i�=4Mk�xe i~P (e�i�=4Mx)dx; ~ < 0 (4.9)63



Remark 12. The integral on the r.h.s. of (4.8) is absolutely onvergent ase i~P (ei�=4Mx) = e� 1~A2M (x;:::;x)e i~ (A2M�1(ei�=4Mx;:::;ei�=4Mx)+:::+A1(xei�=4M )+A0):A similar alulation shows the absolute onvergene of the integral on ther.h.s. of (4.9).Proof. (of lemma 5) Formulas (4.8) and (4.9) an be proved by using the ana-lytiity of ekz+ i~P (z), z 2 C , and a hange of integration ontour (see appendixA for more details). Representations (4.8) and (4.9) show the analytiityproperties of ~F (k), k 2 C . By a study of the asymptoti behavior of ~F (k)as jkj ! 1 we onlude that ~F is always bounded (see appendix A for moredetails).Remark 13. A representation similar to (4.8) holds also in the more generalase ~ 2 C , Im(~) < 0, ~ 6= 0. By setting ~ � j~jei�, � 2 [��; 0℄ one has:~F (k) = ZRN eik�xe i~P (x)dx == eiN(�=4M+�=2M) ZRN eiei(�=4M+�=2M)k�xe i~P (ei(�=4M+�=2M)x)dx (4.10)(see appendix A for more details).By mimiking the proof of equation (4.8) (appendix A) one an prove inthe ase ~ > 0 the following result (a similar one holds also in the ase ~ < 0):Theorem 17. Let us denote by � the subset of the omplex plane� = f� 2 C j 0 < arg(�) < �=4Mg � C ; (4.11)and let �� be its losure. Let f : RN ! C be a Borel funtion de�ned for all yof the form y = �x, where � 2 �� and x 2 RN , with the following properties:1. the funtion � 7! f(�x) is analyti in � and ontinuous in �� for eahx 2 RN , jxj = 1,2. for all x 2 RN and all � 2 (0; �=4M)jf(ei�x)j � AG(x);where A 2 R and G : RN ! R is a positive funtion satisfying bound (a)or (b) respetively: 64



(a) if P is as in the general ase de�ned by (5.3)G(x) � eBjxj2M�1 ; B > 0(b) if P is homogeneous, i.e. P (x) = A2M(x; : : : ; x),G(x) � e sin(2M�)~ A2M (x;x;:::;x)g(jxj);where g(t) = O(t�(N+Æ)), Æ > 0, as t!1.Then the limit of regularized integrals:lim�#0 Z e i~P (xei�)f(xei�)dx; 0 < � < �=4M; ~ > 0is given by: eiN�=4M ZRN e i~P (ei�=4Mx)f(ei�=4Mx)dx (4.12)The latter integral is absolutely onvergent and it is understood in Lebesguesense.The lass of funtions satisfying onditions (1) and (2) in theorem 17 in-ludes for instane the polynomials of any degree and the exponentials. Inthe ase f 2 Sn� for some n; �, one is tempted to interpret expression (4.12)as an expliit formula for the evaluation of the generalized Fresnel integralR e i~P (x)f(x)dx, ~ > 0, whose existene is assured by theorem 16. This is,however, not neessarily true for all f 2 S1� satisfying (1) and (2). Indeedthe de�nition 9 of osillatory integral requires that the limit of the sequeneof regularized integrals exists and is independent on the regularization. Theidentitylim�!0ZRN e i~P (x)f(x) (�x)dx = eiN�=4M ZRN e i~P (ei�=4Mx)f(ei�=4Mx)dx; ~ > 0an be proved only by hoosing regularizing funtions  with  (0) = 1 and in the lass � onsisting of all  2 S whih satisfy (1) and are suh thatj (ei�x)j is bounded as jxj ! 1 for eah � 2 (0; �=4M). In fat we will provethat expression (4.12) oinides with the osillatory integral (4.4), i.e. one antake � = S(RN ), by imposing stronger assumptions on the funtion f . Firstof all we show that the representation (4.8) for the Fourier transform of e i~P (x)allows a generalization of equation (4.2). Let us denote by �D � C the lowersemiplane in the omplex plane�D � fz 2 C j Im(z) � 0g (4.13)65



Theorem 18. Let f 2 F(RN ), f = �̂f . Then the generalized Fresnel integralI(f) � ZRN e i~P (x)f(x)dx; ~ 2 �D n f0gis well de�ned and it is given by the formula of Parseval's type:ZRN e i~P (x)f(x)dx = ZRN ~F (k)�f(dk); (4.14)where ~F (k) is given by (4.10) (see lemma 5 and remark 13)~F (k) = ZRN eikxe i~P (x)dxThe integral on the r.h.s. of (4.14) is absolutely onvergent (hene it an beunderstood in Lebesgue sense).Proof. Let us hoose a test funtion  2 S(RN ), suh that  (0) = 1 and letus ompute the limit I(f) � lim�#0 ZRN e i~P (x) (�x)f(x)dxBy hypothesis f(x) = RRN eikx�f(dk), x 2 RN , and substituting in the previousexpression we get :I(f) = lim�#0 ZRN e i~P (x) (�x)� ZRN eikx�f(dk)�dx:By Fubini theorem (whih applies for any � > 0 sine the integrand is boundedby j (�x)j whih is dx-integrable, and �f is a bounded measure) the r.h.s. is= lim�#0 ZRN �ZRN e i~P (x) (�x)eikxdx��f(dk)= 1(2�)N lim�#0 ZRN ZRN ~F (k � ��) ~ (�)d��f(dk) (4.15)(here we have used the fat that the integral with respet to x is the Fouriertransform of e iP (x)~  (�x) and the inverse Fourier transform of a produt isa onvolution). Now we an pass to the limit using the Lebesgue boundedonvergene theorem and get the desired result:lim�#0 ZRN e i~P (x) (�x)f(x)dx = ZRN ~F (k)�f(dk);where we have used that R ~ (�)d� = (2�)N (0) and lemma 5, whih assuresthe boundedness of ~F (k). 66



Corollary 1. Let ~ = j~jei�, � 2 [��; 0℄, ~ 6= 0, f 2 F(RN ), f = �̂f be suhthat 8x 2 RN ZRN e�kx sin(�=4M+�=2M)j�f j(dk) � AG(x); (4.16)where A 2 R and G : RN ! R is a positive funtion satisfying bound (1) or(2) respetively:1. if P is de�ned by (5.3),G(x) � eBjxj2M�1 ; B > 02. if P is homogeneous, i.e. P (x) = A2M(x; : : : ; x):G(x) � e 1~A2M (x;x;:::;x)g(jxj);where g(t) = O(t�(N+Æ)), Æ > 0, as t!1.Then f extends to an analyti funtion on C N and its generalized Fresnelintegral (4.4) is well de�ned and it is given byZRN e i~P (x)f(x)dx = eiN(�=4M+�=2M) ZRN e i~P (ei(�=4M+�=2M)x)f(ei(�=4M+�=2M)x)dxProof. By bound (4.16) it follows that the Laplae transform fL : C N ! C ,fL(z) = RRN ekz�f(dk), of �f is a well de�ned entire funtion suh that, forx 2 RN , fL(ix) = f(x). By theorem 18 the generalized Fresnel integral anbe omputed by means of the Parseval type equalityZRN e i~P (x)f(x)dx = ZRN ~F (k)�f(dk) == eiN(�=4M+�=2M) ZRN �ZRN eikxei(�=4M+�=2M)e i~P (ei(�=4M+�=2M)x)dx��f(dk)By Fubini theorem, whih applies given the assumptions on the measure �f ,this is equal toeiN(�=4M+�=2M) ZRN e i~P (ei(�=4M+�=2M)x) ZRN eikxei(�=4M+�=2M)�f(dk)dx == eiN(�=4M+�=2M) ZRN e i~P (ei(�=4M+�=2M)x)fL(iei(�=4M+�=2M)x)dx= eiN(�=4M+�=2M) ZRN e i~P (ei(�=4M+�=2M)x)f(ei(�=4M+�=2M)x)dxand the onlusion follows. 67



4.3 Asymptoti expansionIn this setion we study the asymptoti expansion of the generalized Fresnelintegrals (4.4) in the partiular ase where the phase funtion �(x) is homo-geneous and stritly positive:�(x) = A2M (x; : : : ; x);where A2M : RN � RN � � � � � RN ! R is a ompletely symmetri stritlypositive 2Mth�order ovariant tensor on RN . Under suitable assumptions onthe funtion f , we prove either the onvergene or the Borel summability ofthe asymptoti expansion. In the general ase one would have to onsiderthe type of degeneray of the phase funtion, f. [24, 56, 13, 4℄. We leavethe investigation of the orresponding expansions in our setting for a furtherpubliation.Let us assume �rst of all N = 1 and study the asymptoti behavior of theintegral: Z 1�1 eix2M~ f(x)dx; ~ 2 �D n f0gTheorem 19. Let us onsider a funtion f 2 F(R), whih is the Fouriertransform of a bounded variation measure �f on the real line satisfying thefollowing bounds for all l 2 N, � 2 R+ , ~ 2 �D n f0g:1. Z jkj2ljeik~1=2M�ei�=4M + e�ik~1=2M�ei�=4M jj�f j(dk) � F (l)g(�)ejxj2M�1;where  2 R, F (l) is a onstant depending on l, g : R ! R is a smoothfuntion of polynomial growth as �! +12. j Z k2l(eik~1=2M �ei�=4M + e�ik~1=2M�ei�=4M )�f(dk)j � AlC(l;M);where A; ; C(l;M) 2 R.Then the generalized Fresnel integralI(~) � ZR e i~x2Mf(x)dx; ~ 2 �D n f0g(with �D given by (4.13)) admits the following asymptoti expansion in powersof ~1=M :I(~) = ei �4M ~1=2MM n�1Xj=0 ei j�2M2j! ~j=M��1 + 2j2M �f (2j)(0) +Rn(~) (4.17)68



with jRn(~)j � j~j1=2M2M Anj~jn=M C(n;M)2n! ��1+2n2M � (where A; ; C(n;M) are theonstants in (2)). If the onstant C(n;M) satis�es the boundC(n;M) � (2n)!��1 + 2n2M ��1; 8n 2 N (4.18)then the series given by (4.17) for n!1 has a positive radius of onvergene,while if C(n;M) � (2n)!��1 + nM ���1 + 2n2M ��1; 8n 2 N (4.19)then the expansion (4.17) is Borel summable in the sense of, e.g., [84, 62℄ anddetermines I(~) uniquely.Moreover if f 2 F(R) instead of (1), (2) satis�es the following \momentondition": Z j�jlj�f j(d�) � C 0(l;M)Al; A;  2 R: (4.20)for all l 2 N, where C 0(l;M) � ��l�1� 12M�� as l!1 (where � means thatthe quotient of the two sides onverges to 1 as l ! 1), then the asymptotiexpansion (4.17) has a �nite radius of onvergene.Proof. First of all we reall that the integral R e ix2M~ f(x)dx is a well de�nedonvergent integral also for all ~ 2 C with Im(~) < 0, thanks to the exponen-tial deay of e i~x2M and to the boundedness of f (f Remark 11). Moreover itis an analyti funtion of the variable ~ 2 C in the domain Im(~) < 0 as onean diretly verify the Cauhy-Riemann onditions.Let us ompute the asymptoti expansion of this integral, onsidered as afuntion of ~ 2 C , valid for ~ 2 �D n f0g.By formula(4.14) we haveZR e i~x2Mf(x)dx = ~1=2M Z ~F2M (~1=2Mk)�f(dk); (4.21)where, if ~ = j~jei�, � 2 [��; 0℄, ~1=2M = j~j1=2Mei�=2M and ~F2M(k) =RR eikxeix2Mdx, whih, for lemma 5, is equal to ~F2M = ei �4M RR eikxei �4M e�x2Mdx.Suh a representation assures the analytiity of ~F2M . We an now expand~F2M(~1=2Mk) in a onvergent power series in ~1=2Mk around ~ = 0:F2M (~1=2Mk) = 1Xn=0 F (n)2M (0)n! ~n=2Mkn:69



The nth�derivative of F2M an be expliitly evaluated by means of the repre-sentation (5.6):~F (n)2M (0) = ei(n+1)�=4M (i)n(1 + (�1)n) Z 10 �ne��2Md�that is F (n)(0) = 0 if n is odd, while if n is even we have~F (2j)(0) = 2ei(2j+1)�=2M (�1)j Z 10 �2je��2Md�:By means of a hange of variables one an ompute the latter integral expli-itly: Z 10 �2je��2Md� = 12M Z 10 e�tt 1+2j2M �1dt = 12M ��1 + 2j2M �:By substituting into (4.21) we get:I(~) = ~1=2MM n�1Xj=0 12j!ei(2j+1)�=2M��1 + 2j2M �(�1)j~j=M Z (k)2j�f(dk) +Rn == ~1=2MM n�1Xj=0 12j!ei(2j+1)�=2M��1 + 2j2M �~j=Mf (2j)(0) +Rn (4.22)whereRn = ~1=2MM Z Xj�n 12j!ei(2j+1)�=2M��1 + 2j2M �(�1)j~j=M(k)2j�f(dk):If assumption (4.20) is satis�ed, one an verify by means of Stirling's formulathat the series (4.22) of powers of ~1=M has a �nite radius of onvergene.In the more general ase in whih assumptions (1),(2) are satis�ed, we annevertheless prove a suitable estimate for Rn, indeed:Rn = 2~1=2Mei�=2M Z Xj�n(�1)j 12j!eij�=M Z 10 �2je��2Md�~j=Mk2j�f(dk) == ~1=2Mei�=2Mein�=2M 12n� 1!~n=MZ k2n Z 10 �2n Z 10 (1�t)(2n�1)(eik�t~1=2M ei�=4M+e�ik�t~1=2M ei�=4M )dte��2Md��f(dk):(4.23)By Fubini theorem and assumptions (1) and (2) we get the uniform estimatein ~: jRnj � j~j1=M2M AnC(n;M)2n! ��1 + 2n2M �j~jn=M :70



If assumption (4.18) is satis�ed, then the latter beomesjRnj � j~j1=M2M Anj~jn=M ;and the series has a positive radius of onvergene, while if assumption (4.19)holds, we get the estimatejRnj � j~j1=M2M An��1 + nM �j~jn=M :This and the analytiity of I(~) in Im(~) < 0 by Nevanlinna theorem [84℄assure the Borel summability of the power series expansion (4.17).These results an be easily generalized to the study of N�dimensional osil-latory integrals:IN(~) � ZRN e i~A2M (x;:::;x)f(x)dx; ~ 2 �D n f0g (4.24)with A2M a ompletely symmetri 2Mth-order ovariant tensor on RN suhthat A2M (x; : : : ; x) > 0 unless x = 0.Theorem 20. Let f 2 F(RN ) be the Fourier transform of a bounded variationmeasure �f admitting moments of all orders.Let us suppose f satis�es the following onditions, for all l 2 N:1. ZRN jkxjle�kxj�f j(dk) � F (l)g(jxj)ejxj2M�1; 8x 2 RN ;where  2 R, F (l) is a positive onstant depending on l, g : R+ ! R isa positive funtion with polynomial growth.2. j ZRN (ku)leik�u~1=2M ei�=4M�f (dk)j � AlC(l;M;N)for all u 2 SN�1, � 2 R+ , ~ 2 �D n f0g, where A; ; C(l;M;N) 2 R (andSN�1 is the (N � 1)-spherial hypersurfae of radius 1 and entered atthe origin).then the osillatory integral (4.24) admits (for ~ 2 �D n f0g) the followingasymptoti expansion in powers of ~1=2M :IN(~) = ~N=2M eiN�=4M2M n�1Xl=0 (i)ll! (ei�=4M)l~l=2M�� l +N2M �ZRN ZSN�1(ku)lP (u)� l+N2M d
N�1�f(dk) +Rn; (4.25)71



with jRnj � A0j~jn=2M(0)n C(n;M;N)n! ��n+N2M � where A0; 0 2 R are suitable on-stants and C(n;M;N) is the onstant in (2). If C(n;M;N) satis�es the fol-lowing bound: C(n;M;N) � n!��n+N2M ��1 (4.26)then the series has a positive radius of onvergene, while ifC(n;M;N) � n!��1 + n2M ���n +N2M ��1 (4.27)then the expansion is Borel summable in the sense of, e.g. [84, 62℄ and deter-mines I(~) uniquely.Moreover if f 2 F(RN ) instead of (1) and (2) satis�es the following momentondition: ZRN j�jlj�f j(d�) � C 0(l;M)Al; A;  2 R; (4.28)for all l 2 N, where C 0(l;M) � ��l�1� 12M�� as l!1, then the asymptotiexpansion has a �nite radius of onvergene.Proof. Let ~F (k) � RRN eikxeiA2M (x;:::;x)dx, then by theorem 21 the osillatoryintegral (4.24) is given by:ZRn e i~A2M (x;:::;x)f(x)dx = ~N=2M ZRN ~F (~1=2Mk)�f(dk) (4.29)By lemma 5 ~F is given by~F (~1=2Mk) = eiN�=4M ZRN ei~1=2Mkxei�=4Me�A2M (x;:::;x)dxWhere, if ~ = j~jei�, � 2 [��; 0℄, ~1=2M = j~j1=2Mei�=2M . By representing thelatter absolutely onvergent integral using polar oordinates in RN we get:~F (~1=2Mk) = eiN�=4M ZSN�1 Z 10 ei~1=2M ei�=4M�kue��2MA2M (u;:::;u)�N�1d�d
N�1where d
N�1 is the Riemann-Lebesgue measure on the N � 1-dimensionalspherial hypersurfae SN�1, x = �u, � = jxj, u 2 SN�1 is a unitary vetor.72



We an expand the latter integral in a power series of ~1=2M :~F (~1=2Mk) == eiN�=4M ZSN�1 Z 10 1Xl=0 (i)ll! (ei�=4M )l~l=2M�l(ku)le��2MA2M (u;:::;u)�N�1d�d
N�1 == eiN�=4M 1Xl=0 (i)ll! (ei�=4M )l~l=2M ZSN�1(ku)l Z 10 �l+N�1e��2MA2M (u;:::;u)d�d
N�1 == eiN�=4M2M 1Xl=0 (i)ll! (ei�=4M )l~l=2M�� l +N2M � ZSN�1(ku)lP (u)� l+N2M d
N�1(4.30)where P (u) � A2M (u; : : : ; u) is a stritly positive ontinuous funtion on theompat set SN�1, so that it admits an absolute minimum denoted by m. Thisgivesj ZSN�1(ku)lP (u)� l+N2M d
N�1j � jkjlm� l+N2M 
N�1(SN�1) = jkjlm� l+N2M 2�N=2��N2 ��1(4.31)The latter inequality and the Stirling formula assure the absolute onvergeneof the series (4.30). We an now insert this formula into (4.29) and get:ZRn e i~A2M (x;:::;x)f(x)dx == ~N=2M eiN�=4M2M n�1Xl=0 (i)ll! (ei�=4M )l~l=2M�� l +N2M �ZRN ZSN�1(ku)lP (u)� l+N2M d
N�1�f(dk) +Rn (4.32)By estimate (4.31) and Stirling's formula one an easily verify that if assump-tion (4.28) is satis�ed, then the latter series in powers of ~1=2M has a stritlypositive radius of onvergene.Equation (4.32) an also be written in the following form:ZRn e i~A2M (x;:::;x)f(x)dx == ~N=2M eiN�=4M2M n�1Xl=0 1l! (ei�=4M)l~l=2M�� l +N2M �ZSN�1 P (u)� l+N2M �l�ul f(0)d
N�1 +Rn (4.33)73



where �l�ulf(0) denotes the lth partial derivative of f at 0 in the diretion u,andRn = ~N=2MeiN�=4M ZRN ZSN�1 Z 10 1Xl=n (i)ll! (ei�=4M )l~l=2M�l(ku)le��2MA2M (u;:::;u)�N�1d�d
N�1�f(dk): (4.34)In the more general ase in whih assumptions (1) and (2) are satis�ed we anprove the asymptotiity of the expansion (4.32), indeedRn = ~N=2MeiN�=4M (i)nn� 1!(ei�=4M)n~n=2M ZRN ZSN�1 Z 10Z 10 (1� t)n�1eiku�t~1=2M ei�=4Me��2MA2M (u;:::;u)(ku)n�n+N�1dtd�d
N�1�f(dk)(4.35)By assumptions (1), (2) and Fubini theorem the latter is bounded byjRnj � AM �N=2��N2 ��1j~j(n+N)=2Mnm�n+N2M C(n;M;N)n! ��n +N2M �If assumption (4.26) is satis�ed, then the latter beomesjRnj � AM�N=2��N2 ��1j~j(n+N)=2Mnm�n+N2Mand the series has a positive radius of onvergene, while if assumption (4.27)holds, we get the estimatejRnj � AM �N=2��N2 ��1j~j(n+N)=2Mnm�n+N2M ��1 + n2M �:This and the analytiity of the IN(~) in Im(~) < 0 (f. Remark 11) by Nevan-linna theorem [84℄ assure the Borel summability of the power series expansion(4.17).
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Chapter 5Feynman path integrals forpolynomially growing potentialsIn the �rst three hapters we have seen that the in�nite dimensional osillatoryintegrals are a powerful tool and an be used to give a rigorous mathematialmeaning to a large lass of \Feynman path integral representations". In setion1.3 we have seen the appliation to the the Shr�odinger equation with ananharmoni osillator potentialV (x) = 12x �
2x + V1(x); (5.1)where 
2 is a positive de�nite symmetri d � d matrix and V1 is the Fouriertransform of a omplex bounded variation measure on Rd . In hapter 2 the\phase spae Feynman path integrals" give a representation of the solution ofa Shr�odinger equation in whih the potential depends both on position and onmomentum. In hapter 3 the solution of a lass of stohasti Shr�odinger equa-tion is represented by an in�nite dimensional osillatory integral with omplexphase.The main problem of these tehniques is the fat that the lass of unboundedpotentials for whih a Feynman path integral representation for the solutionof the orresponding Shr�odinger equation exists is not very rih. Indeed theperturbation V1 to the harmoni osillator potential in equation (5.1) has tobelong to the lass of Fourier transforms of measures, so that is bounded. It ispossible to deal with linear potentials V2(x) = Cx (see remark 1 in setion 1.3)and extension to Laplae transforms of measures has been given in [6, 74℄, buteven this approah does not over the ase of potentials whih are polynomialsof degree larger than two.In this hapter we give a partial solution to this problem and develop a Feyn-man path integral representation for the solution of the Shr�odinger equation75



for an anharmoni osillator potential of the typeV (x) = 12x � 
2x+ �C(x; x; x; x); (5.2)where C is a ompletely symmetri positive fourth order ovariant tensor on Rdand � � 0 is a oupling onstant. If d = 1, (5.2) redues to V (x) = 12
2x2+�x4.In the �rst and in the seond setions we extend the lass of funtions for whiha generalized in�nite dimensional osillatory integral an be omputed andprove a Parseval type equality. In addition we propose an analyti ontinua-tion formula whih shows a diret onnetion between the in�nite dimensionalosillatory integral and the Wiener integral. In the third setion we onsiderthe Shr�odinger equation for a d- dimensional quantum partile under the a-tion of the anharmoni osillator potential (5.2), we give a funtional integralrepresentation for the solution of the orresponding Shr�odinger equation andshow that the so de�ned funtional is analyti in the oupling onstant � 2 Cfor Im(�) < 0, ontinuous for � 2 R and oinides for � � 0 with a well de�nedin�nite dimensional osillatory integral. We prove moreover the Borel summa-bility of the asymptoti Dyson expansion (in powers of the oupling onstant�) for the salar produt h�; e�i t~H 0i, where H is the quantum mehanialHamiltonian H = �~22 + V and �;  0 2 L2(Rd) are suitable vetors.5.1 A generalized osillatory integralIn this setion and in the following one, by means of the tehniques of hapter4, we shall generalize formulas (1.5) and (1.11) to a larger lass of phasefuntions.Let us deal �rst of all with the �nite dimensional ase, i.e. dim(H) = N . LetA : H � H � H � H ! R be a ompletely symmetri and positive fourthorder ovariant tensor on H. After the introdution of an orthonormal basisin H, the elements x 2 H an be identi�ed with N�ple of real numbers,i.e. x = (x1; : : : ; xN ), and the ation of the tensor A on the 4-ple (x,x,x,x)is represented by an homogeneous fourth order polynomial in the variablesx1; : : : ; xN : P (x) = A(x; x; x; x) = Xj;k;l;maj;k;l;mxjxkxlxm (5.3)with aj;k;l;m 2 R.We are going to de�ne the following generalized Fresnel integral:fZ e i2~x�(I�B)xe�i�~ P (x)f(x)dx (5.4)76



where I; B are N �N matries, I being the identity, � 2 R, f 2 F(RN ) and~ > 0.Lemma 6. Let P : RN ! R be given by (5.3). Then the Fourier transform ofthe distribution e i2~ x�(I�B)x(2�i~)N=2 e�i�~ P (x):~F (k) = ZRN eik�x e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x)dNx (5.5)is a bounded omplex-valued entire funtion on RN admitting, if A is stritlypositive, the following representations~F (k) = 8><>: eiN�=8 RRN eiei�=8k�x e iei�=42~ x�(I�B)x(2�i~)N=2 e�~P (x)dNx � < 0e�iN�=8 RRN eie�i�=8k�x e ie�i�=42~ x�(I�B)x(2�i~)N=2 e��~P (x)dNx � > 0 (5.6)Moreover, for general A � 0, if � � 0 and (I�B) is symmetri stritly positivethen ~F (k) an also be represented by~F (k) = ZRN eiei�=4k�xe� 12~x�(I�B)x(2�~)N=2 e i�~ P (x)dNx = E [eiei�=4k�xe i�~ P (x)e 12~x�Bx℄ (5.7)where E denotes the expetation value with respet to the entered Gaussianmeasure on RN with ovariane operator ~I.Proof. For the proof of the representation (5.6) and of the boundedness of ~Fsee hapter 4, where a more general ase is handled. From the representations(5.6) and (5.7) the analytiity of ~F (k), k 2 C N follows immediately.Let us here prove representation (5.7) in the partiular ase B = 0 and P ofthe speial form P (x) =PNj=1 ajx4j , with aj � 0. This is suÆient to show themain ideas of the proof, the general ase is handled in appendix A.In this ase one has to study the following integral on the real line:Ij(kj) � ZR eikjxj e i2~x2j(2�i~)1=2 e�i�~ ajx4jdxj; k = (k1; : : : ; kN); kj 2 Rand then one has ~F (k) = NYj=1 Ij(kj):Moreover, as e i2~x2je�i�~ ajx4j is an even funtion, we have Ij(kj) = Ij;+(kj) +Ij;+(�kj), with Ij;+(kj) = Z 10 eikjxj e i2~x2j(2�i~)1=2 e�i�~ ajx4jdxj77



In the following we will parametrize a omplex number z 2 C by means of itsmodulus � and its phase � 2 [0; 2�), i.e. z = �ei�.Sine the integrand in Ij;+(kj) is osillating, a priori it is not lear that Ij;+(k)exists, even as an improper Riemann integral. For this reason we look atthe orresponding integral in the upper halfplane of C with a \regularizingparameter" 0 < � < �=4, whih we send to zero at the end. For eah R > 0let us onsider the losed path in the omplex plane omposed by three piees:1; 2; 3, where 1(R) = fz 2 C j 0 � � � R; � = �g2(R) = fz 2 C j � = R; � � � � �=4g3(R) = fz 2 C j 0 � � � R; � = �=4gfor some small 0 < � < �=4. From the analytiity of zj 7! eikjzje i2~ z2j e�i�~ ajz4j ,kj 2 C , and the Cauhy theorem we have:Z1[2[3 eikjzje i2~ z2j e�i�~ ajz4j dzj = 0;that isZ1 eikjzje i2~ z2j e�i�~ ajz4j dzj + iR Z �=40 eikjRei�e i2~R2e2i�e�i�~ ajR4e4i�ei�d�+� ei�=4 Z R0 eikj�ei�=4e i2~ �2ei�=2ei�~ aj�4d� = 0 (5.8)Now we take the limit as R ! +1. The seond integral onverges to 0, asit is easy to verify by using the methods presented in appendix A. Hene wehave: limR!1Z1 eikjzje i2~ z2j e�i�~ ajz4j dzj = ei�=4 Z 10 eikj�ei�=4e i2~ �2ei�=2ei�~aj�4d�:The r.h.s. is independent of �, hene the limit of the l.h.s. for � # 0 (� enteringin the de�nition of 1(R)) also exists and is equal to the r.h.s.So we get :Ij;+(kj) = ei�=4 Z 10 eikj�ei�=4 1p2�i~e i2~ �2ei�=2e�i�~ aj�4ei�d�= Z 10 eikj�ei�=4 1p2�~e��22~ e i�~ aj�4d� (5.9)so that (with k = (k1; :::; KN);2 RN~F (k) = NYj=1(Ij;+(kj) + Ij;+(�kj)) = ZRN eiei�=4k�xei�~P (x) e� 12~x�x(2�~)N=2dnx == E [eiei�=4k�xei�~P (x)℄ (5.10)78



(where E is the expetation with respet to the Gaussian measure on RN ofmean zero and variane ~2I).Remark 14. A areful reading of this proof shows that the seond part ofthe statement, that is representation (5.7), is valid if and only if the degreeof P is 4, but annot be generalized to polynomial funtions of higher (even)degree. In fat the proof is based on the analytiity of the integrand and on adeformation of the ontour of integration into a region of the omplex plane inwhih the real part of the leading term of the polynomial, that is of Re(�i�az4),is negative, where � < 0, a > 0. By setting z = �ei� one an immediately verifythat this ondition is satis�ed if and only if 0 � � � �=4. By onsidering apolynomial of higher even degree 2M this ondition beomes 0 � � � �=2M andif M > 2 the angle � = �=4 is no longer inluded. This angle is fundamentalas the osillatory funtion e i2~ z2(2�i~)1=2 evaluated in z = �ei�=4 gives e�i�=4 e��22~(2�~)1=2 ,that is the density of the normal distribution with mean zero and variane ~2,multiplied by the fator e�i�=4. These onsiderations also show the neessity ofonsidering � � 0.Remark 15. We note that to have � = 0 is equivalent to take P = 0. In thisase by a deformation of the integration ontour one has immediately:ZRN eik�x e i2~x�x(2�i~)N=2dNx == ZRN eik�xei�=4 e�x�x2~(2�~)N=2dNx = E [eik�xei�=4 ℄ = e�i~2 k�k: (5.11)We are going to apply these results to the de�nition of the generalizedFresnel integral (5.4).Theorem 21. (\Parseval equality") Let f 2 F(RN ), f = �̂f . Then thegeneralized Fresnel integralI(f) � gZRNe i2~x�(I�B)xe�i�~ P (x)f(x)dxis well de�ned and it is given by:gZRN e i2~x�(I�B)xe�i�~ P (x)f(x)dx = ZRN ~F (k)�f(dk); (5.12)where ~F (k) is given by equation (5.6) if A in (5.3) is stritly positive, or byequation (5.7) if A � 0, � � 0 and (I � B) is symmetri stritly positive.The integral on the r.h.s. of (5.12) is absolutely onvergent (hene it an beunderstood in Lebesgue sense). 79



Proof. Let us hoose a test funtion  2 S(RN ), suh that  (0) = 1 and letus ompute the limitI(f) � lim�#0 ZRN e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x) (�x)f(x)dxBy hypothesis f(x) = �̂f (x) = RRN eikx�f(dk) and substituting into the previ-ous expression we get :I(f) = lim�#0 ZRN e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x) (�x) ZRN eikx�f(dk)dx:By Fubini theorem (whih applies for any � > 0 sine the integrand is boundedby j (�x)j whih is dx-integrable, and �f is a bounded measure) the r.h.s. is= lim�#0 ZRN �ZRN e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x) (�x)eikxdx��f(dk)= 1(2�)N lim�#0 ZRN ZRN ~F (k � ��) ~ (�)d��f(dk) (5.13)(here we have used the fat that the integral with respet to x is the Fouriertransform of e i2~ x�(I�B)x(2�i~)N=2 e�i�~ P (x) (�x) and the inverse Fourier transform of aprodut is a onvolution). Now we an pass to the limit using the Lebesguebounded onvergene theorem and get the desired result:lim�#0 ZRN e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x) (�x)f(x)dx = ZRN ~F (k)�f(dk);where we have used that R ~ (�)d� = (2�)N (0) and lemma 6, whih assuresthe boundedness of ~F .Corollary 2. Let (I � B) be symmetri and stritly positive, � � 0 and f 2F(RN ), f = �̂f suh that 8x 2 RN the integral R e�p22 kxj�f j(dk) is onvergentand the positive funtion g : Rn ! R, de�ned by g(x) = e 12~x�Bx R e�p22 kxj�f j(dk)is summable with respet to the entered Gaussian measure on RN with ovari-ane ~I.Then f extends to an analyti funtion on C N and the orresponding general-ized Fresnel integral is well de�ned and it is given byfZ RN e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x)f(x)dx = E [e i�~ P (x)e 12~x�Bxf(ei�=4x)℄: (5.14)80



Proof. By the assumption on the measure �f it follows that its Laplae trans-form fL : C N ! C , fL(z) = RRN ekz�f(dk), is a well de�ned entire funtionsuh that fL(ix) = f(x), x 2 RN . By theorem 21 the generalized Fresnelintegral an be omputed by means of Parseval equalityfZ RN e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x)f(x)dx = ZRN ~F (k)�f(dk) == ZRN E [eikxei�=4 e 12~x�Bxe i�~ P (x)℄�f(dk)By Fubini theorem, whih applies given the assumptions on the measure �f ,this is equal toE [e 12~x�Bxe i�~ P (x) ZRN eikxei�=4�f(dk)℄ = E [e 12~x�Bxe i�~ P (x)fL(iei�=4x)℄ == E [e 12~x�Bxe i�~ P (x)f(ei�=4x)℄ (5.15)and the onlusion follows.Remark 16. The latter theorem shows that, under suitable assumptions onthe funtion f , the generalized Fresnel integral (5.4) an be expliitly omputedby means of a Gaussian integral. By mimiking the proof of lemma 6 one anbe tempted to generalize equation (5.14) to a larger lass of funtions, that areanalyti in a suitable region of C N , but do not belong to F(RN ) (see in hapter4 the omment following theorem 17 for more details). In fat this is notpossible, as the de�nition 9 of osillatory integral requires that the limit of thesequene of regularized integrals exists and is independent of the regularization.Let us onsider the subset of the omplex plane� = f� 2 C j 0 < arg(�) < �=4g � C ; (5.16)and let �� be its losure. The identitylim�!0Z ZRN e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x)f(x) (�x)dx = E [e 12~x�Bxe i�~ P (x)f(ei�=4x)℄(with (I � B) symmetri stritly positive and � � 0) an only be proved byhoosing a regularizing funtion  2 S,  (0) = 1, suh that the funtionz 7!  (zx) is analyti for z 2 � and ontinuous for z 2 �� for eah x 2 RN .Moreover one has to assume that j (ei�x)j is bounded as jxj ! 1 for eah� 2 (0; �=4). 81



5.2 In�nite dimensional generalized osillatoryintegralsLetH be a real separable in�nite dimensional Hilbert spae, with inner produth ; i and norm j j. Let � be the �nitely additive ylinder measure onH, de�nedby its harateristi funtional �̂(x) = e�~2 jxj2. Let k k be a \measurable" normon H, that is k k is suh that for every � > 0 there exist a �nite-dimensionalprojetion P� : H ! H, suh that for all P ? P� one has�(fx 2 Hj kP (x)k > �g) < �;where P and P� are alled orthogonal (P ? P�) if their ranges are orthogonalin (H; h ; i). One an easily verify that k k is weaker than j j. Denoted by Bthe ompletion of H in the k k-norm and by i the ontinuous inlusion of Hin B, one an prove that � � � Æ i�1 is a ountably additive Gaussian measureon the Borel subsets of B. The triple (i;H;B) is alled an abstrat Wienerspae [61, 75℄. Given y 2 B� one an easily verify that the restrition of y toH is ontinuous on H, so that one an identify B� as a subset of H. MoreoverB� is dense in H and we have the dense ontinuous inlusions B� � H � B.Eah element y 2 B� an be regarded as a random variable n(y) on (B; �). Adiret omputation shows that n(y) is normally distributed, with ovarianejyj2. More generally, given y1; y2 2 B�, one hasZB n(y1)n(y2)d� = hy1; y2i:The latter result allows the extension to the map n : H ! L2(B; �), beauseB� is dense in H. Given an orthogonal projetion P in H, withP (x) = nXi=1 hei; xieifor some orthonormal e1; : : : ; en 2 H, the stohasti extension ~P of P on B iswell de�ned by ~P ( � ) = nXi=1 n(ei)( � )ei:Given a funtion f : H ! B1, where (B1; k kB1) is another real separableBanah spae, the stohasti extension ~f of f to B exists if the funtionsf Æ ~P : B ! B1 onverge to ~f in probability with respet to � as P onvergesstrongly to the identity in H. If g : B ! B1 is ontinuous and f := gjH, thenone an prove [61℄ that the stohasti extension of f is well de�ned and it isequal to g ��a.e. In this setting it is possible to extend the results of the82



previous setion to the in�nite dimensional ase.Let A : H�H�H�H ! R be a ompletely symmetri positive ovariant tensoroperator on H suh that the map V : H ! R+ , x 7! V (x) � A(x; x; x; x) isontinuous in the k k norm. As a onsequene V is ontinuous in the j j-norm, moreover it an be extended by ontinuity to a random variable �V onB, with �V jH = V . By the previous onsiderations, the stohasti extension~V of V : H ! R exists and oinides with �V : B ! R ��a.e. Moreover forany inreasing sequene of n�dimensional projetors Pn in H, the family ofbounded random variables ei�~V Æ ~Pn( � ) � ei�~V n( � ) onverges ��a.e. to ei�~ �V ( � ).In addition, for any h 2 H the sequene of random variablesnXi=1 hin(ei); hi = hei; hionverges in L2(B; �), and by subsequenes a.e., to the random variable n(h).Let us onsider a self-adjoint trae lass operator B : H ! H. The quadratiform on H�H: x 2 H 7! hx;Bxian be extended to a random variable on B, denoted again by h � ; B � i. Indeedfor eah inreasing sequene of �nite dimensional projetors Pn onvergingstrongly to the identity, Pn(x) =Pni=1 eihei; xi (feig being a CONS in H), thesequene of random variables! 2 B 7! nXi;j=1hei; Bejin(ei)(!)n(ej)(!)is a Cauhy sequene in L1(B; �). By passing if neessary to a subsequene, itonverges to h � ; B � i ��a.e.Let us assume that the largest eigenvalue of B is stritly less than 1 (or, inother words, that (I-B) is stritly positive). Then one an prove that therandom variable g( � ) := e 12~ h � ;B � i is �-summable. Indeed by onsidering aCONS feig made of eigenvetors of the operator B, bi being the orrespondingeigenvalues, the sequene of random variablesgn : B ! C ; ! 7! gn(!) = e 12~ Pni=1 bi([n(ei)(!)℄2 ;onverges to g(!) �-a.e..On the other hand one hasZB gn(!)d�(!) = nYi=1 ZR e� 12~ (1�bi)x2ip2�~ dxi = ( nYi=1(1� bi))�1=2so that R gnd� onverges, as n ! 1, to (det(I � B))�1=2, where det(I � B)denotes the Fredholm determinant of (I � B), whih is well de�ned as B is83



trae lass. Moreover 0 � gn � gn+1 for eah n . It follows that, as n ! 1,R gnd�! R gd� = (det(I�B))�1=2. By an analogous reasoning one an provethat for any y 2 H, the sequene of random variables fn:! 7! fn(!) = ePni=1 yin(ei)(!)e 12~ Pni=1 bi([n(ei)(!)℄2where yi = hy; eii, onverges ��a.e. as n goes to 1 to the random variablef( � ) = en(y)( � )e 12~ h � ;B � i and thatZ fnd�! Z fd� = (det(I �B))�1=2e~2 hy;(I�B)�1yi: (5.17)(see [75, 72℄). The following result follows:Lemma 7. Let B : H ! H be a self adjoint and trae lass operator suhthat I � B is stritly positive, let k 2 H and � � 0. Then for any inreasingsequene Pn of projetors onto n-dimensional subspaes of H suh that Pn " Istrongly as n!1, the following sequene of �nite dimensional integrals:Fn(k) � (2�i~)�n=2 ZPnH eihPnk;Pnxie i2~ hPnx;(I�B)Pnxie�i�~V (Pnx)d(Pnx)onverges, as n!1, to the Gaussian integral on B:F (k) � E [ein(k)(!)ei�=4 e 12~ h!;B!iei�~ �V (!)℄ (5.18)(E being the expetation with respet to � on B)Proof. By lemma 6 one has(2�i~)�n=2 ZPnH eihPnk;Pnxie i2~ hPnx;(I�B)Pnxie�i�~V (Pnx)d(Pnx) =(2�~)�n=2 ZPnH eihPnk;Pnxiei�=4e� 12~ hPnx;Pnxie 12~ hPnx;BPnxiei�~V (Pnx)d(Pnx) (5.19)Let us introdue an orthonormal base feig of H suh that Pn is the projetoronto the span of the �rst n vetors. Eah element Pnx 2 PnH an be repre-sented as an n�ple of real numbers (x1; : : : ; xn), where xi = hx; eii. The latterintegral an be written in the following form:(2�~)�n=2 ZRn eiPni=1 kixiei�=4e� 12~ Pni=1 x2i e 12~ Pni;j=1 Bijxixjei�~ Pnij;k;h=1 Aijkhxixjxkxhdx1 : : : dxn84



where Bij = hei; Beji and Aijkh = A(ei; ej; ek; eh).On the other hand, this oinides with the Gaussian integral on (B; �):E [eiPni=1 kin(ei)(!)ei�=4e 12~ Pni;j=1hei;Bejin(ei)(!)n(ej )(!)e�~V Æ ~Pn(!)℄By Lebesgue's dominated onvergene theorem (whih holds beause of theassumption on the strit positivity of the operator I � B) this onverges asn!1 to E [ein(k)(!)ei�=4 e 12~ h!;B!iei�~ �V (!)℄:and the onlusion follows.The above result allows to generalize theorem 21 to the in�nite dimensionalase.Theorem 22. Let B be self-adjoint trae lass, (I�B) stritly positive, � � 0and f 2 F(H), f � �̂f , and let us suppose that the bounded variation measure�f satis�es the following assumptionZH e~4 hk;(I�B)�1kij�f j(dk) < +1: (5.20)Then the in�nite dimensional osillatory integralfZ He i2~ hx;(I�B)xie�i�~A(x;x;x;x)f(x)dx (5.21)exists and is given by:ZH E [ein(k)(!)ei�=4 e 12~ h!;B!iei�~ �V (!)℄�f(dk)Proof. By de�nition, hoosing an inreasing sequene of �nite dimensionalprojetors Pn on H, with Pn " I strongly as n ! 1, the osillatory integral(5.21) is given by:limn!1(2�i~)�n=2 ZPnH e i2~ hPnx;(I�B)Pnxie�i�~A(Pnx;Pnx;Pnx;Pnx)f(Pnx)dPnx: (5.22)Let fn : PnH ! C be the funtion de�ned by fn(y) � f(y), y 2 PnH. One aneasily verify that fn 2 F(PnH), fn = �̂nf , where �nf is the bounded variationmeasure on PnH de�ned by �nf (I) = �f(P�1n I), I being a Borel subset of PnH,indeed:fn(y) = f(y) = ZH eihy;ki�f(dk) == ZH eihPny;Pnki�f(dk) = ZPnH eihy;Pnki�nf (dPnk) (5.23)85



where y = Pny. By theorem 21 the limit (5.22) is equal tolimn!1ZPnHGn(Pnk)�nf (dPnk); (5.24)where Gn : PnH ! C is given by:Gn(Pnk) = (2�~)�n=2 ZPnH eihPnk;Pnxiei�=4e� 12~ hPnx;(I�B)Pnxiei�~A(Pnx;Pnx;Pnx;Pnx)dPnxThis, on the other hand (see the proof of lemma 7) is equal toE [ein(Pnk)(!)ei�=4e 12~ Pni;j=1 Bijn(ei)(!)n(ej )(!)ei�~V n(!)℄;where V n = V Æ ~Pn. By substituting the latter expression into (5.24) we havelimn!1ZPnH E [ein(Pnk)(!)ei�=4e 12~ Pni;j=1 Bijn(ei)(!)n(ej )(!)ei�~V n(!)℄�nf (dPnk) == limn!1ZH E [ein(Pnk)(!)ei�=4e 12~ Pni;j=1 Bijn(ei)(!)n(ej )(!)ei�~V n(!)℄�f (dk) == limn!1ZH Fn(k)�f(dk) (5.25)By lemma 7 and the dominated onvergene theorem, appliable to the integralwith respet to �f , due to assumption (5.20), we then getZH F (k)�f(dk) = ZH E [ein(k)(!)ei�=4 e 12~ h!;B!iei�~ �V (!)℄�f(dk)and the onlusion follows.Corollary 2 an be generalized to the in�nite dimensional ase. Indeed dueto the assumption (5.20) the funtion f on the real Hilbert spae H an beextended to those vetors y 2 HC in the omplex Hilbert spae HC of the formy = zx, x 2 H, z 2 C as the integralZH eizhx;ki�f(dk)is absolutely onvergent. Moreover the latter an be uniquely extended to arandom variable on B, denoted again by f , byf z(!) � f(z!) � ZH eizn(k)(!)�f(dk); ! 2 B: (5.26)Moreover the random variable e 12~ h � ;B � if z( � ) belongs to L1(B; �) if Im(z)2 �1=2. 86



Theorem 23. Let B : H ! H be self-adjoint trae lass, I�B stritly positive,� � 0 and f 2 F(H) be the Fourier transform of a bounded variation measure�f satisfying assumption (5.20). Then the in�nite dimensional osillatoryintegral (5.21) is well de�ned and it is given by:fZ He i2~ hx;(I�B)xie�i�~A(x;x;x;x)f(x)dx = E [ei�~ �V (!)e 12~ h!;B!if(ei�=4!)℄ (5.27)Proof. By theorem 22 the in�nite dimensional osillatory integral (5.21) anbe omputed by means of the Parseval-type formula:fZ He i2~ hx;(I�B)xie�i�~A(x;x;x;x)f(x)dx == ZH E [ein(k)(!)ei�=4 e 12~ h!;B!iei�~ �V (!)℄�f(dk) (5.28)By Fubini theorem, whih an be applied under the assumption (5.20), theintegral on the r.h.s. of (5.28) is equal toE [ei�~ �V (!)e 12~ h!;B!i ZH ein(k)(!)ei�=4�f(dk)℄ == E [ei�~ �V (!)e 12~ h!;B!if ei�=4(!)℄ = E [ei�~ �V (!)e 12~ h!;B!if(ei�=4!)℄The integral on the r.h.s. is absolutely onvergent as jei�~ �V j = 1 and e 12~ h � ;B � if ei�=4 2L1(B; �) as Im(ei�=4) = 1=p2.Remark 17. In the simpler ase � = 0, under the above assumptions on thefuntion f and the operator B, the in�nite dimensional osillatory integral(given by (5.27) with V = 0) an also be expliitly omputed by means of theabsolutely onvergent integrals:fZ He i2~ hx;(I�B)xif(x)dx = 1pdet(I � B) ZH e� i~2 hk;(I�B)�1k�f(dk) (5.29)In fat, by means of di�erent methods (see setion 2), equation (5.29) an beproved even without the assumption on the positivity of the operator (I � B)(it suÆes that (I �B) be invertible).Remark 18. So far we have proved, under suitable assumptions on the fun-tion f : H ! C and the operator B, that, if � � 0, the in�nite dimensionalgeneralized Fresnel integral (5.21)IF (�) �fZ He i2~ hx;(I�B)xie�i�~A(x;x;x;x)f(x)dx87



on the Hilbert spae H is exatly equal to a Gaussian integral on B:IG(�) � ZH E [ein(k)(!)ei�=4 e 12~ h!;B!iei�~ �V (!)℄�f(dk)(theorem 22), and toIA(�) � E [ei�~ �V (!)e 12~ h!;B!if(ei�=4!)℄(theorem 23). One an easily verify that IG and IA are analyti funtions ofthe omplex variable � in the region of the omplex � plane fIm(�) > 0g,while they are ontinuous in fIm(�) = 0g and oinide with IF in fIm(�) =0; Re(�) � 0g.5.3 Appliation to the Shr�odinger equationLet us onsider the Shr�odinger equationi~ ddt = H (5.30)on L2(Rd) for an anharmoni osillator Hamiltonian H of the following form:H = �~22 � + 12x
2x + �C(x; x; x; x); (5.31)where C is a ompletely symmetri positive fourth order ovariant tensor onRd , 
 is a positive symmetri d�d matrix, � � 0 a positive onstant. It is wellknown, see [91℄, that H is essentially self-adjoint on C10 (Rd). By means of theresults of the previous setion we are going to give mathematial meaning tothe \Feynman path integral" representation of the solution of equation (5.30): (t; x) = \ Z(0)=x e i~ R t0 _(s)22 ds� i~ R t0 [ 12(s)
2(s)+�C((s);(s);(s);(s))℄ds 0((t))D";as the analyti ontinuation (in the parameter �) of an in�nite dimensionalgeneralized osillatory integral on a suitable Hilbert spae.Let us onsider the Cameron-Martin spae1 Ht, that is the Hilbert spae ofabsolutely ontinuous paths  : [0; t℄ ! Rd , with (0) = 0 and inner produth1; 2i = R t0 _1(s) _2(s)ds. The ylindrial Gaussian measure on Ht with o-variane operator the identity extends to a �-additive measure on the Wiener1With an abuse of notation we all here Cameron-Martin spae the spae of paths belonging to the Sobolev spae H1;2(t) ([0; t℄;Rd ) suh that (0) = 0, while in the �rst threehapters with the same name we denoted the spae of paths  2 H1;2(t) ([0; t℄;Rd) suh that(t) = 0. 88



spae Ct = f! 2 C([0; t℄;Rd) j (0) = 0g: the Wiener measure W . (i; Ht; Ct)is an abstrat Wiener spae.Let us onsider moreover the Hilbert spae H = Rd � Ht, and the Banahspae B = Rd � Ct endowed with the produt measure N(dx) �W (d!), Nbeing the Gaussian measure on Rd with ovariane equal to the d� d identitymatrix. (i;H;B) is an abstrat Wiener spae.Let us onsider two vetors �;  0 2 L2(Rd) \ F(Rd). We are going to de�nethe following in�nite dimensional osillatory integral on H:\ ZRd�Ht ��(x)e i2~ R t0 _(s)2dse� i2~ R t0 [((s)+x)
2((s)+x)dse i�~ C((s)+x;(s)+x;(s)+x;(s)+x)ds 0((t) + x)dxD" (5.32)Let us onsider the operator B : H ! H given by:(x; ) �! (y; �) = B(x; );y = t
2x+
2 Z t0 (s)ds; �(s) = 
2x(ts�s22 )�Z s0 Z ut 
2(r)drdu (5.33)and the fourth order tensor operator A given by:A((x1; 1); (x2; 2); (x3; 3); (x4; 4)) == Z t0 C(1(s) + x1; 2(s) + x2; 3(s) + x3; 4(s) + x4)ds: (5.34)Let us onsider moreover the funtion f : H ! C given byf(x; ) = (2�i~)d=2e� i2~ jxj2 ��(x) 0((t) + x) (5.35)With these notations expression (5.32) an be written in the following form:fZHe i2~ (jxj2+jj2)e� i2~ h(x;);B(x;)ie� i�~ A((x;);(x;);(x;);(x;))f(x; )dxd (5.36)Under suitable assumptions on 
; � the theory of the latter setion applies,as we shall see below. In the following we will denote by 
i, i = 1; : : : ; d, theeigenvalues of the matrix 
.Theorem 24. Let us assume that � � 0, and that for eah i = 1; : : : ; d thefollowing inequalities are satis�ed
it < �2 ; 1� 
i tan(
it) > 0: (5.37)Let �;  0 2 L2(Rd)\F(Rd). Let �0 be the omplex bounded variation measureon Rd suh that �̂0 =  0. Let �� be the omplex bounded variation measure89



on Rd suh that �̂�(x) = (2�i~)d=2e� i2~ jxj2 ��(x). Assume in addition that themeasures �0; �� satisfy the following assumption:ZRd ZRd e~4 x
�1 tan(
t)xe(y+os(
t)�1x)(1�
 tan(
t))�1(y+os(
t)�1x)j�0j(dx)j��j(dy) <1 (5.38)Then the funtion f : H ! C , given by (5.35) is the Fourier transform of abounded variation measure �f on H satisfyingZH e~4 h(y;�);(I�B)�1(y;�)ij�f j(dyd�) <1 (5.39)(B being given by (5.33)) and the in�nite dimensional osillatory integral(5.36) is well de�ned and is given by:ZRd�Ht �ZRd�Ct eiei�=4(x�y+p~n()(!))e 12~ R t0 (p~!(s)+x)
2(p~!(s)+x)dsei�~ R t0 C(p~!(s)+x;p~!(s)+x;p~!(s)+x;p~!(s)+x)dsW (d!) e� jxj22~(2�~)d=2dx��f(dyd):(5.40)This is also equal to(i)d=2 ZRd�Ct ei�~ R t0 C(p~!(s)+x;p~!(s)+x;p~!(s)+x;p~!(s)+x)dse 12~ R t0 (p~!(s)+x)
2(p~!(s)+x)ds ��(ei�=4x) 0(ei�=4p~!(t) + ei�=4x)W (d!)dx:(5.41)Proof. By the assumptions on �, one an easily verify that the funtion(2�i~)d=2e� i2~ jxj2 ��(x) is the Fourier transform of the bounded variation mea-sure on Rd�H, whih is the produt measure ��(dx)�Æ0(d), where Æ0(d) isthe measure on Ht onentrated on the vetor 0 2 Ht. Analogously the fun-tion (x; ) 7!  0((t) + x) is the Fourier transform of the bounded variationmeasure � on Rd �H given by :ZRd�Ht f(x; )� (dxd) = ZRd�Ht f(x; x)ÆGt(d)�0(dx);where Gt is the vetor in H given by Gt(s) = s. As F(Rd � H) is a Banahalgebra, the produt f(x; ) := (2�i~)d=2e� i2~ jxj2 ��(x) ((t) + x) still belongsto F(Rd � H), in fat it is the Fourier transform of the onvolution �f �(�� � Æ0) � � . A diret omputation shows that �f satis�es assumptions90



(5.20) of theorem 22, that is (5.39), if and only if �0 and �� satisfy (5.38).By simple alulations one an verify that the operator B given by (5.33)is bounded symmetri and trae lass. Moreover if assumptions (5.37) aresatis�ed, I � B is positive de�nite (see appendix B for more details).A diret omputation shows that the funtion V : H ! R,V (x; ) = A((x; ); (x; ); (x; ); (x; ))is ontinuous in the norm of the Banah spae B and extends to a funtion �Von it.By applying theorem 22 and theorem 23 the onlusion follows.Remark 19. The lass of states �;  0 2 L2(Rd)\F(Rd) satisfying assumption(5.38) is suÆiently rih. Indeed both � and  0 an be hosen in two densesubsets of the Hilbert spae L2(Rd). More preisely one an take for instane 0 2 S(Rd) of the form  0(x) = P (x)e��x
�1x2~ , and � 2 S(Rd) of the form�(x) = Q(x)e�x(�
2~ +i)x, with �; �;  > 0 and with P;Q arbitrary polynomials.Moreover � and � have to satisfy the following onditions, for all i = 1; : : : ; d:8>><>>: 1�
i � 12(1�
i tan(
it) > 01� � 12� tan(
it)+
i1�
i tan(
it)� > 0)�1�
i tan(
it)�
i � (tan(
it)+
i)2
i ��1�
i tan(
it)�!i � 12� > � 12 os(
it)�2 (5.42)Let us denote respetively by D1 and D2 the set of vetors � and  0 of theabove form. It is easy to see that both D1 and D2 are dense in L2(Rd).The osillatory integral (5.36) an heuristially be written in the followingform: (�;  (t)) = \ ZRd ��(x) Zfj(t)=xg e i~St() 0((0))Ddx"and interpreted as a rigorous realization of the Feynman path integral rep-resenting the inner produt between the vetor � 2 L2(Rd) and the solutionof the Shr�odinger equation (5.30) with initial datum  0. However the in�-nite dimensional osillatory integral (5.36) is well de�ned only if � � 0. Bythe onsiderations in remark 18 the absolutely onvergent integrals (5.40) and(5.41) are analyti funtions of the omplex variable � if Im(�) > 0, on-tinuous in Im(�) = 0 and oiniding with (5.36) if � � 0. We shall provethat when � � 0 the Gaussian integrals (5.40) and (5.41) represent the innerprodut h�;  (t)i, where  (t) is the solution of the Shr�odinger equation. Wewill prove moreover the Borel summability of the formal Dyson expansion forh�;  (t)i. 91



Lemma 8. Let � = 0,  0; � 2 S(Rd). Let �0, resp ��, be suh that �̂0 =  0,resp. �̂�(x) = (2�i~)d=2e� i2~ jxj2 ��(x). Assume moreover that �0; �� satisfyondition (5.38). Then the salar produt between � and the solution  t ofthe Shr�odinger equation with initial datum  0 is given by:h�;  ti = ZRd�Ht �ZRd�Ct eiei�=4p~(x�y+n()(!))e 12 h(x;!);B(x;!)iW (d!) e� jxj22(2�)d=2dx��f(dyd) (5.43)where �f is the omplex bounded variation measure on Rd �Ht whose Fouriertransform is the funtion f : H ! C , given by f(x; ) := (2�i~)d=2e� i2~ jxj2 ��(x) ((t)+x) and B is the ontinuous extension on Rd � Ct of the operator (5.33).Proof. In order to avoid the use of a ompliated notation we assume d = 1.The proof holds in a ompletely similar way in the ase d > 1. As  0 2S(Rd), the solution of the Shr�odinger equation with � = 0, i.e. with the freeHamiltonian, and initial datum  0 is given by (t; x) = (2�i~)�1=2r 
sin
t ZR e i
2~ sin
t (os
t(x2+y2)�2xy) 0(y)dy; (5.44)t > 0; x 2 R, so thath�;  ti = (2�i~)�1=2r 
sin
t ZR ��(x) ZR e i
2~ sin
t (os 
t(x2+y2)�2xy) 0(y)dydx(5.45)Let (2�i~)1=2e�ijxj22~ ��(x) = RR eik�x��(dk) and  0(y) = RR eil�y�0(dl), so that(5.45) beomes:1pos 
t ZR e�x2=2p2� ZR ZR eiei�=4p~xke� i~ tan
tl22
 e
 tan
tx22 e ip~ei�=4xlos 
t ��(dk)�0(dl)dx:A diret omputation (see appendix B) shows that the latter expression isexatly equal to the integral (5.43), that is toZR�Ht � ZRd�Ct eiei�=4p~(x�k+x�l+n(Glt)(!))e 12 h(x;!);B(x;!)iW (d!) e� jxj22(2�)d=2dx��f(dyd) (5.46)(where Glt(s) = ls and n has been de�ned in setion 5.2) and the onlusionfollows. 92



Remark 20. By Fubini's theorem expression (5.43) is also equal to(i)d=2 ZRd�Ct e 12~ R t0 (p~!(s)+x)
2(p~!(s)+x)ds��(ei�=4x) 0(ei�=4p~!(t) + ei�=4x)W (d!)dx (5.47)Lemma 9. Let � = 0 and  0 2 S(Rd), suh that for eah x 2 RdZRd ekxe~4 hk;
�1 tan
tkij ~ 0(k)jdk <1: (5.48)Then the solution  t of the Shr�odinger equation (5.30) is an analyti funtionin the variable z 2 C d and its value in z = ei�=4x, x 2 Rd is given by: t(ei�=4x) = ZCt  0(ei�=4x+ ei�=4p~!(t))e 12~ h(x;p~!);B(x;p~!)iW (d!)Proof. In order to avoid the use of a ompliated notation we assume d = 1.The proof holds in a ompletely similar way in the ase d > 1.Sine  0 2 S(R), � = 0, one has (5.44). By Parseval's equality this is alsoequal to  t(x) =r 1os 
te� i
 tan(
t)x22~ ZR e� i~ tan(
t)k22
 e ikxos 
t ~ 0(k)dkThe analytiity of  t(z), z 2 C , follows by Morera and Fubini theorems.Moreover  t(ei�=4x) is given by t(ei�=4x) =r 1os 
te
 tan(
t)x22~ ZR e� i~ tan(
t)k22
 e iei�=4kxos 
t ~ 0(k)dk (5.49)On the other hand, by Fubini's theorem (whih holds thanks to the assumption(5.48)), one has:ZCt  0(ei�=4x+ ei�=4p~!(t))e
22~ R t0 (p~!(s)+x)2dsW (d!) == ZR ~ 0(k)eikxei�=4e
2tx22~ ZCt e
22 R t0 !2(s)dse
2xp~ R t0 !(s)dseikp~ei�=4!(t)W (d!)dk(5.50)By a diret omputation (see appendix B) the latter expression is equal to(5.49) and the onlusion follows. 93



Theorem 25. Let �;  0 2 S(Rd) satisfy assumption (5.38). Then the powerseries expansions (in powers of �) of the expression (5.41) oinides withthe Dyson expansion for the salar produt between � and the solution of theShr�odinger equation (5.30).Proof. In order to avoid a ompliated notation we assume d = 1, but theproof is valid also in the ase d > 1.First of all one an easily verify that expression (5.41) is an analyti funtionof the variable � 2 C in the upper halfplane Im(�) > 0 and ontinuous in� 2 R. By expanding it in power series of � around � = 0 we have for anyN 2 N , that (5.41) is equal to:(i)d=2 N�1Xn=0 1n!� i�~ �n Z t0 ds1 � � �Z t0 dsn ZR�Ct nYi=1(p~!(si) + x)4e
22~ R t0 (p~!(s)+x)2ds ��(ei�=4x) 0(ei�=4p~!(t) + ei�=4x)W (d!)dx+RN ; (5.51)with RN a remainder term. Beause of the symmetry of the integrand, (5.51)is equal to(i)d=2 N�1Xn=0 � i�~ �nZ � � �Z �nds1 � � �dsn ZR�Ct nYi=1(p~!(si) + x)4e
22~ R t0 (p~!(s)+x)2ds ��(ei�=4x) 0(ei�=4p~!(t) + ei�=4x)W (d!)dx+RN (5.52)where �n = f(s1; : : : ; sn) 2 [0; t℄n : 0 � s1 � � � � � sn � tg. The integralover R � Ct an be evaluated by partitioning the interval [0; t℄ into n + 1subintervals [s0 � 0; s1℄, [s1; s2℄, : : :, [sn�1; sn℄, [sn; sn+1 � t℄. Let us denote by!i : [si; si+1℄ ! R the Wiener proess on the interval [si; si+1℄, !i(si) = 0, byCi the spae of ontinuous paths on [si; si+1℄ and by E [si ;si+1℄ the expetationwith respet to the Wiener measure on it. With these notations expression(5.52) beomes(i)d=2 N�1Xn=0 ��i�~ �nZ � � �Z �nds1 � � �dsn ZR dx��(ei�=4x)E [0;s1 ℄[(p~ei�=4!0(s1)++ xei�=4)4e
22~ R s10 (p~!0(s)+x)2dsE [s1 ;s2℄[(p~ei�=4!1(s2) +p~ei�=4!0(s1) + xei�=4)4e
22~ R s2s1 (p~!1(s)++p~!0(s1)+x)2ds � � � E [sn ;t℄[e
22~ R tsn (p~!n(s)+p~Pn�1i=0 !i(si+1)+x)2ds 0(ei�=4p~ nXi=0 !i(si+1) + ei�=4x)℄ : : :℄℄ +RN94



By lemma 8 and lemma 9 the latter expression is equal toN�1Xn=0 ��i�~ �nZ � � �Z �nds1 � � �dsnh�; e�i s1~ H0V e�i (s2�s1)~ H0V � � �� � � e�i (sn�sn�1)~ H0V e�i (t�sn)~ H0 0i+RNand, by the hange of variables si ! t� sn+1�i, toN�1Xn=0 ��i�~ �nZ � � �Z �nds1 � � �dsnh�; e�i (t�sn)~ H0V e�i (sn�sn�1)~ H0V � � �� � � e�i (s2�s1)~ H0V e�i s1~ H0 0i+RNwhere H0 � �~22 �+ x
2x2 is the harmoni osillator Hamiltonian and V (x) �x4. The latter expression is Dyson's expansion for the salar produt between� and the solution  t of the Shr�odinger equation (5.30) with HamiltonianH = H0 + �V and the onlusion follows.Theorem 26. Let � � 0, and let �;  0 2 S(Rd) satisfy assumption (5.38).Then the salar produt between � and the solution of the Shr�odinger equation(5.30) with initial datum  0 is given by the absolutely onvergent integrals(5.40) and (5.41).Proof. Let us onsider the anharmoni osillator Hamiltonian H given by(5.31). H is a positive selfadjoint operator and generates an analyti semigroupT z(t) = e� ztH~ , t � 0, z 2 C , Re(z) � 0 (see for instane [91℄). Given t � 0and �;  0 2 L2(Rd), the funtion F : �D ! C , where D = fz 2 C ; Re(z) > 0gand �D is the losure of D, F (z) � h�; T z(t) 0i (5.53)is analyti in D and ontinuous in �D. If z = i, F (z) is the salar produtbetween � and the solution  (t) of the Shr�odinger equation (5.30) with initialdatum  0, while if z 2 R+ , F (z) is the salar produt between � and thesolution of the heat equation ��t = �z~H (5.54)In this ase F (z) an be omputed by means of the Feynman-Ka formula (see95



for instane [92℄):F (z) = ZRd ��(x) ZCt e� z2~ R t0 (p~z!(s)+x)
2(p~z!(s)+x)dse� z�~ R t0 C(p~z!(s)+x;p~z!(s)+x;p~z!(s)+x;p~z!(s)+x)ds 0(p~z!(t) + x)W (d!)dx= zd=2 ZRd ��(pzx) ZCt e� z22~ R t0 (p~!(s)+x)
2(p~!(s)+x)dse� z3�~ R t0 C(p~!(s)+x;p~!(s)+x;p~!(s)+x;p~!(s)+x)ds 0(p~z!(t) +pzx)W (d!)dx(5.55)By the assumptions on the vetors �;  0, the r.h.s. of (5.55) makes sense forz 2 �D. Moreover, by the analytiity of the semigroup T z(t), it represents forz = i the salar produt h�; e� it~H 0i, that is:id=2 ZRd ��(ei�=4x) ZCt e 12~ R t0 (p~!(s)+x)
2(p~!(s)+x)dse i�~ R t0 C(p~!(s)+x;p~!(s)+x;p~!(s)+x;p~!(s)+x)ds 0(p~ei�=4!(t) + ei�=4x)W (d!)dx(5.56)This oinides with expression (5.41) and the onlusion follows.Theorem 27. Let � � 0, and let �;  0 2 S(Rd) satisfy assumptionZRd ZRd e(y+os[
(t+tÆ)℄�1x)(1�(1+Æ)
 tan[
(t+tÆ)℄)�1(y+os[
(t+tÆ)℄�1x)e ~4(1+Æ)x
�1 tan[
(t+tÆ)℄xj�0j(dx)j��j(dy) <1 (5.57)for some Æ > 0. Then the Dyson expansion for the salar produt between �and the solution of the Shr�odinger equation (5.30) with initial datum  0 isBorel summable.Proof. By theorems 25 and 26 it is suÆient to show the Borel summabilityof the power series expansions (in powers of �) of expression (5.41).In order to avoid a ompliated notation we assume d = 1, but the proof isvalid also in the ase d � 1.As already remarked before lemma 3, the expression (5.41) is an analytifuntion of the variable � 2 C in the upper halfplane Im(�) > 0 and ontinuousin � 2 R. Moreover the rest RN of its asymptoti expansion (5.51) is equal to:RN = ZRd�Ht �ZR�Ct 1Xn=N 1n!� i�~ �n Z t0 ds1 � � �Z t0 dsn nYi=1(p~!(si) + x)4e
22~ R t0 (p~!(s)+x)2dseiei�=4(x�y+p~n()(!))W (d!) e� jxj22~(2�~)d=2dx��f(dyd)96



RN satis�es the following uniform estimate in Im(�) � 0:jRN j = j ZRd�Ht �ZR�Ct 1N � 1!� i�~ �N Z t0 ds1 � � �Z t0 dsN NYi=1(p~!(si) + x)4Z 10 du(1� u)N�1eiu�~ R t0 (p~!(s)+x)4dse
22~ R t0 (p~!(s)+x)2dseiei�=4(x�y+p~n()(!))W (d!) e� jxj22~(2�~)d=2dx��f(dyd)j� j�jN~N 1N ! Z t0 ds1 � � �Z t0 dsN ZRd�Ht ZR�Ct e
22 R t0 (!(s)+x)2dsNYi=1(!(si) + x)4e�p22 p~(x�y+n()(!))W (d!) e� jxj22(2�)d=2dxj�f j(dyd) (5.58)By denoting Gi the vetor in C�t � Ht equal to Gi(s) = 1[0;si℄s, (jGijHt = si),the Gaussian integralZR�Ct e
22 R t0 (!(s)+x)2ds NYi=1(!(si) + x)4e�p22 p~(x�y+n()(!))W (d!) e� jxj22(2�)d=2dx == ZR�Ct e 12 h(x;!);B(x;!)i NYi=1(n(Gi)(!) + x)4e�p22 p~(x�y+n()(!))W (d!) e� jxj22(2�)d=2dxis equal toH4N�ip~2 (I �B)�1=2(G1; 1); : : : ; ip~2 (I �B)�1=2(GN ; 1)���(r~2;r~2y)�e~4 h(;y);(I�B)�1(;y)ipdet(I � B) (5.59)where Dx1 : : :Dxne�x2 = (�1)nHn(x1; : : : ; xnjx)e�x2By the assumption (5.57) on  0; � involving a Æ > 0, we haveZHt�R e(1+Æ)~4 h(;y);(I�B)�1(;y)ij�f j(ddy) <1By using this and the estimate on Hermite polynomials Hn derived in [88℄ (formula (2.9) ) we see that expression (5.59) is bounded byaN NYi=1(si + 1)4�1 + ÆÆ �2N2N !;97



where a;  > 0 are suitable onstants. By inserting suh an estimate into (5.58)and by using the identity 2N ! = 22NN !(N � 1=2)!=p�, we have:jRN j � ACN j�jNN !This and the analytiity of (5.41) in Im(�) > 0, by Nevanlinna theorem [84℄,assure the Borel summability of asymptoti expansion (5.51).5.4 Conluding remarksThere are relations between our approah in the de�nition of the Feynmanintegral and those in [40, 72, 55, 83℄. Indeed formula (5.41) often appears inthe literature for a more restrited lass of potentials and initial onditions.We would like however to underline that here we ahieved to prove (5.41)and related formulas for potentials of polynomial growth. This involves ourextension of the de�nition of in�nite dimensional osillatory integrals (in thespirit of [12, 57, 4℄) to a lass of phase funtions muh larger than the usual\quadrati + Fourier transform of measure". In [40, 72, 55, 83℄ the authorsde�ne the Feynman funtional by means of a Gaussian integral depending ona parameter (whih in some ases an be identi�ed with the mass m), provethe analytiity of suh a funtional in a suitable region of the omplex planeand show that when it approahes the imaginary axis the orresponding fun-tional gives a representation of the solution of the Shr�odinger equation for arestrited lass of potentials. In work of the eulidean approah to quantum�eld theory, the representation of solution of the perturbed heat equation viaa Feynman-Ka formula and integrals with respet to Gaussian (Wiener resp.Orstein-Uhlenbek) measures are used to provide via an \analyti ontinu-ation in time" solutions of the Shr�odinger equation. In [32℄ this approahprovides a semilassial expansion for the Shr�odinger equation. In our ase,under suitable assumptions on the initial datum  0, we prove that the in�nitedimensional osillatory integral we de�ne oinides with a Gaussian integral.In the ase of the quarti potential V = �x4 we prove that the Gaussianintegral representing the solution of the Shr�odinger equation is an analytifuntion of the omplex variable � in the upper halfplane whih oinides for� � 0 with a well de�ned in�nite dimensional osillatory integral. We planto use our representation for disussing rigorously asymptoti expansions infrational powers of ~ (semilassial expansions).
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Appendix AThe Fourier transform of e i~P (x)
A.1 Proof of lemma 5Let us denote D the region of the omplex plane:D � C ; D � fz 2 C j Im(z) < 0gLet us assume ~ is a omplex variable belonging to the region �D nf0g. We aregoing to ompute the Fourier transform of e i~P (x).Let us introdue the polar oordinates in RN :ZRN eik�xe i~P (x)dx == ZSN�1 �Z +10 eijkjrf(�1;:::;�N�1)e i~P(�1;:::;�N�1)(r)rN�1dr�d
N�1 (A.1)where instead of N Cartesian oordinates we use N � 1 angular oordinates(�1; : : : ; �N�1) and the variable r = jxj. SN�1 denotes the (N�1)-dimensionalspherial surfae, d
N�1 is the measure on it, P(�1;:::;�N�1)(r) is a 2Mth orderpolynomial in the variable r with oeÆients depending on the N � 1 angularvariables (�1; : : : ; �N�1), namely:P (x) = r2MA2M� xjxj ; : : : ; xjxj�+ r2M�1A2M�1� xjxj ; : : : ; xjxj�+ : : :++ : : :+ rA1� xjxj� + A0 == a2M (�1; : : : ; �N�1)r2M + a2M�1(�1; : : : ; �N�1)r2M�1++ : : :+ a1(�1; : : : ; �N�1)r + a0= P(�1;:::;�N�1)(r) (A.2)99



where a2M(�1; : : : ; �N�1) > 0 for all (�1; : : : ; �N�1) 2 SN�1.Let us fous on the integralZ +10 eijkjrf(�1;:::;�N�1)e i~P(�1;:::;�N�1)(r)rN�1dr; (A.3)whih an be interpreted as the Fourier transform of the distribution on thereal line F (r) = �(r)rN�1e i~P(�1;:::;�N�1)(r);with �(r) = 1 for r � 0 and �(r) = 0 for r < 0. Let us introduethe notation k0 � kf(�1; : : : ; �N�1), ak � ak(�1; : : : ; �N�1), k = 0; : : : ; 2M ,P 0(r) =P2Mk=0 akrk and ~ 2 C , ~ = j~jei�, with �� � � � 0.Let us onsider the omplex plane and set z = �ei�. If Im(~) < 0 the integral(A.3) is absolutely onvergent, while if ~ 2 R n f0g it needs a regularization.If ~ 2 R, ~ > 0 we haveZ +10 eik0re i~P 0(r)rN�1dr = lim�#0 Zz=�ei� eik0ze i~P 0(z)zN�1dz (A.4)while if ~ < 0Z +10 eik0re i~P 0(r)rN�1dr = lim�#0 Zz=�e�i� eik0ze i~P 0(z)zN�1dz (A.5)We deal �rst of all with the ase ~ 2 R, ~ > 0 ( the ase ~ < 0 an be handledin a ompletely similar way). Let1(R) = fz 2 C j 0 � � � R; � = �g2(R) = fz 2 C j � = R; � � � � �=4Mg3(R) = fz 2 C j 0 � � � R; � = �=4MgFrom the analytiity of the integrand and the Cauhy theorem we haveZ1(R)[2(R)[3(R) eik0ze i~P 0(z)zN�1dz = 0:In partiular:��� Z2(R) eik0ze i~P 0(z)zN�1dz��� = RN ��� Z �=4M� eik0Rei�e i~P 0(Rei�)eiN�d����� RN Z �=4M� e�k0R sin(�)e� 1~ P2Mk=1 akRk sin(k�)d�� RN Z �=4M� e�k00R�e�a2M 4M~� R2M �e�P2M�1k=1 a0kRk�d� (A.6)100



where k00; a0k k = 1; : : : ; 2M � 1 are suitable onstants. We have used the fatthat if � 2 [0; �=2℄ then 2�� � sin(�) � �. The latter integral an be expliitlyomputed and gives:RN�e��(a2M 4M~� R2M+k00R+P2M�1k=1 a0kRk) � e� �4M (a2M 4M~� R2M+k00R+P2M�1k=1 a0kRk)a2M 4M~� R2M + k00R +P2M�1k=1 a0kRk �;whih onverges to 0 as R!1. We getZz=�ei� eik0ze i~P 0(z)zN�1dz = Zz=�ei(�=4M) eik0ze i~P 0(z)zN�1dzBy taking the limit as � # 0 of both sides one gets:Z +10 eik0re i~P 0(r)rN�1dr = eiN�=4M Z +10 eik�ei�=4M e i~P 0(rei�=4M )�N�1d�By substituting into (A.12) we get the �nal result:~F (k) = ZRN eik�xe i~P (x)dx = eiN�=4M ZRN eiei�=4Mk�xe i~P (ei�=4Mx)dx: (A.7)In the ase ~ < 0 an analogous reasoning gives:~F (k) = ZRN eik�xe i~P (x)dx = e�iN�=4M ZRN eie�i�=4Mk�xe i~P (e�i�=4Mx)dx: (A.8)The analytiity of ~F (k) is trivial in the ase Im(~) < 0, and follows fromequations (A.7) and (A.8) when ~ 2 R n f0gIf Im(~) < 0 a representation of type (A.7) still holds. By setting ~ = j~jei�,with �� � � � 0 and by deforming the integration ontour in the omplex zplane, one gets~F (k) = ZRN eik�xe i~P (x)dx == eiN(�=4M+�=2M) ZRN eiei(�=4M+�=2M)k�xe i~P (ei(�=4M+�=2M)x)dx (A.9)A.2 The boundedness of ~F (k) as jkj ! 1.Let us onsider the distribution e i~P (x) and its Fourier transform ~F (k) =RRN eikxe i~P (x)dx. Let us fous on the ase ~ 2 R n f0g (in the ase Im(~) < 0j ~F j is trivially bounded by RRN je i~P (x)jdx = RRN e Im(~)j~j2 P (x)dx < +1). Let usassume for notation simpliity that ~ = 1, the general ase an be handled in a101



ompletely similar way. In order to study RRN eikxeiP (x)dx one has to introduea suitable regularization. Chosen  2 S(RN ), suh that  (0) = 1 we haveeiP (x) (�x)! eiP (x); in S 0(RN ) as �! 0;~F (k) = lim�!0 ZRN eikxeiP (x) (�x)dx:Let us onsider �rst of all the ase N = 1 and P (x) = x2M=2m. The uniquereal stationary point of the phase funtion �(x) = kx+x2M is k = �k 12M�1 Let�1 be a positive C1 funtion suh that �1(x) = 1 if jx� kj � 1=2 , �1(x) = 0if jx� kj � 1 and 0 � �1(x) � 1 if 1=2 � jx� kj � 1. Let �0 � 1��1. Then~F (k) = I1(k) + I0(k), where I0(k) = lim�!0 R eikxeix2M=2m�0(x) (�x)dx andI1(k) = R eikxeix2M=2m�1(x)dx. For the study of the boundedness of j ~F (k)j asjkj ! 1 it is enough to look at I0, sine one has, by the hoie of �1, thatjI1j � 2. By repeating the same reasoning used in the proof of theorem 16 I0an be omputed by means of Stokes formula:lim�!0 Z eikxeix2M=2m�0(x) (�x)dx = i lim�!0 � Z eikxeix2M2m �0(x) 0(�x)k + x2M�1 dx++ i lim�!0 Z eikxeix2M=2m ddx� �0(x)k + x2M�1� (�x)dx (A.10)Both integrals are absolutely onvergent and, by dominated onvergene, wean take the limit �! 0, so thatI0(k) = i Z eikxeix2M=2m ddx� �0(x)k + x2M�1�dx == i Z eikxeix2M=2m� �00(x)k + x2M�1�dx�i Z eikxeix2M=2m�(2M � 1)�0(x)x2M�2(k + x2M�1)2 �dxThus:jI0(k)j � 2 Z k�1=2k�1 ��� 1k + x2M�1 ���dx + 2 Z k+1k+1=2 ��� 1k + x2M�1 ���dx++ (2M � 1) Z k�1=2�1 ��� x2M�2(k + x2M�1)2 ���dx+ (2M � 1) Z +1k+1=2 ��� x2M�2(k + x2M�1)2 ���dxBy a hange of variables it is possible to see that both integrals remain boundedas jkj ! 1. Let us onsider for instane the �rst one:Z k�1=2k�1 ��� 1k + x2M�1 ���dx = k 12M�1jkj Z �1�1=2k 12M�1�1�1=k 12M�1 ��� 11 + y2M�1 ���dy102



The latter integral diverges logarithmially as jkj ! 1, so that the r.h.s. goesto 0 as jkj ! 1. Let us onsider the integral R k�1=2�1 ��� x2M�2(k+x2M�1)2 ���dx. By ahange of variables it is equal toZ k�1=2�1 ��� x2M�2(k + x2M�1)2 ���dx =1jkj Z �1�1=2k 12M�1�1 ��� y2M�2(1 + y2M�1)2 ���dyThe latter integral diverges as O(k) as jkj ! 1, so that the r.h.s. remainsbounded as jkj ! 1. By suh onsiderations we an dedue that j ~F (k)j isbounded as jkj ! 1.A similar reasoning holds also in the ase N = 1 and P (x) = P2Mi=1 aix is ageneri polynomial. Indeed for jkj suÆiently large the derivative of the phasefuntion �0(x) = k + P 0(x) has only one simple real root, denoted by k. Onean repeat the same reasoning valid for the ase P (x) = x2M=2M and provethat for jkj ! 1 one has j R eikx+iP (x)dxj � C ( where C is a funtion of theoeÆients ai of P at most with polynomial growth).The general ase RN an also be essentially redued to the one-dimensionalase. Indeed let use onsider a generi vetor k 2 RN , k = jkju1, and studythe behavior of ~F (k) as jkj ! 1. By hoosing as orthonormal base u1; : : : ; uNof RN , where u1 = k=jkj, we have~F (k) = lim�!0 ZRN�1 eiQ(x2;:::;xN ) (�x2) � � � (�xN )�ZR eijkjx1eiPx2;:::;xN (x1) (�x1)dx1�dx2 : : : dxN (A.11)where  2 S(R),  (0) = 1; xi = x � ui, Px2;:::;xN (x1) is the polynomialin the variable x1 with oeÆients depending on powers of the remainingN � 1 variables x2; : : : ; xN , obtained by onsidering in the initial polynomialP (x1; x2; : : : ; xN) all the terms ontaining some power of x1. The polynomialQ in the N�1 variables x2; : : : ; xN is given by P (x1; x2; : : : ; xN)�Px2;:::;xN (x1).Let us set I�(k; x2; : : : ; xN) � RR eijkjx1eiPx2;:::;xN (x1) (�x1)dx1. By the previousonsiderations we know that, for eah � � 0, jI�(k; x2; : : : ; xN)j is bounded bya funtion of G(x2; : : : ; xN ) of polynomial growth. By the same reasonings asin the proof of theorem 16 we an dedue that the osillatory integral (A.11)is a well de�ned bounded funtion of k.103



A.3 Proof of lemma 6Let us study the Fourier transform of the omplex-valued distributione i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x); x 2 RN ;where (I � B) is symmetri and stritly positive, � � 0 and P is given by(5.3): ~F (k) = ZRN eik�xe i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x)dxWithout loss of generality we an assume that the quadrati form x � (I �B)xis equal to x � x, as it an always be redued to this form by a hange ofoordinates.Let us ompute the N�dimensional integral de�ning ~F (k) by introduing thepolar oordinates in RN :ZRN eik�x e i2~x�x(2�i~)N=2 e�i�~ P (x)dx == ZSN�1 �Z +10 eijkjrf(�1;:::;�N�1) e i2~ r2(2�i~)N=2 e�i�~ P (r)rN�1dr�d
N�1 (A.12)where instead of N Cartesian oordinates we use N � 1 angular oordinates(�1; : : : ; �N�1) and the variable r = jxj. SN�1 denotes the (N�1)-dimensionalspherial surfae, d
N�1 is the Haar measure on it, f(�1; : : : ; �N�1) = (k �x)=jkjr, P (r) is a fourth order polynomial in the variable r with oeÆientsdepending on the N � 1 angular variables (�1; : : : ; �N�1), namely:P (r) = r4A� xjxj ; xjxj ; xjxj ; xjxj� = r4a(�1; : : : ; �N�1) (A.13)where a(�1; : : : ; �N�1) > 0 for all (�1; : : : ; �N�1) 2 SN�1. Let us fous on theintegral Z +10 eijkjrf(�1;:::;�N�1) e i2~ r2(2�i~)N=2 e�i�~ P (r)rN�1dr:This an be interpreted as the Fourier transform of the distribution on the realline F (r) = �(r)rN�1 e i2~ r2(2�i~)N=2 e�i�~ P (r);with �(r) = 1 if r � 0 �(r) = 0 otherwise, � < 0 and P (r) = ar4, a > 0:Z +10 eikr e i2~ r2(2�i~)N=2 e�i�~ P (r)rN�1dr: (A.14)104



Let us onsider the omplex plane and set z = rei�. We haveZ +10 eikr e i2~ r2(2�i~)N=2 e�i�~ P (r)rN�1dr == lim�#0 Zz=�ei� eikz e i2~ z2(2�i~)N=2 e�i�~ P (z)zN�1dz= lim�#0 limR!+1Z R0 eik�ei� e i2~ �2e2i�(2�i~)N=2 e�i�~ P (�ei�)�N�1eNi�d� (A.15)Given: 1(R) = fz 2 C j 0 � � � R; � = �g2(R) = fz 2 C j � = R; � � � � �=4� �g3(R) = fz 2 C j 0 � � � R; � = �=4� �gwith � > 0 small, from the analytiity of the integrand and the Cauhy theoremwe have Z1(R)[2(R)[3(R) eikz e i2~ z2(2�i~)N=2 e�i�~ P (z)zN�1dz = 0:In partiular:��� Z2(R) eikz e i2~ z2(2�i~)N=2 e�i�~ P (z)zN�1dz��� == RN ��� Z �=4��� eikRei� e iei2�2~ R2(2�i~)N=2 e�i�~ P (Rei�)eiN�d����� RN Z �=4��� e�kR sin(�) e� sin(2�)2~ R2(2�~)N=2 e�~ (aR4 sin(4�))d�� RN Z �=8� e�k0R� e�2��~ R2(2�~)N=2 e�~ (aR4 8� )�d�++RNe�~ 2aR4 Z �=4���=8 e�k0R� e�2��~ R2(2�~)N=2 e�~ (�aR4 8� )�d�= RN(2�~)N=2n�e( 8a��~ R4� 2�~R2�k0R)�=8 � e( 8a��~ R4� 2�~R2�k0R)�(8a��~ R4 � 2�~R2 � k0R) �++ �e 8�a��~ R4e(� 2�~R2�k0R)(�=4��) � ea�~ R4e(� 2�~ )R2�k0R)�=8(�8a��~ R4 � 2�~R2 +�k0R) �o (A.16)where k0 2 R is a suitable onstant. We have used the fat that if � 2 [0; �=2℄then 2�� � sin(�) � �, while if � 2 [�=2; �℄ then sin(�) � 2 � 2��. From thelast line one an dedue that��� Z2(R) eikz e i2~ z2(2�i~)N=2 e�i�~ P (z)zN�1dz���! 0; R!1;105



so thatZz=�ei� eikz e i2~ z2(2�i~)N=2 e�i�~ P (z)zN�1dz = Zz=�ei(�=4��) eikz e i2~ z2(2�i~)N=2 e�i�~ P (z)zN�1dzBy taking the limit as � # 0 of both sides one gets:Z +10 eikr e i2~ r2(2�i~)N=2 e�i�~ P (r)rN�1dr = Z +10 eik�ei�=4 e��22~ �2(2�~)N=2 e�i�~ P (�ei�=4)�N�1d�(A.17)By substituting into (A.12) we get the �nal result:ZRN eik�x e i2~x�x(2�i~)N=2 e�i�~ P (x)dx= ZRN eiei�=4k�x e�x�x2~(2�~)N=2 e�i�~ P (xei�=4)dx= E [eiei�=4k�xe�i�~ P (xei�=4)℄ (A.18)
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Appendix BSome expliit alulations
B.1 The positivity of the operator I �BLet us study the spetrum of the self-adjoint operator B on H given by (5.33).In order to avoid the use of too many indexes we will assume d = 1, but ourreasonings remain valid also in the ase d > 1. A positive real number l anda vetor (xl; l) 2 H are respetively an eigenvalue and an eigenvetor of B ifand only if: � t
2xl + 
2 R t0 l(s)ds = lxl
2xl(ts� s22 )� R s0 Rt
2l(r)drdu = ll(s)More preisely the vetor (xl; l) 2 H solves the following system:8>><>>: t
2xl + 
2 R t0 l(s)ds = lxll�l(s) + 
2l(s) = �
2xll(0) = 0_l(t) = 0By a diret alulation one an verify that the latter system indeed admits a(unique) solution if and only if Cl satis�es the following equation
pl tan 
tpl = 1A graphial representation of the position of the solutions shows that theoperator B is trae lass. Moreover if the onditions (5.37) are ful�lled themaximum eigenvalue of B is stritly less than 1, so that (I � B) is positivede�nite. 107



B.2 Estimate of a Gaussian integral.Let us onsider the following funtion F : H ! C given byF (y; �) = ZRd�Ct ep~xy+p~n(�)(!)e 12 h(x;!);B(x;!)iN(dx)W (d!):Let us assume 
; t satisfy assumption (5.37). By a diret omputation and byFubini theorem, F is equal toF (y; �) = (2�)� d2 ZRd ep~xye�x (I�t
2)2 x ZCt ep~n(�)(!)ex R t0 
2!(s)dse 12 R t0 !(s)
2!(s)dsW (d!)dx= (2�)� d2 ZRd ep~xye�x (I�t
2)2 x ZCt ep~n(�)(!)en(vx)(!)e 12 h!;L!W (d!)dx; (B.1)where L : Ht ! Ht is the operator given byL(s) = � Z s0 Z s0t 
2(s00)ds00ds0and vx 2 Ht is the vetor given by vx(s) = 
2x(ts� s22 ). One an easily verifythat L is symmetri and trae lass. Indeed by denoting by �2;  respetivelythe eigenvalues and the eigenvetors of the operator L, we have�
2�(s) = �2(s); (0) = 0; _(t) = 0Without loss of generality we an assume 
2 is diagonal with eigenvalues 
2i ,i = 1; : : : d. The omponents i, i = 1; : : : d, of the eigenvetor  orrespondingto the eigenvalue �2 are equal toi(s) = Ai sin 
is� :By imposing the ondition _(t) = 0, we have 
it=� = �=2 + ni�, ni 2 Z.The possible �2 are of the form �2 = 
2i t2=(ni + 12)2�2. It follows that theoperator I � L is positive de�nite if and only if 
it < �=2 for all i = 1; : : : d.Moreover the Fredholm determinant of L an easily be omputed by means ofthe equality os x =Q(1� x2�2(n+1=2)2 ) and it is equal to det os 
t.By the onsiderations in setion 4 the funtion G : Rd ! R given byG(x) = ZCt ep~n(�)(!)+n(vx)(!)e 12 h!;L!iW (d!) (B.2)is equal to 1pdet os 
te 12 hp~�+vx;(I�L)�1(p~�+vx)i108



where (I � L)�1 is given by(I � L)�1(s) = 
�1[Z s0 sin[
(s� s0)℄�(s0)ds0 + sin(
s) _(0)℄++ sin(
s)[os(
t)℄�1 Z t0 sin[
(t� s0)℄ _(s0)ds0 (B.3)Moreover by diret omputation we see thatG(x) = 1pdet os 
te 12 hp~�;(I�L)�1p~�ie 12x(�t
2+
tan
t)xehvx;(I�L)�1p~�i (B.4)By inserting this into (B.1), we haveF (y; �) = (2�)�d=2pdet os 
te 12 hp~�;(I�L)�1p~�i ZRd ep~xye� 12x(I�
 tan
t)xehvx;(I�L)�1p~�idxIn partiular by taking � = �Gt, � 2 C , Gt 2 Ht, Gt(s) = zs, z 2 Rd we getF (y; �) = e~�22 z(
�1tan
t)zpdet(os 
t� 
 sin
t)e~2 (y+� os
t�1(1�os 
t)z)(1�
 tan
t)�1(y+� os
t�1(1�os 
t)z): (B.5)
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Appendix CBorel-summable asymptotiexpansionsLet V � C a domain in the omplex plane, suh that 0 2 �V andz 2 V ) 8t 2 (0; 1℄; tz 2 VLet us denote V̂ := V [ f0g. Both V and V̂ will be alled angular neighbor-hoods of zero. A domain U � C , suh that U is the losure of an angularneighborhood of zero, will be alled losed angular neighborhood.De�nition 11. Let V an angular neighborhood of zero. An asymptoti se-quene of funtions (�i)i2N for z ! 0 in V is a sequene of funtions �i : V̂ !C , whih do not vanish in V and suh that for every i 2 N:limz!0 �i+1�i (z) = 0In the following we shall fous on the asymptoti sequene (in any angularneighborhood of zero) �n(z) = zn=k, n 2 N , for �xed k > 0 and denote byC [z1=k ℄ the spae of formal power series with omplex oeÆientsf̂(z) = 1Xn=0 anzn=k; fang � C ; k > 0: (C.1)De�nition 12. A formal power series f̂ is alled a (z1=k�) asymptoti expan-sion for a funtion f : V ! C as z ! 0 in an angular neighborhood V if foreah losed angular neighborhood U with U ( V and any N 2 N, there existsa number C(N) > 0 suh that8z 2 U : jf(z)� NXn=0 anzn=kj � C(N)jzn=kj: (C.2)In this ase we write f � f̂ , z ! 0 in V .110



For more details see [62℄Remark 21. It is important to reall that the domain V in de�nition 12 playsa ruial role, indeed the existene of an expansion depends strongly on V .Remark 22. An asymptoti expansions is not neessarily onvergent (andusually this is the ase!). Indeed ondition (C.3) means that for �xed N thefuntion f in approximated by the sum PNn=0 anzn=k for z suÆiently small,while if the formal power series (C.1) is onvergent in some domain V to ananalyti funtion f then the following holds:8z 2 V : limN!1 jf(z)� NXn=0 anzn=kj = 0 (C.3)whih means that for �xed z 2 V the funtion f in approximated by the sumPNn=0 anzn=k for N suÆiently large.It is easy to see that if a funtion f admits an (z1=k�) asymptoti expansionin a given domain, then it is unique. On the other hand di�erent funtionsan have the same asymptoti expansion, for instane the funtion f(z) =0 and g(z) = e1=pz have both a zero asymptoti expansion in the domainfz 2 C ; jzj < rg n [0; r℄. In other words, if an asymptoti expansion is notonvergent (and this is often the ase) it does not haraterize uniquely afuntion f asymptotially equivalent to it. In order to onstrut an 1 to 1orrespondene between formal power series and funtions one an apply avery powerful summation tool: Borel summability. It works as follows:1. transform the given power series f̂ into another onvergent power seriesB̂;2. ompute the analyti funtion B obtained in this way;3. apply an integral transform mapping the analyti funtion B to analytifuntion f4. the funtion f (the so alled sum of f̂) obtained in this way has thepower series f̂ we startedIn order to apply Borel summability method it is neessary to impose strongeronditions on the oeÆients.De�nition 13. Given s > 0, a formal power series f̂(z) = P1n=0 anzn=k 2C [z1=k ℄ belongs to the s-Gevrey lasses C [z1=k ℄s if exist two onstants C;M > 0,suh that 8n 2 N : janj � CMn(�(1 + n=k))s;where � is the Euler Gamma funtion.111



The Gevrey lasses are onneted via the following transform ating onformal series:De�nition 14. The map B p;k : C [z1=k ℄s ! C [z1=k ℄s�p de�ned byB p;k [ 1Xn=0 anzn=k℄(t) := 1Xn=0 an�(1 + np=k)tnp=k (C.4)is alled the (formal) (p; k)�Borel transform.It is important to note that the (s; k)�Borel transform maps C [z1=k ℄s toonvergent series.We an now de�ne the onept of Borel summability:De�nition 15. A formal power series f̂(z) =P1n=0 anzn=k is alled ��Borelsummable to the sum f if f is an holomorphi funtion on V for some angularneighborhood of zero V , f � f̂ as z ! 0 in V and the following proedure ispossible:1. The (1; k)�Borel transform B 1;k [f̂ ℄(t) has nonzero radius of onvergeneand thus onverges in a neighborhood of zero to some funtion B(�).2. This holomorphi funtion admits an analyti ontinuation (denoted againby the symbol B(�)) onto some open neighborhood of R+3. the Laplae transform of B gives a representation of f on a subset of V :f(z) = 1z Z 10 B(t)e�t=zdt (C.5)In other words if an asymptoti series is Borel summable to a funtion f ,it haraterizes uniquely f , even if it is not onvergent.The following riterion for Borel summability is due to F. Nevanlinna [84℄, seealso [94℄ :Theorem 28. Let k > 0, R 2 (0;+1℄ and de�ne DR := fz 2 C : Re(1=z) >1=Rg if R 6=1 and DR := fz 2 C : Re(z) > 0g else.Let f be an holomorphi funtion admitting an asymptoti expansion withrespet to the asymptoti sequene (zn=k in the domain DR, i.e. suh thatf(z) �P1n=0 anzn=k =: f̂ and 9A > 0; � > 0 8� > 0; z 2 fRe(1=z) � �+1=Rg,�̂ > �; n 2 N: jf(z)� n�1Xi=0 aizi=kj � A�(1 + n=k)�̂njzjn=kThen the asymptoti power series f̂ is Borel summable to the funtion f .112
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