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Introdu
tionOne of the most 
hallenging problems in physi
s is the 
onne
tion between thema
ros
opi
 and the mi
ros
opi
 world, that is between 
lassi
al and quantumme
hani
s. In prin
iple a ma
ros
opi
 system should be des
ribed as a 
olle
-tion of mi
ros
opi
 ones, so that 
lassi
al me
hani
s should be derived fromquantum theory by means of suitable approximations. At a �rst glan
e the so-lution of the problem is not straightforward: indeed there are deep di�eren
esbetween the 
lassi
al and the quantum des
ription of the physi
al world.In 
lassi
al me
hani
s the state of an elementary physi
al system, for instan
ea point parti
le, is given by spe
ifying its position q (a point in its 
on�gura-tion spa
e) and its velo
ity _q. The time evolution in the time interval [t0; t℄is given by a a path q(s)s2[t0;t℄ in the 
on�guration spa
e, whi
h is determinedby the Hamilton's least a
tion prin
iple:ÆSt(q) = 0; St(q) = Z tt0 L(q(s); _q(s))ds:S(q) denotes the a
tion fun
tional, L is the Lagrangian of the system.In quantum me
hani
s the state of a d-dimensional parti
le is representedby a unitary ve
tor  in the 
omplex separable Hilbert spa
e L2(Rd), the so-
alled \wave fun
tion", while is time evolution is des
ribed by the S
-hr�odingerequation: � i~ ��t = � ~22m� + V   (0; x) =  0(x) (1)where ~ is the redu
ed Plan
k 
onstant, m > 0 is the mass of the parti
leand F = �rV is an external for
e. It is important to re
all that in quantumme
hani
s, be
ause of Heisenberg's un
ertainty prin
iple, there are observableswhi
h are \in
ompatible": the measurement of one destroys the informationabout the measurement of the other. Position and velo
ity are the typi
alexample of a 
ouple of in
ompatible observables, as a 
onsequen
e the 
on
eptof traje
tory makes no sense in quantum theory.In 1942 R.P. Feynman [59℄, following a suggestion by Dira
 [54℄, pro-posed an heuristi
 but very suggestive representation for the solution of theS
hr�odinger equation. Feynman's original aim was to give a Lagrangian formu-lation of quantum me
hani
s and to introdu
e in it the 
on
ept of traje
tory.iii



A

ording to Feynman the wave fun
tion of the system at time t evaluated atthe point x 2 Rd is given as an \integral over histories", or as an integral overall possible paths 
 in the 
on�guration spa
e of the system with �nite energypassing in the point x at time t: (t; x) = \ 
onst Zf
j
(t)=xg e i~St(
) 0(
(0))D
 00 (2)St(
) is the 
lassi
al a
tion of the system evaluated along the path 
St(
) � SÆt (
)� Z t0 V (
(s))ds; (3)SÆt (
) � m2 Z t0 j _
(s)j2ds; (4)and D
 is an heuristi
 Lebesgue \
at" measure on the spa
e of paths. Formula(2) la
ks of rigor: indeed neither the \in�nite dimensional Lebesgue measure",nor the normalization 
onstant in front of the integral are well de�ned. Nev-ertheless even if more than 50 years have passed sin
e Feynman's originalproposal, formula (2) is still fas
inating. First of all it 
reates a 
onne
tionbetween the 
lassi
al des
ription of the physi
al world and the quantum one.Indeed it allows, at least heuristi
ally, to asso
iate a quantum evolution toea
h 
lassi
al Lagrangian. Moreover an heuristi
 appli
ation of the stationaryphase method for os
illatory integrals allows the study of the behavior of thesolution of the S
hr�odinger equation taking into a

ount that ~ is small. In-deed the integrand is strongly os
illating and the main 
ontributions to theintegral should 
ome from those paths 
 that make stationary the phase fun
-tion S(
). These, by Hamilton's least a
tion prin
iple, are exa
tly the 
lassi
alorbits of the system.Inspired by Feynman's work some time later Ka
 [70, 71℄ noted that that by
onsidering the heat equation� ��tu(t; x) = 12�u(t; x)� V u(t; x)u(0; x) = u0(x) (5)instead of equation (1), it is possible to repla
e the heuristi
 expression (2)with a well de�ned integral on the spa
e of 
ontinuous paths with respe
t tothe Wiener measure W :u(t; x) = Z!(0)=0 u0(!(t) + x)e� R t0 V (!(s)+x)dsdW (!) (6)Su
h an interpretation is not possible for the heuristi
 \Feynman measure"e i~St(
)D
. Indeed Cameron [40℄ proved that the latter 
annot be realized asiv



a 
omplex �� additive measure, even on very ni
e subsets.As a 
onsequen
e mathemati
ians tried to realize it as a linear 
ontinuousfun
tional on a suÆ
iently ri
h Bana
h algebra of fun
tions. In order to mirrorthe features of the heuristi
 Feynman measure, su
h a fun
tional should havesome properties:1. It should behave in a simple way under \translations and rotations inpath spa
e", re
e
ting the fa
t that D
 is a \
at" measure.2. It should satisfy a Fubini type theorem, 
on
erning iterated integrationsin path spa
e.3. It should be approximable by �nite dimensional os
illatory integrals,allowing a sequential approa
h in the spirit of Feynman's original work.4. It should be related to probabilisti
 integrals with respe
t to the Wienermeasure, allowing an \analyti
 
ontinuation approa
h to Feynman pathintegrals from Wiener type integrals".5. It should be suÆ
iently 
exible to allow a rigorous mathemati
al im-plementation of an in�nite dimensional version of the stationary phasemethod and the 
orresponding study of the semi
lassi
al limit of thequantum me
hani
s.Nowadays several implementation of this program 
an be found in the physi
aland in the mathemati
al literature, for instan
e by means of analyti
 
ontin-uation of Wiener integrals [40, 83, 69, 97, 72, 55, 77, 82, 100, 45, 95℄, or asan in�nite dimensional distribution in the framework of Hida 
al
ulus [63, 52℄,via \
omplex Poisson measures" [78, 1℄, or via non standard analysis [7℄ or asa in�nite dimensional os
illatory integral. The latter method is parti
ularlyinteresting as it is the only one by whi
h a development of an in�nite dimen-sional stationary phase method has been performed. Su
h an approa
h hasits roots in a work by Ito [67, 68℄ and was developed by S. Albeverio and R.H�egh-Krohn [12, 13℄, D.Elworthy and A.Truman [57℄, S. Albeverio and Z.Brze�zniak [4, 5℄. Indeed, when the potential V is of the following formV (x) = 12x �
2x + V1(x); (7)where 
2 is a positive de�nite symmetri
 d � d matrix and V1 is the Fouriertransform of a 
omplex bounded variation measure on Rd , Albeverio andH�egh-Krohn de�ne in [12℄ the Feynman integral as a fun
tional on a suit-able Hilbert spa
e of paths by means of a Parseval type formula (previouswork in this dire
tion is due to K. Ito). In [57℄ Elworthy and Truman de-�ne the Feynman fun
tional by means of a sequential approa
h. The \in�nitev



dimensional os
illatory integral" they propose is de�ned as the limit of a se-quen
e of �nite dimensional os
illatory integrals. They 
an also prove that,for the 
lass of fun
tion 
onsidered in [12℄, the in�nite dimensional os
illatoryintegral 
an be expli
itly 
omputed by means of the Parseval type formulaproposed by Albeverio and H�egh-Krohn. Su
h an approa
h allows a rigor-ous implementation of an in�nite dimensional version of the stationary phasemethod and was further developed in [13, 5℄ and [2, 3℄ in 
onne
tion with thestudy of the asymptoti
 behavior of the integral in the limit ~ # 0.In this thesis we show some new developments of the in�nite dimensional os-
illatory integrals-Feynman path integrals theory.� In the �rst 
hapter we re
all the de�nitions of �nite and in�nite dimen-sional os
illatory integrals and their appli
ation to the rigorous mathe-mati
al realization of the Feynman fun
tional and the representation ofthe solution of the S
hr�odinger equation.� In the se
ond 
hapter we show that the in�nite dimensional os
illatoryintegrals are a 
exible tool and 
an be used to give a rigorous mathe-mati
al realization of an Hamiltonian version of the Feynman heuristi
formula, a \phase spa
e Feynman path integral". We prove that undersuitable assumptions it represents the solution of a S
hr�odinger equa-tion in whi
h the 
lassi
al potential V depends both on position and onmomentum.� In the third 
hapter we show that it is possible to generalize the de�nitionof in�nite dimensional os
illatory integrals in order to deal with 
omplex-valued phase fun
tions. We apply su
h a fun
tional to the solution ofa sto
hasti
 S
hr�odinger equation appearing in the theory of 
ontinuousquantum measurement: the S
hr�odinger-Belavkin equation.� In the fourth 
hapter we fo
us on the �nite dimensional 
ase and provethat it is possible to enlarge the 
lass of phase fun
tions for whi
h the 
or-responding �nite dimensional os
illatory integral 
an be expli
itly 
om-puted in terms of an absolutely 
onvergent integral. In the parti
ular
ase where the phase fun
tion is an homogeneous even polynomial, wegive the detailed asymptoti
 expansion of the os
illatory integrals in fra
-tional powers of the small parameter ~ and give 
onditions for either the
onvergen
e or the Borel summability of the expansion.� In the �fth 
hapter we generalize some results of the fourth 
hapter tothe in�nite dimensional 
ase. We show that when the phase fun
tionis the sum of a quadrati
 term plus a quarti
 perturbation, the 
orre-sponding in�nite dimensional os
illatory integral 
an still be de�ned and
omputed in terms of an absolutely 
onvergent integral with respe
t tovi



a \true measure" on the spa
e of paths. Su
h abstra
t result is thenapplied to the representation of the solution of the S
hr�odinger equationwith a 
lassi
al potential V of the type \harmoni
 os
illator plus quar-ti
 perturbation", that is V (x) = 
22 x2 + �x4, � � 0. Moreover undersuitable assumptions, we prove the Borel summability of the asymptoti
expansion of the solution in a power series of the 
oupling 
onstant �.

vii
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Chapter 1Os
illatory integrals and theS
hr�odinger equationIn this 
hapter we re
all some known results, that is the de�nitions of �nite-and in�nite dimensional os
illatory integrals and the main theorems aboutthem, for more details we refer to [12, 57, 4℄. In the following we will denoteby H a (�nite or in�nite dimensional) real separable Hilbert spa
e, whoseelements are denoted by x; y 2 H and the s
alar produ
t with hx; yi. We aregoing to de�ne the os
illatory integral on the Hilbert spa
e HZH e i~�(x)f(x)dx; (1.1)where ~ is a non vanishing real parameter, � and f are respe
tively suitablereal-valued and 
omplex-valued smooth fun
tions. We remark that even in�nite dimensions (dim(H) = n) the integral (4.1) in general is not well de�nedin Lebesgue sense, unless RRN jf(x)jdx < +1. The study of �nite dimensionalos
illatory integrals of the above form is already a 
lassi
al topi
, largely devel-oped in 
onne
tions with various problems in mathemati
s and physi
s. Wellknown examples of simple integrals of the above form are the Fresnel integralsof the theory of wave di�ra
tion and Airy's integrals of the theory of rainbow,see e.g. [34℄. The theory of Fourier integral operators [64, 65, 78℄ also grewout of the investigation of os
illatory integrals. It allows the study of existen
eand regularity of a large 
lass of ellipti
 and pseudoellipti
 operators and pro-vides 
onstru
tive tools for the solutions of the 
orresponding equations. Inparti
ular one is interested in dis
ussing the asymptoti
 behavior of the aboveintegrals when the parameter ~ is sent to 0, in a mathemati
al idealization.The method of stationary phase provides a tool for su
h investigations andhas many appli
ations, su
h as the study of the 
lassi
al limit of quantumme
hani
s (see [58, 13, 4℄). In the general 
ase of degenerate 
riti
al points ofthe phase fun
tion �, the theory of unfoldings of singularities is applied, see1



[24, 56℄.The extensions of the de�nition of os
illatory integrals on an in�nite dimen-sional Hilbert spa
e H and the implementation of a 
orresponding in�nite-dimensional version of the stationary phase method has a parti
ular interestin 
onne
tion with the rigorous mathemati
al de�nition of the \Feynman pathintegrals".The de�nition of su
h integrals is divided into two main steps: �rst of all a�nite dimensional os
illatory integral is de�ned as the limit of a sequen
e ofabsolutely 
onvergent integrals. In the se
ond step the in�nite dimensionalos
illatory integral is de�ned as the limit of a sequen
e of �nite dimensionalos
illatory integrals.In the �rst and in the se
ond se
tions, we shall re
all the main result on the�nite and respe
tively in�nite dimensional os
illatory integrals. In the thirdse
tion we shall show how the latter 
an be applied to give a rigorous math-emati
al meaning to Feynman's heuristi
 formula (2) and to represent thesolution of the S
hr�odinger equation (1).1.1 Finite dimensional os
illatory integralsLet us assume that H = Rn and de�ne the os
illatory integral [64, 65℄ZRN e i~�(x)f(x)dx:In the whole 
hapter ~ > 0 is a �xed parameter (we 
all it ~ be
ause of itsinterpretation in the 
ontext of appli
ations to quantum me
hani
s). Thefollowing de�nition is taken from [57℄ and is a modi�
ation of one given in[65℄.De�nition 1. The os
illatory integral of fun
tion f : Rn ! C with respe
t to aphase fun
tion � is well de�ned if and only if for ea
h test fun
tion � 2 S(Rn)su
h that �(0) = 1 the limitlim�!0ZRN e i~�(x)f(x)�(�x)dx (1.2)exists and is independent of �. In this 
ase the limit is 
alled the os
illatoryof f with respe
t to � and denoted by RRN e i~�(x)f(x)dxThe parti
ular 
ase in whi
h the phase fun
tion � is a quadrati
 form iswell studied. This parti
ular type of os
illatory integrals are 
alled \Fresnelintegrals". In this 
ase it is 
onvenient to in
lude into the de�nition of theos
illatory integral the \multipli
ation fa
tor" (2�i~)�dim(H)=2, whi
h will beuseful in the extension of su
h a de�nition to the in�nite dimensional 
ase. Let2



us denote by Q an invertible symmetri
 operator from RN to RN and de�nethe \Fresnel integral" Z e i2~ hx;Qxif(x)dxDe�nition 2. A fun
tion f : Rn ! C is 
alled Fresnel integrable with respe
tto Q if and only if for ea
h � 2 S(Rn) su
h that �(0) = 1 the limitlim�!0(2�i~)�n=2 Z e i2~ hx;Qxif(x)�(�x)dx (1.3)exists and is independent of �. In this 
ase the limit is 
alled the Fresnelintegral of f with respe
t to Q and denoted byfZ e i2~ hx;Qxif(x)dx (1.4)The des
ription of the full 
lass of Fresnel integrable fun
tions is not easy,but one 
an �nd some interesting subsets of it.Let us 
onsider the spa
e M(RN ) of 
omplex bounded variation measures onRN endowed with the total variation norm. M(RN ) is a Bana
h algebra,where the produ
t of two measures � � � is by de�nition their 
onvolution:� � �(E) = ZRN �(E � x)�(dx); �; � 2 M(RN )and the unit element is the Dira
 measure Æ0.Let F(RN ) be the spa
e of fun
tions f : RN ! C whi
h are the Fouriertransforms of 
omplex bounded variation measures �f 2 M(RN ):f(x) = ZRN eik�x�f(dk); �f 2 M(RN ):One 
an prove that when �(x) = 12hx;Qxi and f 2 F(Rn), then the Fresnelintegral of f with respe
t to Q is well de�ned and 
an be 
omputed by meansof a well de�ned integral, whi
h is 
onvergent in Lebesgue's sense.Theorem 1. Let f 2 F(Rn), then f is Fresnel integrable and its Fresnelintegral with respe
t to Q is given by:fZ e i2~ hx;Qxif(x)dx = (detQ)�1=2 Z e�i~2 h�;Q�1�i�f(d�): (1.5)where (detQ)1=2 = (j detQj)1=2ei�Ind(Q)=2, Ind(Q) being the number of negativeeigenvalues of the operator Q, 
ounted with their multipli
ity.3



For the proof see [57℄, see also [12, 4℄.In an analogous way one 
an de�ne the \normalized Fresnel integral" by in-trodu
ing a normalization fa
tor:De�nition 3. A fun
tion f : Rn ! C is 
alled Fresnel integrable with respe
tto Q if and only if for ea
h � 2 S(Rn) su
h that �(0) = 1 the limitlim�!0(2�i~)�n=2(detQ) 12 Z e i2~ hx;Qxif(x)�(�x)dx (1.6)exists and is independent of �. In this 
ase the limit is 
alled the normalizedFresnel integral of f with respe
t to Q and denoted bygZ Qe i2~ hx;Qxif(x)dx (1.7)One 
an easily see that f is Fresnel integrable with respe
t to Q in thesense of de�nition 2 if and only if f is Fresnel integrable with respe
t to Qin the sense of de�nition 3 and the two Fresnel integrals are related by amultipli
ation fa
tor:gZ Qe i2~ hx;Qxif(x)dx = (detQ) 12fZ e i2~ hx;Qxif(x)dx (1.8)Theorem 1 in this 
ase assumes the following form:Theorem 2. Let f 2 F(Rn), then f is Fresnel integrable and its normalizedFresnel integral with respe
t to Q is given by:gZ Qe i2~ hx;Qxif(x)dx = Z e�i~2 h�;Q�1�i�f(d�): (1.9)Note that if we substitute into the latter the fun
tion f = 1, we havefR Qe i2~ hx;Qxif(x)dx = 1. For this reason the integral of de�nition 3 is 
alled\normalized".The 
hoi
e of a suitable normalization fa
tor, that is the 
hoi
e between def-inition 2 and de�nition 3, will be important in the extension of the theory tothe in�nite dimensional 
ase.1.2 In�nite dimensional os
illatory integralsLet us 
onsider an in�nite dimensional real separable Hilbert spa
e H andan invertible, densely de�ned and self-adjoint operator Q on H. The in�nitedimensional os
illatory integral on H with quadrati
 phase fun
tion 12hx;Qxiis de�ned as the limit of a sequen
e of �nite dimensional os
illatory integrals(de�ned in the previous se
tion) [57, 4℄.4



De�nition 4. A fun
tion f : H ! C is 
alled Fresnel integrable with respe
tto Q if and only for ea
h sequen
e fPngn2N of proje
tors onto n-dimensionalsubspa
es of H, su
h that Pn � Pn+1 and Pn ! I strongly as n ! 1, (Ibeing the identity operator in H), the �nite dimensional approximations of theFresnel integral of f with respe
t to QgZPnHe i2~ hPnx;QPnxif(Pnx)d(Pnx);are well de�ned (in the sense of de�nition 2) and the limitlimn!1 gZPnHe i2~ hPnx;QPnxif(Pnx)d(Pnx) (1.10)exists and is independent on the sequen
e fPng.In this 
ase the limit is 
alled the Fresnel integral of f with respe
t to Q andis denoted by fZHe i2~ hx;Qxif(x)dxIt is not easy to 
hara
terize the full 
lass of integrable fun
tions, but undersuitable assumptions on the operator Q it is possible to generalize theorem 1to the in�nite dimensional 
ase.Let us denote by M(H) the Bana
h spa
e of the 
omplex bounded variationmeasures on H, endowed with the total variation norm, that is:� 2 M(H); k�k = supXi j�(Ei)j;where the supremum is taken over all sequen
es fEig of pairwise disjoint Borelsubsets of H, su
h that [iEi = H. M(H) is a Bana
h algebra, where theprodu
t of two measures � � � is by de�nition their 
onvolution:� � �(E) = ZH �(E � x)�(dx); �; � 2 M(H)and the unit element is the ve
tor Æ0.Let F(H) be the spa
e of 
omplex fun
tions onH whi
h are Fourier transformsof measures belonging to M(H), that is:f : H ! C f(x) = ZH eihx;�i�f(d�) � �̂f (x):F(H) is a Bana
h algebra of fun
tions, where the produ
t is the pointwiseone, the unit element is the fun
tion 1, i.e. 1(x) = 1 8x 2 H, and the norm isgiven by kfk = k�fk.The following result holds: 5



Theorem 3. Let us assume that f 2 F(H) and (Q � I) is a tra
e 
lassoperator (I being the identity operator). Then f is Fresnel integrable withrespe
t to Q and the 
orresponding Fresnel integral is given by the followingCameron Martin-Parseval type formula:fZ e i2~ hx;Qxif(x)dx = (detQ)�1=2 ZH e� i~2 h�;Q�1�i�f(d�) (1.11)where detQ = j detQje��i Ind Q is the Fredholm determinant of the operator Q,j detQj its absolute value and Ind(Q) is the number of negative eigenvalues ofthe operator Q, 
ounted with their multipli
ity.For the proof see [4, 57℄.In an analogous way it is possible to de�ne the normalized in�nite dimensionalos
illatory integral as the limit of a sequen
e of �nite dimensional os
illatoryintegrals (in the sense of de�nition 3)De�nition 5. A fun
tion f : H ! C is 
alled Fresnel integrable with respe
tto Q if and only for ea
h sequen
e fPngn2N of proje
tors onto n-dimensionalsubspa
es of H, su
h that Pn � Pn+1 and Pn ! I strongly as n ! 1, (Ibeing the identity operator in H), the �nite dimensional approximations of theFresnel integral of f with respe
t to Q^Z PnQPnPnH e i2~ hPnx;QPnxif(Pnx)d(Pnx);are well de�ned (in the sense of de�nition 3) and the limitlimn!1 ^Z PnQPnPnH e i2~ hPnx;QPnxif(Pnx)d(Pnx) (1.12)exists and is independent on the sequen
e fPng.In this 
ase the limit is 
alled the normalized Fresnel integral of f with respe
tto Q and is denoted by gZ QH e i2~ hx;Qxif(x)dxIn this 
ase, if f 2 F(H), then it is possible to prove a formula similar to(1.11) even if Q� I is not tra
e 
lass:Theorem 4. Let us assume that f 2 F(H). Then f is Fresnel integrablewith respe
t to Q (in the sense of de�nition 5 and the 
orresponding normal-ized Fresnel integral is given by the following Cameron-Martin-Parseval typeformula: gZ QH e i2~ hx;Qxif(x)dx = ZH e� i~2 h�;Q�1�i�f(d�): (1.13)6



Su
h a result shows that in the in�nite dimensional 
ase the normalization
onstant in the �nite dimensional approximations plays a 
ru
ial role and def-initions 4 and 5 are not equivalent. Indeed de�nition 5 and theorem 4 makesen
e even if the operator Q � I is not tra
e 
lass. In fa
t it is possible tointrodu
e di�erent normalization 
onstants in the �nite dimensional approx-imations and the properties of 
orresponding in�nite dimensional os
illatoryintegrals are related to the tra
e properties of Q� I and its powers [5℄. Morepre
isely, for any p 2 N , let us 
onsider the S
hatten 
lass Tp(H) of boundedlinear operators L in H su
h thatkLkp = (Tr(L�L)p=2)1=pis �nite. (Tp(H); k � kp) is a Bana
h spa
e. For any p 2 N and L 2 Tp(H) onede�nes the regularized Fredholm determinant det(p) : I + Tp(H)! R:det(p)(Q) = det�Q exp p�1Xj=0 (I �Q)jj �; Q = I � L; L 2 Tp(H);where det denotes the usual Fredholm determinant. det(2) is 
alled Carlemandeterminant.For p 2 N , (Q� I) 2 T1(H) let us de�ne the normalized quadrati
 form on H: Np(Q)(x) = hx;Qxi + i~Tr p�1Xj=0 (Q� I)jj ; x 2 H (1.14)For generi
 p 2 N let us de�ne the 
lass p normalized os
illatory integral:De�nition 6. Let p 2 N, Q a bounded linear operator in H, f : H ! C .The 
lass p normalized os
illatory integral of the fun
tion f with respe
t tothe operator Q is well de�ned if for ea
h sequen
e fPngn2N of proje
tors onton-dimensional subspa
es of H, su
h that Pn � Pn+1 and Pn ! I strongly asn!1, (I being the identity operator in H), the normalized �nite dimensionalapproximations gZPnHe i2~Np(PnQPn)(Pnx)f(Pnx)d(Pnx); (1.15)are well de�ned (in the sense of de�nition 2 and the limitlimn!1 gZPnHe i2~Np(PnQPn)(Pnx)f(Pnx)d(Pnx) (1.16)exists and is independent on the sequen
e fPng.In this 
ase the limit is denoted bypgZ QH e i2~ hx;Qxif(x)dx7



If Q� I is not a tra
e 
lass operator, then the quadrati
 form (1.14) is notwell de�ned and the right hand side of (1.15) makes sense thanks to the fa
tthat all the fun
tion are restri
ted on �nite dimensional subspa
es. Neverthe-less the limit (1.16) 
an make sense, as the following result shows.Theorem 5. Let us assume that f 2 F(H), (Q�I) 2 Tp(H) and det(p)(Q) 6= 0. Then the 
lass-p normalized os
illatory integral of the fun
tion f with respe
tto the operator Q exists and is given by the following Cameron-Martin-Parsevaltype formula:pgZ QH e i2~ hx;Qxif(x)dx = [det(p)(Q)℄�1=2 ZH e� i~2 h�;Q�1�i�f(d�): (1.17)1.3 Appli
ation to the S
hr�odinger equationIn the setting explained in se
tion 1.2 one 
an give a rigorous mathemati
alinterpretation of formula (2) in terms of an in�nite dimensional os
illatoryintegral on a suitable Hilbert spa
e of paths.Let us 
onsider the so-
alled Cameron-Martin spa
e Ht, that is the spa
eof absolutely 
ontinuous fun
tions 
 : [0; t℄ ! Rd , 
(t) = 0, su
h thatR t0 j _
(s)j2ds <1, endowed with the following s
alar produ
th
1; 
2i = Z t0 _
1(s) � _
2(s)ds;Let us 
onsider the S
hr�odinger equation in L2(Rd)i~ ��t = H (1.18)with initial datum  jt=0 =  0 and quantum me
hani
al Hamiltonian H =�~22 � + 12x
2x + V1(x), where x 2 Rd , 
2 � 0 is a positive d � d matrix,V1 2 F(Rd) and  0 2 F(Rd) \ L2(Rd).By 
onsidering the operator Q = I � L on Ht given byh
; L
i � Z t0 
(s)
2
(s)ds;and the fun
tion v : Ht ! Cv(
) � Z t0 V1(
(s) + x)ds+ 2x
2 Z t0 
(s)ds; 
 2 Ht;formula (2)\ 
onst Zf
j
(t)=xg e i~ R t0 ( 12 _
(s)2� 12
(s)
2
(s)�V1(
(s)))ds 0(
(0))D
 008




an be interpreted as the in�nite dimensional os
illatory integral on Ht (in thesense of de�nition 4)fZ Hte i2~ h
;(I�L)
ie� i~v(
) 0(
(0) + x)d
: (1.19)By analyzing the spe
trum of the operator L (see [57℄ for more details) one
an easily verify that L is tra
e 
lass and I � L is invertible. The followingholds:Theorem 6. Let  0 2 F(Rd)\L2(Rd) and let V1 2 F(Rd). Then the fun
tionf : Ht ! C given by f(
) = e� i~ v(
) 0(
(0) + x)is the Fourier transform of a 
omplex bounded variation measure �f on Ht andthe in�nite dimensional os
illatory integral of f with respe
t to Q � I � LfZ Hte i2~ h
;(I�L)
ie� i~v(
) 0(
(0) + x)d
:is well de�ned (in the sense of de�nition 4) and it is equal todet(I � L)�1=2 ZHt e�i~2 h
;(I�L)�1
i�f(d
):Moreover it is a representation of the solution of equation (1.18) evaluated atx 2 Rd at time t.For a proof see [57℄.Remark 1. With the same te
nique it is possible to deal with potentials of thetype \harmoni
 os
illator plus linear perturbation".Remark 2. It is important to note that if V1 2 F(Rd), then V1 is bounded. Asa 
onsequen
e the only unbounded potentials for whi
h the Feynman fun
tionalof [12, 57, 4℄ 
an be rigorously de�ned are those of harmoni
 os
illator type.The extension to unbounded potentials whi
h are Lapla
e transforms of boundedmeasures [6, 74℄ also does not 
over the 
ase of potentials whi
h are polynomialsof degree larger than 2.Remark 3. The 
ase of time-dependent potentials has been handled by meansof analyti
 
ontinuation in mass (see [69℄ Ch 14-18 for more details).
9
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Chapter 2Phase Spa
e Feynman PathintegralsLet us re
all that Feynman's original aim was to give a Lagrangian formulationof quantum me
hani
s. On the other hand an Hamiltonian formulation 
ouldbe preferable from many points of view. For instan
e the dis
ussion of theapproa
h from quantum me
hani
s to 
lassi
al me
hani
s, i.e the study of thebehavior of physi
al quantities taking into a

ount that ~ is small, is morenatural in an Hamiltonian setting (see, e.g. , [4, 78℄ for a dis
ussion of thisbehavior). In other words the \phase spa
e" rather then the \
on�gurationspa
e" is the natural framework of 
lassi
al me
hani
s.As a 
onsequen
e one is tempted to propose a \phase spa
e Feynman pathintegral" representation for the solution of the S
hr�odinger equation (1), thatis the heuristi
 formula:\ (t; x) = 
onst Zq(t)=x e i~S(q;p) 0(q(0))dqdp": (2.1)Here the integral is meant on the spa
e of paths q(s); p(s), s 2 [0; t℄ in thephase spa
e of the system (q(s)s2[0;t℄ is the path in 
on�guration spa
e andp(s)s2[0;t℄ is the path in momentum spa
e) and S is the a
tion fun
tional inthe Hamiltonian formulation:S(q; p) = Z t0 ( _q(s)p(s)�H(q(s); p(s)))ds;(H being the 
lassi
al Hamiltonian of the system). The aim of this 
hapteris to give a rigorous mathemati
al realization of the heuristi
 formula (2.1) interms of a well de�ned in�nite dimensional os
illatory integral and to provethat, under suitable assumptions on the initial datum  0 and on the 
lassi
alpotential V , it gives a representation of the solution of the S
hr�odinger equa-tion (1). In parti
ular we show that by means of this fun
tional the 
ase in11



whi
h the potential V depends expli
itly both on position and on momentum
an be handled.We note that an approa
h of phase spa
e Feynman path integrals via ana-lyti
 
ontinuation of \phase spa
e Wiener integrals" has been presented by I.Daube
hies and J. Klauder [49℄. Analyti
 
ontinuation was also used in other\path spa
e" approa
hes, see [83, 69, 41℄ and referen
es therein. Our approa
his more dire
t in the spirit of [12℄.2.1 Lie-Trotter produ
t formulaWe �rst re
all an abstra
t version of the Lie-Trotter produ
t formula.Lemma 1. Let A and B be self-adjoint operators in a Hilbert spa
e H and letA+B be essentially self-adjoint on D(A) \D(B). Thens� limn!1(eitA=neitB=n)n = ei(A+B)t; t 2 R (2.2)Here s� lim is the strong operator limit1. For a proof and a dis
ussion ofthis lemma see e.g. [43, 90℄.Let H = L2(Rd) and let us 
onsider a potential V depending both on theposition and on the momentum in the following way: V = V1(x) + V2(p).V1 is de�ned as a self-adjoint operator is H, with its natural domain as amultipli
ation operator. V2 is the operator in H with domainD(V2(p)) = f 2 H j �! V2(�) ̂(�) 2 Hgwhere  ̂ is the Fourier transform of  . It 
oin
ides with the operator de�nedby fun
tional 
al
ulus as V2(p), with p the self-adjoint operator �i~r in H. Vis then the sum, as a self-adjoint operator in H, of the self-adjoint operators V1and V2. We assume that the fun
tions V1 and V2 are su
h that the 
orrespond-ing operators have a 
ommon dense domain of essentially self-adjointness D.This is the 
ase, e.g., when V1 2 L2(Rd)+L1(Rd), V2 is bounded measurable,and D = C10 (Rd) or D = S(Rd). We assume, in order to apply lemma 1, thatV1, V2 are su
h that � ~22m�+V2 and � ~22m�+V1+V2 are essentially self-adjointon D. We denote by H the 
losure of the latter operator. H (whi
h we alsowrite simply as � ~22m�+ V1 + V2), is then the quantum Hamiltonian.As a self-adjoint operator on H, H=~ is the generator of an one-parametergroup U(t)t2R of unitary operators, denoted byU(t) = e� it~H = e� it(p2=2m+V )~ :1A sequen
e (An)n2N of linear operators An : D � H ! H with a 
ommon domain D ina Hilbert spa
e (H; k � k) 
onverges strongly to an operator A is for ea
h  2 D, one haslimn!1 kAn �A k = 0. 12



Given an initial ve
tor  0 2 H, the solution of the Cau
hy problem� _ = � i~H  (0; x) =  0(x) (2.3)is given by  (t) = e� it(p2=2m+V )~  0.By lemma 1 we havee� it(p2=2m+V )~ = s� limn!1�e� i�(p2=2m+V2)~ e� i�(V1)~ �n; � � tn (t) = e� it(p2=2m+V )~  0 = limn!1�e� i�(p2=2m+V2)~ e� i�V1~ �n 0;  0 2 C10 (Rd);(see e.g. [43, 91℄ for related uses of the Lie-Trotter formula).By shifting from the position representation to the momentum representationand vi
e versa and assuming that V1 and V2 are 
ontinuous, we 
an write inthe strong L2(Rd)-sense, for all t > 0: (t; x) = limn!1ZRd e� i�(p2n�1=2m+V2(pn�1))~ �^�e� i�V1~ �e� i�(p2=2m+V2)~ e� i�(V1)~ �n�1 0�(p1) ei xpn�1~(2�~)d=2 dpn�1= limn!1ZR2d e� i�(p2n�1=2m+V2(pn�1))~ e� i�V1(xn�1)~ ���e� i�(p2=2m+V2)~ e� i�(V1)~ �n�1 0�(xn�1) ei xpn�1~(2�~)d=2 e�i xn�1pn�1~(2�~)d=2 dpn�1dxn�1= limn!1� 1p2�~�2nd�RR2nd e� i�~ Pn�1j=0 � p2j2m+V1(xj)+V2(pj)�pj (xj+1�xj)� � 0(x0)Qn�1j=0 dpjdxj; (2.4)where xn � x.Remark 4. The integrals above are to be understood as limits as � " Rd ,n ! 1 in the L2(R2nd) sense of the 
orresponding integrals over �2nd, with� bounded (see [83℄). Formula (2.4) holds �rst as a strong L2-limit, butthen(possibly by subsequen
es) also for Lebesgue a.e.x. in Rd . It also followsfrom this that (2.4) gives the solution to the Cau
hy problem (2.3).13



The latter expression suggests the following formula for the limit: (t; x) = 
onst Zq(t)=x e i~S(q;p) 0(q(0))dqdp (2.5)S(q; p) = Z t0 p(s) _q(s)�H(q(s); p(s))dswhi
h does not yet have a mathemati
al meaning. It will be rigorously de�nedin the following se
tions.2.2 Phase spa
e Feynman fun
tionalLet us 
onsider again the expression (2.5) in the parti
ular 
ase of the freeparti
le, namely when the Hamiltonian is just the kineti
 energy: H = p2=2m.In this 
ase we have heuristi
ally (t; x) = 
onst Zq(t)=x e i~ R t0 (p(s) _q(s)�p(s)2=2m)ds 0(q(0))dqdp (2.6)We 
an give to this expression a pre
ise meaning: under suitable hypothesison the initial wave fun
tion  0, it is an in�nite dimensional os
illatory integral.From now on we will assume for notational simpli
ity that m = 1, but but thewhole dis
ussion 
an be generalized to arbitrary m.Following [98, 98℄, let us introdu
e the Hilbert spa
e Ht�Lt, namely the spa
eof paths in the d�dimensional phase spa
e (q(s); p(s))s2[0;t℄, su
h that the path(q(s))s2[0;t℄ belongs to the Cameron Martin spa
e Ht, namely to the spa
e ofthe absolutely 
ontinuous fun
tions q from [0; t℄ to Rd su
h that q(t) = 0 and_q 2 L2([0; t℄;Rd), with inner produ
t hq1; q2i = R t0 _q1(s) _q2(s)ds, while the pathin the momentum spa
e (p(s))s2[0;t℄ belongs to Lt = L2([0; t℄;Rd). Ht � Lt isan Hilbert spa
e with the natural inner produ
thq; p;Q;P i = Z t0 _q(s) _Q(s)ds+ Z t0 p(s)P (s)ds:Let us introdu
e the following bilinear form:[q; p;Q;P ℄ =R t0 _q(s)P (s)ds+ R t0 p(s) _Q(s)ds� R t0 p(s)P (s)ds = hq; p;A(Q;P )i;where A is the following operator in Ht � Lt,:A(Q;P )(s) = (Z st P (u)du; _Q(s)� P (s)): (2.7)14



A(Q;P ) is densely de�ned, e.g. on C1([0; t℄;Rd) � C1([0; t℄;Rd). MoreoverA(Q;P ) is invertible with inverse given byA�1(Q;P )(s) = (Z st P (u)du+Q(s); _Q(s)) (2.8)(on the range of A).Now expression (2.5) 
an be realized rigorously as the normalized Fresnel in-tegral (5): Ẑ AHt�Lte i2~ hq;p;A(q;p)i 0(q(0) + x)dqdpwhere q + x denotes the translated path q(s)! q(s) + x.In this 
ase the heuristi
 expression (2.5) is well de�ned through Lie-Trotterprodu
t formula, namely as the limit of a sequen
e of �nite dimensional in-tegrals, as we saw in the previous se
tion. We are going now to show that itis also the limit of a sequen
e of �nite dimensional os
illatory integrals in thesense of de�nition 5.Let us 
onsider a sequen
e of partitions �n of the interval [0; t℄ into n subin-tervals of amplitude � � t=n:t0 = 0; t1 = �; : : : ; ti = i�; : : : ; tn = n� = t:To ea
h �n we asso
iate a proje
tor Pn : Ht � Lt !: Ht � Lt onto a �nitedimensional subspa
e of Ht � Lt, namely the subspa
e of polygonal paths. Inother words ea
h proje
tor Pn a
ts on a phase spa
e path (q; p) 2 Ht � Lt inthe following way:Pn(q; p)(s) =�Pni=1 �[ti�1;ti℄(s)�q(ti�1) + (q(ti)�q(ti�1)ti�ti�1 (s� ti�1)�;Pni=1 �[ti�1;ti℄(s)pi�;where pi = R titi�1 p(s)dsti�ti�1 = 1� R titi�1 p(s)ds.Theorem 7. For ea
h n 2 N, Pn is a proje
tor in Ht � Lt. Moreover forn!1 Pn ! I as a bounded operator.Proof. � Pn is symmetri
, indeed for all (Q;P ) 2 Ht � Lt and all (q; p) 2Ht � LthQ;P ;Pn(q; p)i = Z t0 _Q(s) nXi=1 �[ti�1;ti℄(s)(q(ti)� q(ti�1)ti � ti�1 ds+15



+ Z t0 P (s) nXi=1 �[ti�1;ti℄(s)pids = nXi=1 (q(ti)� q(ti�1)(Q(ti)�Q(ti�1)ti � ti�1 ++ nXi=1 R titi�1 p(s)ds R titi�1 P (s)dsti � ti�1 = hPn(Q;P ); q; pi� P 2n = Pn, indeedP 2n(q; p)(s) =�Pni=1 �[ti�1;ti℄(s)�q(ti�1) + (q(ti)�q(ti�1)ti�ti�1 (s� ti�1)�;Pni=1 �[ti�1;ti℄(s)pi�= Pn(q; p)(s)� 8(q; p) 2 Ht � Lt, kPn(q; p)� (q; p)k ! 0 as n!1:Let us 
onsider the subset K � Ht � Lt, K = f(q; p) 2 Ht � Lt :kPn(q; p)� (q; p)k ! 0 ; n!1g. It is enough to prove that the 
losureof K is Ht � Lt. To prove this it is suÆ
ient to show that K is a 
losedsubspa
e of Ht�Lt and 
ontains a dense subset of Ht�Lt. This followsfrom the density of the pie
ewise linear paths in Ht and the density ofthe pie
ewise 
onstant paths in Lt (see e.g. [96℄).Theorem 8. Let the fun
tion (q; p) !  0(x + q(0)),  0 2 S(Rd), be Fresnelintegrable with respe
t to A (with A de�ned by (2.7)). Then the phase spa
eFeynman path integral, namely the limitlimn!1(2�i~)�nd(det(PnAPn))1=2Z Pn(Ht�Lt)e i2~ hPn(q;p);APn(q;p)i 0(x+q(0))dPn(q; p)(2.9)
oin
ides with the limit (2.4), namely with the solution of the S
hr�odingerequation with a free Hamiltonian.Proof. The result follows by dire
t 
omputation, indeed:fZ Pn(Ht�Lt)e i2~ hPn(q;p);APn(q;p)i 0(x + q(0))dPn(q; p)= � 1p2�~�2nd ZR2nd e� i�~ Pn�1j=0 � p2j2 �pj (xj+1�xj)� � 0(x0) n�1Yj=0 dpjdxj;and the two limits (2.4) and (2.9) 
oin
ide. Indeed (2.9) is a pointwise limit byhypothesis. On the other hand (2.4) is a limit in the L2 sense, hen
e, passingif ne
essary to a subsequen
e, it is also a pointwise limit.16



Remark 5. The latter result is equivalent to the \traditional" formulation ofthe Feynman path integral in the 
on�guration spa
e. Indeed it 
an be ob-tained by means of Fubini theorem [12℄ and an integration with respe
t to themomentum variables:limn!1� 1p2�~�2nd ZR2nd e� i�~ Pn�1j=0 � p2j2m�pj (xj+1�xj)� � 0(x0) n�1Yj=0 dpjdxj= limn!1� 1p2�i~�nd ZRnd e� i�~ Pn�1j=0 m (xj+1�xj )22�2  0(x0) n�1Yj=0 dxjThe latter expression yields the Feynman fun
tional on the 
on�guration spa
e,i.e. heuristi
ally 
onst R eR t0 L(q(s); _q(s))dsdq, (L being the 
lassi
al Lagrangiandensity).Remark 6. The integration with respe
t to the momentum variables mightseem to be super
uous, but it is very useful when we introdu
e a potentialdepending on the momentum.Theorem 9. Let us 
onsider a semibounded potential V depending expli
itlyon the momentum: V = V (p) and the 
orresponding quantum me
hani
alHamiltonian H = �~22 �+V (p). Let us suppose H is an essentially self-adjointoperator on L2(Rd). Let the fun
tion (q; p) ! e� i~ R t0 V (Pn(p(s)))ds 0(x + q(0))be Fresnel integrable with respe
t to the operator A, with A de�ned by (2.7).Then the solution to the S
hr�odinger equation� _ = � i~H  (0; x) =  0(x);  0 2 S(Rd) (2.10)is given by the phase spa
e path integrallimn!1(2�i~)�nd(det(PnAPn))1=2Z Pn(Ht�Lt)e i2~ hPn(q;p);APn(q;p)ie� i~ R t0 V (Pn(p(s)))ds 0(x + q(0))dPn(q; p)Proof. We 
an pro
eed in a 
ompletely analogous way as in the proof of the-orem 8, therefore we shall omit the details.2.3 The phase spa
e Feynman-Ka
 formulaLet us 
onsider a 
lassi
al potential V depending both on the position Q 2 Rdand on the momentum P 2 Rd , but of the spe
ial form: V = V (Q;P ) =17



V1(Q) + V2(P ) (The general 
ase presents problems due to the non 
ommuta-tivity of the quantized expression of Q and P ), for a di�erent approa
h withmore general Hamiltonians see [93℄. Moreover let us suppose the fun
tionf : Ht � Lt ! Cf(q; p) =  0(x+ q(0))e� i~ R t0 V (q(s)+x;p(s))ds;  0 2 S(Rd)is the Fourier transform of a 
omplex bounded variation measure �f onHt�Lt:f(q; p) = ZHt�Lt eihq;p;Q;P id�f(Q;P ):Under additional assumptions on V1 and V2 we shall see that the phasespa
e Feynman path integral of the fun
tion f 
an be 
omputed and is givenby fZ Ht�Lte i2~ hq;p;A(q;p)ie� i~ R t0 V (q(s)+x;p(s))ds (0; q(0) + x)dqdp == ZHt�Lt e�i~2 hq;p;A�1(q;p)id�f(q; p): (2.11)This follows from the previous se
tion together with the followingLemma 2. Let us 
onsider a potential V (Q;P ) = V1(Q) + V2(P ) and aninitial wave fun
tion  0 su
h that V1;  0 2 F(Rd) and the fun
tion p(s)s2[0;t℄ !R t0 V2(p(s))ds 2 F(Lt). Then the fun
tionalf(q; p) =  0(x + q(0))e� i~ R t0 V (q(s)+x;p(s))dsbelongs to F(Ht � Lt)Proof. f(q; p) is the produ
t of two fun
tions: the �rst, say f1, depends onlyon the �rst variable q, while the se
ond f2 depends only on the variable p,more pre
iselyf1(q) =  0(x+ q(0))e� i~ R t0 V1(q(s)+x)ds; f2(p) = e� i~ R t0 V2(p(s))ds:Under the given hypothesis on V1 and  0, f1 belongs to F(Ht). The proofis given for instan
e in [12℄. For f2 one must pay more attention: indeed thesame proof given for f1 does not work, as f2 is de�ned on a di�erent Hilbertspa
e and we have to require expli
itly that R t0 V2(p(s))ds 2 F(Lt). Under thishypothesis one 
an easily prove that (see again [12℄) f2 2 F(Lt).Now if f1 = �̂f1 2 F(Ht), f1 
an be extended to a fun
tion, denoted again byf1, in F(Ht�Lt): it is the Fourier transform of the produ
t measure onHt�Ltof �f1(dq) and Æ0(dp). The same holds for f2 = �̂f2: f2 = \(Æ0(dq)�f2(dp)).18



Finally, as F(Ht � Lt) is a Bana
h algebra, the produ
t of two elements f1f2is again an element of F(Ht � Lt): more pre
isely it is the Fourier transformof the 
onvolution of the two measures inM(Ht�Lt) 
orresponding to f1 andf2 respe
tively, and the 
on
lusion follows.The next theorem shows that the above os
illatory integral (2.11) gives thesolution to the S
hr�odinger equation (2.12).Theorem 10. Let us 
onsider the following HamiltonianH(Q;P ) = P 22 + V1(Q) + V2(P )in L2(Rd) and the 
orresponding S
hr�odinger equation� _ = � i~H  (0; x) =  0(x); x 2 Rd (2.12)Let us suppose that V1;  0 2 F(Rd) and R t0 V2(p(s))ds 2 F(Lt). Then thesolution to the Cau
hy problem (2.12) is given by the phase spa
e Feynmanpath integral:fZ Ht�Lte i2~ hq;p;A(q;p)ie� i~ R t0 (V1(q(s)+x)+V2(p(s)))ds 0(q(0) + x)dqdpProof. We follow the proof given by Elworthy and Truman in [57℄.For 0 � u � t let �u(V1; x) � �u; �tu(V1; x) � �tu, �tu(V2) � �tu and �0( ) bethe measures on Ht�Lt, whose Fourier transforms when evaluated at (q; p) 2Ht�Lt are V1(x+ q(u)); exp �� i R tu V1(x+ q(s))ds�; exp �� i R tu V2(p(s))ds�and  0(q(0) + x).We setU(t) 0(x) =fZ Ht�Lte i2~ hq;p;A(q;p)ie� i~ R t0 (V1(q(s)+x)+V2(p(s)))ds 0(q(0) + x)dqdpand U0(t) 0(x) =fZ Ht�Lte i2~ hq;p;A(q;p)ie� i~ R t0 V2(p(s)))ds 0(q(0) + x)dqdpBy se
tion 3 we have:U(t) 0(x) = ZHt�Lt e�i~2 hq;p;A�1(q;p)i(�t0 � �t0 � �0( ))(dqdp): (2.13)19



Now, if f�u : a � u � tg is a family in M(Ht � Lt), we shall let R ba �ududenote the measure on Ht � Lt given by :f ! Z ba ZHt�Lt f(q; p)d�u(q; p)duwhenever it exists.Sin
e for any 
ontinuous path q we haveexp �� i Z t0 V1(q(s))ds� = 1� i Z t0 V1(q(u)) exp�� i Z tu V1(q(s))ds�duthe following relation holds�t0 = Æ0 � i Z t0 (�u � �tu)du (2.14)where Æ0 is the Dira
 measure at 0 2 Ht.Applying this relation to (2.13) we obtain:U(t) 0(x) = ZHt�Lt e�i~2 hq;p;A�1(q;p)i(�t0 � �0( ))(dqdp)�i Z t0 ZHt�Lt e�i~2 hq;p;A�1(q;p)i(�t0 � �u(V1; x) � �tu � �0( ))(dqdp)du= U0(t) 0(x)� i Z t0 fZ Ht�Lte i2~ hq;p;A(q;p)ie� i~ R tu V1(q(s)+x)dse� i~ R t0 V2(p(s)))dsV1(q(u) + x) 0(q(0) + x)dqdpduNow we have, by Fubini theorem for Fresnel integrals[12℄fZ Ht�Lte i2~ hq;p;A(q;p)ie� i~ R tu V1(q(s)+x)dse� i~ R t0 V2(p(s)))ds�V1(q(u) + x) 0(q(0) + x)dqdp=fZ Ht�u�Lt�ue i2~ hq;p;A(q;p)iHt�u�Lt�ue� i~ R t�u0 V1(q(s)+x)dse� i~ R t�u0 V2(p(s)))dsV1(q(0) + x)eR Hu�Lue i2~ hq1;p1;A(q1;p1)iHu�Lue� i~ R u0 V2(p1(s)))ds 0(q1(0))dq1dp1dqdpHere q 2 Ht�u and q1 2 Hu are the integration variables, and Hs denotes theCameron-Martin spa
e of paths 
 : [0; s℄! Rd .We have: U(t) 0(x) = U0(t) 0(x)� i Z t0 U(t� u)(V1U0(u) 0)(x)du20



= U0(t) 0(x)� i Z t0 U(u)(V1U0(�u)U0(t) 0)(x)duThe iterative solution of the latter integral equation is the 
onvergent Dysonperturbation series for U(t) with respe
t to U0(t), whi
h proves the theorem.
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Chapter 3Appli
ation to a sto
hasti
S
hr�odinger equationIn this 
hapter we show that it is possible to generalize the de�nition of in�nitedimensional os
illatory integrals in order to deal with 
omplex-valued phasefun
tions. We prove a Cameron-Martin-Parseval type formula whi
h is thegeneralization of theorem 3 to the 
omplex 
ase. We apply these results to therepresentation of the solution of a parti
ular type of sto
hasti
 S
hr�odingerequation, of some importan
e in the quantum theory of 
ontinuous measure-ments: the S
hr�odinger-Belavkin equation.3.1 Os
illatory integrals with 
omplex-valuedphase fun
tionLet H be a real separable Hilbert spa
e. We shall denote by HC its 
omplexi�-
ation. An element x 2 HC is a 
ouple of ve
tors x = (x1; x2), with x1; x2 2 H,or with a di�erent notation x = x1 + ix2. The multipli
ation of the ve
torx 2 HC for the pure imaginary s
alar i = p�1 is given by ix = (�x2; x1).A linear operator A : D(A) � H ! H 
an be extended to a linear operatordenoted again by A on HC :A : D(A) � HC ! HC ; D(A) = D(A) + iD(A);Ax = A(x1; x2) = (Ax1; Ax2):In an analogous way a ve
tor y 2 H 
an be seen as the element (y; 0) 2 HC .Let dim(H) = 1, i.e. H = R, HC = C . Then, for any f 2 F(R), f = �̂f ,and any 
omplex 
onstant � 2 C , � 6= 0, Im(�) � 0, one 
an easily prove thefollowing equality fZRe i�2~x2f(x)dx = ��1=2 ZR e�i~2� x2�f(dx) (3.1)23



The proof is 
ompletely similar to the proof of theorem 1.More generally, given � 2 C , � 6= 0,Im(�) > 0 and � 2 RfZRe i�2~x2e�xf(x)dx = ��1=2 ZR e�i~2� (x�i�)2�f(dx) (3.2)Su
h a result 
an be generalized to the in�nite dimensional 
ase [9℄:Theorem 11. Let H be a real separable Hilbert spa
e, let y 2 H be a ve
tor inH and let L1 and L2 be two self-adjoint, tra
e 
lass 
ommuting operators on Hsu
h that I +L1 is invertible and L2 is non negative. Let moreover f : H ! Cbe the Fourier transform of a 
omplex bounded variation measure �f on H:f(x) = �̂f(x); f(x) = ZH eihx;ki�f(dk):Then the in�nite dimensional os
illatory integral (with 
omplex phase)fZHe i2~ hx;(I+L)xiehy;xif(x)dxis well de�ned and it is given byfZHe i2~ hx;(I+L)xiehy;xif(x)dx = det(I + L)�1=2 ZH e�i~2 hk�iy;(I+L)�1(k�iy)i�f(dk)(3.3)(L being the operator on the 
omplexi�
ation HC of the real Hilbert spa
e Hgiven by L = L1 + iL2).Proof. First of all one 
an noti
e that both sides of equation (3.3) are wellde�ned. Indeed one 
an easily prove that (I + L) : HC ! HC is invertible, if(I + L1) is invertible and that det(I + L) exists as L is tra
e 
lass.On the other hand the fun
tion f : H ! Cf(x) = e� 12~ hx;L2xiehy;xig(x)where y 2 H and g 2 F(H), g(x) = �̂g(x), �g 2 M(H) is the Fourier transformof a 
omplex bounded variation measure �f on H, f = �̂f . In fa
t �f is the
onvolution of �g and the measure �, with �(dx) = e~2 hy;L�12 yi�i~hy;L�12 xi�L2(dx),where �L2 is the Gaussian measure on H with 
ovarian
e operator L2=~. Bytheorem 3 the Fresnel (or Feynman path) integral of f with respe
t to theoperator Q = (I + L1)=~ is well de�ned and it is given by:fZHe i2~ hx;(I+L1)xif(x)dx = fZHe i2~ hx;(I+L1)xie� 12~ hx;L2xiehy;xig(x)dx24



= det(I + L1)�1=2 ZH e�i~2 hx;(I+L1)�1xi�g � �(dx)= det(I + L1)�1=2 ZH ZH e�i~2 hx+z;(I+L1)�1(x+z)i�g(dz)�(dx)= det(I + L1)�1=2 ZH ZH e�i~2 hx+z;(I+L1)�1(x+z)ie~2 hy;L�12 yi�i~hy;L�12 xi�L2(dx)�g(dz)(3.4)Equation (3.3) 
an be proved by taking the �nite dimensional approximationof the last line of equation (3.4) and of the r.h.s. of (3.3) and showing they
oin
ide. As L1 and L2 are two 
ommuting symmetri
 tra
e 
lass operators onH, they have a 
ommon spe
tral de
omposition. Thus there exists a 
ompleteorthonormal system feng � H su
h thatL1(x) =Xn anhen; xien; L2(x) =Xn bnhen; xien; 
 2 H;with an; bn 2 R.Let fPmg be the family of proje
tors onto the span of the �rst m eigenve
torse1; :::; em, namely: Pm(x) = mXn=1hen; xienOne 
an easily see that Pm ! I as m ! 1 and L1Pm(H) � Pm(H),L2Pm(H) � Pm(H). Moreover the in�nite dimensional os
illatory integralfZHe i2~ hx;(I+L1)xie� 12~ hx;L2xiehy;xig(x)dx
an be 
omputed aslimm!1(2�i~)�m=2 ZPmH e i2~ hPmx;(I+L1)Pmxie� 12~ hPmx;L2Pmxiehy;Pmxig(Pmx)d(Pmx)whi
h, from the Cameron-Martin formula 
an be seen to be equal to( mYn=1 anbn)�1=2(2�~)�m=2 ZPmH ZPmH e�i~=2Pmn=1 a�1n (xn+zn)2�~=2Pmn=1 b�1n x2n�e�~=2Pmn=1 b�1n y2n�i~Pmn=1 b�1n ynxnd(Pmx)(�g Æ Pm)(dz) (3.5)where xn = hx; eni, zn = hz; eni, yn = hy; eni, d(Pmx) being them�dimensionalLebesgue measure on PmH. 25



The �nite dimensional approximation of the right hand side of equation (3.3)assumes the following form:� mYn=1(an + ibn)��1=2 ZPmH e�i~=2Pmn=1(an+ibn)�1(xn�iyn)2(�g Æ Pm)(dx) (3.6)By a dire
t 
omputation one 
an verify that expressions (3.6) and (3.5) 
oin-
ide. Now we 
an pass to the limit and from Lebesgue's dominated 
onvergen
etheorem we havefZHe i2~ hx;(I+L1)xie� 12~ hx;L2xiehy;xig(x)dx= det(I + L)�1=2 ZH e�i~2 hk�iy;(I+L)�1(k�iy)i�g(dk) (3.7)An analogous result holds also for the normalized Fresnel integral with 
omplexphase (in the sense of de�nition 5 in the �rst 
hapter).Theorem 12. Let H be a real separable Hilbert spa
e, let y 2 H be a ve
torin H and let L1 and L2 be two self-adjoint, 
ommuting operators on H su
hthat I + L1 is invertible and L2 is non negative. Let moreover f : H ! C bethe Fourier transform of a 
omplex bounded variation measure �f on H:f(x) = �̂f(x); f(x) = ZH eihx;ki�f(dk):Then the in�nite dimensional normalized os
illatory integral (with 
omplexphase) fZHe i2~ hx;(I+L)xiehy;xif(x)dxis well de�ned and it is given byfZHe i2~ hx;(I+L)xiehy;xif(x)dx = ZH e�i~2 hk�iy;(I+L)�1(k�iy)i�f(dk) (3.8)(L being the operator on the 
omplexi�
ation HC of the real Hilbert spa
e Hgiven by L = L1 + iL2).Proof. As in theorem 11, the result 
an be proved by 
omputing the �nitedimensional approximations of both sides of equation (3.8).In the following se
tion we shall see how the latter results 
an be appliedto the 
omputation of the solution of a sto
hasti
 S
hr�odinger equation.26



3.2 Belavkin equationIn the traditional formulation of quantum me
hani
s the 
ontinuous time evo-lution des
ribed by the S
hr�odinger equation (1) is valid if the quantum systemis \undisturbed". On the other hand we should not forget that all the infor-mations we 
an have on the state of a quantum parti
le are the result of somemeasurement pro
ess. When the parti
le intera
ts with the measuring appara-tus, its time evolution is no longer 
ontinuous: the state of the system after themeasurement is the result of a random and dis
ontinuous 
hange, the so-
alled\
ollapse of the wave fun
tion", whi
h 
annot be des
ribed by the ordinaryS
hr�odinger equation. Quoting Dira
 [54℄, after the introdu
tion of the Plan
k
onstant ~ the 
on
ept of \large" and \small" are no longer relative: it is\mi
ros
opi
"1 one obje
t su
h that the in
uen
e on the measuring apparatuson it 
annot be negle
ted. Let us re
all the main features of the traditionalquantum des
ription of the measurement of an observables O. Any observableA is represented by a self-adjoint operator on the Hilbert spa
e H, whose uni-tary ve
tors represents the states of the system. Let us 
onsider for simpli
itythe 
ase A is bounded and its spe
trum is dis
rete. Let faigi2N � R andf igi2N � H be the 
orresponding eigenvalues and eigenve
tors. A

ording tothe traditional mathemati
al formulation by von Neumann the 
onsequen
esof the measurement are:1. the de
oheren
e of the state of the quantum system: be
ause of the in-tera
tion with the measuring apparatus the initial pure state  be
omesa mixed state, des
ribed by the density operator �prior(t) = PiwiP i ,where P i denotes the proje
tor operator onto the eigenspa
e whi
h isspanned by the ve
tor  i and wi = jh i;  ij2. Considering another ob-servable B (represented by a bounded self-adjoint operator), its expe
-tation value at time t, after the measurement of the observable A (butwithout the information of the result of the measurement of A), is givenby E (B)priort = Tr[�prior(t)B℄The existen
e of the tra
e is assumed. The transformation mapping  to the so-
alled \prior state" �prior(t) is named \prior dynami
s" or nonsele
tive dynami
s.2. The so-
alled \
ollapse of the wave fun
tion": after the reading of theresult of the measurement (i.e. the real number ai) the state of thesystem is the 
orresponding eigenstate of the measured observable:�(t)postai = P i:1It would be more 
orre
t the word \quantum" as there exist also ma
ros
opi
 quantumsystems, but they were unknown at Dira
's time.27



The expe
tation value of another observable B of the system at time t(taking into a

ount the information about the value of the measurementof A) is given by:E post(BjA = ai)t = Tr[�postai (t)B℄ = h i; B iiThe transformation mapping the initial state  to one of the so-
alled\posterior states" �postai (t) is 
alled \posterior dynami
s" or sele
tive dy-nami
s and depends on the result ai of the measurement of A.As it is suggested by the 
ollapse of the wave fun
tion, the non sele
tivedynami
s maps pure states to mixed states, while the sele
tive one maps purestates to pure states. The relation between the posterior state and the priorstate is given by: �prior(t) =Xi P (A = ai)�postai (t)where P (A = ai) that the out
ome of the measurement of A is the eigenvalueai and it is given by P (A = ai) = jh i;  ij2:We remark that E (B)priort =Xi E post(BjA = ai)P (A = ai); (3.9)Su
h a situation 
annot be des
ribed by the traditional S
hr�odinger equation.There are several e�orts to in
lude the pro
ess of measurement into the tradi-tional quantum theory and to dedu
e from its laws, instead of postulating boththe pro
ess of de
oheren
e (see point 1) and the 
ollapse of the wave fun
tion(point 2). In parti
ular the aim of the quantum theory of measurement is ades
ription of the pro
ess of measurement taking into a

ount the propertiesof the measuring apparatus, whi
h is handled as a quantum system, and itsintera
tion with the system submitted to the measurement [50℄. Even if alsothis approa
h is not 
ompletely satisfa
tory (also in this 
ase one has to pos-tulate the 
ollapse of the state of the 
ompound system \measuring apparatusplus observed system") it is able to give a better des
ription of the pro
ess ofmeasurement.An example of this approa
h is for instan
e the paper by Caldeira and Legget[39℄, where the Lindblad equation for the evolution of the density operator �,des
ribing the pro
ess of de
oheren
e (i.e. the prior dynami
s) is heuristi
allyderived: ��t�prior = 1i~ [H; �prior℄� �kT~2 [x; [x; �prior℄℄: (3.10)The authors show how equation (3.10) is a 
onsequen
e of the intera
tion ofthe system with a ensemble of os
illators representing for instan
e the normal28



modes of an ele
tromagneti
 �eld or of the vibrations of the atoms in a 
rys-tal. H is the Hamiltonian of the system, k is Boltzmann 
onstant, T is thetemperature of the 
rystal and � is a damping 
onstant.Another interesting result of the quantum theory of measurement is the so-
alled \Zeno e�e
t", whi
h seems to forbid a satisfa
tory des
ription of 
on-tinuous measurements. Indeed if a sequen
e of \ideal"2 measurements of anobservable A with dis
rete spe
trum is performed and the time interval be-tween two measurements is suÆ
iently small, then the observed system doesnot evolve. In other words a parti
le whose position is 
ontinuously monitored
annot move. This result is in apparent 
ontrast with the experien
e: indeedin a bubble 
hamber repeated measurements of the position of mi
ros
opi
alparti
les are performed without \freezing" their state. For a detailed des
rip-tion of the quantum Zeno paradox see for instan
e [81, 42, 86℄.In the physi
al and in the mathemati
al literature a 
lass of sto
hasti
 S
hr�o-dinger equations giving a phenomenologi
al des
ription of this situation hasbeen proposed by several authors, see for instan
e [33, 27, 28, 53, 79, 60℄. We
onsider in parti
ular Belavkin equation, a sto
hasti
 S
hr�odinger equationdes
ribing the sele
tive dynami
s of a d�dimensional parti
le submitted tothe measurement of one of its (possible M�dimensional ve
tor) observables,des
ribed by the self-adjoint operator R on L2(Rd)8<: d (t; x) = � i~H (t; x)dt� �2R2 (t; x)dt+p�R (t; x)dW (t) (0; x) =  0(x) (t; x) 2 [0; T ℄� Rd (3.11)where H is the quantum me
hani
al Hamiltonian, W is an M�dimensionalBrownian motion on a probability spa
e (
;F ;P), dW (t) is the Ito di�erentialand � > 0 is a 
oupling 
onstant, whi
h is proportional to the a

ura
y ofthe measurement. In the parti
ular 
ase of the des
ription of the 
ontinuousmeasurement of position one has R = x, so that equation (3.11) assumes thefollowing form:8<: d (t; x) = � i~H (t; x)dt� �2x2 (t; x)dt+p�x (t; x)dW (t) (0; x) =  0(x) (t; x) 2 [0; T ℄� Rd ; (3.12)while in the 
ase of momentum measurement, (R = �i~r) one has:8<: d (t; x) = � i~H (t; x)dt+ �~22 � (t; x)dt� ip�~r (t; x)dW (t) (0; x) =  0(x) (t; x) 2 [0; T ℄� Rd : (3.13)2A measurement is 
alled ideal if the 
orrelation between the state of the measuringapparatus and the state of the system after the measurement is maximal29



Belavkin derives equation (3.11) by modeling the measuring apparatus (but itis better to say \the informational enviroment") by means of a one-dimensionalbosoni
 �eld and by assuming a parti
ular form for the intera
tion Hamiltonianbetween the �eld and the system on whi
h the measurement is performed. Theresulting dynami
s is su
h that there exists a family of mutually 
ommutingHeisenberg operators of the 
ompound system, denoted by X(t)t2[0;T ℄:[X(t); X(s)℄ = 0; s; t 2 [0; T ℄;(on a dense domain in L2(Rd)). In this des
ription the on
ept of traje
tory ofX is meaningful, even from a quantum me
hani
al point of view. Moreoverthe \non-demolition prin
iple" is ful�lled: the measurement of any futureHeisenberg operator Z(t) of the system is 
ompatible with the measurementof the traje
tory of X up to time t, that is[Z(t); X(s)℄ = 0; s < t(on a dense domain in L2(Rd)). The measured observable R is 
onne
ted tothe operator X by the following relationX(t) = R(t) + �(Bt +B+t ); (3.14)(where (Bt+B+t ) is a quantum Brownian motion [66℄). Equation (3.14) showshow the measurement of X(t) gives some (indire
t and not pre
ise) informa-tions on the value of R, over
oming the problems of quantum Zeno paradox.Indeed we are dealing with \unsharp" in spite of \ideal" measurements.The solution  of Belavkin equation is a sto
hasti
 pro
ess, whose expe
tationvalues have an interesting physi
al meaning. Let !(s); s 2 [0; t℄ be a 
ontinu-ous path (from [0; t℄ into RM ), I a Borel set in the Bana
h spa
e C([0; t℄;RM )endowed with the sup norm, let P be the Wiener measure on C([0; t℄;RM ).The probability that the observed traje
tory of X up to time t belongs to thesubset I is given by the following Wiener integral:P(X(s) = !(s)s2[0;t℄ 2 I) = ZI j (t; !)j2P (d!):Moreover if we measure at time t another observable of the system, denotedwith Z, then its expe
ted value, 
onditioned to the information that the ob-served traje
tory of X up to time t belongs to the Borel set I, is given by:E (Z(t)jX(s) = !(s)s2[0;t℄ 2 I) = ZI h (t; !); Z (t; !)ij (t; !)j2 P (d!):(where  (t; !) 6= 0 is assumed).In other words  (t; !) represents the posterior state and Belavkin equation30



des
ribes the sele
tive dynami
s of the system. The non sele
tive dynami
s
an be obtained by means of the following generalization of formula (3.9) tothe 
ontinuous 
ase:�prior(t) = ZC([0;t℄;RM ) �post! (t)P(X 2 d!) = ZC([0;t℄;Rd) P (t;!)P (d!) (3.15)By means of Ito formula one 
an verify that the prior state �prior(t) satis�esLindblad equation:��t�prior(t) = 1i~ [H; �prior(t)℄� �2 [R; [R; �prior(t)℄℄:Analogously to the traditional S
hr�odinger equation, one 
an look for a pathintegral representation for the solution of Belavkin equation. In fa
t M.B.Mensky [79℄ proposed an heuristi
 formula for the sele
tive dynami
s of aparti
le whose position is 
ontinuously observed. A

ording to Mensky thestate of the parti
le at time t if the observed traje
tory is the path !(s)s2[0;t℄is given by the \restri
ted path integrals" (t; x; [a℄) = \ Zf
(t)=xg e i~St(
)e�� R t0 (
(s)�!(s))2ds�(
(0))D
 " (3.16)One 
an see that, as an e�e
t of the 
orre
tion term e�� R t0 (
(s)�!(s))2ds due tothe measurement, the paths 
 giving the main 
ontribution to the integral(3.16) are those 
loser to the observed traje
tory !. In fa
t by means of thein�nite dimensional os
illatory integrals des
ribed in the previous se
tion, itis possible to prove a Feynman path integral representation of the solutionof Belavkin equation and give a rigorous mathemati
al meaning to Mensky'sheuristi
 formula. Indeed in the parti
ular 
ase of position measurement weshall prove that the solution of equation (3.12) 
an be represented by (t; x) =fZ e i2~ R t0 j _
(s)j2ds�� R t0 j
(s)+xj2dse� i~ R t0 V (
(s)+x)dseR t0 p�(
(s)+x)�dW (s) o(
(0) + x)d
: (3.17)In the 
ase of Belavkin equation des
ribing momentummeasurement the sto
has-ti
 term plays the role of a 
omplex random potential depending on the mo-mentum of the parti
le. In this 
ase one has to use the phase spa
e Feynmanpath integrals des
ribed in 
hapter 2. More pre
isely by means of a in�nitedimensional os
illatory integral with 
omplex phase on the spa
e of paths inphase spa
e one 
an give a rigorous mathemati
al meaning to the followingheuristi
 expression: (t; x) =fZ e i~ (R t0 ( _q(s)p(s)� 12m p(s)2)ds�� R t0 p(s)2dse� i~ R t0 V (q(s)+x)ds� ep� R t0 p(s)�dW (s) 0(
(0) + x)dqdp: (3.18)31



3.3 Position measurementIn this se
tion we 
onsider Belavkin equation des
ribing the posterior dynami
sof a quantum parti
le, whose position is 
ontinuously observed:� d = � i~H dt� �jxj22  dt+p�x dW (t) (0; x) =  0(x) t � 0; x 2 Rd (3.19)where W is an d-dimensional Brownian motion de�ned on a probability spa
e(
;F ;P) and dW (t) denotes the Ito sto
hasti
 di�erential; for ea
h ! 2 
, (!) 2 C([0; T ℄;H), H = L2(Rd), and � > 0 is a 
oupling 
onstant. Wedenote the Rd norm with j j and the s
alar produ
t with a � b = Pdi=1 aibi.Equation (3.19) 
an also be written in the Stratonovi
h equivalent form:� d = � i~H dt� �jxj2 dt+p�x Æ dW (t) (0; x) =  0(x) t � 0; x 2 Rd (3.20)The existen
e and uniqueness of a strong solution of equation (3.19) is provedin [60℄. We shall prove that it 
an be represented by an in�nite dimensionalos
illatory integral on a suitable Hilbert spa
e. We re
all the de�nition ofstrong solution in the 
ase of a S
hr�odinger equation.De�nition 7. A strong solution for the sto
hasti
 equation (3.20) is a pre-di
table pro
ess with values in H = L2(Rd), su
h that (t) 2 D(�i=~H � �jxj2) P-a.s.P� R T0 (k (t)k2 + k(�i=~H � �jxj2) k2) dt <1� = 1P� R T0 kjxj (t) dtk2 <1� = 1 andP a.s. for all t 2 [0; T ℄:(d = � i~H dt� �jxj2 dt+p�x �  Æ dW (t) t � 0; x 2 Rd (0; x) =  0(x) (3.21)Let us 
onsider the Cameron Martin spa
e Ht introdu
ed in se
tion 1.3and let HCt be its 
omplexi�
ation. Let L : HCt ! HCt the operator on HCtde�ned by h
1; L
2i = �a2 Z t0 
1(s) � 
2(s)ds;where a2 = �2i�~. The j�th 
omponent of L
,L
 = (L
1; : : : ; L
d), is givenby (L
)j(s) = 2i�~ Z ts ds0 Z s00 
j(s00)ds00 j = 1; : : : ; d (3.22)32



one 
an verify (see [57℄ for more details) that iL : H ! H is self-adjoint withrespe
t to the Ht-inner produ
t, it is tra
e-
lass and its Fredholm determinantis given by: det(I + L) = 
os(at):Moreover (I + L) is invertible and its inverse is given by:[(I + L)�1
℄j(s) = 
j(s)� a Z ts sin[a(s0 � s)℄
j(s0)ds0++sin[a(t� s)℄ Z t0 [
os at℄�1a 
os(as0)
j(s0)ds0 j = 1; : : : ; d:Let us introdu
e moreover the ve
tor l 2 Ht de�ned byhl; 
i = �p�Z t0 !(s) � _
(s)ds = p�Z t0 
(s) � dW (s); (3.23)l(s) = p� Z ts !(�)d�:Given these results, it is possible to apply the theory of the �rst se
tion andprove that, under suitable assumptions on the potential V and the initialwave fun
tion  0, the heuristi
 expression (3.17) 
an be realized as the in�nitedimensional os
illatory integral with 
omplex phase on the Cameron-Martinspa
e Ht:C(t; x; !)gZHte i2~ h
;(I+L)
iehl;
ie�2�x�R t0 
(s)dse� i~ R t0 V (
(s)+x)ds 0(
(0) + x)d
(3.24)where C(t; x; !) = e��jxj2+p�x�!(t) is a 
onstant depending on t, x 2 Rd , ! 2
. Indeed the integrand exp( i2~�) in (3.17), where �(
) � R t0 j _
(s)j2ds +2i~� R t0 j
(s) + xj2ds � 2i~ R t0 p�(
(s) + x) � dW (s) 
an be rigorously de�nedas the fun
tional on the Cameron Martin spa
e Ht given by �(
) = h
; (I +L)
i � 2i~hl; 
i � 2~ R t0 a2x � 
(s)ds� a2jxj2t � 2i~p�x � !(t); where L is theoperator (3.22) and l is the ve
tor (3.23).By means of theorem 11 one 
an 
ompute the integral (3.24) in terms ofan absolutely 
onvergent integral on Ht. Moreover it is possible to prove itrepresents the solution of Belavkin equation (3.20) (see [9℄).Theorem 13. Let V and  0 be Fourier transforms of 
omplex bounded varia-tion measures on Rd . Then there exist a (strong) solution to the Stratonovi
hsto
hasti
 di�erential equation (3.20) and it is given by the in�nite dimensionalos
illatory integral with 
omplex phase (3.24).Remark 7. The result 
an be extended to general initial ve
tors  0 2 L2(Rd),using the fa
t that F(Rd) is dense in L2(Rd).33



Proof. The proof in divided into 3 steps: in the �rst two we 
onsider the 
aseV � 0. First of all we deal with an approximated problem and we �nd a rep-resentation for its solution via a in�nite dimensional os
illatory integral, thenwe show that the sequen
e of approximated solutions 
onverges in a suitablesense to the solution of problem (3.20). In the �nal step we introdu
e thepotential V and show that the right hand side of (3.24) is in fa
t the solutionof the equation (3.20).1.The solution of the approximated problem. We approximate the tra-je
tory t! !(t) of the Wiener pro
ess by a sequen
e of smooth 
urves. Morepre
isely we 
onsider the sequen
e of fun
tions 3n Z tt� 1n !(s)d s � !n(t); n 2 N :We have !n ! ! uniformly on [0; T ℄, indeedsups2[0;T ℄ jWn(s)�W (s)j ! 0 as n!1 P a.s.Let us 
onsider the sequen
e of approximated problems:� d n = � i~H ndt� �jxj2 ndt+p�x �  ndWn(t) n(0; x) =  0(x) (3.25)where dWn(t) is an ordinary di�erential, i.e. dWn(t) = _!n(t)dt, and we 
analso write: � _ n = � i~H n � �jxj2 n +p�x �  n _!n(t) n(0; x) =  0(x) (3.26)whi
h 
an be re
ognized as a family of S
hr�odinger equations, with a 
omplexpotential, labeled by the random parameter ! 2 
.Now we 
ompute a representation of the solution of (3.26) by means of anin�nite dimensional os
illatory integral with 
omplex phase , under suitableassumptions on the (real) potential V and on the initial datum  n(0; x; !) = 0(x).We 
an write equation (3.26) in the following form:� _ n = � i~(�~2�2m � i�~jxj2) n � i~V  n +p�x �  n _!n(t) n(0; x) =  0(x) (3.27)so that we 
an re
ognize in it the S
hr�odinger equation for an anharmoni
os
illator with a 
omplex potential, i.e.� _ n = � i~(�~2�2m + a22 jxj2) n � i~U n n(0; x) =  0(x) (3.28)3Here we denote, as usual, the traje
tory of the Wiener pro
ess W (t) as !(t).34



where a2 = �2i�~ and U = U(t; x; !) = V (x) + i~p�x � _!n(t).We introdu
e the sequen
e of ve
tors ln 2 H de�ned byhln; 
i = p�Z t0 
(s) � _!n(s)ds = �p� Z to !n(s) � _
(s)ds;whi
h is given by ln(s) = p�Z ts !n(�)d�: (3.29)First of all let us 
onsider equation (3.20) with H repla
ed by the free Hamil-tonian H = �~2�=2. The following result holds:Lemma 3. Let  0 2 S(Rd). Then the solution of the Cau
hy problem:� _ n(t; x) = i~2 � n(t; x)� �jxj2 n(t; x) +p�x � _!n(t) n(t; x) n(0; x) =  0(x); x 2 Rd (3.30)is given by : n(t; x) =gZHte i2~ R t0 j _
(s)j2ds�� R t0 j
(s)+xj2dsep� R t0 (
(s)+x)� _!n(s)ds 0(
(0) + x)d
(3.31)(where the right hand side is interpreted as the in�nite dimensional os
illatoryintegral of  0(
(0) + x)ehln ;
i with 
omplex quadrati
 phase fun
tion h
; (I +L)
i=~, with Ht the Cameron-Martin spa
e, ln the ve
tor de�ned by (3.29)and L the operator de�ned by (3.22).)Proof. Formula (3.31) 
an be realized asgZHte i2~ R t0 j _
(s)j2ds�� R t0 j
(s)+xj2dsep� R t0 (
(s)+x)� _!n(s)ds o(
(0) + x)d
 == e�ia2jxj2t2~ +p�x�!n(t)gZHte i2~ h
;(I+L)
iehln;
i ZRd ei��xeihb(�;x);
i ~ 0(�)d�d
where b(�; x) 2 Ht, pre
isely:b(�; x)(s) = �(t� s)� xa22~ (t2 � s2);One 
an dire
tly verify that the fun
tion f(
) � RRd ei��xeihb(�;x);
i ~ 0(�)d� isthe Fourier transform of a measure � 2 M(H), that is:�(d
) = ZRd ei��x ~ 0(�)Æb(�;x)(d
)d�35



so we 
an apply theorem 2 and have: n = e�ia2jxj2t2~ +p��!n(t) ZRd ei��x det(I+L)�1=2e�i~2 hb(�;x)�iln ;(I+L)�1(b(�;x)�iln)i ~ 0(�)d�By simple 
al
ulations we get the �nal result: n(t; x) = ZRd Gn(t; x; y) 0(y)d ywhere Gn(t; x; y) is given by:Gn(t; x; y) � 1p2�i~q asin(at)ep�x�!n(t)� p�axsin(at) �R t0 !n(s) 
os(as)dse i~�2 R t0 j!n(s)j2dse i~�2 (�a R t0 !n(s)�R ts !n(s0) sin[a(s0�s)℄ds0ds)�e i~�2 (�a R t0 sin(as)!n(s)ds�R t0 
os(as)!n(s)ds�a 
ot(at)j R t0 
os(as)!n(s)dsj2)e i2~ (
ot(at)(jxj2+jyj2)� 2x�ysin(at) ) � eap�y�(
ot(at) R t0 
os(as)!n(s)ds+R t0 sin(as)!n(s)ds) (3.32)
whi
h is, as one 
an easily dire
tly verify, the fundamental solution to theapproximate Cau
hy problem (3.25).2.The 
onvergen
e of the sequen
e of approximated solutions. Wewill prove the following result:Lemma 4. The following equation� d = � i~H dt� �jxj2 dt+p�x �  Æ dW (t) t > 0 (0; x) =  0(x);  0 2 S(Rd) (3.33)has a unique strong solution given by the Feynman path integral (t; x) =fZ e i2~ R t0 j _
(s)j2ds�� R t0 j
(s)+xj2dsep� R t0 (
(s)+x)�dW (s) 0(
(0) + x)d
rigorously realized as the in�nite dimensional os
illatory integral with 
omplexphase on Hte��jxj2+p�x�!(t)gZHte i2~ h
;(I+L)
iehl;
ie�2�x�R t0 
(s)ds 0(
(0) + x)d
Moreover it 
an be represented by the pro
ess (t; x) = ZRd G(t; x; y) 0(y)dy36



where G(t; x; y) = 1p2�i~r asin(at)ep�x�!(t)� p�axsin(at) �R t0 
os(as)!(s)dse i~�2 (�a R t0 !(s)�R ts !(s0) sin[a(s0�s)℄ds0ds)�e i~�2 (�a R t0 sin(as)!(s)ds�R t0 
os(as)!(s)ds�a 
ot(at)j R t0 
os(as)!(s)dsj2)e i2~� 
ot(at)(jxj2+jyj2)� 2x�ysin(at)�eap�y� 1sin(at) (R t0 
os[a(s�t)℄!(s)ds)Proof. As �rst we 
onsider the sequen
e  n(t; x) = RRd Gn(t; x; y) 0(y)dy.Using the dominated 
onvergen
e theorem we have that :P� limn!1ZRd j n(t; x)� ~ (t; x)j2dx! 0� = 1 (3.34)with ~ (t; x) = RRG(t; x; y) 0(y)dy, as:limn!1 jGn(t; x; y)�G(t; x; y)j ! 0for all t 2 [0; T ℄ and x; y 2 Rd . Moreover, one 
an see by a dire
t 
omputationthat a = p�2i~� 
an be 
hosen is su
h a way that:j ZRd Gn(t; x; y) 0(y)dyj2 � C(t)eP (t;x)k 0(y)k2; (3.35)where P (t; x) is a se
ond order polynomial with negative leading 
oeÆ
ient andC(t) and P (t; x) are 
ontinuous fun
tions of the variable t 2 [0; T ℄. Applyingthe Itô formula to the limit pro
ess ~ (t) we see that it veri�es equation (3.33)for every (t; x; y). Sin
e the kernel G(t; x; y) is Ft adapted by 
onstru
tionit follows that the solution is predi
table. By dire
t 
omputation and usingestimates analogous to (3.35) one 
an verify that ~ is a strong solution. Onthe other hand every  n(t; x) is equal togZHte i2~ R t0 j _
(s)j2ds�� R t0 j
(s)+xj2dsep� R t0 (
(s)+x)� _!n(s)ds 0(
(0) + x)d
 == e�ia2jxj2t2~ +p�x�!n(t)gZHte i2~ h
;(I+L)
iehln;
ie�i R t0 a2x�
(s)ds 0(
(0) + x)d
= e�ia2jxj2t2~ +p�x�!n(t) det(I + L)�1=2 ZHt e�i~2 h
�iln;(I+L)�1(
�iln)i�(d
)where �(d
) is the measure on H whose Fourier transform is the fun
tion
 ! e�i R t0 a2x�
(s)ds 0(
(0) + x). 37



We have jjln � ljj2H ! 0 as n ! 1, where l(s) = p� R ts !(r)d r. Therefore,by the Lebesgue's dominated 
onvergen
e theorem, we have that, for everyx 2 Rd :limn!1 e�ia2jxj2t2~ +p�x�!n(t) det(I + L)�1=2 RHt e�i~2 h
�iln;(I+L)�1(
�iln)i�(d
)= e�ia2jxj2t2~ +p�x!(t) det(I + L)�1=2 RHt e�i~2 h
�il;(I+L)�1(
�il)i�(d
) (3.36)Therefore, taking into a

ount the uniqueness of the pointwise limit, we haveshown that: (t; x) = RRG(t; x; y) 0(y)dy =fRHte i2~ R t0 j _
(s)j2ds�� R t0 j
(s)+xj2dseR t0 (
(s)+x)�dW (s) 0(
(0) + x)d
: (3.37)
Remark 8. The result 
an be extended by 
ontinuity to all  0 2 L2(Rd), usingthe density of S(Rd) in L2(Rd).3.The proof of Feynman-Ka
-Ito formula by means of Dyson expan-sionIn this subse
tion we generalize our previous results to the 
ase H = �~2�=2+V and 
omplete the proof of theorem 13. We follow here the te
hnique of El-worthy and Truman [57℄.We set for t > 0, x 2 Rd :�(t; 0) 0(x) =gZHte i2~ R t0 j _
(s)j2ds�� R t0 j
(s)+xj2dse� i~ R t0 V (
(s)+x)ds� ep� R t0 (
(s)+x)�dW (s) 0(
(0) + x)d
 (3.38)and�0(t; 0) 0(x) =gZHte i2~ R t0 j _
(s)j2ds�� R t0 j
(s)+xj2dsep� R t0 (
(s)+x)�dW (s) 0(
(0) + x)d
:(3.39)Then we have:�(t; 0) 0(x) = e�ia2jxj2t2~ +p�x�!(t)gZHte i2~ h
;(I+L)
iehl;
ie�i R t0 a2x�
(s)ds� e�i R t0 V (x+
(s))ds 0(
(0) + x)d
 (3.40)Let �0( ) be the measure on Ht su
h that its Fourier transform evaluated in
 2 Ht is  0(
(0) + x). 38



For 0 � u � t let �u(V; x); �tu(V; x) and �tu(x) be the measures on Ht, whoseFourier transforms when evaluated at 
 2 Ht are respe
tively V (x + 
(u));exp �� i R tu V (x+ 
(s))ds�; and exp �� i R tu a2x
(s)ds�. We shall often write�u � �u(V; x); �tu � �tu(V; x) and �tu � �tu(x) If f�u : a � u � bg is a family inM(Ht), we shall let R ba �udu denote the measure on Ht given by :f ! Z ba ZHt f(
)�u(d
)duwhenever it exists.Then, sin
e for any 
ontinuous path 
exp �� i~ Z t0 V (
(s))ds� =1� i~ Z t0 V (
(u)) exp�� i~ Z tu V (
(s))ds�du; (3.41)we have �t0 = Æ0 � i~ Z t0 (�u � �tu)du (3.42)where Æ0 is the Dira
 measure at 0 2 Ht.By the Cameron-Martin formula:�(t; 0) 0(x) = e�ia2jxj2t2~ +p�x�!(t) det(I + L)�1=2� ZHt e�i~2 h��il;(I+L)�1(��il)i(�t0 � �t0 � �0( ))(d�) (3.43)Applying to this equality (3.42) we obtain:�(t; 0) 0(x) =e�ia2jxj2t2~ +p�x�!(t) det(I + L)�1=2 ZHt e�i~2 h��il;(I+L)�1(��il)i(�t0 � �0( ))(d�)+� i~ Z t0 e�ia2jxj2t2~ +p�x�!(t) det(I + L)�1=2� ZHt e�i~2 h��il;(I+L)�1(��il)i(�t0 � �u(V; x) � �tu � �0( ))(d�)du= �0(t; 0) 0(x)� i~ Z t0 gZHte i2~ R t0 j _
(s)j2ds�� R t0 j
(s)+xj2dse� i~ R tu V (
(s)+x)dsep� R t0 (
(s)+x)�dW (s)V (
(u) + x) 0(
(0) + x)d
du39



By the Fubini theorem for os
illatory integrals (see [12, 4℄), we get thatgZHte i2~ R t0 j _
(s)j2ds�� R t0 j
(s)+xj2dse� i~ R tu V (
(s)+x)dsep� R t0 (
(s)+x)�dW (s)V (
(u) + x)� 0(
(0) + x)d
 = gRHu;te i2~ R tu j _
2(s)j2ds�� R tu j
2(s)+xj2dse� i~ R tuu V (
2(s)+x)ds�ep� R tu(
2(s)+x)�dW (s)V (
2(u) + x)℄ZH0;ue i2~ R u0 j _
1(s)j2ds�� R u0 j
1(s)+
2(u)+xj2ds�ep� R u0 (
1(s)+
2(u)+x)�dW (s) 0(
1(0) + 
2(u) + x)d
1d
2:Here 
1 2 H0;u and 
2 2 Hu;t are the integration variables. We denote by Hr;sthe Cameron-Martin spa
e of paths 
 : [r; s℄! Rd .Finally we have:�(t; 0) 0(x) = �0(t; 0) 0(x)� i Z t0 �(t; u)(V�0(u; 0) 0)(x)du (3.44)Now the iterative solution of the latter integral equation is the Dyson seriesfor �(t; 0), whi
h 
oin
ides with the 
orresponding power series expansion ofthe solution of the sto
hasti
 S
hr�odinger equation, whi
h 
onverges stronglyin L2(Rd). The equality holds pointwise. On the other hand, following [60℄, itis possible to prove that the problem (3.33) has a strong solution that veri�es(3.44) in the L2 sense, therefore �(t; 0) 0 
oin
ides with the solution  (t).This 
on
ludes the proof of theorem 13.3.4 Momentum measurementIn this se
tion we study Belavkin's equation des
ribing the 
ontinuous mea-surement of the momentum p of a d�dimensional quantum parti
le:8<: d (t; x) = � i~H (t; x)dt+ �~22 � (t; x)dt� ip�~r (t; x)dW (t) (0; x) =  0(x) (t; x) 2 [0; T ℄� Rd (3.45)Our main interest is to give a rigorous de�nition of the solution as a Feynmanpath integral de�ned on the phase spa
e. On
e we have de�ned a Feynmanpath integral as a 
andidate for the solution of (3.45), we still have to provethat it solves e�e
tively the problem (3.45). When the evolution of the freeparti
le (i.e. for V = 0) is 
onsidered, equation (3.45) redu
es to the following:8<: d (t; x) = ( i~2m�+ �~22 �) (t; x)dt� ip�~r (t; x)dW (t) (0; x) =  0(x) (t; x) 2 [0; t℄� Rd (3.46)40



In this situation we derive from our rigorously de�ned in�nite dimensionalos
illatory integral an expression for the solution as a �nite dimensional inte-gral involving the initial data and a Green kernel and prove dire
tly that ourFeynman path integral represents the strong solution for the problem (3.46).In the more general situation of problem (3.45) we use an analyti
 result basedon the method of sto
hasti
 
hara
teristi
s to show that our Feynman pathintegral is in fa
t the solution to the Belavkin equation (3.45).In the �rst and se
ond subse
tions we provide the analyti
 tools to guaranteethat the in�nite dimensional os
illatory integral we shall de�ne in the thirdsubse
tion gives indeed a solution of problem (3.45).3.4.1 Existen
e and uniqueness resultsIn this subse
tion we are interested in �nding a unique strong solution forproblem (3.45). Let us �rst introdu
e the framework in whi
h we will 
onsiderthe problem.Let (
;F ;P) be a probability spa
e andW (t) a d- dimensional standard Brow-nian motion, we will denote by Ft its natural �ltration 
ompleted with thenull sets of F . Let L2(Rd) be the 
omplex Hilbert spa
e of square integrablefun
tions endowed with its natural inner produ
t hf; gi = RRd f(x)g(x)dx, wewill denote by j � j the 
orresponding norm indu
ed by the sesquilinear form.We denote by A the realization of the operator i~ ~22m� + �~22 � in the spa
eH = L2(Rd), with domain D(A) = ff 2 L2(Rd) : �f 2 L2(Rd)g � L2(Rd). Itis easy to prove the following property:Proposition 1. The operator A is 
losed on D(A), is dissipative and generatesa C0-semigroup etA in H. MoreoveretA = e( i~2m�)te(�~22 �)t (3.47)Proof. The �rst assertion is a straightforward appli
ation of the Lumer PhillipsTheorem (see [85℄), the operator A being dissipative and with dense domainin L2(Rd). Identity (3.47) is guaranteed by the Trotter produ
t formula (see[85℄) and the fa
t that � and i� are generators of C0-
ontra
tive semigroupsand 
ommute.The domain D(A), endowed with the graph norm is equivalent to the
omplex Hilbert spa
e H2(Rd) of fun
tions with all the �rst and se
ond partialderivatives, de�ned in distributional sense, in L2(Rd). The s
alar produ
t inH2(Rd) is given in its natural way (Sobolev spa
e). We will denote with Bthe realization of �ip�~r� in L2(Rd), with domain D(B) = ff 2 L2(Rd) :(��) 12f 2 L2(Rd)g. The graph norm indu
ed by the operator B is equivalentto the usual norm of the Sobolev spa
e H1(Rd).41



Finally we denote by L2W ([0; T ℄;H2(Rd)) the spa
e of L2(Rd) valued pro-
esses whi
h are predi
table and belong to L2([0; T ℄;L2(
;H2(Rd))(4). Simi-larly the spa
e of L2(Rd) valued pro
esses that are predi
table and belong toC([0; T ℄;L2(
;L2(Rd)) is denoted by CW ([0; T ℄;L2(Rd)). The two spa
es areendowed respe
tively with the following norms:juj2L2W ([0;T ℄;H2(Rd)) _=Z T0 E ju(t)j2H2 (Rd) dtand juj2CW ([0;T ℄;L2(Rd)) _= supt2[0;T ℄ E ju(t)j2L2 (Rd)We re
all the de�nition of a strong solution for problem (3.46), see also[48℄ for a more general de�nition:De�nition 8. Given an initial data  0 2 H2(Rd), we de�ne a solution  forproblem (3.46) as a pro
ess  2 CW ([0; T ℄;L2(Rd)) \ L2W ([0; T ℄;H2(Rd)), thatveri�es the following equation:8<: d (t) = A (t)dt+B (t)dW (t) P � a.s. (0) =  0We 
an prove the following:Proposition 2. Problem (3.46) has a unique strong solution that is repre-sented in mild form as follows: (t) = etA 0 + Z t0 e(t�s)AB (s) dW (s) (3.48)Proof. We �rst noti
e that A admits a spe
tral de
omposition: indeed it 
anbe diagonalized by means of Fourier transform~ (k) = 1(2�~)d=2 ZRd e�ikx=~ (x)dxfA (k) = �( i2m~ + �2 )k2 ~ (k);therefore it is possible to rearrange the proof of [47℄[Theorem 4:3:5, pag.79℄ toprove the result.4Note that L2([0; T ℄;L2(
;H2(Rd)) ' L2([0; T ℄� 
;H2(Rd )) by the Fubini-Tonelli the-orem (' means isomorphism between Hilbert spa
es).42



One has that there exist positive 
onstants K(~; �;m) and C(T ) su
h that:Z T0 E j(�A) Z t0 e(t�s)AB (s) dW (s)j2dt � K(~; �;m)2 Z T0 E j(�A) (s)j2 ds(3.49)supt2[0;T ℄ E j Z t0 e(t�s)AB (s) dW (s)j2 � CE Z T0 je(t�s)AB (s)j2 ds (3.50)� C(T ) supt2[0;T ℄ E j (t)j2We will show only the �rst inequality, as the se
ond follows in a similar way.Setting �A =: 1=( i2m~+ �2 )A, we have that the graph norm of D(A) is equivalentto the graph norm ofD( �A), therefore there exists a positive 
onstant C(~; �;m)su
h that: Z T0 E j(�A) Z t0 e(t�s)AB (s) dW (s)j2 (3.51)� C(~; �;m)2 Z T0 E j(� �A) Z t0 e(t�s)AB (s) dW (s)j2Then for any " > 0 we have:Z T0 E j(� �A)(I � � �A)�1 Z t0 e(t�s) �AB (s) dW (s)j2 dt= Z T0 E Z t0 j(� �A)1=2(I � � �A)�1e(t�s) �A(� �A)1=2B (s)j2 ds dt= Z T0 ZRd k2E Z t0 e�k2(t�s)(1 + �k2)2 j ^(� �A)1=2B (s; k)j2 dk ds dt= 12 Z T0 ZRd E 1 � e�k2(T�s)(1 + �k2)2 j ^(� �A)1=2B (s; k)j2 dk ds� 12E Z T0 j(� �A)1=2B (s)j2 ds � C 0(~; �;m)2 E Z T0 j(�A) (s)j2 dsNow, letting �! 0 and re
alling that (3.51) holds, we dedu
e (3.49) fromthe inequality. These are the two key estimates needed to prove, using a�xed point te
hnique in the spa
es L2W ([0; T ℄;H2(Rd)) and CW ([0; T ℄;L2(Rd)),the existen
e of the mild representation for the solution. But then, havingthe regularity implied by the de�nition of the spa
es L2W ([0; T ℄;H2(Rd)) andCW ([0; T ℄;L2(Rd)), it is possible to apply the Itô formula to  written in theform (3.48), obtaining that the mild solution is in fa
t a strong solution.43



In the next subse
tion we are going to prove another 
hara
terization ofthe strong solution of (3.46): we will show that there exists a stri
t rela-tion between the solution of (3.46) and the solution of a 
lassi
al S
hr�odingerequation. To this purpose we will 
onsider Eq.(3.46) in the momentum repre-sentation: ~ (k) = 1(2�~)d=2 ZRd e�ikx=~ (x)dxWe need this se
ond 
hara
terization in order to identify the solution with theFeynman path integral rigorously de�ned in subse
tion 3.4.3.3.4.2 Solution by the sto
hasti
 
hara
teristi
s methodApplying to both sides of (3.46) the Fourier transform we obtain the followingequation : d ~ (k) = �( i~H + �y22 ) ~ (k)dt+p�y ~ (k)dW (t); (3.52)where H is the Hamiltonian of the free parti
le, whi
h in momentum repre-sentation is simply the multipli
ation operator:H ~ (k) = k22m ~ (k):The 
orresponding Cau
hy problem assumes then the following form8<: d ~ (k) = �( i~ k22m + �k22 ) ~ (k)dt+p�k ~ (k)dW (t)~ (0; k) = ~ 0(k) (3.53)In this se
tion we show that problem (3.53) is equivalent in a suitable sense,to a deterministi
 S
hr�odinger equation expressed in momentum 
oordinates.The main tool is a simple appli
ation of the sto
hasti
 
hara
teristi
s methodthat allows to transform the sto
hasti
 partial di�erential equation into a fam-ily of deterministi
 equations. Let us denote by � the fun
tion de�ned by�(t; k) = exp(�p�kWt + �k2t).We 
an prove the following:Proposition 3. The strong solution of (3.53) has the following representation:~ (t; k) = ep�kW (t)�(�k2+ i~ k22m )t ~ 0(k) (3.54)Proof. The proof is divided in two steps: in the �rst we will prove that (3.54)solves problem (3.53) and it is a strong solution, in the se
ond we prove that44



this solution is the unique strong solution.�rst step:Let us 
onsider the following problem:8>><>>: d�(k) = � i~ k22m�(k)dt�(0; k) = ~ 0(k) (3.55)It is well known that if ~ 0 2 H2(Rd), then the solution �(t; k) = e� i~ k2t2m ~ 0(k) ofproblem (3.55) belongs to L2(0; T ;H2(Rd)) \C([0; T ℄;L2(Rd)). Our intentionis to prove that the fun
tion ��1(t)�(t) that 
orresponds to (3.54), is a
tuallya solution to problem (3.53). We apply, �rst formally, the Itô formula to thefun
tion ��1(t)�(t):��1(t)�(t) = ~ 0 � Z t0 i~h k22m + �k22 i��1(s)�(s) ds (3.56)+ Z t0 p�k��1(s)�(s) dW (s):Setting ~ (t) = ��1(t)�(t) we have that  is a solution to equation (3.53). Thispro
edure be
omes rigorous as long as we 
an give a meaning to ��1. Noti
ethat for ea
h �xed t the multipli
ation operator p�kW (t)��k2t is the gener-ator of a C0 semigroup, being self adjoint and having the leading term dissipa-tive, therefore ��1(t) 
an be regarded as the semigroup e(p�kW (t)��k2t)s evalu-ated at s = 1, see also [60℄. Let us take an element ' 2 D(�), then the ve
tor��1(t)', whi
h in momentum representation is given by e(p�kW (t)��k2t) ~'(k) isstill in D(�) thanks to the properties of 
ommutativity of the generator withthe semigroup. Moreover for every �xed k 2 Rd it is possible to evaluate theItô di�erential of the pro
ess e(p�kW (t)��k2t) ~'(k). It is easy to prove using theFubini Theorem and thanks to the spe
tral de
omposition of ��1(t)e i~H , thefollowing estimate:E Z T0 jk2ep�kW (t)�(�k2+ i~k2)t ~ 0(k)j2L2(Rd) dt (3.57)= Z T0 fZRd e�2�k2tk4 ~ 20(k)E [e2p�kW (t)℄ dkg dt � T ZRd k4 ~ 20(k) dkThis implies that the identity (3.56) 
an be understood in the spa
e L2(Rd).So far we have obtained a solution ~ (t) = �(t)�1�(t) for equation (3.53)and the regularity for ~ is dire
tly inherited from �, by the spe
ial expressionfor ~ : ~ 2 L2W (0; T ;H2(Rd)) \ CW (0; T ;L2(Rd)).45



Remark 1. The form (3.54) of the solution shows that it is no longer unitarypathwise.se
ond step: Uniqueness of the solution. We will �nd an a priori esti-mate for the solution that ensures the uniqueness of the solution. Sin
e theproblem is linear if one �nds a 
ontinuous dependen
e on the initial data onegets immediately that the solution is unique. Now let us 
onsider the solu-tion ~ splitted in real part and imaginary part, ~ =  1 + i 2, and 
onsiderdh ~ (t); ~ (t)i = d(j 1(t)j2+ j 2(t)j2). The equations solved by the real and theimaginary parts are respe
tively:d 1(t) = 1~ k22m 2(t) dt� �k22  1(t) dt+p�k 1(t) dW (t)d 2(t) = �1~ k22m 1(t) dt� �k22  2(t) dt+p�k 2(t) dW (t) (3.58)Now we 
an apply the Itô formula to j 1(t)j2 and j 2(t)j2:j 1(t)j2 = jRe ~ 0j2 + 2 1~ R t0 h k22m 2(s);  1(s)i ds� 2 R t0 h�k22  1(s);  1(s)i ds+2 R t0 hp�k 1(s);  1(s)i dW (s) + � R t0 jk 1(s))j2 ds:andj 2(t)j2 = jIm ~ 0j2 � 2 1~ R t0 h k22m 1(s);  2(s)i ds� 2 R t0 h�k22  2(s);  2(s)i ds+2 R t0 hp�k 2(s);  2(s)i dW (s) + R t0 �jk 2(s))j2 ds:thus: j 1(t)j2 + j 2(t)j2 = j ~ 0j2 � R t0 �(jk 1(s)j2 + jk 2(s)j2) ds+2 R t0 p�(jpk 1(s)j2 + jpk 2(s)j2) dW (s)+ R t0 �(jk 1(s))j2 + jk 2(s))j2) ds: (3.59)We re
all that ~ 2 L2W (0; T ;H2(Rd)), then the sto
hasti
 integral in (3.59) isa martingale. Thus passing to the expe
ted value in (3.59) we get that:E(j ~ (t)j2) = j ~ 0j2 (3.60)Moreover one reads from identity (3.59) that j ~ (t)j2 is a martingale with re-spe
t to the �ltration Ft and that the solution is unique in the 
lass of strongsolutions.Let us denote by f	(t); t 2 [0; T ℄g the family of random operators de�nedby 	(t) ~ 0 = ~ (t) 46



Remark 2. Thanks to estimate (3.60) we 
an extend ea
h operator 	(t) tothe whole L2(Rd),we will denote its extension again with 	(t).Let � be the isometry form L2(Rd) in the momentum representation toL(Rd) in the 
oordinate representation, we de�ne:�(t; 0) _=� Æ	(t) Æ ��1 : L2(Rd)! L2(Rd) (3.61)for ea
h t 2 [0; T ℄. We are now ready to prove the following:Proposition 4. Problem (3.46) has a unique strong solution with the followingrepresentation formula: (t; x) = (�(t; 0) 0)(x); t � 0; x 2 Rd (3.62)Proof. (�(t; 0) 0)(x) is a strong solution of problem (3.46) thanks to the prop-erty of the Fourier transforms. Therefore it has to 
oin
ide with the mild rep-resentation found in proposition 2.Remark 3. It is 
learly possible to 
onsider Eq.(3.46) starting at time s,then having that the solution is unique, we 
an de�ne the random evolutionoperator �(t; s) : D(A)! L2(
;L2(Rd)) that asso
iate any initial data f withthe solution at time t of (3.46) starting at s in  0.Now let us 
onsider the following Cau
hy problem:8>><>>: d (s; x) = [� i~(� ~22m�+ V (x)) + �~22 �℄ (s; x)dt�ip�~r �  (s; x)dW (t) (0; x) =  0(x) (s; x) 2 [0; t℄� Rd (3.63)One has:Theorem 14. For given V; Vxi; Vxi;xj 2 L1(Rd)(5) and  0 2 H2(Rd), theproblem (3.63) has a unique strong solution that satis�es the following integralequation:  (t; x) = �(t; 0) 0(x)� i~ Z t0 �(t; s)V (x) (s; x) ds (3.64)5With L1(Rd ) we denote, as usual, the spa
e of integrable fun
tions almost everywherebounded. Vxi ; Vxi;xj denote the partial derivatives of V with respe
t to xi, respe
tivelyxi; xj . 47



Proof. Let us de�ne�( )(t) = etA 0 � i~ Z t0 e(t�s)AV  (s) ds+ Z t0 e(t�s)AB (s) dW (s): (3.65)Following again [47℄ or [48℄ we show that there exist a �x point of � inL2W ([0; T ℄;H2(Rd)) and in CW ([0; T ℄;L2(Rd)). Then an appli
ation of the Itôformula will 
omplete the proof of the existen
e of a unique strong solution.On the other hand it is possible to give a meaning to the expression (3.64)again by a �xed point argument in the same spa
es thanks to estimate (3.57)and to the boundedness of V . Now we have to show that the integral equation(3.64) 
oin
ides with the mild representation, see also [37℄.We have:  (t; x) = �(t; 0) 0(x)� i~ Z t0 �(t; s)V (x) (s; x) ds (3.66)Let us remind that �(t; 0) 0(x) is the mild solution of the \free" problem(3.46), therefore:�(t; 0) 0(x) = etA 0 + Z t0 e(t�s)AB�(s; 0) 0 dW (s) (3.67)Also �(t; s)V (x) (s; x) is the solution at time t of the \free" problem (3.46)started at time s in the state V (x) (s; x), therefore:�(t; s)(V  (s)) = e(t�s)AV  (s) + Z ts e(t�r)AB�(r; s)V  (s) dW (r) (3.68)Thus substituting (3.67) and (3.68) respe
tively in the �rst (respe
tively se
-ond) term on the right side of (3.66) we obtain: (t; x) = �(t; 0) 0(x)� i~ Z t0 �(t; s)V (x) (s; x) ds= etA 0 + Z t0 e(t�s)AB�(s; 0) 0 dW (s)� i~ Z t0 e(t�s)AV  (s)� i~ Z ts e(t�r)AB�(r; s)V  (s) dW (r)℄ dsThanks to the sto
hasti
 Fubini Theorem, see [48℄, we 
an inter
hange theorder of the integration in the last term and we getZ t0 e(t�s)AB�(s; 0) 0 dW (s)� i~ Z ts e(t�r)AB�(r; s)V  (s) dW (r) ds= Z t0 e(t�s)AB[�(s; 0) 0 � i~ Z s0 �(s; r)V  (r) dr℄ dW (s)= Z t0 e(t�s)AB (s; x) dW (s) 48



This gives that  (t; x) de�ned in (3.66) 
orresponds the �xed point of � de-�ned in (3.65) of (3.63), whi
h 
on
ludes the proof.3.4.3 Solution by means of phase spa
e Feynman pathintegralsIn this se
tion we are going to prove that, under suitable assumptions on thepotential V and on the initial data  0 the solution to problem (3.63) 
an begiven by means of an in�nite dimensional os
illatory integral: a rigorouslyde�ned \Feynman path integral" on the spa
e of paths in phase spa
e. Morepre
isely we are going to give a meaning to the following heuristi
 expressionand to prove it represents the solution to the problem (3.63): (t; x) = 
onst Z exp� i~S(q + x; p)� � Z t0 p2(s)ds�� exp�p�Z t0 p(s)dW (s)� 0(q(0) + x)dqdp (3.69)where the integral is meant to be taken on an in�nite dimensional spa
e ofpaths (q(s); p(s))s2[0;t℄ in the phase spa
e, su
h that q(t) = 0. The fun
tionalS(q; p) is the 
lassi
al a
tion of the system evaluated along the path (q; p):S(q; p) = Z t0 [p(s) _q(s)�H(p(s); q(s))℄ds:Expression (3.69) does not make sense as it stands: indeed neither the normal-ization 
onstant in front of the integral, nor the in�nite dimensional Lebesguemeasure dqdp on the spa
e of paths are well de�ned. The aim of this se
tionis twofold: �rst of all by means of the theory of 
hapter 2 and se
tion 3.1 werealize the Feynman path integral (3.69) as an in�nite dimensional os
illatoryintegral with 
omplex phase on a suitable Hlbert spa
e; se
ondly we show that,under suitable hypothesis on the potential V and on the initial data  0, theso de�ned (3.69) gives a representation of the solution of the Cau
hy problem(3.63) in the sense of theorem 14.Let us 
onsider again the Hilbert spa
e Ht � Lt introdu
ed in 
hapter 2,namely the spa
e of paths in the d�dimensional phase spa
e (q(s); p(s))s2[0;t℄( where the path (q(s))s2[0;t℄ belongs to the Cameron-Martin spa
e Ht, whilethe path in the momentum spa
e (p(s))s2[0;t℄ belongs to Lt = L2([0; t℄;Rd)),endowed with the natural inner produ
thq; p;Q;P i = Z t0 _q(s) _Q(s)ds+ Z t0 p(s)P (s)ds:49



Let us 
onsider also the 
omplexi�
ation of Ht �Lt, denoted (Ht �Lt)C . Letus introdu
e the following bilinear form:[q; p;Q;P ℄ = Z t0 _q(s)P (s)ds+ Z t0 p(s) _Q(s)ds� (1=m� 2i�~) Z t0 p(s)P (s)ds= hq; p;A(Q;P )i; (3.70)where A is the following operator:A(Q;P )(s) = (Z st P (u)du; _Q(s)� (1=m� 2i�~)P (s)): (3.71)Note that the latter formula makes sense in (Ht�Lt)C , so expression (3.70) 
anbe re
ognized as the restri
tion on Ht�Lt of a quadrati
 form on (Ht�Lt)C .A(Q;P ) is densely de�ned, e.g. on C1([0; t℄; C d) � C1([0; t℄; C d). MoreoverA(Q;P ) is invertible with inverse given byA�1(Q;P )(s) = (Z st P (u)du+ (1=m� 2i�~)Q(s); _Q(s)) (3.72)(on the range of A).Let us also introdu
e the ve
tor l = (�q; �p) 2 Ht � Lt.Let g : Ht�Lt ! C be the fun
tion on Ht�Lt whi
h is the Fourier transformof a 
omplex bounded variation measure �g on Ht � Lt:g(q; p) = ZHt�Lt eihq;p;Q;P id�g(Q;P ):Then by means of the theory of 
hapter 2 and se
tion 3.1 one 
an de�ne (see[9, 10℄) the \
omplex normalized in�nite dimensional os
illatory integral" onHt � Lt of the fun
tion ehl;�ig(�) with respe
t to the operator A:fZ Ht�Lte i2~ hq;p;A(q;p)iehl;q;pig(q; p)dqdp:By theorem 12 the integral 
an be 
omputed interms of a well de�ned 
omplexintegral on Ht � Lt:fZ Ht�Lte i2~ hq;p;A(q;p)iehl;q;pig(q; p)dqdp = ZHt�Lt e�i~2 h(q;p)�il;A�1((q;p)�il)id�g(q; p)(3.73)Next we show that the Fresnel integral (3.69) 
an be de�ned as the limit ofphase spa
e Feynman path integrals (3.73) and that this limit is the strongsolution of problem (3.53) found in the previous se
tion.50



Solution of Belavkin equation with a free hamiltonianLet us 
onsider �rst of all Belavkin equation with a free Hamiltonian H =p2=2m in its Stratonovi
h equivalent form:8<: d (t; x) = ( i~2m�+ �~2�) (t; x)dt� ip�~r (t; x) Æ dW (t) (0; x) =  0(x) (t; x) 2 [0; t℄� Rd (3.74)We asso
iate to (3.74) a sequen
e of approximated equations of the same type8<: d n(t; x) = ( i~2m�+ �~2�) n(t; x)dt� ip�~r n(t; x) Æ dWn(t) (0; x) =  0(x) (t; x) 2 [0; t℄� Rd (3.75)where by Wn we mean a smooth approximation of the traje
tories of theBrownian motion, say Wn(t) = n Z t� 1nt W (s)ds; (3.76)so that _Wn belongs to Lt.Proposition 5. Let us suppose that the initial data  0 is the Fourier transformof a �nite 
omplex Borel measure �0 on Rd . Then the solution  n of problem(3.75) has the following representation: n(t; x) =fZ Ht�Lte i2~ h(q;p);A(q;p)ieh(q;p);(0;ln)i 0(q(0) + x)dqdp= ZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i�0(dqdp)where ln is the ve
tor belonging to Lt given by ln = p� _Wn.Moreover, if  0 2 S(Rd) (the S
hwartz test fun
tion spa
e), the integrals 
anbe expli
itly 
omputed: n(t; x) = 1(2�~)d=2 ZRd eix�k~ e(� i~ k22m t��k2t+p�kWn(t)) ~ 0(k)dkwhere ~ 0 is the Fourier transform of  0, t > 0, x 2 Rd .Remark 4. Heuristi
ally  n(t; x) is given by
onst Z e i~S(q+x;p)�� R t0 p2(s)dsep� R t0 p(s) _Wn(s)ds 0(q(0) + x)dqdp51



Proof. (3.75) is a random family of ordinary S
hr�odinger equations (but witha 
omplex potential depending on the momentum). Following [8℄ and [9℄ (see
hapter 2 and se
tion 3.1) the solution of (3.75) 
an be given by means ofrigorusly de�ned phase spa
e Feynman path integrals (3.73).After the introdu
tion of the ve
tor ln 2 Lt, ln = p� _Wn, the heuristi
 expres-sion 
onst Z e i~S(q+x;p)�� R t0 p2(s)dsep� R t0 p(s) _Wn(s)ds 0(q(0) + x)dqdp
an be interpreted as the following rigorously de�ned in�nite dimensional os-
illatory integral:fZ Ht�Lte i2~ h(q;p);A(q;p)ie(q;p);(0;ln)i 0(q(0) + x)dqdpwhi
h is equal toZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i�0(dqdp)where �0 is the 
omplex bounded-variation measure on Ht�Lt whose Fouriertransform is the fun
tion (q; p)!  0(q(0) + x)6. Let 0(x) = 1(2�~)d=2 ZRd eixk~ ~ 0(k)dk;then  0(q(0) + x) = 1(2�~)d=2 ZRd eixk~ ei q(0)k~ ~ 0(k)dk == 1(2�~)d=2 ZRd eixk~ ei hq;kG(0)i~ ~ 0(k)dkwhere G(0) 2 Ht is su
h that hq; G(0)iHt = q(0), that is G(0)(s) = (t � s).With these notations we have: 0(q(0) + x) = 1(2�~)d=2 ZRd eixk~ ZHt eihq;QiHtÆkG(0)=~(dQ) ~ 0(k)dk= ZHt eihq;QiHt� 0(dQ)where � 0(E) = 1(2�~)d=2 ZE eixk~ ~ 0(k)ÆkG(0)=~(dQ)dk E 2 B(Ht);6Su
h a measure exists if the initial data  0, as a fun
tion from Rd to C is the Fouriertransform of a bounded variation measure on Rd . This 
ondition is ful�lled if for instan
e 0 2 S(Rd) 52



so that �0(dqdp) = Æ0(p)� 0(dq)We have : n(t; x) = ZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i�0(dqdp) (3.77)= 1(2�~)d=2 ZRd eixk~ ei~2 h(( (kG(0)~ ;0)�i(0;ln);A�1( (kG(0)~ ;0)�i(0;ln))i ~ 0dk= 1(2�~)d=2 ZRd eixk~ e(� i~ k22m t��k2t+p�kWn(t)) ~ 0dkThe next step we shall undertake is the proof of the 
onvergen
e of the solutionsof the approximated problems to the solution of the Cau
hy problem (3.74).Moreover we shall prove that this solution is given by a rigorously de�nedin�nite dimensional os
illatory integral with 
omplex phase. First of all let usstate the following general result:Theorem 15. Let f : Ht � Lt ! C be the Fourier transform of a 
omplexbounded-variation measure �f on Ht�Lt. Then the following pro
ess, de�nedas the phase spa
e Feynman path integralZ e i~ (R t0 p(s) _q(s)ds�R t0 p(s)2ds)�� R t0 p2(s)dsep� R t0 p(s)dW (s)f(q; p)dqdp :=ZHt�Lt e�i~(R t0 _q(s)p(s)ds+ 12m R t0 _q(s)2ds)e��~2 R t0 _q(s)2ds�~p� R t0 _q(s)dW (s)�f(dqdp)is the limit in L2(
;P) of the sequen
e of pro
essesfZ Ht�Lte i2~ h(q;p);A(q;p)ieh(q;p);(0;ln)if(q; p)dqdp= ZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i�f(dqdp)= ZHt�Lt e�i~(R t0 _q(s)p(s)ds+ 12m R t0 _q(s)2ds)e��~2 R t0 _q(s)2ds�~p� R t0 _q(s) _Wn(s)ds�f(dqdp)Proof.E���� ZHt�Lt e�i~(R t0 _q(s)p(s)ds+ 12m R t0 _q(s)2ds)e��~2 R t0 _q(s)2ds�~p� R t0 _q(s)dW (s)�f(dqdp)+� ZHt�Lt e�i~(R t0 _q(s)p(s)ds+ 12m R t0 _q(s)2ds)e��~2 R t0 _q(s)2ds�~p� R t0 _q(s) _Wn(s)ds�f(dqdp)���2�53



� �f(Ht�Lt)E� ZHt�Lt e�2�~2 R t0 _q(s)2dsje�~p� R t0 _q(s)dW (s)�e�~p� R t0 _q(s) _Wn(s)dsj2�f(dqdp)�= �f(Ht�Lt) ZHt�Lt e�2�~2 R t0 _q(s)2dsE (je�~p� R t0 _q(s)dW (s)�e�~p� R t0 _q(s) _Wn(s)dsj2)�f(dqdp)= �f (Ht � Lt) ZHt�Lt e�2�~2 R t0 _q(s)2dsE (je�2~p� R t0 _q(s)dW (s)++e�2~p� R t0 _q(s) _Wn(s)ds � 2e�~p�(R t0 _q(s)dW (s)+R t0 _q(s) _Wn(s)ds)j)�f(dqdp)= �f(Ht � Lt) ZHt�Lt e�2�~2 R t0 _q(s)2ds�e2~2� R t0 _q(s)2ds + e2~2� R t0 _qn(s)2ds+�2e~2�2 R t0 ( _q(s)+ _qn(s))2ds��f(dqdp)where, given h 2 L2(0; t), we de�ne hn ashn(s) = n Z s+1=ns h(u)du = h � gngn being the molli�er in L1(0; t) given by gn(s) = n�[s;s+1=n℄. Note thatkgnkL1(0;t) = 1 and moreover the Young inequality holds:khnkL2(0;t) � kgnkL1(0;t)khkL2(0;t) = khkL2(0;t):Thanks to this inequality one 
an get easily the following uniform estimate:e�2�~2 R t0 _q(s)2ds�e2~2� R t0 _q(s)2ds + e2~2� R t0 _qn(s)2ds � 2e~2�2 R t0 ( _q(s)+ _qn(s))2ds� � 4and by the dominated 
onvergen
e theorem we 
an pass to the limit under theintegral. The 
on
lusion follows from the 
onvergen
e of _qn to _q in L2(0; t),see for instan
e [25℄.Proposition 6. Let  0 2 S(Rd). Then, for ea
h t � 0 and x 2 Rd thesolution  n(t; x) of the approximated problem (3.75) 
onverges in L2(
;P) tothe pro
ess 1(2�~)d=2 ZRd eixk~ e(� i~ k22m t��k2t+p�kW (t)) ~ 0(k)dk (3.78)whi
h is the strong solution of (3.74).Moreover it 
an be represented by a phase spa
e Feynman path integral in thesense of [8℄ and 
hapter 2fZ Ht�Lte i~ (R t0 _q(s)p(s)ds� 12m R t0 p(s)2ds)�� R t0 p(s)2dsep� R t0 p(s)dW (s) 0(q(0) + x)dqdp(3.79)54



sin
e, as n ! 1, the following in�nite-dimensional os
illatory integral onHt � Lt fZ Ht�Lte i2~ h(q;p);A(q;p)ieh(q;p);(0;ln)i 0(q(0) + x)dqdp (3.80)= ZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i�0(dqdp) (3.81)= ZHt�Lt e�i~(R t0 _q(s)p(s)ds+ 12m R t0 _q(s)2ds)e��~2 R t0 _q(s)2ds�~p� R t0 _q(s) _Wn(s)ds�0(dqdp)(3.82)
onverges in L2(
;P) toZHt�Lt e�i~(R t0 _q(s)p(s)ds+ 12m R t0 _q(s)2ds)e��~2 R t0 _q(s)2ds�~p� R t0 _q(s)dW (s)�0(dqdp) (3.83)=fZ Ht�Lte i~ (R t0 _q(s)p(s)ds� 12m R t0 p(s)2ds)�� R t0 p(s)2dsep� R t0 p(s)dW (s) 0(q(0) + x)dqdpProof. By dire
t appli
ation of the Itô formula one 
an 
he
k that (3.78) isthe strong solution of the Cau
hy problem (3.74). Moreover one 
an verify bya dire
t 
al
ulation that the in�nite dimensional integral (3.83) is equal to the�nite dimensional integral (3.78).The 
onvergen
e in L2(
;P) of the sequen
e of pro
esses (3.82) to the pro
ess(3.83) follows from theorem 15.Remark 5. Heuristi
ally the solution (3.79) 
an be written as
onst Z e i~S(q+x;p)�� R t0 p2(s)dsep� R t0 p(s)dW (s) 0(q(0) + x)dqdp: (3.84)The introdu
tion of the potentialNow we generalize the previous results to a more general 
lass of quantumme
hani
al Hamiltonians H = �~2�=2m + V (x). We 
onsider the Belavkinequation (3.63) in its Stratonovi
h equivalent form8>><>>: d (s; x) = [� i~(� ~22m�+ V (x)) + �~2�℄ (s; x)dt�ip�~r �  (s; x) Æ dW (s) (0; x) =  0(x) (s; x) 2 [0; t℄� Rd (3.85)and the sequen
e of approximated Cau
hy problems8>><>>: d n(s; x) = [� i~(� ~22m�+ V (x)) + �~2�℄ n(s; x)dt�ip�~r �  n(s; x) Æ dWn(s) n(0; x) =  0(x) (s; x) 2 [0; t℄� Rd (3.86)55



Proposition 7. Let V : Rd ! R be the Fourier transform of a �nite 
omplexBorel measure on Rd and let  0 2 S(Rd). Then the solution to the Cau
hyproblem (3.63) is given by equation (3.69).Proof. Let us set (t; x) =fZ e i~ (R t0 ( _q(s)p(s)� 12m p(s)2)ds�� R t0 p(s)2dse� i~ R t0 V (q(s)+x)ds� ep� R t0 p(s)�dW (s) 0(
(0) + x)dqdp; (3.87)�(t; 0) 0(x) =fZ e i~ (R t0 ( _q(s)p(s)� 12m p(s)2)ds�� R t0 p(s)2dsep� R t0 p(s)�dW (s)�  0(
(0) + x)dqdp; (3.88) n(t; x) =fZ e i~ (R t0 ( _q(s)p(s)� 12m p(s)2)ds�� R t0 p(s)2dse� i~ R t0 V (q(s)+x)ds� ep� R t0 p(s)� _Wn(s)ds 0(
(0) + x)dqdp; (3.89)�n(t; 0) 0(x) =fZ e i~ (R t0 ( _q(s)p(s)� 12m p(s)2)ds�� R t0 p(s)2dsep� R t0 p(s)� _Wn(s)ds�  0(
(0) + x)dqdp; (3.90)So far we have proved that (3.90) and (3.88) are the solutions of the Cau
hyproblems (3.75) and (3.74) respe
tively. We are going to prove that (3.89) isthe solution of (3.86) and that it 
onverges in L2(
;P) to (3.87), whi
h is arepresentation of the solution of (3.85).Let �0( ) be the measure on Ht�Lt su
h that its Fourier transform evaluatedin 
 2 H is  0(q(0) + x).For 0 � u � t let �u(V0; x) and �u0 (V0; x) be the measures on Ht � Lt, whoseFourier transforms when evaluated at (q; p) 2 Ht �Lt are respe
tively V0(x+q(u)); and exp � � i~ R u0 V0(x + q(s))ds�. We shall use the short notation�u � �u(V0; x) and �u0 � �u0 (V0; x). If f�u : a � u � bg is a family inM(Ht � Lt), we shall let R ba �udu denote the measure on Ht � Lt given by :f ! Z ba ZHt�Lt f(q; p)�u(dqdp)du56



whenever it exists.Then, sin
e for any 
ontinuous path q 2 Htexp�� i~ Z t0 V0(q(s))ds� =1� i~ Z t0 V0(q(u)) exp�� i~ Z u0 V0(q(s))ds�du; (3.91)we have �t0 = Æ0 � i~ Z t0 (�u � �u0 )du (3.92)where Æ0 is the Dira
 measure at 0 2 H.By the formula (3.73) we have: n(t; x) =fZ Ht�Lte i2~ h(q;p);A(q;p)ieh(q;p);(0;ln)ie� i~ R t0 V (q(s)+x)ds�  0(
(0) + x)dqdp (3.93)= ZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i(�t0 � �0( ))(dqdp)= ZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i�0( )(dqdp)� i~ Z t0 ZHt�Lt e�i~2 h(q;p)�i(0;ln);A�1((q;p)�i(0;ln))i(�u � �u0 � �0( ))(dqdp)du= �n(t; 0) 0(x)� i~ Z t0 ZHt�Lt e i2~ h(q;p);A(q;p)ieh(q;p);(0;ln)ie� i~ R u0 V (q(s)+x)dsV (q(u) + x) 0(q(0) + x)dqdpdu (3.94)As Ht � Lt = (H[0;u℄ � L[0;u℄) � (H[u;t℄ � L[u;t℄), where by H[r;s℄ we denotethe Cameron Martin spa
e of path 
 : [r; s℄ 7! Rd and by L[r;s℄ the spa
eL2[r; s℄ , by setting (q; p) = (q1; p1; q2; p2) where (q1; p1) 2 H[0;u℄ � L[0;u℄ and(q2; p2) 2 H[u;t℄ � L[u;t℄, q1(s) = q(s) � q(u); s 2 [0; u℄, q2(s) = q(s); s 2 [u; t℄,by Fubini theorem for Feynman path integrals [12℄ we haveZHt�Lt e i2~ h(q;p);A(q;p)ieh(q;p);(0;ln)ie� i~ R u0 V (q(s)+x)dsV (q(u) + x) 0(q(0) + x)dqdp= ZH[u;t℄�L[u;t℄ e i2~ h(q2;p2);A(q2;p2)ieh(q2;p2);(0;ln;2)iV (q2(u)+x) ZH[0;u℄�L[0;u℄ e i2~ h(q1;p1);A(q1;p1)ieh(q1;p1);(0;ln;1)ie� i~ R u0 V (q1(s)+q2(u)+x)ds 0(q1(0) + q2(u) + x)dq1dp1dq2dp2 (3.95)57



so that the expression (3.94) assumes the following form: n(t; x) = �n(t; o) 0(x)� i~ Z t0 �n(t; u)V (x) n(u; x)du (3.96)By Lebesgue's dominated 
onvergen
e theorem and by theorem 15 the latterexpression 
onverges as n!1 to (t; x) = �(t; 0) 0(x)� i~ Z t0 �(t; u)V (x) (u; x)du (3.97)Now the iterative solutions of the integral equations (3.96) and (3.97) are 
on-vergent Dyson series for  n and  respe
tively, whi
h by theorem 14 
oin
idewith the 
orresponding power series expansions of the solution of the sto
has-ti
 S
hr�odinger equations (3.86) and (3.85).
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Chapter 4Generalized Fresnel integralsIn this 
hapter we fo
us on the �nite dimensional os
illatory integrals andgeneralize the results of se
tion 1.1 by in
luding more general phase fun
tions�.Our aim is in fa
t the de�nition and the study of os
illatory integrals of theform ZRN e i~�(x)f(x)dx; (4.1)where the phase fun
tion � is a smooth fun
tion bounded at in�nity by a apolynomial P (x) on Rn , Im(~) � 0, ~ 6= 0, and f is a suitable real-valuedsmooth fun
tion. The results we obtain will be generalized to the in�nite di-mensional 
ase in the next 
hapter and applied to an extension of the 
lass ofphase fun
tions for whi
h the Feynman path integral had been de�ned before.Moreover we are interested in dis
ussing the asymptoti
 behavior of the aboveintegrals when the parameter ~ goes to 0. If the phase fun
tion � is quadrati
,then the above integral redu
es to a Fresnel integral (see se
tion 1.1), while if�(x) = x3 one has Airy integrals. We also mention that the problem of de�ni-tion and study of integrals of the form (4.1) but with ~ 2 C , Im(~) < 0 and �lower bounded has also been dis
ussed. The 
onvergen
e of the integral in this
ase is a simple matter, so the analysis has 
on
entrated on a \perturbationtheoreti
al" 
omputation of the integral, like in [30, 31℄, resp. on a Lapla
emethod for handling the ~! 0 asymptoti
s, see, e.g. [17, 23, 4, 87℄ (the lattermethod has some relations with the stationary phase method).In se
tion 4.1 we introdu
e the notations, re
all some known results and provethe existen
e of the os
illatory integral (4.1). In se
tion 4.2 we prove that whenf belongs to a suitable 
lass of fun
tions, this generalized Fresnel integral 
anbe expli
itly 
omputed by means of an absolutely 
onvergent Lebesgue inte-gral. We prove a representation formula of the Parseval type (theorem 18)(similar to the one whi
h was exploited in [12℄ in the 
ase of quadrati
 phasefun
tions), as well as a formula (
orollary 1 to theorem 18) giving the integral59



in terms of analyti
ally 
ontinued absolutely 
onvergent integrals. Even if ourmain interest 
ame from the 
ase ~ 2 R n f0g, both formulas are valid for all~ 2 C with Im(~) � 0, ~ 6= 0. In the last se
tion we 
onsider the integral(4.1) in the parti
ular 
ase P (x) = A2M (x; : : : ; x), where A2M is a 
ompletelysymmetri
 stri
tly positive 
ovariant tensor of order 2M on RN , 
ompute itsdetailed asymptoti
 power series expansion (in powers of ~1=2M , for Im(~) � 0,~ 6= 0) in the limit of \strong os
illations", i.e. ~ ! 0. In parti
ular we �ndexpli
it assumptions on the integrand f whi
h are suÆ
ient for having 
onver-gent, resp. Borel summable, expansions.4.1 De�nition of the generalized Fresnel inte-gralLet us 
onsider a �nite dimensional real Hilbert spa
e H, dim(H) = N ,and let us identify it with RN . We will denote its elements by x 2 RN ,x = (x1; : : : ; xN ). We re
all the de�nition of os
illatory integrals given byH�ormander [64, 65℄ (see se
tion 1.1) and propose a related, more general de�-nition of os
illatory integral in the �-sense.De�nition 9. Let � be a 
ontinuous real-valued fun
tion on RN . The os
il-latory integral on RN , with ~ 2 R n f0g,ZRN e i~�(x)f(x)dx;is well de�ned if for ea
h test fun
tion � 2 S(RN ), su
h that �(0) = 1, thelimit of the sequen
e of absolutely 
onvergent integralslim�#0 ZRN e i~�(x)�(�x)f(x)dx;exists and is independent on �. In this 
ase the limit is denoted byZRN e i~�(x)f(x)dx:If the same holds only for � su
h that �(0) = 1 and � 2 �, for some subset� of S(RN ), we say that the os
illatory integral exists in the �-sense and weshall denote it by the same symbol.Let us 
onsider the spa
e M(RN ) of 
omplex bounded variation measureson RN endowed with the total variation norm and the spa
e F(RN ) of fun
tionsf : RN ! C whi
h are the Fourier transforms of 
omplex bounded variation60



measures �f 2 M(RN ). We re
all that if there exists a self-adjoint linearisomorphism Q : RN ! RN su
h that the phase fun
tion � is given by �(x) =hx;Qxi and f 2 F(RN ), then the os
illatory integral RRN e i~ hx;Qxif(x)dx 
anbe expli
itly 
omputed by means of the following Parseval-type formula (seese
tion 1.1, theorem 1):ZRN e i2~ hx;Qxif(x)dx == (2�i~)N=2e��i2 Ind(Q)j det(Q)j�1=2 ZRN e� i~2 hx;Q�1xi�f(dx; ) (4.2)where Ind(Q) is the number of negative eigenvalues of the operator Q, 
ountedwith their multipli
ity.In the following we shall generalize this result to more general phase fun
-tions �, in parti
ular those given by an even polynomial P (x) in the variablesx1; : : : ; xN :P (x) = A2M (x; : : : ; x) + A2M�1(x; : : : ; x) + : : :+ A1(x) + A0; (4.3)where Ak are kth-order 
ovariant tensors on RN :Ak : RN � RN � : : :� RN| {z }k�times ! Rand the leading term, namely A2M(x; : : : ; x), is a 2Mth-order 
ompletely sym-metri
 positive 
ovariant tensor on RN . First of all, following the methodsused by H�ormander [64, 65℄, we prove the existen
e of the following general-ized Fresnel integral: ZRN e i~�(x)f(x)dx (4.4)for suitable �. We re
all the de�nition of symbols (see [64℄).De�nition 10. A C1 map f : RN ! C belongs to the spa
e of symbolsSn� (RN ), where n; � are two real numbers and 0 < � � 1, if for ea
h � =(�1; : : : ; �N) 2 ZN there exists a 
onstant C� 2 R su
h that���� d�1dx�11 : : : d�Ndx�N1 f ���� � C�(1 + jxj)n��j�j; jxj ! 1; (4.5)where j�j = j�1j+ j�2j+ � � �+ j�N j:One 
an prove that Sn� is a Fr�e
het spa
e under the topology de�ned bytaking as seminorms jf j� the best 
onstants C� in (4.5) (see [64℄). The spa
ein
reases as n in
reases and � de
reases. If f 2 Sn� and g 2 Sm� , then fg 2Sn+m� . We denote Sn Sn� by S1� . We shall see that S1� is in
luded in the 
lass61



for whi
h the generalized Fresnel integral (4.4) is well de�ned.We say that a point x = x
 2 RN is a 
riti
al point of the phase fun
tion� : RN ! R, � 2 C1, if �0(x
) = 0. Let C(�) be the set of 
riti
al points of�. In fa
t we have:Theorem 16. Let � be a real-valued C2 fun
tion on RN with the 
riti
al setC(�) being �nite. Let us assume that for ea
h N 2 N there exists a k 2 N su
hthat jxjN+1jr�(x)jk is bounded for jxj ! 1. Let f 2 Sn� , with n; � 2 R, 0 < � � 1.Then the generalized Fresnel integral (4.4) exists for ea
h ~ 2 R n f0g.Proof. We follow the method of H�ormander [64℄, see also [57, 13, 4℄.Let us suppose that the phase fun
tion �(x) has l stationary points 
1; : : : ; 
l,that is r�(
i) = 0; i = 1; : : : ; l:Let us 
hoose a suitable partition of unity 1 =Pli=0 �i, where �i, i = 1; : : : ; l,are C10 (RN ) fun
tions 
onstant equal to 1 in a open ball 
entered in thestationary point 
i respe
tively and �0 = 1 �Pli=1 �i. Ea
h of the integralsIi(f) � RRN e i~�(x)�i(x)f(x)dx, i = 1; : : : ; l, is well de�ned in Lebesgue sensesin
e f�i 2 C0(RN ). Let I0 � RRN e i~�(x)�0(x)f(x)dx. To see that I0 is awell de�ned os
illatory integral let us introdu
e the operator L+ with domainD(L+) in L2(RN ) given byL+g(x) = �i~ �0(x)jr�(x)j2r�(x)rg(x)g 2 D(L+) � ng 2 L2(RN ); ��� �0(x)jr�(x)j2r�(x)rg(x) 2 L2(RN )owhile its adjoint in L2(RN ) is given byLf(x) = i~ �0(x)jr�(x)j2r�(x)rf(x) + i~ div � �0(x)jr�(x)j2r�(x)�f(x)for f 2 L2(RN ) \ C1 su
h that���f(x)g(x)jxjNjr�(x)j2 r�(x) � x���! 0 as jxj ! 1; 8g 2 D(L+):Let us 
hoose  2 S(RN ), su
h that  (0) = 1. It is easy to see that if f 2 Sn�then f�, de�ned as f�(x) :=  (�x)f(x), belongs to Sn+1� \S(RN ), for any � > 0.By iterated appli
ation of the Stokes formula, we have:ZRN e i~�(x) (�x)f(x)�0(x)dx = ZRN L+(e i~�(x)) (�x)f(x)dx= ZRN e i~�(x)Lf�(x)dx = ZRN e i~�(x)Lkf�(x)dx: (4.6)62



Now for k suÆ
iently large the last integral is absolutely 
onvergent and we
an pass to the limit �! 0 by the Lebesgue dominated 
onvergen
e theorem.ConsideringPli=0 Ii(f) we have, by the existen
e result proved for I0 and theadditivity property of os
illatory integrals, that RRN e i~�(x)f(x)dx is well de-�ned and equal to Pli=0 Ii(f).Remark 9. If C(�) has 
ountably many non a

umulating points fxi
gi2N,the same method yields RRN e i~�(x)f(x)dx =P1i=0 Ii(f) provided this sum 
on-verges.There are partial extensions of the above 
onstru
tion in the 
ase of 
riti
alpoints whi
h form a submanifold in RN [56℄, or are degenerate [24℄, see also[44℄.Remark 10. In parti
ular we have proved the existen
e for f 2 S1� , 0 < � �1, of the os
illatory integrals R eixMf(x)dx, with M arbitrary. For M = 2 onehas the Fresnel integral of [13℄, for M = 3 one has Airy integrals [65℄.Remark 11. If � is of the form (5.3), then the generalized Fresnel integral(4.4) also exists, even in Lebesgue sense, for ~ 2 C with Im(~) < 0, as ananalyti
 fun
tion in ~, as easily seen by the fa
t that the integrand is boundedby jf j exp( Im(~)j~j2 �).4.2 Generalized Parseval equality and analyti

ontinuationIn this se
tion we prove that, for a suitable 
lass of fun
tions f : RN ! C ,the generalized Fresnel integral (4.4) 
an be expli
itly 
omputed by means ofa generalization of formula (4.2).Lemma 5. Let P : RN ! R be given by (5.3). Then the Fourier transform ofthe distribution e i~P (x):~F (k) = ZRN eik�xe i~P (x)dx; ~ 2 R n f0g (4.7)is an entire bounded fun
tion and admits the following representation:~F (k) = eiN�=4M ZRN eiei�=4Mk�xe i~P (ei�=4Mx)dx; ~ > 0 (4.8)or ~F (k) = e�iN�=4M ZRN eie�i�=4Mk�xe i~P (e�i�=4Mx)dx; ~ < 0 (4.9)63



Remark 12. The integral on the r.h.s. of (4.8) is absolutely 
onvergent ase i~P (ei�=4Mx) = e� 1~A2M (x;:::;x)e i~ (A2M�1(ei�=4Mx;:::;ei�=4Mx)+:::+A1(xei�=4M )+A0):A similar 
al
ulation shows the absolute 
onvergen
e of the integral on ther.h.s. of (4.9).Proof. (of lemma 5) Formulas (4.8) and (4.9) 
an be proved by using the ana-lyti
ity of ekz+ i~P (z), z 2 C , and a 
hange of integration 
ontour (see appendixA for more details). Representations (4.8) and (4.9) show the analyti
ityproperties of ~F (k), k 2 C . By a study of the asymptoti
 behavior of ~F (k)as jkj ! 1 we 
on
lude that ~F is always bounded (see appendix A for moredetails).Remark 13. A representation similar to (4.8) holds also in the more general
ase ~ 2 C , Im(~) < 0, ~ 6= 0. By setting ~ � j~jei�, � 2 [��; 0℄ one has:~F (k) = ZRN eik�xe i~P (x)dx == eiN(�=4M+�=2M) ZRN eiei(�=4M+�=2M)k�xe i~P (ei(�=4M+�=2M)x)dx (4.10)(see appendix A for more details).By mimi
king the proof of equation (4.8) (appendix A) one 
an prove inthe 
ase ~ > 0 the following result (a similar one holds also in the 
ase ~ < 0):Theorem 17. Let us denote by � the subset of the 
omplex plane� = f� 2 C j 0 < arg(�) < �=4Mg � C ; (4.11)and let �� be its 
losure. Let f : RN ! C be a Borel fun
tion de�ned for all yof the form y = �x, where � 2 �� and x 2 RN , with the following properties:1. the fun
tion � 7! f(�x) is analyti
 in � and 
ontinuous in �� for ea
hx 2 RN , jxj = 1,2. for all x 2 RN and all � 2 (0; �=4M)jf(ei�x)j � AG(x);where A 2 R and G : RN ! R is a positive fun
tion satisfying bound (a)or (b) respe
tively: 64



(a) if P is as in the general 
ase de�ned by (5.3)G(x) � eBjxj2M�1 ; B > 0(b) if P is homogeneous, i.e. P (x) = A2M(x; : : : ; x),G(x) � e sin(2M�)~ A2M (x;x;:::;x)g(jxj);where g(t) = O(t�(N+Æ)), Æ > 0, as t!1.Then the limit of regularized integrals:lim�#0 Z e i~P (xei�)f(xei�)dx; 0 < � < �=4M; ~ > 0is given by: eiN�=4M ZRN e i~P (ei�=4Mx)f(ei�=4Mx)dx (4.12)The latter integral is absolutely 
onvergent and it is understood in Lebesguesense.The 
lass of fun
tions satisfying 
onditions (1) and (2) in theorem 17 in-
ludes for instan
e the polynomials of any degree and the exponentials. Inthe 
ase f 2 Sn� for some n; �, one is tempted to interpret expression (4.12)as an expli
it formula for the evaluation of the generalized Fresnel integralR e i~P (x)f(x)dx, ~ > 0, whose existen
e is assured by theorem 16. This is,however, not ne
essarily true for all f 2 S1� satisfying (1) and (2). Indeedthe de�nition 9 of os
illatory integral requires that the limit of the sequen
eof regularized integrals exists and is independent on the regularization. Theidentitylim�!0ZRN e i~P (x)f(x) (�x)dx = eiN�=4M ZRN e i~P (ei�=4Mx)f(ei�=4Mx)dx; ~ > 0
an be proved only by 
hoosing regularizing fun
tions  with  (0) = 1 and in the 
lass � 
onsisting of all  2 S whi
h satisfy (1) and are su
h thatj (ei�x)j is bounded as jxj ! 1 for ea
h � 2 (0; �=4M). In fa
t we will provethat expression (4.12) 
oin
ides with the os
illatory integral (4.4), i.e. one 
antake � = S(RN ), by imposing stronger assumptions on the fun
tion f . Firstof all we show that the representation (4.8) for the Fourier transform of e i~P (x)allows a generalization of equation (4.2). Let us denote by �D � C the lowersemiplane in the 
omplex plane�D � fz 2 C j Im(z) � 0g (4.13)65



Theorem 18. Let f 2 F(RN ), f = �̂f . Then the generalized Fresnel integralI(f) � ZRN e i~P (x)f(x)dx; ~ 2 �D n f0gis well de�ned and it is given by the formula of Parseval's type:ZRN e i~P (x)f(x)dx = ZRN ~F (k)�f(dk); (4.14)where ~F (k) is given by (4.10) (see lemma 5 and remark 13)~F (k) = ZRN eikxe i~P (x)dxThe integral on the r.h.s. of (4.14) is absolutely 
onvergent (hen
e it 
an beunderstood in Lebesgue sense).Proof. Let us 
hoose a test fun
tion  2 S(RN ), su
h that  (0) = 1 and letus 
ompute the limit I(f) � lim�#0 ZRN e i~P (x) (�x)f(x)dxBy hypothesis f(x) = RRN eikx�f(dk), x 2 RN , and substituting in the previousexpression we get :I(f) = lim�#0 ZRN e i~P (x) (�x)� ZRN eikx�f(dk)�dx:By Fubini theorem (whi
h applies for any � > 0 sin
e the integrand is boundedby j (�x)j whi
h is dx-integrable, and �f is a bounded measure) the r.h.s. is= lim�#0 ZRN �ZRN e i~P (x) (�x)eikxdx��f(dk)= 1(2�)N lim�#0 ZRN ZRN ~F (k � ��) ~ (�)d��f(dk) (4.15)(here we have used the fa
t that the integral with respe
t to x is the Fouriertransform of e iP (x)~  (�x) and the inverse Fourier transform of a produ
t isa 
onvolution). Now we 
an pass to the limit using the Lebesgue bounded
onvergen
e theorem and get the desired result:lim�#0 ZRN e i~P (x) (�x)f(x)dx = ZRN ~F (k)�f(dk);where we have used that R ~ (�)d� = (2�)N (0) and lemma 5, whi
h assuresthe boundedness of ~F (k). 66



Corollary 1. Let ~ = j~jei�, � 2 [��; 0℄, ~ 6= 0, f 2 F(RN ), f = �̂f be su
hthat 8x 2 RN ZRN e�kx sin(�=4M+�=2M)j�f j(dk) � AG(x); (4.16)where A 2 R and G : RN ! R is a positive fun
tion satisfying bound (1) or(2) respe
tively:1. if P is de�ned by (5.3),G(x) � eBjxj2M�1 ; B > 02. if P is homogeneous, i.e. P (x) = A2M(x; : : : ; x):G(x) � e 1~A2M (x;x;:::;x)g(jxj);where g(t) = O(t�(N+Æ)), Æ > 0, as t!1.Then f extends to an analyti
 fun
tion on C N and its generalized Fresnelintegral (4.4) is well de�ned and it is given byZRN e i~P (x)f(x)dx = eiN(�=4M+�=2M) ZRN e i~P (ei(�=4M+�=2M)x)f(ei(�=4M+�=2M)x)dxProof. By bound (4.16) it follows that the Lapla
e transform fL : C N ! C ,fL(z) = RRN ekz�f(dk), of �f is a well de�ned entire fun
tion su
h that, forx 2 RN , fL(ix) = f(x). By theorem 18 the generalized Fresnel integral 
anbe 
omputed by means of the Parseval type equalityZRN e i~P (x)f(x)dx = ZRN ~F (k)�f(dk) == eiN(�=4M+�=2M) ZRN �ZRN eikxei(�=4M+�=2M)e i~P (ei(�=4M+�=2M)x)dx��f(dk)By Fubini theorem, whi
h applies given the assumptions on the measure �f ,this is equal toeiN(�=4M+�=2M) ZRN e i~P (ei(�=4M+�=2M)x) ZRN eikxei(�=4M+�=2M)�f(dk)dx == eiN(�=4M+�=2M) ZRN e i~P (ei(�=4M+�=2M)x)fL(iei(�=4M+�=2M)x)dx= eiN(�=4M+�=2M) ZRN e i~P (ei(�=4M+�=2M)x)f(ei(�=4M+�=2M)x)dxand the 
on
lusion follows. 67



4.3 Asymptoti
 expansionIn this se
tion we study the asymptoti
 expansion of the generalized Fresnelintegrals (4.4) in the parti
ular 
ase where the phase fun
tion �(x) is homo-geneous and stri
tly positive:�(x) = A2M (x; : : : ; x);where A2M : RN � RN � � � � � RN ! R is a 
ompletely symmetri
 stri
tlypositive 2Mth�order 
ovariant tensor on RN . Under suitable assumptions onthe fun
tion f , we prove either the 
onvergen
e or the Borel summability ofthe asymptoti
 expansion. In the general 
ase one would have to 
onsiderthe type of degenera
y of the phase fun
tion, 
f. [24, 56, 13, 4℄. We leavethe investigation of the 
orresponding expansions in our setting for a furtherpubli
ation.Let us assume �rst of all N = 1 and study the asymptoti
 behavior of theintegral: Z 1�1 eix2M~ f(x)dx; ~ 2 �D n f0gTheorem 19. Let us 
onsider a fun
tion f 2 F(R), whi
h is the Fouriertransform of a bounded variation measure �f on the real line satisfying thefollowing bounds for all l 2 N, � 2 R+ , ~ 2 �D n f0g:1. Z jkj2ljeik~1=2M�ei�=4M + e�ik~1=2M�ei�=4M jj�f j(dk) � F (l)g(�)e
jxj2M�1;where 
 2 R, F (l) is a 
onstant depending on l, g : R ! R is a smoothfun
tion of polynomial growth as �! +12. j Z k2l(eik~1=2M �ei�=4M + e�ik~1=2M�ei�=4M )�f(dk)j � A
lC(l;M);where A; 
; C(l;M) 2 R.Then the generalized Fresnel integralI(~) � ZR e i~x2Mf(x)dx; ~ 2 �D n f0g(with �D given by (4.13)) admits the following asymptoti
 expansion in powersof ~1=M :I(~) = ei �4M ~1=2MM n�1Xj=0 ei j�2M2j! ~j=M��1 + 2j2M �f (2j)(0) +Rn(~) (4.17)68



with jRn(~)j � j~j1=2M2M A
nj~jn=M C(n;M)2n! ��1+2n2M � (where A; 
; C(n;M) are the
onstants in (2)). If the 
onstant C(n;M) satis�es the boundC(n;M) � (2n)!��1 + 2n2M ��1; 8n 2 N (4.18)then the series given by (4.17) for n!1 has a positive radius of 
onvergen
e,while if C(n;M) � (2n)!��1 + nM ���1 + 2n2M ��1; 8n 2 N (4.19)then the expansion (4.17) is Borel summable in the sense of, e.g., [84, 62℄ anddetermines I(~) uniquely.Moreover if f 2 F(R) instead of (1), (2) satis�es the following \moment
ondition": Z j�jlj�f j(d�) � C 0(l;M)A
l; A; 
 2 R: (4.20)for all l 2 N, where C 0(l;M) � ��l�1� 12M�� as l!1 (where � means thatthe quotient of the two sides 
onverges to 1 as l ! 1), then the asymptoti
expansion (4.17) has a �nite radius of 
onvergen
e.Proof. First of all we re
all that the integral R e ix2M~ f(x)dx is a well de�ned
onvergent integral also for all ~ 2 C with Im(~) < 0, thanks to the exponen-tial de
ay of e i~x2M and to the boundedness of f (
f Remark 11). Moreover itis an analyti
 fun
tion of the variable ~ 2 C in the domain Im(~) < 0 as one
an dire
tly verify the Cau
hy-Riemann 
onditions.Let us 
ompute the asymptoti
 expansion of this integral, 
onsidered as afun
tion of ~ 2 C , valid for ~ 2 �D n f0g.By formula(4.14) we haveZR e i~x2Mf(x)dx = ~1=2M Z ~F2M (~1=2Mk)�f(dk); (4.21)where, if ~ = j~jei�, � 2 [��; 0℄, ~1=2M = j~j1=2Mei�=2M and ~F2M(k) =RR eikxeix2Mdx, whi
h, for lemma 5, is equal to ~F2M = ei �4M RR eikxei �4M e�x2Mdx.Su
h a representation assures the analyti
ity of ~F2M . We 
an now expand~F2M(~1=2Mk) in a 
onvergent power series in ~1=2Mk around ~ = 0:F2M (~1=2Mk) = 1Xn=0 F (n)2M (0)n! ~n=2Mkn:69



The nth�derivative of F2M 
an be expli
itly evaluated by means of the repre-sentation (5.6):~F (n)2M (0) = ei(n+1)�=4M (i)n(1 + (�1)n) Z 10 �ne��2Md�that is F (n)(0) = 0 if n is odd, while if n is even we have~F (2j)(0) = 2ei(2j+1)�=2M (�1)j Z 10 �2je��2Md�:By means of a 
hange of variables one 
an 
ompute the latter integral expli
-itly: Z 10 �2je��2Md� = 12M Z 10 e�tt 1+2j2M �1dt = 12M ��1 + 2j2M �:By substituting into (4.21) we get:I(~) = ~1=2MM n�1Xj=0 12j!ei(2j+1)�=2M��1 + 2j2M �(�1)j~j=M Z (k)2j�f(dk) +Rn == ~1=2MM n�1Xj=0 12j!ei(2j+1)�=2M��1 + 2j2M �~j=Mf (2j)(0) +Rn (4.22)whereRn = ~1=2MM Z Xj�n 12j!ei(2j+1)�=2M��1 + 2j2M �(�1)j~j=M(k)2j�f(dk):If assumption (4.20) is satis�ed, one 
an verify by means of Stirling's formulathat the series (4.22) of powers of ~1=M has a �nite radius of 
onvergen
e.In the more general 
ase in whi
h assumptions (1),(2) are satis�ed, we 
annevertheless prove a suitable estimate for Rn, indeed:Rn = 2~1=2Mei�=2M Z Xj�n(�1)j 12j!eij�=M Z 10 �2je��2Md�~j=Mk2j�f(dk) == ~1=2Mei�=2Mein�=2M 12n� 1!~n=MZ k2n Z 10 �2n Z 10 (1�t)(2n�1)(eik�t~1=2M ei�=4M+e�ik�t~1=2M ei�=4M )dte��2Md��f(dk):(4.23)By Fubini theorem and assumptions (1) and (2) we get the uniform estimatein ~: jRnj � j~j1=M2M A
nC(n;M)2n! ��1 + 2n2M �j~jn=M :70



If assumption (4.18) is satis�ed, then the latter be
omesjRnj � j~j1=M2M A
nj~jn=M ;and the series has a positive radius of 
onvergen
e, while if assumption (4.19)holds, we get the estimatejRnj � j~j1=M2M A
n��1 + nM �j~jn=M :This and the analyti
ity of I(~) in Im(~) < 0 by Nevanlinna theorem [84℄assure the Borel summability of the power series expansion (4.17).These results 
an be easily generalized to the study of N�dimensional os
il-latory integrals:IN(~) � ZRN e i~A2M (x;:::;x)f(x)dx; ~ 2 �D n f0g (4.24)with A2M a 
ompletely symmetri
 2Mth-order 
ovariant tensor on RN su
hthat A2M (x; : : : ; x) > 0 unless x = 0.Theorem 20. Let f 2 F(RN ) be the Fourier transform of a bounded variationmeasure �f admitting moments of all orders.Let us suppose f satis�es the following 
onditions, for all l 2 N:1. ZRN jkxjle�kxj�f j(dk) � F (l)g(jxj)e
jxj2M�1; 8x 2 RN ;where 
 2 R, F (l) is a positive 
onstant depending on l, g : R+ ! R isa positive fun
tion with polynomial growth.2. j ZRN (ku)leik�u~1=2M ei�=4M�f (dk)j � A
lC(l;M;N)for all u 2 SN�1, � 2 R+ , ~ 2 �D n f0g, where A; 
; C(l;M;N) 2 R (andSN�1 is the (N � 1)-spheri
al hypersurfa
e of radius 1 and 
entered atthe origin).then the os
illatory integral (4.24) admits (for ~ 2 �D n f0g) the followingasymptoti
 expansion in powers of ~1=2M :IN(~) = ~N=2M eiN�=4M2M n�1Xl=0 (i)ll! (ei�=4M)l~l=2M�� l +N2M �ZRN ZSN�1(ku)lP (u)� l+N2M d
N�1�f(dk) +Rn; (4.25)71



with jRnj � A0j~jn=2M(
0)n C(n;M;N)n! ��n+N2M � where A0; 
0 2 R are suitable 
on-stants and C(n;M;N) is the 
onstant in (2). If C(n;M;N) satis�es the fol-lowing bound: C(n;M;N) � n!��n+N2M ��1 (4.26)then the series has a positive radius of 
onvergen
e, while ifC(n;M;N) � n!��1 + n2M ���n +N2M ��1 (4.27)then the expansion is Borel summable in the sense of, e.g. [84, 62℄ and deter-mines I(~) uniquely.Moreover if f 2 F(RN ) instead of (1) and (2) satis�es the following moment
ondition: ZRN j�jlj�f j(d�) � C 0(l;M)A
l; A; 
 2 R; (4.28)for all l 2 N, where C 0(l;M) � ��l�1� 12M�� as l!1, then the asymptoti
expansion has a �nite radius of 
onvergen
e.Proof. Let ~F (k) � RRN eikxeiA2M (x;:::;x)dx, then by theorem 21 the os
illatoryintegral (4.24) is given by:ZRn e i~A2M (x;:::;x)f(x)dx = ~N=2M ZRN ~F (~1=2Mk)�f(dk) (4.29)By lemma 5 ~F is given by~F (~1=2Mk) = eiN�=4M ZRN ei~1=2Mkxei�=4Me�A2M (x;:::;x)dxWhere, if ~ = j~jei�, � 2 [��; 0℄, ~1=2M = j~j1=2Mei�=2M . By representing thelatter absolutely 
onvergent integral using polar 
oordinates in RN we get:~F (~1=2Mk) = eiN�=4M ZSN�1 Z 10 ei~1=2M ei�=4M�kue��2MA2M (u;:::;u)�N�1d�d
N�1where d
N�1 is the Riemann-Lebesgue measure on the N � 1-dimensionalspheri
al hypersurfa
e SN�1, x = �u, � = jxj, u 2 SN�1 is a unitary ve
tor.72



We 
an expand the latter integral in a power series of ~1=2M :~F (~1=2Mk) == eiN�=4M ZSN�1 Z 10 1Xl=0 (i)ll! (ei�=4M )l~l=2M�l(ku)le��2MA2M (u;:::;u)�N�1d�d
N�1 == eiN�=4M 1Xl=0 (i)ll! (ei�=4M )l~l=2M ZSN�1(ku)l Z 10 �l+N�1e��2MA2M (u;:::;u)d�d
N�1 == eiN�=4M2M 1Xl=0 (i)ll! (ei�=4M )l~l=2M�� l +N2M � ZSN�1(ku)lP (u)� l+N2M d
N�1(4.30)where P (u) � A2M (u; : : : ; u) is a stri
tly positive 
ontinuous fun
tion on the
ompa
t set SN�1, so that it admits an absolute minimum denoted by m. Thisgivesj ZSN�1(ku)lP (u)� l+N2M d
N�1j � jkjlm� l+N2M 
N�1(SN�1) = jkjlm� l+N2M 2�N=2��N2 ��1(4.31)The latter inequality and the Stirling formula assure the absolute 
onvergen
eof the series (4.30). We 
an now insert this formula into (4.29) and get:ZRn e i~A2M (x;:::;x)f(x)dx == ~N=2M eiN�=4M2M n�1Xl=0 (i)ll! (ei�=4M )l~l=2M�� l +N2M �ZRN ZSN�1(ku)lP (u)� l+N2M d
N�1�f(dk) +Rn (4.32)By estimate (4.31) and Stirling's formula one 
an easily verify that if assump-tion (4.28) is satis�ed, then the latter series in powers of ~1=2M has a stri
tlypositive radius of 
onvergen
e.Equation (4.32) 
an also be written in the following form:ZRn e i~A2M (x;:::;x)f(x)dx == ~N=2M eiN�=4M2M n�1Xl=0 1l! (ei�=4M)l~l=2M�� l +N2M �ZSN�1 P (u)� l+N2M �l�ul f(0)d
N�1 +Rn (4.33)73



where �l�ulf(0) denotes the lth partial derivative of f at 0 in the dire
tion u,andRn = ~N=2MeiN�=4M ZRN ZSN�1 Z 10 1Xl=n (i)ll! (ei�=4M )l~l=2M�l(ku)le��2MA2M (u;:::;u)�N�1d�d
N�1�f(dk): (4.34)In the more general 
ase in whi
h assumptions (1) and (2) are satis�ed we 
anprove the asymptoti
ity of the expansion (4.32), indeedRn = ~N=2MeiN�=4M (i)nn� 1!(ei�=4M)n~n=2M ZRN ZSN�1 Z 10Z 10 (1� t)n�1eiku�t~1=2M ei�=4Me��2MA2M (u;:::;u)(ku)n�n+N�1dtd�d
N�1�f(dk)(4.35)By assumptions (1), (2) and Fubini theorem the latter is bounded byjRnj � AM �N=2��N2 ��1j~j(n+N)=2M
nm�n+N2M C(n;M;N)n! ��n +N2M �If assumption (4.26) is satis�ed, then the latter be
omesjRnj � AM�N=2��N2 ��1j~j(n+N)=2M
nm�n+N2Mand the series has a positive radius of 
onvergen
e, while if assumption (4.27)holds, we get the estimatejRnj � AM �N=2��N2 ��1j~j(n+N)=2M
nm�n+N2M ��1 + n2M �:This and the analyti
ity of the IN(~) in Im(~) < 0 (
f. Remark 11) by Nevan-linna theorem [84℄ assure the Borel summability of the power series expansion(4.17).
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Chapter 5Feynman path integrals forpolynomially growing potentialsIn the �rst three 
hapters we have seen that the in�nite dimensional os
illatoryintegrals are a powerful tool and 
an be used to give a rigorous mathemati
almeaning to a large 
lass of \Feynman path integral representations". In se
tion1.3 we have seen the appli
ation to the the S
hr�odinger equation with ananharmoni
 os
illator potentialV (x) = 12x �
2x + V1(x); (5.1)where 
2 is a positive de�nite symmetri
 d � d matrix and V1 is the Fouriertransform of a 
omplex bounded variation measure on Rd . In 
hapter 2 the\phase spa
e Feynman path integrals" give a representation of the solution ofa S
hr�odinger equation in whi
h the potential depends both on position and onmomentum. In 
hapter 3 the solution of a 
lass of sto
hasti
 S
hr�odinger equa-tion is represented by an in�nite dimensional os
illatory integral with 
omplexphase.The main problem of these te
hniques is the fa
t that the 
lass of unboundedpotentials for whi
h a Feynman path integral representation for the solutionof the 
orresponding S
hr�odinger equation exists is not very ri
h. Indeed theperturbation V1 to the harmoni
 os
illator potential in equation (5.1) has tobelong to the 
lass of Fourier transforms of measures, so that is bounded. It ispossible to deal with linear potentials V2(x) = Cx (see remark 1 in se
tion 1.3)and extension to Lapla
e transforms of measures has been given in [6, 74℄, buteven this approa
h does not 
over the 
ase of potentials whi
h are polynomialsof degree larger than two.In this 
hapter we give a partial solution to this problem and develop a Feyn-man path integral representation for the solution of the S
hr�odinger equation75



for an anharmoni
 os
illator potential of the typeV (x) = 12x � 
2x+ �C(x; x; x; x); (5.2)where C is a 
ompletely symmetri
 positive fourth order 
ovariant tensor on Rdand � � 0 is a 
oupling 
onstant. If d = 1, (5.2) redu
es to V (x) = 12
2x2+�x4.In the �rst and in the se
ond se
tions we extend the 
lass of fun
tions for whi
ha generalized in�nite dimensional os
illatory integral 
an be 
omputed andprove a Parseval type equality. In addition we propose an analyti
 
ontinua-tion formula whi
h shows a dire
t 
onne
tion between the in�nite dimensionalos
illatory integral and the Wiener integral. In the third se
tion we 
onsiderthe S
hr�odinger equation for a d- dimensional quantum parti
le under the a
-tion of the anharmoni
 os
illator potential (5.2), we give a fun
tional integralrepresentation for the solution of the 
orresponding S
hr�odinger equation andshow that the so de�ned fun
tional is analyti
 in the 
oupling 
onstant � 2 Cfor Im(�) < 0, 
ontinuous for � 2 R and 
oin
ides for � � 0 with a well de�nedin�nite dimensional os
illatory integral. We prove moreover the Borel summa-bility of the asymptoti
 Dyson expansion (in powers of the 
oupling 
onstant�) for the s
alar produ
t h�; e�i t~H 0i, where H is the quantum me
hani
alHamiltonian H = �~22 + V and �;  0 2 L2(Rd) are suitable ve
tors.5.1 A generalized os
illatory integralIn this se
tion and in the following one, by means of the te
hniques of 
hapter4, we shall generalize formulas (1.5) and (1.11) to a larger 
lass of phasefun
tions.Let us deal �rst of all with the �nite dimensional 
ase, i.e. dim(H) = N . LetA : H � H � H � H ! R be a 
ompletely symmetri
 and positive fourthorder 
ovariant tensor on H. After the introdu
tion of an orthonormal basisin H, the elements x 2 H 
an be identi�ed with N�ple of real numbers,i.e. x = (x1; : : : ; xN ), and the a
tion of the tensor A on the 4-ple (x,x,x,x)is represented by an homogeneous fourth order polynomial in the variablesx1; : : : ; xN : P (x) = A(x; x; x; x) = Xj;k;l;maj;k;l;mxjxkxlxm (5.3)with aj;k;l;m 2 R.We are going to de�ne the following generalized Fresnel integral:fZ e i2~x�(I�B)xe�i�~ P (x)f(x)dx (5.4)76



where I; B are N �N matri
es, I being the identity, � 2 R, f 2 F(RN ) and~ > 0.Lemma 6. Let P : RN ! R be given by (5.3). Then the Fourier transform ofthe distribution e i2~ x�(I�B)x(2�i~)N=2 e�i�~ P (x):~F (k) = ZRN eik�x e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x)dNx (5.5)is a bounded 
omplex-valued entire fun
tion on RN admitting, if A is stri
tlypositive, the following representations~F (k) = 8><>: eiN�=8 RRN eiei�=8k�x e iei�=42~ x�(I�B)x(2�i~)N=2 e�~P (x)dNx � < 0e�iN�=8 RRN eie�i�=8k�x e ie�i�=42~ x�(I�B)x(2�i~)N=2 e��~P (x)dNx � > 0 (5.6)Moreover, for general A � 0, if � � 0 and (I�B) is symmetri
 stri
tly positivethen ~F (k) 
an also be represented by~F (k) = ZRN eiei�=4k�xe� 12~x�(I�B)x(2�~)N=2 e i�~ P (x)dNx = E [eiei�=4k�xe i�~ P (x)e 12~x�Bx℄ (5.7)where E denotes the expe
tation value with respe
t to the 
entered Gaussianmeasure on RN with 
ovarian
e operator ~I.Proof. For the proof of the representation (5.6) and of the boundedness of ~Fsee 
hapter 4, where a more general 
ase is handled. From the representations(5.6) and (5.7) the analyti
ity of ~F (k), k 2 C N follows immediately.Let us here prove representation (5.7) in the parti
ular 
ase B = 0 and P ofthe spe
ial form P (x) =PNj=1 ajx4j , with aj � 0. This is suÆ
ient to show themain ideas of the proof, the general 
ase is handled in appendix A.In this 
ase one has to study the following integral on the real line:Ij(kj) � ZR eikjxj e i2~x2j(2�i~)1=2 e�i�~ ajx4jdxj; k = (k1; : : : ; kN); kj 2 Rand then one has ~F (k) = NYj=1 Ij(kj):Moreover, as e i2~x2je�i�~ ajx4j is an even fun
tion, we have Ij(kj) = Ij;+(kj) +Ij;+(�kj), with Ij;+(kj) = Z 10 eikjxj e i2~x2j(2�i~)1=2 e�i�~ ajx4jdxj77



In the following we will parametrize a 
omplex number z 2 C by means of itsmodulus � and its phase � 2 [0; 2�), i.e. z = �ei�.Sin
e the integrand in Ij;+(kj) is os
illating, a priori it is not 
lear that Ij;+(k)exists, even as an improper Riemann integral. For this reason we look atthe 
orresponding integral in the upper halfplane of C with a \regularizingparameter" 0 < � < �=4, whi
h we send to zero at the end. For ea
h R > 0let us 
onsider the 
losed path in the 
omplex plane 
omposed by three pie
es:
1; 
2; 
3, where 
1(R) = fz 2 C j 0 � � � R; � = �g
2(R) = fz 2 C j � = R; � � � � �=4g
3(R) = fz 2 C j 0 � � � R; � = �=4gfor some small 0 < � < �=4. From the analyti
ity of zj 7! eikjzje i2~ z2j e�i�~ ajz4j ,kj 2 C , and the Cau
hy theorem we have:Z
1[
2[
3 eikjzje i2~ z2j e�i�~ ajz4j dzj = 0;that isZ
1 eikjzje i2~ z2j e�i�~ ajz4j dzj + iR Z �=40 eikjRei�e i2~R2e2i�e�i�~ ajR4e4i�ei�d�+� ei�=4 Z R0 eikj�ei�=4e i2~ �2ei�=2ei�~ aj�4d� = 0 (5.8)Now we take the limit as R ! +1. The se
ond integral 
onverges to 0, asit is easy to verify by using the methods presented in appendix A. Hen
e wehave: limR!1Z
1 eikjzje i2~ z2j e�i�~ ajz4j dzj = ei�=4 Z 10 eikj�ei�=4e i2~ �2ei�=2ei�~aj�4d�:The r.h.s. is independent of �, hen
e the limit of the l.h.s. for � # 0 (� enteringin the de�nition of 
1(R)) also exists and is equal to the r.h.s.So we get :Ij;+(kj) = ei�=4 Z 10 eikj�ei�=4 1p2�i~e i2~ �2ei�=2e�i�~ aj�4ei�d�= Z 10 eikj�ei�=4 1p2�~e��22~ e i�~ aj�4d� (5.9)so that (with k = (k1; :::; KN);2 RN~F (k) = NYj=1(Ij;+(kj) + Ij;+(�kj)) = ZRN eiei�=4k�xei�~P (x) e� 12~x�x(2�~)N=2dnx == E [eiei�=4k�xei�~P (x)℄ (5.10)78



(where E is the expe
tation with respe
t to the Gaussian measure on RN ofmean zero and varian
e ~2I).Remark 14. A 
areful reading of this proof shows that the se
ond part ofthe statement, that is representation (5.7), is valid if and only if the degreeof P is 4, but 
annot be generalized to polynomial fun
tions of higher (even)degree. In fa
t the proof is based on the analyti
ity of the integrand and on adeformation of the 
ontour of integration into a region of the 
omplex plane inwhi
h the real part of the leading term of the polynomial, that is of Re(�i�az4),is negative, where � < 0, a > 0. By setting z = �ei� one 
an immediately verifythat this 
ondition is satis�ed if and only if 0 � � � �=4. By 
onsidering apolynomial of higher even degree 2M this 
ondition be
omes 0 � � � �=2M andif M > 2 the angle � = �=4 is no longer in
luded. This angle is fundamentalas the os
illatory fun
tion e i2~ z2(2�i~)1=2 evaluated in z = �ei�=4 gives e�i�=4 e��22~(2�~)1=2 ,that is the density of the normal distribution with mean zero and varian
e ~2,multiplied by the fa
tor e�i�=4. These 
onsiderations also show the ne
essity of
onsidering � � 0.Remark 15. We note that to have � = 0 is equivalent to take P = 0. In this
ase by a deformation of the integration 
ontour one has immediately:ZRN eik�x e i2~x�x(2�i~)N=2dNx == ZRN eik�xei�=4 e�x�x2~(2�~)N=2dNx = E [eik�xei�=4 ℄ = e�i~2 k�k: (5.11)We are going to apply these results to the de�nition of the generalizedFresnel integral (5.4).Theorem 21. (\Parseval equality") Let f 2 F(RN ), f = �̂f . Then thegeneralized Fresnel integralI(f) � gZRNe i2~x�(I�B)xe�i�~ P (x)f(x)dxis well de�ned and it is given by:gZRN e i2~x�(I�B)xe�i�~ P (x)f(x)dx = ZRN ~F (k)�f(dk); (5.12)where ~F (k) is given by equation (5.6) if A in (5.3) is stri
tly positive, or byequation (5.7) if A � 0, � � 0 and (I � B) is symmetri
 stri
tly positive.The integral on the r.h.s. of (5.12) is absolutely 
onvergent (hen
e it 
an beunderstood in Lebesgue sense). 79



Proof. Let us 
hoose a test fun
tion  2 S(RN ), su
h that  (0) = 1 and letus 
ompute the limitI(f) � lim�#0 ZRN e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x) (�x)f(x)dxBy hypothesis f(x) = �̂f (x) = RRN eikx�f(dk) and substituting into the previ-ous expression we get :I(f) = lim�#0 ZRN e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x) (�x) ZRN eikx�f(dk)dx:By Fubini theorem (whi
h applies for any � > 0 sin
e the integrand is boundedby j (�x)j whi
h is dx-integrable, and �f is a bounded measure) the r.h.s. is= lim�#0 ZRN �ZRN e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x) (�x)eikxdx��f(dk)= 1(2�)N lim�#0 ZRN ZRN ~F (k � ��) ~ (�)d��f(dk) (5.13)(here we have used the fa
t that the integral with respe
t to x is the Fouriertransform of e i2~ x�(I�B)x(2�i~)N=2 e�i�~ P (x) (�x) and the inverse Fourier transform of aprodu
t is a 
onvolution). Now we 
an pass to the limit using the Lebesguebounded 
onvergen
e theorem and get the desired result:lim�#0 ZRN e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x) (�x)f(x)dx = ZRN ~F (k)�f(dk);where we have used that R ~ (�)d� = (2�)N (0) and lemma 6, whi
h assuresthe boundedness of ~F .Corollary 2. Let (I � B) be symmetri
 and stri
tly positive, � � 0 and f 2F(RN ), f = �̂f su
h that 8x 2 RN the integral R e�p22 kxj�f j(dk) is 
onvergentand the positive fun
tion g : Rn ! R, de�ned by g(x) = e 12~x�Bx R e�p22 kxj�f j(dk)is summable with respe
t to the 
entered Gaussian measure on RN with 
ovari-an
e ~I.Then f extends to an analyti
 fun
tion on C N and the 
orresponding general-ized Fresnel integral is well de�ned and it is given byfZ RN e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x)f(x)dx = E [e i�~ P (x)e 12~x�Bxf(ei�=4x)℄: (5.14)80



Proof. By the assumption on the measure �f it follows that its Lapla
e trans-form fL : C N ! C , fL(z) = RRN ekz�f(dk), is a well de�ned entire fun
tionsu
h that fL(ix) = f(x), x 2 RN . By theorem 21 the generalized Fresnelintegral 
an be 
omputed by means of Parseval equalityfZ RN e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x)f(x)dx = ZRN ~F (k)�f(dk) == ZRN E [eikxei�=4 e 12~x�Bxe i�~ P (x)℄�f(dk)By Fubini theorem, whi
h applies given the assumptions on the measure �f ,this is equal toE [e 12~x�Bxe i�~ P (x) ZRN eikxei�=4�f(dk)℄ = E [e 12~x�Bxe i�~ P (x)fL(iei�=4x)℄ == E [e 12~x�Bxe i�~ P (x)f(ei�=4x)℄ (5.15)and the 
on
lusion follows.Remark 16. The latter theorem shows that, under suitable assumptions onthe fun
tion f , the generalized Fresnel integral (5.4) 
an be expli
itly 
omputedby means of a Gaussian integral. By mimi
king the proof of lemma 6 one 
anbe tempted to generalize equation (5.14) to a larger 
lass of fun
tions, that areanalyti
 in a suitable region of C N , but do not belong to F(RN ) (see in 
hapter4 the 
omment following theorem 17 for more details). In fa
t this is notpossible, as the de�nition 9 of os
illatory integral requires that the limit of thesequen
e of regularized integrals exists and is independent of the regularization.Let us 
onsider the subset of the 
omplex plane� = f� 2 C j 0 < arg(�) < �=4g � C ; (5.16)and let �� be its 
losure. The identitylim�!0Z ZRN e i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x)f(x) (�x)dx = E [e 12~x�Bxe i�~ P (x)f(ei�=4x)℄(with (I � B) symmetri
 stri
tly positive and � � 0) 
an only be proved by
hoosing a regularizing fun
tion  2 S,  (0) = 1, su
h that the fun
tionz 7!  (zx) is analyti
 for z 2 � and 
ontinuous for z 2 �� for ea
h x 2 RN .Moreover one has to assume that j (ei�x)j is bounded as jxj ! 1 for ea
h� 2 (0; �=4). 81



5.2 In�nite dimensional generalized os
illatoryintegralsLetH be a real separable in�nite dimensional Hilbert spa
e, with inner produ
th ; i and norm j j. Let � be the �nitely additive 
ylinder measure onH, de�nedby its 
hara
teristi
 fun
tional �̂(x) = e�~2 jxj2. Let k k be a \measurable" normon H, that is k k is su
h that for every � > 0 there exist a �nite-dimensionalproje
tion P� : H ! H, su
h that for all P ? P� one has�(fx 2 Hj kP (x)k > �g) < �;where P and P� are 
alled orthogonal (P ? P�) if their ranges are orthogonalin (H; h ; i). One 
an easily verify that k k is weaker than j j. Denoted by Bthe 
ompletion of H in the k k-norm and by i the 
ontinuous in
lusion of Hin B, one 
an prove that � � � Æ i�1 is a 
ountably additive Gaussian measureon the Borel subsets of B. The triple (i;H;B) is 
alled an abstra
t Wienerspa
e [61, 75℄. Given y 2 B� one 
an easily verify that the restri
tion of y toH is 
ontinuous on H, so that one 
an identify B� as a subset of H. MoreoverB� is dense in H and we have the dense 
ontinuous in
lusions B� � H � B.Ea
h element y 2 B� 
an be regarded as a random variable n(y) on (B; �). Adire
t 
omputation shows that n(y) is normally distributed, with 
ovarian
ejyj2. More generally, given y1; y2 2 B�, one hasZB n(y1)n(y2)d� = hy1; y2i:The latter result allows the extension to the map n : H ! L2(B; �), be
auseB� is dense in H. Given an orthogonal proje
tion P in H, withP (x) = nXi=1 hei; xieifor some orthonormal e1; : : : ; en 2 H, the sto
hasti
 extension ~P of P on B iswell de�ned by ~P ( � ) = nXi=1 n(ei)( � )ei:Given a fun
tion f : H ! B1, where (B1; k kB1) is another real separableBana
h spa
e, the sto
hasti
 extension ~f of f to B exists if the fun
tionsf Æ ~P : B ! B1 
onverge to ~f in probability with respe
t to � as P 
onvergesstrongly to the identity in H. If g : B ! B1 is 
ontinuous and f := gjH, thenone 
an prove [61℄ that the sto
hasti
 extension of f is well de�ned and it isequal to g ��a.e. In this setting it is possible to extend the results of the82



previous se
tion to the in�nite dimensional 
ase.Let A : H�H�H�H ! R be a 
ompletely symmetri
 positive 
ovariant tensoroperator on H su
h that the map V : H ! R+ , x 7! V (x) � A(x; x; x; x) is
ontinuous in the k k norm. As a 
onsequen
e V is 
ontinuous in the j j-norm, moreover it 
an be extended by 
ontinuity to a random variable �V onB, with �V jH = V . By the previous 
onsiderations, the sto
hasti
 extension~V of V : H ! R exists and 
oin
ides with �V : B ! R ��a.e. Moreover forany in
reasing sequen
e of n�dimensional proje
tors Pn in H, the family ofbounded random variables ei�~V Æ ~Pn( � ) � ei�~V n( � ) 
onverges ��a.e. to ei�~ �V ( � ).In addition, for any h 2 H the sequen
e of random variablesnXi=1 hin(ei); hi = hei; hi
onverges in L2(B; �), and by subsequen
es a.e., to the random variable n(h).Let us 
onsider a self-adjoint tra
e 
lass operator B : H ! H. The quadrati
form on H�H: x 2 H 7! hx;Bxi
an be extended to a random variable on B, denoted again by h � ; B � i. Indeedfor ea
h in
reasing sequen
e of �nite dimensional proje
tors Pn 
onvergingstrongly to the identity, Pn(x) =Pni=1 eihei; xi (feig being a CONS in H), thesequen
e of random variables! 2 B 7! nXi;j=1hei; Bejin(ei)(!)n(ej)(!)is a Cau
hy sequen
e in L1(B; �). By passing if ne
essary to a subsequen
e, it
onverges to h � ; B � i ��a.e.Let us assume that the largest eigenvalue of B is stri
tly less than 1 (or, inother words, that (I-B) is stri
tly positive). Then one 
an prove that therandom variable g( � ) := e 12~ h � ;B � i is �-summable. Indeed by 
onsidering aCONS feig made of eigenve
tors of the operator B, bi being the 
orrespondingeigenvalues, the sequen
e of random variablesgn : B ! C ; ! 7! gn(!) = e 12~ Pni=1 bi([n(ei)(!)℄2 ;
onverges to g(!) �-a.e..On the other hand one hasZB gn(!)d�(!) = nYi=1 ZR e� 12~ (1�bi)x2ip2�~ dxi = ( nYi=1(1� bi))�1=2so that R gnd� 
onverges, as n ! 1, to (det(I � B))�1=2, where det(I � B)denotes the Fredholm determinant of (I � B), whi
h is well de�ned as B is83



tra
e 
lass. Moreover 0 � gn � gn+1 for ea
h n . It follows that, as n ! 1,R gnd�! R gd� = (det(I�B))�1=2. By an analogous reasoning one 
an provethat for any y 2 H, the sequen
e of random variables fn:! 7! fn(!) = ePni=1 yin(ei)(!)e 12~ Pni=1 bi([n(ei)(!)℄2where yi = hy; eii, 
onverges ��a.e. as n goes to 1 to the random variablef( � ) = en(y)( � )e 12~ h � ;B � i and thatZ fnd�! Z fd� = (det(I �B))�1=2e~2 hy;(I�B)�1yi: (5.17)(see [75, 72℄). The following result follows:Lemma 7. Let B : H ! H be a self adjoint and tra
e 
lass operator su
hthat I � B is stri
tly positive, let k 2 H and � � 0. Then for any in
reasingsequen
e Pn of proje
tors onto n-dimensional subspa
es of H su
h that Pn " Istrongly as n!1, the following sequen
e of �nite dimensional integrals:Fn(k) � (2�i~)�n=2 ZPnH eihPnk;Pnxie i2~ hPnx;(I�B)Pnxie�i�~V (Pnx)d(Pnx)
onverges, as n!1, to the Gaussian integral on B:F (k) � E [ein(k)(!)ei�=4 e 12~ h!;B!iei�~ �V (!)℄ (5.18)(E being the expe
tation with respe
t to � on B)Proof. By lemma 6 one has(2�i~)�n=2 ZPnH eihPnk;Pnxie i2~ hPnx;(I�B)Pnxie�i�~V (Pnx)d(Pnx) =(2�~)�n=2 ZPnH eihPnk;Pnxiei�=4e� 12~ hPnx;Pnxie 12~ hPnx;BPnxiei�~V (Pnx)d(Pnx) (5.19)Let us introdu
e an orthonormal base feig of H su
h that Pn is the proje
toronto the span of the �rst n ve
tors. Ea
h element Pnx 2 PnH 
an be repre-sented as an n�ple of real numbers (x1; : : : ; xn), where xi = hx; eii. The latterintegral 
an be written in the following form:(2�~)�n=2 ZRn eiPni=1 kixiei�=4e� 12~ Pni=1 x2i e 12~ Pni;j=1 Bijxixjei�~ Pnij;k;h=1 Aijkhxixjxkxhdx1 : : : dxn84



where Bij = hei; Beji and Aijkh = A(ei; ej; ek; eh).On the other hand, this 
oin
ides with the Gaussian integral on (B; �):E [eiPni=1 kin(ei)(!)ei�=4e 12~ Pni;j=1hei;Bejin(ei)(!)n(ej )(!)e�~V Æ ~Pn(!)℄By Lebesgue's dominated 
onvergen
e theorem (whi
h holds be
ause of theassumption on the stri
t positivity of the operator I � B) this 
onverges asn!1 to E [ein(k)(!)ei�=4 e 12~ h!;B!iei�~ �V (!)℄:and the 
on
lusion follows.The above result allows to generalize theorem 21 to the in�nite dimensional
ase.Theorem 22. Let B be self-adjoint tra
e 
lass, (I�B) stri
tly positive, � � 0and f 2 F(H), f � �̂f , and let us suppose that the bounded variation measure�f satis�es the following assumptionZH e~4 hk;(I�B)�1kij�f j(dk) < +1: (5.20)Then the in�nite dimensional os
illatory integralfZ He i2~ hx;(I�B)xie�i�~A(x;x;x;x)f(x)dx (5.21)exists and is given by:ZH E [ein(k)(!)ei�=4 e 12~ h!;B!iei�~ �V (!)℄�f(dk)Proof. By de�nition, 
hoosing an in
reasing sequen
e of �nite dimensionalproje
tors Pn on H, with Pn " I strongly as n ! 1, the os
illatory integral(5.21) is given by:limn!1(2�i~)�n=2 ZPnH e i2~ hPnx;(I�B)Pnxie�i�~A(Pnx;Pnx;Pnx;Pnx)f(Pnx)dPnx: (5.22)Let fn : PnH ! C be the fun
tion de�ned by fn(y) � f(y), y 2 PnH. One 
aneasily verify that fn 2 F(PnH), fn = �̂nf , where �nf is the bounded variationmeasure on PnH de�ned by �nf (I) = �f(P�1n I), I being a Borel subset of PnH,indeed:fn(y) = f(y) = ZH eihy;ki�f(dk) == ZH eihPny;Pnki�f(dk) = ZPnH eihy;Pnki�nf (dPnk) (5.23)85



where y = Pny. By theorem 21 the limit (5.22) is equal tolimn!1ZPnHGn(Pnk)�nf (dPnk); (5.24)where Gn : PnH ! C is given by:Gn(Pnk) = (2�~)�n=2 ZPnH eihPnk;Pnxiei�=4e� 12~ hPnx;(I�B)Pnxiei�~A(Pnx;Pnx;Pnx;Pnx)dPnxThis, on the other hand (see the proof of lemma 7) is equal toE [ein(Pnk)(!)ei�=4e 12~ Pni;j=1 Bijn(ei)(!)n(ej )(!)ei�~V n(!)℄;where V n = V Æ ~Pn. By substituting the latter expression into (5.24) we havelimn!1ZPnH E [ein(Pnk)(!)ei�=4e 12~ Pni;j=1 Bijn(ei)(!)n(ej )(!)ei�~V n(!)℄�nf (dPnk) == limn!1ZH E [ein(Pnk)(!)ei�=4e 12~ Pni;j=1 Bijn(ei)(!)n(ej )(!)ei�~V n(!)℄�f (dk) == limn!1ZH Fn(k)�f(dk) (5.25)By lemma 7 and the dominated 
onvergen
e theorem, appli
able to the integralwith respe
t to �f , due to assumption (5.20), we then getZH F (k)�f(dk) = ZH E [ein(k)(!)ei�=4 e 12~ h!;B!iei�~ �V (!)℄�f(dk)and the 
on
lusion follows.Corollary 2 
an be generalized to the in�nite dimensional 
ase. Indeed dueto the assumption (5.20) the fun
tion f on the real Hilbert spa
e H 
an beextended to those ve
tors y 2 HC in the 
omplex Hilbert spa
e HC of the formy = zx, x 2 H, z 2 C as the integralZH eizhx;ki�f(dk)is absolutely 
onvergent. Moreover the latter 
an be uniquely extended to arandom variable on B, denoted again by f , byf z(!) � f(z!) � ZH eizn(k)(!)�f(dk); ! 2 B: (5.26)Moreover the random variable e 12~ h � ;B � if z( � ) belongs to L1(B; �) if Im(z)2 �1=2. 86



Theorem 23. Let B : H ! H be self-adjoint tra
e 
lass, I�B stri
tly positive,� � 0 and f 2 F(H) be the Fourier transform of a bounded variation measure�f satisfying assumption (5.20). Then the in�nite dimensional os
illatoryintegral (5.21) is well de�ned and it is given by:fZ He i2~ hx;(I�B)xie�i�~A(x;x;x;x)f(x)dx = E [ei�~ �V (!)e 12~ h!;B!if(ei�=4!)℄ (5.27)Proof. By theorem 22 the in�nite dimensional os
illatory integral (5.21) 
anbe 
omputed by means of the Parseval-type formula:fZ He i2~ hx;(I�B)xie�i�~A(x;x;x;x)f(x)dx == ZH E [ein(k)(!)ei�=4 e 12~ h!;B!iei�~ �V (!)℄�f(dk) (5.28)By Fubini theorem, whi
h 
an be applied under the assumption (5.20), theintegral on the r.h.s. of (5.28) is equal toE [ei�~ �V (!)e 12~ h!;B!i ZH ein(k)(!)ei�=4�f(dk)℄ == E [ei�~ �V (!)e 12~ h!;B!if ei�=4(!)℄ = E [ei�~ �V (!)e 12~ h!;B!if(ei�=4!)℄The integral on the r.h.s. is absolutely 
onvergent as jei�~ �V j = 1 and e 12~ h � ;B � if ei�=4 2L1(B; �) as Im(ei�=4) = 1=p2.Remark 17. In the simpler 
ase � = 0, under the above assumptions on thefun
tion f and the operator B, the in�nite dimensional os
illatory integral(given by (5.27) with V = 0) 
an also be expli
itly 
omputed by means of theabsolutely 
onvergent integrals:fZ He i2~ hx;(I�B)xif(x)dx = 1pdet(I � B) ZH e� i~2 hk;(I�B)�1k�f(dk) (5.29)In fa
t, by means of di�erent methods (see se
tion 2), equation (5.29) 
an beproved even without the assumption on the positivity of the operator (I � B)(it suÆ
es that (I �B) be invertible).Remark 18. So far we have proved, under suitable assumptions on the fun
-tion f : H ! C and the operator B, that, if � � 0, the in�nite dimensionalgeneralized Fresnel integral (5.21)IF (�) �fZ He i2~ hx;(I�B)xie�i�~A(x;x;x;x)f(x)dx87



on the Hilbert spa
e H is exa
tly equal to a Gaussian integral on B:IG(�) � ZH E [ein(k)(!)ei�=4 e 12~ h!;B!iei�~ �V (!)℄�f(dk)(theorem 22), and toIA(�) � E [ei�~ �V (!)e 12~ h!;B!if(ei�=4!)℄(theorem 23). One 
an easily verify that IG and IA are analyti
 fun
tions ofthe 
omplex variable � in the region of the 
omplex � plane fIm(�) > 0g,while they are 
ontinuous in fIm(�) = 0g and 
oin
ide with IF in fIm(�) =0; Re(�) � 0g.5.3 Appli
ation to the S
hr�odinger equationLet us 
onsider the S
hr�odinger equationi~ ddt = H (5.30)on L2(Rd) for an anharmoni
 os
illator Hamiltonian H of the following form:H = �~22 � + 12x
2x + �C(x; x; x; x); (5.31)where C is a 
ompletely symmetri
 positive fourth order 
ovariant tensor onRd , 
 is a positive symmetri
 d�d matrix, � � 0 a positive 
onstant. It is wellknown, see [91℄, that H is essentially self-adjoint on C10 (Rd). By means of theresults of the previous se
tion we are going to give mathemati
al meaning tothe \Feynman path integral" representation of the solution of equation (5.30): (t; x) = \ Z
(0)=x e i~ R t0 _
(s)22 ds� i~ R t0 [ 12
(s)
2
(s)+�C(
(s);
(s);
(s);
(s))℄ds 0(
(t))D
";as the analyti
 
ontinuation (in the parameter �) of an in�nite dimensionalgeneralized os
illatory integral on a suitable Hilbert spa
e.Let us 
onsider the Cameron-Martin spa
e1 Ht, that is the Hilbert spa
e ofabsolutely 
ontinuous paths 
 : [0; t℄ ! Rd , with 
(0) = 0 and inner produ
th
1; 
2i = R t0 _
1(s) _
2(s)ds. The 
ylindri
al Gaussian measure on Ht with 
o-varian
e operator the identity extends to a �-additive measure on the Wiener1With an abuse of notation we 
all here Cameron-Martin spa
e the spa
e of paths 
belonging to the Sobolev spa
e H1;2(t) ([0; t℄;Rd ) su
h that 
(0) = 0, while in the �rst three
hapters with the same name we denoted the spa
e of paths 
 2 H1;2(t) ([0; t℄;Rd) su
h that
(t) = 0. 88



spa
e Ct = f! 2 C([0; t℄;Rd) j 
(0) = 0g: the Wiener measure W . (i; Ht; Ct)is an abstra
t Wiener spa
e.Let us 
onsider moreover the Hilbert spa
e H = Rd � Ht, and the Bana
hspa
e B = Rd � Ct endowed with the produ
t measure N(dx) �W (d!), Nbeing the Gaussian measure on Rd with 
ovarian
e equal to the d� d identitymatrix. (i;H;B) is an abstra
t Wiener spa
e.Let us 
onsider two ve
tors �;  0 2 L2(Rd) \ F(Rd). We are going to de�nethe following in�nite dimensional os
illatory integral on H:\ ZRd�Ht ��(x)e i2~ R t0 _
(s)2dse� i2~ R t0 [(
(s)+x)
2(
(s)+x)dse i�~ C(
(s)+x;
(s)+x;
(s)+x;
(s)+x)ds 0(
(t) + x)dxD
" (5.32)Let us 
onsider the operator B : H ! H given by:(x; 
) �! (y; �) = B(x; 
);y = t
2x+
2 Z t0 
(s)ds; �(s) = 
2x(ts�s22 )�Z s0 Z ut 
2
(r)drdu (5.33)and the fourth order tensor operator A given by:A((x1; 
1); (x2; 
2); (x3; 
3); (x4; 
4)) == Z t0 C(
1(s) + x1; 
2(s) + x2; 
3(s) + x3; 
4(s) + x4)ds: (5.34)Let us 
onsider moreover the fun
tion f : H ! C given byf(x; 
) = (2�i~)d=2e� i2~ jxj2 ��(x) 0(
(t) + x) (5.35)With these notations expression (5.32) 
an be written in the following form:fZHe i2~ (jxj2+j
j2)e� i2~ h(x;
);B(x;
)ie� i�~ A((x;
);(x;
);(x;
);(x;
))f(x; 
)dxd
 (5.36)Under suitable assumptions on 
; � the theory of the latter se
tion applies,as we shall see below. In the following we will denote by 
i, i = 1; : : : ; d, theeigenvalues of the matrix 
.Theorem 24. Let us assume that � � 0, and that for ea
h i = 1; : : : ; d thefollowing inequalities are satis�ed
it < �2 ; 1� 
i tan(
it) > 0: (5.37)Let �;  0 2 L2(Rd)\F(Rd). Let �0 be the 
omplex bounded variation measureon Rd su
h that �̂0 =  0. Let �� be the 
omplex bounded variation measure89



on Rd su
h that �̂�(x) = (2�i~)d=2e� i2~ jxj2 ��(x). Assume in addition that themeasures �0; �� satisfy the following assumption:ZRd ZRd e~4 x
�1 tan(
t)xe(y+
os(
t)�1x)(1�
 tan(
t))�1(y+
os(
t)�1x)j�0j(dx)j��j(dy) <1 (5.38)Then the fun
tion f : H ! C , given by (5.35) is the Fourier transform of abounded variation measure �f on H satisfyingZH e~4 h(y;�);(I�B)�1(y;�)ij�f j(dyd�) <1 (5.39)(B being given by (5.33)) and the in�nite dimensional os
illatory integral(5.36) is well de�ned and is given by:ZRd�Ht �ZRd�Ct eiei�=4(x�y+p~n(
)(!))e 12~ R t0 (p~!(s)+x)
2(p~!(s)+x)dsei�~ R t0 C(p~!(s)+x;p~!(s)+x;p~!(s)+x;p~!(s)+x)dsW (d!) e� jxj22~(2�~)d=2dx��f(dyd
):(5.40)This is also equal to(i)d=2 ZRd�Ct ei�~ R t0 C(p~!(s)+x;p~!(s)+x;p~!(s)+x;p~!(s)+x)dse 12~ R t0 (p~!(s)+x)
2(p~!(s)+x)ds ��(ei�=4x) 0(ei�=4p~!(t) + ei�=4x)W (d!)dx:(5.41)Proof. By the assumptions on �, one 
an easily verify that the fun
tion(2�i~)d=2e� i2~ jxj2 ��(x) is the Fourier transform of the bounded variation mea-sure on Rd�H, whi
h is the produ
t measure ��(dx)�Æ0(d
), where Æ0(d
) isthe measure on Ht 
on
entrated on the ve
tor 0 2 Ht. Analogously the fun
-tion (x; 
) 7!  0(
(t) + x) is the Fourier transform of the bounded variationmeasure � on Rd �H given by :ZRd�Ht f(x; 
)� (dxd
) = ZRd�Ht f(x; x
)ÆGt(d
)�0(dx);where Gt is the ve
tor in H given by Gt(s) = s. As F(Rd � H) is a Bana
halgebra, the produ
t f(x; 
) := (2�i~)d=2e� i2~ jxj2 ��(x) (
(t) + x) still belongsto F(Rd � H), in fa
t it is the Fourier transform of the 
onvolution �f �(�� � Æ0) � � . A dire
t 
omputation shows that �f satis�es assumptions90



(5.20) of theorem 22, that is (5.39), if and only if �0 and �� satisfy (5.38).By simple 
al
ulations one 
an verify that the operator B given by (5.33)is bounded symmetri
 and tra
e 
lass. Moreover if assumptions (5.37) aresatis�ed, I � B is positive de�nite (see appendix B for more details).A dire
t 
omputation shows that the fun
tion V : H ! R,V (x; 
) = A((x; 
); (x; 
); (x; 
); (x; 
))is 
ontinuous in the norm of the Bana
h spa
e B and extends to a fun
tion �Von it.By applying theorem 22 and theorem 23 the 
on
lusion follows.Remark 19. The 
lass of states �;  0 2 L2(Rd)\F(Rd) satisfying assumption(5.38) is suÆ
iently ri
h. Indeed both � and  0 
an be 
hosen in two densesubsets of the Hilbert spa
e L2(Rd). More pre
isely one 
an take for instan
e 0 2 S(Rd) of the form  0(x) = P (x)e��x
�1x2~ , and � 2 S(Rd) of the form�(x) = Q(x)e�x(�
2~ +i
)x, with �; �; 
 > 0 and with P;Q arbitrary polynomials.Moreover � and � have to satisfy the following 
onditions, for all i = 1; : : : ; d:8>><>>: 1�
i � 12(1�
i tan(
it) > 01� � 12� tan(
it)+
i1�
i tan(
it)� > 0)�1�
i tan(
it)�
i � (tan(
it)+
i)2
i ��1�
i tan(
it)�!i � 12� > � 12 
os(
it)�2 (5.42)Let us denote respe
tively by D1 and D2 the set of ve
tors � and  0 of theabove form. It is easy to see that both D1 and D2 are dense in L2(Rd).The os
illatory integral (5.36) 
an heuristi
ally be written in the followingform: (�;  (t)) = \ ZRd ��(x) Zf
j
(t)=xg e i~St(
) 0(
(0))D
dx"and interpreted as a rigorous realization of the Feynman path integral rep-resenting the inner produ
t between the ve
tor � 2 L2(Rd) and the solutionof the S
hr�odinger equation (5.30) with initial datum  0. However the in�-nite dimensional os
illatory integral (5.36) is well de�ned only if � � 0. Bythe 
onsiderations in remark 18 the absolutely 
onvergent integrals (5.40) and(5.41) are analyti
 fun
tions of the 
omplex variable � if Im(�) > 0, 
on-tinuous in Im(�) = 0 and 
oin
iding with (5.36) if � � 0. We shall provethat when � � 0 the Gaussian integrals (5.40) and (5.41) represent the innerprodu
t h�;  (t)i, where  (t) is the solution of the S
hr�odinger equation. Wewill prove moreover the Borel summability of the formal Dyson expansion forh�;  (t)i. 91



Lemma 8. Let � = 0,  0; � 2 S(Rd). Let �0, resp ��, be su
h that �̂0 =  0,resp. �̂�(x) = (2�i~)d=2e� i2~ jxj2 ��(x). Assume moreover that �0; �� satisfy
ondition (5.38). Then the s
alar produ
t between � and the solution  t ofthe S
hr�odinger equation with initial datum  0 is given by:h�;  ti = ZRd�Ht �ZRd�Ct eiei�=4p~(x�y+n(
)(!))e 12 h(x;!);B(x;!)iW (d!) e� jxj22(2�)d=2dx��f(dyd
) (5.43)where �f is the 
omplex bounded variation measure on Rd �Ht whose Fouriertransform is the fun
tion f : H ! C , given by f(x; 
) := (2�i~)d=2e� i2~ jxj2 ��(x) (
(t)+x) and B is the 
ontinuous extension on Rd � Ct of the operator (5.33).Proof. In order to avoid the use of a 
ompli
ated notation we assume d = 1.The proof holds in a 
ompletely similar way in the 
ase d > 1. As  0 2S(Rd), the solution of the S
hr�odinger equation with � = 0, i.e. with the freeHamiltonian, and initial datum  0 is given by (t; x) = (2�i~)�1=2r 
sin
t ZR e i
2~ sin
t (
os
t(x2+y2)�2xy) 0(y)dy; (5.44)t > 0; x 2 R, so thath�;  ti = (2�i~)�1=2r 
sin
t ZR ��(x) ZR e i
2~ sin
t (
os 
t(x2+y2)�2xy) 0(y)dydx(5.45)Let (2�i~)1=2e�ijxj22~ ��(x) = RR eik�x��(dk) and  0(y) = RR eil�y�0(dl), so that(5.45) be
omes:1p
os 
t ZR e�x2=2p2� ZR ZR eiei�=4p~xke� i~ tan
tl22
 e
 tan
tx22 e ip~ei�=4xl
os 
t ��(dk)�0(dl)dx:A dire
t 
omputation (see appendix B) shows that the latter expression isexa
tly equal to the integral (5.43), that is toZR�Ht � ZRd�Ct eiei�=4p~(x�k+x�l+n(Glt)(!))e 12 h(x;!);B(x;!)iW (d!) e� jxj22(2�)d=2dx��f(dyd
) (5.46)(where Glt(s) = ls and n has been de�ned in se
tion 5.2) and the 
on
lusionfollows. 92



Remark 20. By Fubini's theorem expression (5.43) is also equal to(i)d=2 ZRd�Ct e 12~ R t0 (p~!(s)+x)
2(p~!(s)+x)ds��(ei�=4x) 0(ei�=4p~!(t) + ei�=4x)W (d!)dx (5.47)Lemma 9. Let � = 0 and  0 2 S(Rd), su
h that for ea
h x 2 RdZRd ekxe~4 hk;
�1 tan
tkij ~ 0(k)jdk <1: (5.48)Then the solution  t of the S
hr�odinger equation (5.30) is an analyti
 fun
tionin the variable z 2 C d and its value in z = ei�=4x, x 2 Rd is given by: t(ei�=4x) = ZCt  0(ei�=4x+ ei�=4p~!(t))e 12~ h(x;p~!);B(x;p~!)iW (d!)Proof. In order to avoid the use of a 
ompli
ated notation we assume d = 1.The proof holds in a 
ompletely similar way in the 
ase d > 1.Sin
e  0 2 S(R), � = 0, one has (5.44). By Parseval's equality this is alsoequal to  t(x) =r 1
os 
te� i
 tan(
t)x22~ ZR e� i~ tan(
t)k22
 e ikx
os 
t ~ 0(k)dkThe analyti
ity of  t(z), z 2 C , follows by Morera and Fubini theorems.Moreover  t(ei�=4x) is given by t(ei�=4x) =r 1
os 
te
 tan(
t)x22~ ZR e� i~ tan(
t)k22
 e iei�=4kx
os 
t ~ 0(k)dk (5.49)On the other hand, by Fubini's theorem (whi
h holds thanks to the assumption(5.48)), one has:ZCt  0(ei�=4x+ ei�=4p~!(t))e
22~ R t0 (p~!(s)+x)2dsW (d!) == ZR ~ 0(k)eikxei�=4e
2tx22~ ZCt e
22 R t0 !2(s)dse
2xp~ R t0 !(s)dseikp~ei�=4!(t)W (d!)dk(5.50)By a dire
t 
omputation (see appendix B) the latter expression is equal to(5.49) and the 
on
lusion follows. 93



Theorem 25. Let �;  0 2 S(Rd) satisfy assumption (5.38). Then the powerseries expansions (in powers of �) of the expression (5.41) 
oin
ides withthe Dyson expansion for the s
alar produ
t between � and the solution of theS
hr�odinger equation (5.30).Proof. In order to avoid a 
ompli
ated notation we assume d = 1, but theproof is valid also in the 
ase d > 1.First of all one 
an easily verify that expression (5.41) is an analyti
 fun
tionof the variable � 2 C in the upper halfplane Im(�) > 0 and 
ontinuous in� 2 R. By expanding it in power series of � around � = 0 we have for anyN 2 N , that (5.41) is equal to:(i)d=2 N�1Xn=0 1n!� i�~ �n Z t0 ds1 � � �Z t0 dsn ZR�Ct nYi=1(p~!(si) + x)4e
22~ R t0 (p~!(s)+x)2ds ��(ei�=4x) 0(ei�=4p~!(t) + ei�=4x)W (d!)dx+RN ; (5.51)with RN a remainder term. Be
ause of the symmetry of the integrand, (5.51)is equal to(i)d=2 N�1Xn=0 � i�~ �nZ � � �Z �nds1 � � �dsn ZR�Ct nYi=1(p~!(si) + x)4e
22~ R t0 (p~!(s)+x)2ds ��(ei�=4x) 0(ei�=4p~!(t) + ei�=4x)W (d!)dx+RN (5.52)where �n = f(s1; : : : ; sn) 2 [0; t℄n : 0 � s1 � � � � � sn � tg. The integralover R � Ct 
an be evaluated by partitioning the interval [0; t℄ into n + 1subintervals [s0 � 0; s1℄, [s1; s2℄, : : :, [sn�1; sn℄, [sn; sn+1 � t℄. Let us denote by!i : [si; si+1℄ ! R the Wiener pro
ess on the interval [si; si+1℄, !i(si) = 0, byCi the spa
e of 
ontinuous paths on [si; si+1℄ and by E [si ;si+1℄ the expe
tationwith respe
t to the Wiener measure on it. With these notations expression(5.52) be
omes(i)d=2 N�1Xn=0 ��i�~ �nZ � � �Z �nds1 � � �dsn ZR dx��(ei�=4x)E [0;s1 ℄[(p~ei�=4!0(s1)++ xei�=4)4e
22~ R s10 (p~!0(s)+x)2dsE [s1 ;s2℄[(p~ei�=4!1(s2) +p~ei�=4!0(s1) + xei�=4)4e
22~ R s2s1 (p~!1(s)++p~!0(s1)+x)2ds � � � E [sn ;t℄[e
22~ R tsn (p~!n(s)+p~Pn�1i=0 !i(si+1)+x)2ds 0(ei�=4p~ nXi=0 !i(si+1) + ei�=4x)℄ : : :℄℄ +RN94



By lemma 8 and lemma 9 the latter expression is equal toN�1Xn=0 ��i�~ �nZ � � �Z �nds1 � � �dsnh�; e�i s1~ H0V e�i (s2�s1)~ H0V � � �� � � e�i (sn�sn�1)~ H0V e�i (t�sn)~ H0 0i+RNand, by the 
hange of variables si ! t� sn+1�i, toN�1Xn=0 ��i�~ �nZ � � �Z �nds1 � � �dsnh�; e�i (t�sn)~ H0V e�i (sn�sn�1)~ H0V � � �� � � e�i (s2�s1)~ H0V e�i s1~ H0 0i+RNwhere H0 � �~22 �+ x
2x2 is the harmoni
 os
illator Hamiltonian and V (x) �x4. The latter expression is Dyson's expansion for the s
alar produ
t between� and the solution  t of the S
hr�odinger equation (5.30) with HamiltonianH = H0 + �V and the 
on
lusion follows.Theorem 26. Let � � 0, and let �;  0 2 S(Rd) satisfy assumption (5.38).Then the s
alar produ
t between � and the solution of the S
hr�odinger equation(5.30) with initial datum  0 is given by the absolutely 
onvergent integrals(5.40) and (5.41).Proof. Let us 
onsider the anharmoni
 os
illator Hamiltonian H given by(5.31). H is a positive selfadjoint operator and generates an analyti
 semigroupT z(t) = e� ztH~ , t � 0, z 2 C , Re(z) � 0 (see for instan
e [91℄). Given t � 0and �;  0 2 L2(Rd), the fun
tion F : �D ! C , where D = fz 2 C ; Re(z) > 0gand �D is the 
losure of D, F (z) � h�; T z(t) 0i (5.53)is analyti
 in D and 
ontinuous in �D. If z = i, F (z) is the s
alar produ
tbetween � and the solution  (t) of the S
hr�odinger equation (5.30) with initialdatum  0, while if z 2 R+ , F (z) is the s
alar produ
t between � and thesolution of the heat equation ��t = �z~H (5.54)In this 
ase F (z) 
an be 
omputed by means of the Feynman-Ka
 formula (see95



for instan
e [92℄):F (z) = ZRd ��(x) ZCt e� z2~ R t0 (p~z!(s)+x)
2(p~z!(s)+x)dse� z�~ R t0 C(p~z!(s)+x;p~z!(s)+x;p~z!(s)+x;p~z!(s)+x)ds 0(p~z!(t) + x)W (d!)dx= zd=2 ZRd ��(pzx) ZCt e� z22~ R t0 (p~!(s)+x)
2(p~!(s)+x)dse� z3�~ R t0 C(p~!(s)+x;p~!(s)+x;p~!(s)+x;p~!(s)+x)ds 0(p~z!(t) +pzx)W (d!)dx(5.55)By the assumptions on the ve
tors �;  0, the r.h.s. of (5.55) makes sense forz 2 �D. Moreover, by the analyti
ity of the semigroup T z(t), it represents forz = i the s
alar produ
t h�; e� it~H 0i, that is:id=2 ZRd ��(ei�=4x) ZCt e 12~ R t0 (p~!(s)+x)
2(p~!(s)+x)dse i�~ R t0 C(p~!(s)+x;p~!(s)+x;p~!(s)+x;p~!(s)+x)ds 0(p~ei�=4!(t) + ei�=4x)W (d!)dx(5.56)This 
oin
ides with expression (5.41) and the 
on
lusion follows.Theorem 27. Let � � 0, and let �;  0 2 S(Rd) satisfy assumptionZRd ZRd e(y+
os[
(t+tÆ)℄�1x)(1�(1+Æ)
 tan[
(t+tÆ)℄)�1(y+
os[
(t+tÆ)℄�1x)e ~4(1+Æ)x
�1 tan[
(t+tÆ)℄xj�0j(dx)j��j(dy) <1 (5.57)for some Æ > 0. Then the Dyson expansion for the s
alar produ
t between �and the solution of the S
hr�odinger equation (5.30) with initial datum  0 isBorel summable.Proof. By theorems 25 and 26 it is suÆ
ient to show the Borel summabilityof the power series expansions (in powers of �) of expression (5.41).In order to avoid a 
ompli
ated notation we assume d = 1, but the proof isvalid also in the 
ase d � 1.As already remarked before lemma 3, the expression (5.41) is an analyti
fun
tion of the variable � 2 C in the upper halfplane Im(�) > 0 and 
ontinuousin � 2 R. Moreover the rest RN of its asymptoti
 expansion (5.51) is equal to:RN = ZRd�Ht �ZR�Ct 1Xn=N 1n!� i�~ �n Z t0 ds1 � � �Z t0 dsn nYi=1(p~!(si) + x)4e
22~ R t0 (p~!(s)+x)2dseiei�=4(x�y+p~n(
)(!))W (d!) e� jxj22~(2�~)d=2dx��f(dyd
)96



RN satis�es the following uniform estimate in Im(�) � 0:jRN j = j ZRd�Ht �ZR�Ct 1N � 1!� i�~ �N Z t0 ds1 � � �Z t0 dsN NYi=1(p~!(si) + x)4Z 10 du(1� u)N�1eiu�~ R t0 (p~!(s)+x)4dse
22~ R t0 (p~!(s)+x)2dseiei�=4(x�y+p~n(
)(!))W (d!) e� jxj22~(2�~)d=2dx��f(dyd
)j� j�jN~N 1N ! Z t0 ds1 � � �Z t0 dsN ZRd�Ht ZR�Ct e
22 R t0 (!(s)+x)2dsNYi=1(!(si) + x)4e�p22 p~(x�y+n(
)(!))W (d!) e� jxj22(2�)d=2dxj�f j(dyd
) (5.58)By denoting Gi the ve
tor in C�t � Ht equal to Gi(s) = 1[0;si℄s, (jGijHt = si),the Gaussian integralZR�Ct e
22 R t0 (!(s)+x)2ds NYi=1(!(si) + x)4e�p22 p~(x�y+n(
)(!))W (d!) e� jxj22(2�)d=2dx == ZR�Ct e 12 h(x;!);B(x;!)i NYi=1(n(Gi)(!) + x)4e�p22 p~(x�y+n(
)(!))W (d!) e� jxj22(2�)d=2dxis equal toH4N�ip~2 (I �B)�1=2(G1; 1); : : : ; ip~2 (I �B)�1=2(GN ; 1)���(r~2
;r~2y)�e~4 h(
;y);(I�B)�1(
;y)ipdet(I � B) (5.59)where Dx1 : : :Dxne�x2 = (�1)nHn(x1; : : : ; xnjx)e�x2By the assumption (5.57) on  0; � involving a Æ > 0, we haveZHt�R e(1+Æ)~4 h(
;y);(I�B)�1(
;y)ij�f j(d
dy) <1By using this and the estimate on Hermite polynomials Hn derived in [88℄ (formula (2.9) ) we see that expression (5.59) is bounded bya
N NYi=1(si + 1)4�1 + ÆÆ �2N2N !;97



where a; 
 > 0 are suitable 
onstants. By inserting su
h an estimate into (5.58)and by using the identity 2N ! = 22NN !(N � 1=2)!=p�, we have:jRN j � ACN j�jNN !This and the analyti
ity of (5.41) in Im(�) > 0, by Nevanlinna theorem [84℄,assure the Borel summability of asymptoti
 expansion (5.51).5.4 Con
luding remarksThere are relations between our approa
h in the de�nition of the Feynmanintegral and those in [40, 72, 55, 83℄. Indeed formula (5.41) often appears inthe literature for a more restri
ted 
lass of potentials and initial 
onditions.We would like however to underline that here we a
hieved to prove (5.41)and related formulas for potentials of polynomial growth. This involves ourextension of the de�nition of in�nite dimensional os
illatory integrals (in thespirit of [12, 57, 4℄) to a 
lass of phase fun
tions mu
h larger than the usual\quadrati
 + Fourier transform of measure". In [40, 72, 55, 83℄ the authorsde�ne the Feynman fun
tional by means of a Gaussian integral depending ona parameter (whi
h in some 
ases 
an be identi�ed with the mass m), provethe analyti
ity of su
h a fun
tional in a suitable region of the 
omplex planeand show that when it approa
hes the imaginary axis the 
orresponding fun
-tional gives a representation of the solution of the S
hr�odinger equation for arestri
ted 
lass of potentials. In work of the eu
lidean approa
h to quantum�eld theory, the representation of solution of the perturbed heat equation viaa Feynman-Ka
 formula and integrals with respe
t to Gaussian (Wiener resp.Orstein-Uhlenbe
k) measures are used to provide via an \analyti
 
ontinu-ation in time" solutions of the S
hr�odinger equation. In [32℄ this approa
hprovides a semi
lassi
al expansion for the S
hr�odinger equation. In our 
ase,under suitable assumptions on the initial datum  0, we prove that the in�nitedimensional os
illatory integral we de�ne 
oin
ides with a Gaussian integral.In the 
ase of the quarti
 potential V = �x4 we prove that the Gaussianintegral representing the solution of the S
hr�odinger equation is an analyti
fun
tion of the 
omplex variable � in the upper halfplane whi
h 
oin
ides for� � 0 with a well de�ned in�nite dimensional os
illatory integral. We planto use our representation for dis
ussing rigorously asymptoti
 expansions infra
tional powers of ~ (semi
lassi
al expansions).
98



Appendix AThe Fourier transform of e i~P (x)
A.1 Proof of lemma 5Let us denote D the region of the 
omplex plane:D � C ; D � fz 2 C j Im(z) < 0gLet us assume ~ is a 
omplex variable belonging to the region �D nf0g. We aregoing to 
ompute the Fourier transform of e i~P (x).Let us introdu
e the polar 
oordinates in RN :ZRN eik�xe i~P (x)dx == ZSN�1 �Z +10 eijkjrf(�1;:::;�N�1)e i~P(�1;:::;�N�1)(r)rN�1dr�d
N�1 (A.1)where instead of N Cartesian 
oordinates we use N � 1 angular 
oordinates(�1; : : : ; �N�1) and the variable r = jxj. SN�1 denotes the (N�1)-dimensionalspheri
al surfa
e, d
N�1 is the measure on it, P(�1;:::;�N�1)(r) is a 2Mth orderpolynomial in the variable r with 
oeÆ
ients depending on the N � 1 angularvariables (�1; : : : ; �N�1), namely:P (x) = r2MA2M� xjxj ; : : : ; xjxj�+ r2M�1A2M�1� xjxj ; : : : ; xjxj�+ : : :++ : : :+ rA1� xjxj� + A0 == a2M (�1; : : : ; �N�1)r2M + a2M�1(�1; : : : ; �N�1)r2M�1++ : : :+ a1(�1; : : : ; �N�1)r + a0= P(�1;:::;�N�1)(r) (A.2)99



where a2M(�1; : : : ; �N�1) > 0 for all (�1; : : : ; �N�1) 2 SN�1.Let us fo
us on the integralZ +10 eijkjrf(�1;:::;�N�1)e i~P(�1;:::;�N�1)(r)rN�1dr; (A.3)whi
h 
an be interpreted as the Fourier transform of the distribution on thereal line F (r) = �(r)rN�1e i~P(�1;:::;�N�1)(r);with �(r) = 1 for r � 0 and �(r) = 0 for r < 0. Let us introdu
ethe notation k0 � kf(�1; : : : ; �N�1), ak � ak(�1; : : : ; �N�1), k = 0; : : : ; 2M ,P 0(r) =P2Mk=0 akrk and ~ 2 C , ~ = j~jei�, with �� � � � 0.Let us 
onsider the 
omplex plane and set z = �ei�. If Im(~) < 0 the integral(A.3) is absolutely 
onvergent, while if ~ 2 R n f0g it needs a regularization.If ~ 2 R, ~ > 0 we haveZ +10 eik0re i~P 0(r)rN�1dr = lim�#0 Zz=�ei� eik0ze i~P 0(z)zN�1dz (A.4)while if ~ < 0Z +10 eik0re i~P 0(r)rN�1dr = lim�#0 Zz=�e�i� eik0ze i~P 0(z)zN�1dz (A.5)We deal �rst of all with the 
ase ~ 2 R, ~ > 0 ( the 
ase ~ < 0 
an be handledin a 
ompletely similar way). Let
1(R) = fz 2 C j 0 � � � R; � = �g
2(R) = fz 2 C j � = R; � � � � �=4Mg
3(R) = fz 2 C j 0 � � � R; � = �=4MgFrom the analyti
ity of the integrand and the Cau
hy theorem we haveZ
1(R)[
2(R)[
3(R) eik0ze i~P 0(z)zN�1dz = 0:In parti
ular:��� Z
2(R) eik0ze i~P 0(z)zN�1dz��� = RN ��� Z �=4M� eik0Rei�e i~P 0(Rei�)eiN�d����� RN Z �=4M� e�k0R sin(�)e� 1~ P2Mk=1 akRk sin(k�)d�� RN Z �=4M� e�k00R�e�a2M 4M~� R2M �e�P2M�1k=1 a0kRk�d� (A.6)100



where k00; a0k k = 1; : : : ; 2M � 1 are suitable 
onstants. We have used the fa
tthat if � 2 [0; �=2℄ then 2�� � sin(�) � �. The latter integral 
an be expli
itly
omputed and gives:RN�e��(a2M 4M~� R2M+k00R+P2M�1k=1 a0kRk) � e� �4M (a2M 4M~� R2M+k00R+P2M�1k=1 a0kRk)a2M 4M~� R2M + k00R +P2M�1k=1 a0kRk �;whi
h 
onverges to 0 as R!1. We getZz=�ei� eik0ze i~P 0(z)zN�1dz = Zz=�ei(�=4M) eik0ze i~P 0(z)zN�1dzBy taking the limit as � # 0 of both sides one gets:Z +10 eik0re i~P 0(r)rN�1dr = eiN�=4M Z +10 eik�ei�=4M e i~P 0(rei�=4M )�N�1d�By substituting into (A.12) we get the �nal result:~F (k) = ZRN eik�xe i~P (x)dx = eiN�=4M ZRN eiei�=4Mk�xe i~P (ei�=4Mx)dx: (A.7)In the 
ase ~ < 0 an analogous reasoning gives:~F (k) = ZRN eik�xe i~P (x)dx = e�iN�=4M ZRN eie�i�=4Mk�xe i~P (e�i�=4Mx)dx: (A.8)The analyti
ity of ~F (k) is trivial in the 
ase Im(~) < 0, and follows fromequations (A.7) and (A.8) when ~ 2 R n f0gIf Im(~) < 0 a representation of type (A.7) still holds. By setting ~ = j~jei�,with �� � � � 0 and by deforming the integration 
ontour in the 
omplex zplane, one gets~F (k) = ZRN eik�xe i~P (x)dx == eiN(�=4M+�=2M) ZRN eiei(�=4M+�=2M)k�xe i~P (ei(�=4M+�=2M)x)dx (A.9)A.2 The boundedness of ~F (k) as jkj ! 1.Let us 
onsider the distribution e i~P (x) and its Fourier transform ~F (k) =RRN eikxe i~P (x)dx. Let us fo
us on the 
ase ~ 2 R n f0g (in the 
ase Im(~) < 0j ~F j is trivially bounded by RRN je i~P (x)jdx = RRN e Im(~)j~j2 P (x)dx < +1). Let usassume for notation simpli
ity that ~ = 1, the general 
ase 
an be handled in a101




ompletely similar way. In order to study RRN eikxeiP (x)dx one has to introdu
ea suitable regularization. Chosen  2 S(RN ), su
h that  (0) = 1 we haveeiP (x) (�x)! eiP (x); in S 0(RN ) as �! 0;~F (k) = lim�!0 ZRN eikxeiP (x) (�x)dx:Let us 
onsider �rst of all the 
ase N = 1 and P (x) = x2M=2m. The uniquereal stationary point of the phase fun
tion �(x) = kx+x2M is 
k = �k 12M�1 Let�1 be a positive C1 fun
tion su
h that �1(x) = 1 if jx� 
kj � 1=2 , �1(x) = 0if jx� 
kj � 1 and 0 � �1(x) � 1 if 1=2 � jx� 
kj � 1. Let �0 � 1��1. Then~F (k) = I1(k) + I0(k), where I0(k) = lim�!0 R eikxeix2M=2m�0(x) (�x)dx andI1(k) = R eikxeix2M=2m�1(x)dx. For the study of the boundedness of j ~F (k)j asjkj ! 1 it is enough to look at I0, sin
e one has, by the 
hoi
e of �1, thatjI1j � 2. By repeating the same reasoning used in the proof of theorem 16 I0
an be 
omputed by means of Stokes formula:lim�!0 Z eikxeix2M=2m�0(x) (�x)dx = i lim�!0 � Z eikxeix2M2m �0(x) 0(�x)k + x2M�1 dx++ i lim�!0 Z eikxeix2M=2m ddx� �0(x)k + x2M�1� (�x)dx (A.10)Both integrals are absolutely 
onvergent and, by dominated 
onvergen
e, we
an take the limit �! 0, so thatI0(k) = i Z eikxeix2M=2m ddx� �0(x)k + x2M�1�dx == i Z eikxeix2M=2m� �00(x)k + x2M�1�dx�i Z eikxeix2M=2m�(2M � 1)�0(x)x2M�2(k + x2M�1)2 �dxThus:jI0(k)j � 2 Z 
k�1=2
k�1 ��� 1k + x2M�1 ���dx + 2 Z 
k+1
k+1=2 ��� 1k + x2M�1 ���dx++ (2M � 1) Z 
k�1=2�1 ��� x2M�2(k + x2M�1)2 ���dx+ (2M � 1) Z +1
k+1=2 ��� x2M�2(k + x2M�1)2 ���dxBy a 
hange of variables it is possible to see that both integrals remain boundedas jkj ! 1. Let us 
onsider for instan
e the �rst one:Z 
k�1=2
k�1 ��� 1k + x2M�1 ���dx = k 12M�1jkj Z �1�1=2k 12M�1�1�1=k 12M�1 ��� 11 + y2M�1 ���dy102



The latter integral diverges logarithmi
ally as jkj ! 1, so that the r.h.s. goesto 0 as jkj ! 1. Let us 
onsider the integral R 
k�1=2�1 ��� x2M�2(k+x2M�1)2 ���dx. By a
hange of variables it is equal toZ 
k�1=2�1 ��� x2M�2(k + x2M�1)2 ���dx =1jkj Z �1�1=2k 12M�1�1 ��� y2M�2(1 + y2M�1)2 ���dyThe latter integral diverges as O(k) as jkj ! 1, so that the r.h.s. remainsbounded as jkj ! 1. By su
h 
onsiderations we 
an dedu
e that j ~F (k)j isbounded as jkj ! 1.A similar reasoning holds also in the 
ase N = 1 and P (x) = P2Mi=1 aix is ageneri
 polynomial. Indeed for jkj suÆ
iently large the derivative of the phasefun
tion �0(x) = k + P 0(x) has only one simple real root, denoted by 
k. One
an repeat the same reasoning valid for the 
ase P (x) = x2M=2M and provethat for jkj ! 1 one has j R eikx+iP (x)dxj � C ( where C is a fun
tion of the
oeÆ
ients ai of P at most with polynomial growth).The general 
ase RN 
an also be essentially redu
ed to the one-dimensional
ase. Indeed let use 
onsider a generi
 ve
tor k 2 RN , k = jkju1, and studythe behavior of ~F (k) as jkj ! 1. By 
hoosing as orthonormal base u1; : : : ; uNof RN , where u1 = k=jkj, we have~F (k) = lim�!0 ZRN�1 eiQ(x2;:::;xN ) (�x2) � � � (�xN )�ZR eijkjx1eiPx2;:::;xN (x1) (�x1)dx1�dx2 : : : dxN (A.11)where  2 S(R),  (0) = 1; xi = x � ui, Px2;:::;xN (x1) is the polynomialin the variable x1 with 
oeÆ
ients depending on powers of the remainingN � 1 variables x2; : : : ; xN , obtained by 
onsidering in the initial polynomialP (x1; x2; : : : ; xN) all the terms 
ontaining some power of x1. The polynomialQ in the N�1 variables x2; : : : ; xN is given by P (x1; x2; : : : ; xN)�Px2;:::;xN (x1).Let us set I�(k; x2; : : : ; xN) � RR eijkjx1eiPx2;:::;xN (x1) (�x1)dx1. By the previous
onsiderations we know that, for ea
h � � 0, jI�(k; x2; : : : ; xN)j is bounded bya fun
tion of G(x2; : : : ; xN ) of polynomial growth. By the same reasonings asin the proof of theorem 16 we 
an dedu
e that the os
illatory integral (A.11)is a well de�ned bounded fun
tion of k.103



A.3 Proof of lemma 6Let us study the Fourier transform of the 
omplex-valued distributione i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x); x 2 RN ;where (I � B) is symmetri
 and stri
tly positive, � � 0 and P is given by(5.3): ~F (k) = ZRN eik�xe i2~x�(I�B)x(2�i~)N=2 e�i�~ P (x)dxWithout loss of generality we 
an assume that the quadrati
 form x � (I �B)xis equal to x � x, as it 
an always be redu
ed to this form by a 
hange of
oordinates.Let us 
ompute the N�dimensional integral de�ning ~F (k) by introdu
ing thepolar 
oordinates in RN :ZRN eik�x e i2~x�x(2�i~)N=2 e�i�~ P (x)dx == ZSN�1 �Z +10 eijkjrf(�1;:::;�N�1) e i2~ r2(2�i~)N=2 e�i�~ P (r)rN�1dr�d
N�1 (A.12)where instead of N Cartesian 
oordinates we use N � 1 angular 
oordinates(�1; : : : ; �N�1) and the variable r = jxj. SN�1 denotes the (N�1)-dimensionalspheri
al surfa
e, d
N�1 is the Haar measure on it, f(�1; : : : ; �N�1) = (k �x)=jkjr, P (r) is a fourth order polynomial in the variable r with 
oeÆ
ientsdepending on the N � 1 angular variables (�1; : : : ; �N�1), namely:P (r) = r4A� xjxj ; xjxj ; xjxj ; xjxj� = r4a(�1; : : : ; �N�1) (A.13)where a(�1; : : : ; �N�1) > 0 for all (�1; : : : ; �N�1) 2 SN�1. Let us fo
us on theintegral Z +10 eijkjrf(�1;:::;�N�1) e i2~ r2(2�i~)N=2 e�i�~ P (r)rN�1dr:This 
an be interpreted as the Fourier transform of the distribution on the realline F (r) = �(r)rN�1 e i2~ r2(2�i~)N=2 e�i�~ P (r);with �(r) = 1 if r � 0 �(r) = 0 otherwise, � < 0 and P (r) = ar4, a > 0:Z +10 eikr e i2~ r2(2�i~)N=2 e�i�~ P (r)rN�1dr: (A.14)104



Let us 
onsider the 
omplex plane and set z = rei�. We haveZ +10 eikr e i2~ r2(2�i~)N=2 e�i�~ P (r)rN�1dr == lim�#0 Zz=�ei� eikz e i2~ z2(2�i~)N=2 e�i�~ P (z)zN�1dz= lim�#0 limR!+1Z R0 eik�ei� e i2~ �2e2i�(2�i~)N=2 e�i�~ P (�ei�)�N�1eNi�d� (A.15)Given: 
1(R) = fz 2 C j 0 � � � R; � = �g
2(R) = fz 2 C j � = R; � � � � �=4� �g
3(R) = fz 2 C j 0 � � � R; � = �=4� �gwith � > 0 small, from the analyti
ity of the integrand and the Cau
hy theoremwe have Z
1(R)[
2(R)[
3(R) eikz e i2~ z2(2�i~)N=2 e�i�~ P (z)zN�1dz = 0:In parti
ular:��� Z
2(R) eikz e i2~ z2(2�i~)N=2 e�i�~ P (z)zN�1dz��� == RN ��� Z �=4��� eikRei� e iei2�2~ R2(2�i~)N=2 e�i�~ P (Rei�)eiN�d����� RN Z �=4��� e�kR sin(�) e� sin(2�)2~ R2(2�~)N=2 e�~ (aR4 sin(4�))d�� RN Z �=8� e�k0R� e�2��~ R2(2�~)N=2 e�~ (aR4 8� )�d�++RNe�~ 2aR4 Z �=4���=8 e�k0R� e�2��~ R2(2�~)N=2 e�~ (�aR4 8� )�d�= RN(2�~)N=2n�e( 8a��~ R4� 2�~R2�k0R)�=8 � e( 8a��~ R4� 2�~R2�k0R)�(8a��~ R4 � 2�~R2 � k0R) �++ �e 8�a��~ R4e(� 2�~R2�k0R)(�=4��) � ea�~ R4e(� 2�~ )R2�k0R)�=8(�8a��~ R4 � 2�~R2 +�k0R) �o (A.16)where k0 2 R is a suitable 
onstant. We have used the fa
t that if � 2 [0; �=2℄then 2�� � sin(�) � �, while if � 2 [�=2; �℄ then sin(�) � 2 � 2��. From thelast line one 
an dedu
e that��� Z
2(R) eikz e i2~ z2(2�i~)N=2 e�i�~ P (z)zN�1dz���! 0; R!1;105



so thatZz=�ei� eikz e i2~ z2(2�i~)N=2 e�i�~ P (z)zN�1dz = Zz=�ei(�=4��) eikz e i2~ z2(2�i~)N=2 e�i�~ P (z)zN�1dzBy taking the limit as � # 0 of both sides one gets:Z +10 eikr e i2~ r2(2�i~)N=2 e�i�~ P (r)rN�1dr = Z +10 eik�ei�=4 e��22~ �2(2�~)N=2 e�i�~ P (�ei�=4)�N�1d�(A.17)By substituting into (A.12) we get the �nal result:ZRN eik�x e i2~x�x(2�i~)N=2 e�i�~ P (x)dx= ZRN eiei�=4k�x e�x�x2~(2�~)N=2 e�i�~ P (xei�=4)dx= E [eiei�=4k�xe�i�~ P (xei�=4)℄ (A.18)
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Appendix BSome expli
it 
al
ulations
B.1 The positivity of the operator I �BLet us study the spe
trum of the self-adjoint operator B on H given by (5.33).In order to avoid the use of too many indexes we will assume d = 1, but ourreasonings remain valid also in the 
ase d > 1. A positive real number 
l anda ve
tor (xl; 
l) 2 H are respe
tively an eigenvalue and an eigenve
tor of B ifand only if: � t
2xl + 
2 R t0 
l(s)ds = 
lxl
2xl(ts� s22 )� R s0 Rt
2
l(r)drdu = 
l
l(s)More pre
isely the ve
tor (xl; 
l) 2 H solves the following system:8>><>>: t
2xl + 
2 R t0 
l(s)ds = 
lxl
l�
l(s) + 
2
l(s) = �
2xl
l(0) = 0_
l(t) = 0By a dire
t 
al
ulation one 
an verify that the latter system indeed admits a(unique) solution if and only if Cl satis�es the following equation
p
l tan 
tp
l = 1A graphi
al representation of the position of the solutions shows that theoperator B is tra
e 
lass. Moreover if the 
onditions (5.37) are ful�lled themaximum eigenvalue of B is stri
tly less than 1, so that (I � B) is positivede�nite. 107



B.2 Estimate of a Gaussian integral.Let us 
onsider the following fun
tion F : H ! C given byF (y; �) = ZRd�Ct ep~xy+p~n(�)(!)e 12 h(x;!);B(x;!)iN(dx)W (d!):Let us assume 
; t satisfy assumption (5.37). By a dire
t 
omputation and byFubini theorem, F is equal toF (y; �) = (2�)� d2 ZRd ep~xye�x (I�t
2)2 x ZCt ep~n(�)(!)ex R t0 
2!(s)dse 12 R t0 !(s)
2!(s)dsW (d!)dx= (2�)� d2 ZRd ep~xye�x (I�t
2)2 x ZCt ep~n(�)(!)en(vx)(!)e 12 h!;L!W (d!)dx; (B.1)where L : Ht ! Ht is the operator given byL
(s) = � Z s0 Z s0t 
2
(s00)ds00ds0and vx 2 Ht is the ve
tor given by vx(s) = 
2x(ts� s22 ). One 
an easily verifythat L is symmetri
 and tra
e 
lass. Indeed by denoting by �2; 
 respe
tivelythe eigenvalues and the eigenve
tors of the operator L, we have�
2�
(s) = �2
(s); 
(0) = 0; _
(t) = 0Without loss of generality we 
an assume 
2 is diagonal with eigenvalues 
2i ,i = 1; : : : d. The 
omponents 
i, i = 1; : : : d, of the eigenve
tor 
 
orrespondingto the eigenvalue �2 are equal to
i(s) = Ai sin 
is� :By imposing the 
ondition _
(t) = 0, we have 
it=� = �=2 + ni�, ni 2 Z.The possible �2 are of the form �2 = 
2i t2=(ni + 12)2�2. It follows that theoperator I � L is positive de�nite if and only if 
it < �=2 for all i = 1; : : : d.Moreover the Fredholm determinant of L 
an easily be 
omputed by means ofthe equality 
os x =Q(1� x2�2(n+1=2)2 ) and it is equal to det 
os 
t.By the 
onsiderations in se
tion 4 the fun
tion G : Rd ! R given byG(x) = ZCt ep~n(�)(!)+n(vx)(!)e 12 h!;L!iW (d!) (B.2)is equal to 1pdet 
os 
te 12 hp~�+vx;(I�L)�1(p~�+vx)i108



where (I � L)�1 is given by(I � L)�1
(s) = 
�1[Z s0 sin[
(s� s0)℄�
(s0)ds0 + sin(
s) _
(0)℄++ sin(
s)[
os(
t)℄�1 Z t0 sin[
(t� s0)℄ _
(s0)ds0 (B.3)Moreover by dire
t 
omputation we see thatG(x) = 1pdet 
os 
te 12 hp~�;(I�L)�1p~�ie 12x(�t
2+
tan
t)xehvx;(I�L)�1p~�i (B.4)By inserting this into (B.1), we haveF (y; �) = (2�)�d=2pdet 
os 
te 12 hp~�;(I�L)�1p~�i ZRd ep~xye� 12x(I�
 tan
t)xehvx;(I�L)�1p~�idxIn parti
ular by taking � = �Gt, � 2 C , Gt 2 Ht, Gt(s) = zs, z 2 Rd we getF (y; �) = e~�22 z(
�1tan
t)zpdet(
os 
t� 
 sin
t)e~2 (y+� 
os
t�1(1�
os 
t)z)(1�
 tan
t)�1(y+� 
os
t�1(1�
os 
t)z): (B.5)
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Appendix CBorel-summable asymptoti
expansionsLet V � C a domain in the 
omplex plane, su
h that 0 2 �V andz 2 V ) 8t 2 (0; 1℄; tz 2 VLet us denote V̂ := V [ f0g. Both V and V̂ will be 
alled angular neighbor-hoods of zero. A domain U � C , su
h that U is the 
losure of an angularneighborhood of zero, will be 
alled 
losed angular neighborhood.De�nition 11. Let V an angular neighborhood of zero. An asymptoti
 se-quen
e of fun
tions (�i)i2N for z ! 0 in V is a sequen
e of fun
tions �i : V̂ !C , whi
h do not vanish in V and su
h that for every i 2 N:limz!0 �i+1�i (z) = 0In the following we shall fo
us on the asymptoti
 sequen
e (in any angularneighborhood of zero) �n(z) = zn=k, n 2 N , for �xed k > 0 and denote byC [z1=k ℄ the spa
e of formal power series with 
omplex 
oeÆ
ientsf̂(z) = 1Xn=0 anzn=k; fang � C ; k > 0: (C.1)De�nition 12. A formal power series f̂ is 
alled a (z1=k�) asymptoti
 expan-sion for a fun
tion f : V ! C as z ! 0 in an angular neighborhood V if forea
h 
losed angular neighborhood U with U ( V and any N 2 N, there existsa number C(N) > 0 su
h that8z 2 U : jf(z)� NXn=0 anzn=kj � C(N)jzn=kj: (C.2)In this 
ase we write f � f̂ , z ! 0 in V .110



For more details see [62℄Remark 21. It is important to re
all that the domain V in de�nition 12 playsa 
ru
ial role, indeed the existen
e of an expansion depends strongly on V .Remark 22. An asymptoti
 expansions is not ne
essarily 
onvergent (andusually this is the 
ase!). Indeed 
ondition (C.3) means that for �xed N thefun
tion f in approximated by the sum PNn=0 anzn=k for z suÆ
iently small,while if the formal power series (C.1) is 
onvergent in some domain V to ananalyti
 fun
tion f then the following holds:8z 2 V : limN!1 jf(z)� NXn=0 anzn=kj = 0 (C.3)whi
h means that for �xed z 2 V the fun
tion f in approximated by the sumPNn=0 anzn=k for N suÆ
iently large.It is easy to see that if a fun
tion f admits an (z1=k�) asymptoti
 expansionin a given domain, then it is unique. On the other hand di�erent fun
tions
an have the same asymptoti
 expansion, for instan
e the fun
tion f(z) =0 and g(z) = e1=pz have both a zero asymptoti
 expansion in the domainfz 2 C ; jzj < rg n [0; r℄. In other words, if an asymptoti
 expansion is not
onvergent (and this is often the 
ase) it does not 
hara
terize uniquely afun
tion f asymptoti
ally equivalent to it. In order to 
onstru
t an 1 to 1
orresponden
e between formal power series and fun
tions one 
an apply avery powerful summation tool: Borel summability. It works as follows:1. transform the given power series f̂ into another 
onvergent power seriesB̂;2. 
ompute the analyti
 fun
tion B obtained in this way;3. apply an integral transform mapping the analyti
 fun
tion B to analyti
fun
tion f4. the fun
tion f (the so 
alled sum of f̂) obtained in this way has thepower series f̂ we startedIn order to apply Borel summability method it is ne
essary to impose stronger
onditions on the 
oeÆ
ients.De�nition 13. Given s > 0, a formal power series f̂(z) = P1n=0 anzn=k 2C [z1=k ℄ belongs to the s-Gevrey 
lasses C [z1=k ℄s if exist two 
onstants C;M > 0,su
h that 8n 2 N : janj � CMn(�(1 + n=k))s;where � is the Euler Gamma fun
tion.111



The Gevrey 
lasses are 
onne
ted via the following transform a
ting onformal series:De�nition 14. The map B p;k : C [z1=k ℄s ! C [z1=k ℄s�p de�ned byB p;k [ 1Xn=0 anzn=k℄(t) := 1Xn=0 an�(1 + np=k)tnp=k (C.4)is 
alled the (formal) (p; k)�Borel transform.It is important to note that the (s; k)�Borel transform maps C [z1=k ℄s to
onvergent series.We 
an now de�ne the 
on
ept of Borel summability:De�nition 15. A formal power series f̂(z) =P1n=0 anzn=k is 
alled ��Borelsummable to the sum f if f is an holomorphi
 fun
tion on V for some angularneighborhood of zero V , f � f̂ as z ! 0 in V and the following pro
edure ispossible:1. The (1; k)�Borel transform B 1;k [f̂ ℄(t) has nonzero radius of 
onvergen
eand thus 
onverges in a neighborhood of zero to some fun
tion B(�).2. This holomorphi
 fun
tion admits an analyti
 
ontinuation (denoted againby the symbol B(�)) onto some open neighborhood of R+3. the Lapla
e transform of B gives a representation of f on a subset of V :f(z) = 1z Z 10 B(t)e�t=zdt (C.5)In other words if an asymptoti
 series is Borel summable to a fun
tion f ,it 
hara
terizes uniquely f , even if it is not 
onvergent.The following 
riterion for Borel summability is due to F. Nevanlinna [84℄, seealso [94℄ :Theorem 28. Let k > 0, R 2 (0;+1℄ and de�ne DR := fz 2 C : Re(1=z) >1=Rg if R 6=1 and DR := fz 2 C : Re(z) > 0g else.Let f be an holomorphi
 fun
tion admitting an asymptoti
 expansion withrespe
t to the asymptoti
 sequen
e (zn=k in the domain DR, i.e. su
h thatf(z) �P1n=0 anzn=k =: f̂ and 9A > 0; � > 0 8� > 0; z 2 fRe(1=z) � �+1=Rg,�̂ > �; n 2 N: jf(z)� n�1Xi=0 aizi=kj � A�(1 + n=k)�̂njzjn=kThen the asymptoti
 power series f̂ is Borel summable to the fun
tion f .112
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