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Abstract. The main contribution of this paper is the notion of ontol-
ogy space, which allows us to move from an ontology-centric vision to
a constellation-centric vision of the Web, where multiple ontologies and
their interactions can be explicitly modeled and studied. This, in turn,
allows us to study how OWL ontologies can interoperate, and, in par-
ticular, to provide two main results. The first is a formalization of the
intended semantics of the OWL importing operator as opaque semantics.
This result makes explicit the fact that the semantics of the importing
ontology and of the imported ontology are independent. The second is
the introduction of the notion of transparent semantics, which allows us
to constrain the semantics of an ontology to be the same, on selected
language elements, to that of a second reference ontology.

1 Introduction

Ontologies are conceptualizations of some domain which encode a view which is
common to a set of different parties. What “common” exactly means is some-
how immaterial and depends mainly on the specific application being considered.
However it is a fact that the original philosophical request of a unique ontolog-
ical description of the world has been given up, that the attempts to build a
representation which is “common enough” have often provided a lot of leverage,
at least from an engineering point of view, and that many success stories can
be found in the literature, see for instance [Gen,DFvH02].4 The feature which
is key to the success of ontologies is that the common understanding they en-
code is the basis for the sharing of knowledge among different parties. Notice

(∗) This work is supported by the FP6 Network of Excellence EU project Knowledge
Web (IST-2004-507842).

4 It has been argued that the goal of building a single representation of the world is
impossible in principle and not only very hard/ complex/ costly. This issue is not
discussed here because out of the goals of this paper. The interested reader can find
a discussion about these issues in [Giu93,GS94,GG01].



that, in general, these parties have different languages, different knowledge, dif-
ferent perspectives of the same problem domain, and also different goals which,
in turn, super-impose still further constraints on their way to describe the world
[BGvH+03].

Sharing and re-use are “old” concepts for the Computer Science community;
think for instance about the notions of (software) library, of modularisation,
and also of object oriented programming. In this work, as part of the software
development process, at design time one can choose and re-use any of existing
libraries/ modules/ objects. [MJaM03,Jar05] report very interesting work which
follows very much this line of thought and which aims at ontology modular-
ization and re-use. Following this tendency, OWL (Ontology Web Language)
already provides mechanisms for a bottom up incremental construction of com-
mon views [MvH03]. In particular it provides a name-space naming mechanism,
derived from XML, which allows us, when defining an ontology, to reuse ob-
jects (e.g., classes, roles, individuals) defined elsewhere; and also an importing
operator imports which allows us to include an entire ontology as part of the
current specification, very much in the same fashion as, in the standard software
engineering practice, software modules are imported into other modules.

However the Semantic Web allows for more complex forms of sharing and
re-use. In the Web, both the importing and the imported ontology co-exist and
any new party can (re-)use an ontology which is being used by its own designer,
and which may have been already imported by other ontologies, maybe for very
different purposes.5 Each such ontology has its intended semantics, which may
somehow depend on the syntax and semantics of the imported ontologies, but
where there is no a priori reason why importing an ontology means importing
also its intended semantics. Thus, for instance, the concept Car in the ontology of
Ferrari will be more specific that the same concept in a general ontology about
cars. Still Ferrari may want to import this latter ontology implicitly changing
the meaning of the concept Car (see however [BGvH+03] for the problems that
may arise in situations like this).

The main contribution of this paper is the notion of ontology space, also
called OWL space, which allows us to formalize the presence of multiple ontolo-
gies. With OWL spaces we move from an ontology-centric vision (as it is in the
current semantics of OWL, which considers a single ontology at the time.) to
a constellation-centric vision where all the ontologies are considered and their
interactions are explicitly modeled. This, in turn, allows us to provide two main
results. The first is a formalization of the intended semantics of the OWL im-
porting operator as opaque semantics. This result makes explicit the fact that
the semantics of the importing ontology and of the imported ontology are inde-
pendent. The second is the introduction of the notion of transparent semantics,
which allows us to constrain the semantics of one ontology to be the same, on
selected language elements, to that of a second reference ontology.

5 This shift is similar in spirit to that from modules/objects to the situation where
there are systems which are publicly available and which, at run time, answer to
whoever sends them a request (as it happens, for instance, with Web Services).



The paper is structured as follows. Section 2 reviews the basic notion of
OWL ontology. The main contribution here are the notions of local and of for-
eign languages which distinguish between local language elements defined within
an ontology (i.e., within the same namespace) and all the others. Section 3 intro-
duces the notion of ontology space and of distributed intepretation. Distributed
interpretations allow for one (local) interpretation for each ontology in a OWL
space and are at the basis of the main result of this section, which proves that,
once performed the import closure, the semantics of an ontology are indepen-
dent of the OWL space it is immersed in. This is the opaque semantics of the
OWL importing operator. Finally, Section 4 introduces the notion of transparent
interpretation. The related work and conclusions end the paper.

2 OWL Ontologies

In this section we recall the main concepts about OWL that are relevant for
the rest of this document. For the sake of readability, we slightly simplify the
presentation of such concepts, without loosing the main properties.

The OWL language is a W3C recommendation for expressing ontologies in
the Semantic Web. OWL has three increasingly expressive sub-languages: OWL
Lite, OWL DL and OWL Full. OWL Lite and OWL DL6 are, like DAML+OIL,
basically very expressive description logics; they are almost7 equivalent to the
SHIF(D+) and SHOIN (D+) DLs. OWL Full is clearly undecidable because
it does not impose restrictions on the use of transitive properties. In this paper,
we concentrate on the OWL DL (and therefore its sub-language OWL Lite)
fragment of OWL. Detailed discussions on the relationship between OWL DL
and OWL Full can be found in [Pan04].

According to [SWM04], an OWL ontology (hereafter ontology) begins with a
namespace declaration. An XML namespace (or simply namespace), identified by
a URI reference (URIref) [Gro01], is a collection of names [BHL99]. In a names-
pace declaration, namespace URIrefs (e.g. http://www.car.org/car#) are as-
sociated with namespace prefixes (e.g. car), which can be used as the shortened
forms of namespace URIrefs. Accordingly resources (such as http://www.car.org/
car#Driver), can have shortened forms (such as car:Driver). In this paper, we
call namespace URIrefs and their corresponding prefixes namespace identifiers.
A typical namespace declaration is similar to the following.

Namespace (xmlns:base = <http://www.car.org/sport car#>
xmlns:s car = <http://www.car.org/sport car#>
xmlns:car = <http://www.car.org/car#>
xmlns:abc = <http://www.abc.uk/market#>
xmlns:xyz = <http://www.xyz.it/vehicle#>)

The first declaration identifies the namespace (through the base URIref) associ-
ated with the current ontology. The second one identifies the namespace URIref
6 ‘DL’ for Description Logic.
7 They also provide annotation properties, which Description Logics don’t.



associated with the current ontology with the prefix s car. The third, forth and
fifth declarations identify the namespace URIrefs associated with supporting
ontologies.

An OWL ontology consists of a set of axioms, including concept axioms, role
axioms and individual axioms.8 Let C, R and I be the sets of URIrefs that can
be used to denote concepts, roles and individuals respectively. The disjoint union
of C, R and I is denoted with L. Table 3 presents the abstract syntax, DL syntax
and semantics of OWL axioms, where A ∈ C is a concept URIref, C1, . . . , Cn

are concept descriptions, r ∈ R is a role URIref, r1, . . . , rn are role descriptions
and o, o1, . . . , on ∈ I are individual URIrefs. Table 1 and 2 present the abstract
syntax, DL syntax and semantics of OWL concept descriptions and abstract
role descriptions, where ] denotes cardinality. To simplify the presentation, in
this paper we only consider the abstract domain and leave the discussion of the
datatype domain [PH05] as one of our future works.

Abstract Syntax DL Syntax Semantics

Class(A) A AI ⊆ ∆I

Class(owl:Thing) > >I =∆I

Class(owl:Nothing) ⊥ ⊥I = ∅
intersectionOf(C1, C2, . . . ) C1 u C2 (C1 u C2)

I = CI
1 ∩ CI

2

unionOf(C1, C2, . . . ) C1 t C2 (C1 t C2)
I = CI

1 ∪ CI
2

complementOf(C) ¬C (¬C)I = ∆I \ CI

oneOf(o1, o2, . . . ) o1t o2 (o1t o2)
I = {o1I , o2

I}
restriction(r someValuesFrom(C)) ∃r.C (∃r.C)I = {x | ∃y.〈x, y〉 ∈ rI ∧ y ∈ CI}
restriction(r allValuesFrom(C)) ∀r.C (∀r.C)I = {x | ∀y.〈x, y〉 ∈ rI → y ∈ CI}
restriction(r hasValue(o)) ∃r.{o} (∃r.{o})I = {x | 〈x, oI〉 ∈ rI}
restriction(r minCardinality(m)) > m r (> m r)I = {x | ]{y.〈x, y〉 ∈ rI} ≥ m}
restriction(r maxCardinality(m)) 6 m r (6 m r)I = {x | ]{y.〈x, y〉 ∈ rI} ≤ m}

Table 1. OWL Class Descriptions

Abstract Syntax DL Syntax Semantics

ObjectProperty(r) r rI ⊆ ∆I ×∆I

ObjectProperty(s inverseOf(r)) r− (r−)I ⊆ ∆I ×∆I

Table 2. OWL Abstract Property Descriptions

An OWL ontology can import (other) OWL ontologies, with the help of im-
ports annotations similar to the following.

8 Individual axioms are also called facts.



Abstract Syntax DL Syntax Semantics

(Class A partial C1 . . . Cn) A v C1 u · · · u Cn AI ⊆ CI
1 ∩ · · · ∩ CI

n

(Class A complete C1 . . . Cn) A ≡ C1 u · · · u Cn AI = CI
1 ∩ · · · ∩ CI

n

(EnumeratedClass A o1 . . . on) A ≡ {o1} t . . .t {on} AI = {oI1 , . . . , oIn}
(SubClassOf C1, C2) C1 v C2 CI

1 ⊆ CI
2

(EquivalentClasses C1 . . . Cn) C1 ≡ · · · ≡ Cn CI
1 = · · · = CI

n

(DisjointClasses C1 . . . Cn) Ci v ¬Cj , CI
1 ∩ CI

n = ∅,
(1 ≤ i < j ≤ n) (1 ≤ i < j ≤ n)

(SubPropertyOf r1, r2) r1 v r2 rI1 ⊆ rI2
(EquivalentProperties r1 . . . rn) r1 ≡ · · · ≡ rn rI1 = · · · = rIn
ObjectProperty(r super(r1) ... super(rn) r v ri rI ⊆ rIi

domain(C1) ... domain(Ck) > 1r v Ci rI ⊆ CI
i ×∆I

range(C1) ... range(Ch) > v ∀r.Ci rI ⊆ ∆I × CI
i

[Symmetric] r ≡ r− rI = (r−)I

[Functional] Func(r) {〈x, y〉 | ]{y.〈x, y〉 ∈ rI} ≤ 1}
[InverseFunctional] Func(r−) {〈x, y〉 | ]{y.〈x, y〉 ∈ (r−)I} ≤ 1}
[Transitive]) Trans(r) rI = (rI)+

Annotationproperty(r)

Individual(o type(C1) . . . type(Cn) Ci(o), 1 ≤ i ≤ n oI ∈ CI
i , 1 ≤ i ≤ n

value(r1, o1) . . . value(rn, on) ri(o, oi),1 ≤ i ≤ n 〈oI , oIi 〉 ∈ rI , 1 ≤ i ≤ n
Sameindividual(o1 . . . on) o1 = · · · = on oI1 = · · · = oIn
DifferentIndividuals(o1 . . . on) oi 6= oj , 1 ≤ i < j ≤ n oIi 6= oIj , 1 ≤ i < j ≤ n

Table 3. OWL Axioms

Annotation(imports <http://www.car.org/car#>)
Annotation(imports <http://www.abc.uk/market#>)
Annotation(imports <http://www.xyz.it/vehicle#>)

These imports annotations include all the axioms in the three supporting on-
tologies into the current ontology. Notice the distinction of the namespace and
imports mechanisms: the former one provides a convenient way to reference
names (URIrefs) from other ontologies, while the latter one is provided to in-
dicate the intention to include the axioms in the targeted ontologies. In order
to make best use of imported ontologies, they would normally be coordinated
with a namespace declaration [SWM04]. Note that most aspects of the Web,
including missing, unavailable, and time-varying documents, reside outside the
namespace and imports mechanisms [PSHH04].

Formally, an ontology is defined as follows.

Definition 1 (Ontology). An OWL Ontology (or simply an ontology) is a pair
Wi = 〈Mi,Oi〉, where i is the namespace identifier of the ontology 〈Mi,Oi〉,
Mi (called the imports-box) is the set of ontology namespace identifiers which
identify the set of ontologies that are imported by Wi, and Oi contains a set of
class, property and individual axioms. �



For instance the ontology 〈Ms car,Os car〉, where Ms car = {car,xyz}, the
following are examples of class descriptions that can appear in Os car:

s car:C, abc:E, (s car:C) u (car:D), ∃(s car:r).(s car:C) t (xyz:F). (1)

Note that we can use URIrefs (such as abc:E) which are neither locally defined
nor imported.

Definition 2 (Local Language). Given an OWL ontology Wi = 〈Mi,Oi〉, a
local class w.r.t. Wi is an element of C that is declared in Oi with the namespace
identifier i. Local properties and local individuals are defined analogously. The
set of local class, local properties and local individuals of Wi are denoted by Ci,
Ri and Ii. The local language of Wi, i.e., Li, is the disjoint union of them.
Elements of a local language are called local URIrefs. �

Definition 3 (Foreign Language). Any class URIref of the form j:x that
occurs in Oi which is not in Li, is called a j-foreign class of Wi. j-foreign roles
and j-foreign individuals are defined analogously, The union of the j-foreign
classes, properties, and individuals, forms the j-foreign language. The union of
the j-foreign languages, for every j, forms the foreign language of Wi. We
abuse the terminology here and call elements of a j-foreign language j-foreign
URIrefs. �

Intuitively, the local language of 〈Mi,Oi〉 is the set of class, property, and
individual URIrefs introduced by the local ontology Oi. For instance, s car:C
and s car:r from (1) are in the local language of the ontology 〈Ms car,Os car〉,
viz. Ls car.

Example 1. Assume that the local ontology Ocar of Wcar contains the axioms

car:Car v xyz:Vehicle and car:FastCar v car:Car

that the local ontology Ontology Os car of Ws car contains the following axiom

s car:SportCar v car:FastCar u abc:ExpensiveGood

and that Ws car imports Wcar and Wcar imports Wxyz. According to the above
definition, we have:

1. abc:ExpensiveGood is a abc-foreign class w.r.t.Ws car because abc:ExpensiveGood
appears in Os car;

2. car:FastCar is a car-foreign class w.r.t. Ws car because car ∈ Ms car and
car:FastCar ∈ Lcar;

3. xyz:Vehicle is a xyz-foreign class w.r.t. Wcar because xyz ∈ Mcar and
xyz:Vehicle ∈ Lxyz; since car ∈Ms car, we have xyz:Vehicle is a xyz-foreign
class w.r.t. Ws car.



3 Ontology Spaces

There are two motivations of introducing ontology spaces. Firstly, although an
ontology (from the epistemological point of view) is believed to be a unique model
for a domain, we have to handle related ontologies introduced by URIref and
the imports mechanisms. Secondly, we introduce some requirements to make best
use of the imports mechanism. As described in the last section, OWL imports
annotations do not guarantee the existence of imported ontologies. Similarly,
the occurrence of an URIrefs in an axiom does not impose requirement of the
existence of an ontological resource associated with such an URIref. For instance,
the axiom (car : Car) v (abc : ExpensiveGood) occurring in the ontology Wcar,
does not guarantee the existence of the ontology Wabc; furthermore, even Wabc

does exist, this axiom does not impose the requirement that ExpensiveGood is in
the local language of Wabc, viz. Labc. When we consider an ontology space, we
impose these requirements.

Definition 4 (Ontology Space). Let I be a set of ontology namespace identi-
fiers. An ontology space on I is a family of ontologies SI = {Wi = 〈Mi,Oi〉}i∈I

such that Mi ⊆ I, for each i ∈ I, and each j-foreign URIref j:x occurring in
Oi, is contained in the local language of Wj. �

Note that, given an OWL space {〈Mi,Oi〉}i∈I , the above definition re-
quires that: (i) all the imported ontologies of each ontology exist and are in
{〈Mi,Oi〉}i∈I , and (ii) foreign URIrefs of each ontology in {〈Mi,Oi〉}i∈I should
be introduced by some ontologies in {〈Mi,Oi〉}i∈I . Based on an OWL space,
we introduce the concept of imports closure.

Definition 5 (Imports Closure). Let S be an OWL space. The import clo-
sure of Wi w.r.t. SI is written as WS

i , recursively defined as follows:

1. If Oi ⊆ WS
i ;

2. if φ ∈ WS
j and j ∈Mi then φ ∈ WS

i ;
3. nothing else is in WS

i . �

Example 2. Consider the ontology space S = {W1,W2}, where W1 = 〈M1 =
{2},O1 = {1:A v 2:B}〉 and W2 = 〈M2 = {1},O2 = {2:B v 1:C}〉, which are
depicted as follows:

M1 ={2}
O1 = 〈{1:A v 2:B}, ∅, ∅〉

M2 ={1}
O2 =〈{2:B v 1:C}, ∅, ∅〉

We have WS
1 = WS

2 = 〈{1:A v 2:B, 2:B v 1:C}, ∅, ∅〉.

Definition 6 (Local and Distributed Interpretation). Let SI be an on-
tology space on I. An interpretation Ii is called local interpretation of Wi,
written Ii |= Wi, iff Ii satisfies all the axioms in WSI

i . A family of interpreta-
tions Î = {Ii}i∈I is called a distributed interpretation of SI , written Î |= SI ,
iff, for each i∈ I, Ii |= Wi. �



Example 3. Consider a modified version of the ontology space of Example 2
(depicted as follows).

M1 = {2}

O1 =

{
1:A v 2:B,
1:C v 1:D

} M2 = ∅
O2 = {2:B v 1:C}

An example of distributed interpretation Î12 of the above OWL space is com-
posed of two interpretations I1 and I2 on two distinct domains ∆I1 = {a, b, c, d}
and ∆I2 = {x, y, z, w}.

i:X (i:X)I1 (i:X)I2

1:A {a} Not defined
2:B {a, b} {x, y}
1:C {a, b, c} {x, y, z}
1:D {a, b, c, d} Not defined

Notice that, in the previous example the classes 2:B and 1:C, are interpreted
by I1 and I2 in two different sets of individuals. For this reason this Î12 we say
that it provides opaque interpretation of 2:B and 1:C.

Notice that this happens even if W1 imports W2. This highlights the fact
that in importing an ontologies we are importing only the axioms and not the
interpretation. We are still free enough to interpret the imported language, in
our own local domain. The only constraint imposed by the import is that we
have to satisfy all the imported axioms.

In general in the Semantic Web classes, opaque interpretation of properties
and individuals are interpreted is an acceptable hypothesis. Indeed ontologies
are usually independently developed by different users, and therefore with a
different intended semantics. This coincides with the standard semantics given
in the W3C, where semantics is given with respect to the single ontology. In the
following theorem we show that opaque semantics in ontology spaces coincides
with the W3C semantics, where imports statements is interpreted as axioms
inclusion.

Definition 7 (Opaque Entailment). Let S be an ontology space on I, φ a
concept axiom, a role axiom or an individual axiom. We say that S entails φ in
the ontology Wi (i ∈ I), written S |=i φ, if, for every distributed interpretation
Ii of S, Ii |= φ. �

Theorem 1. S |=i φ if and only if WS
i |= φ.

The above theorem says that, once we have computed the imports closure, the
ontology embedded in the ontology space, behaves exactly as the ontology in
isolation.



4 Tuning the Transparency among Ontologies

In this section, we introduce partially transparent ontologies. Intuitively, in a
partially transparent ontology, we can share the interpretation of some individual
URIrefs (as well as some class and property URIrefs related to these individuals)
with other ontologies.

Definition 8 (Partially Transparent Ontologies). A partially transparent
ontology (PTO) is a tuple Wi = 〈Mi,Oi,Si〉, where i is the namespace identi-
fier of Wi, Mi is an imports-box, Oi is a set of class, property and individual
axioms, and Si (called the share-box) is a set of tuples of the form 〈s,Ns〉, where
s is an ontology namespace identifier and Ns is a set of s-foreign URIrefs, called
shared URIrefs from ontology Ws. We use the notation [Si] to represent the set
of shared namespace identifiers in Si. �

Note that if Wi imports the shared ontologies Ws, i.e. s ∈Mi, then the inputs
would overwrite sharing. In this case, Wi will share all the individual URIrefs
from Ws, instead of just some of them (which are specified in the share-box).
For convenience, we sometimes ignore the share-box of a PTO if the share-box
is empty; i.e., we can write 〈Mj,Oj, ∅〉 as 〈Mj,Oj〉.

Example 4. Here are two example TPOs WabcCar and Wxyz, where WabcCar =
〈MabcCar = ∅,OabcCar = {∃(abcCar:order).> v abcCar:Customer, abcCar:Cust-
omer(abcCar:John), abcCar:order(abcCar:Alice, abcCar:car1)}〉 and Wxyz =
〈Mxyz = ∅,Oxyz = {abcCar:Customer(xyz:David)},Sxyz = {〈abcCar, {abcCar:
Alice, abcCar:Customer}〉}〉. Note that Wxyz shares abcCar:Alice and abcCar:
Customer with WabcCar.

Definition 9 (Partially Transparent Ontology Space). Let I be a set of
ontology namespace identifiers. A partially transparent ontology space (or simply
PTO space) on I is a family of PTOs SI = {Wi = 〈Mi,Oi,Si〉}i∈I such that
Mi ⊆ I and [Si] ⊆ I, for each i ∈ I, and each j-foreign URIref j:x occurring
in Oi and Si is contained in the local language of Wj. �

Definition 10 (Partially Transparent Distributed Interpretation). Let
I be a set of ontology namespace identifiers and SI = {Wi = 〈Mi,Oi,Si〉}i∈I

a transparent ontology space. A distributed interpretation Î = {Ii}i∈I is called a
Partially transparent distributed interpretation (or simply PTD interpretation)
of SI iff for each Wi ∈ SI and each shared ontology Wj of Wi, the following
conditions hold:

– if j:C ∈ Nj, then (j:C)Ii = (j:C)Ij ∩∆Ii ;
– if j:r ∈ Nj, then (j:r)Ii = (j:r)Ij ∩ (∆Ii ×∆Ii);
– if j:a ∈ Nj, then (j:a)Ii = (j:a)Ij ∈ ∆Ii . �



Now we revisit Example 4 to illustrate the PTD interpretation defined above.
Let I = {abcCar, xyz} and SI = {WabcCar,Wxyz}. Let I1 = 〈∆I1 , ·I1〉 be an
interpretation where ∆I1 = {a, c, j} and the interpretation function ·I1 is defined
as follows: (abcCar:Customer)I1 = {a, j}, (abcCar: order)I1 = {〈a, c〉}, (abcCar:
Alice)I1 = a, (abcCar:car1)I1 = c, (abcCar:John)I1 = j. It is obvious that I1
is a local interpretation of WabcCar. Let I2 = 〈∆I2 , ·I2〉 be an interpretation
where ∆I2 = {a, d} and the interpretation function ·I2 is defined as follows:
(abcCar:Customer)I2 = {a, d}, (abcCar:Alice)I2 = a, (xyz:David)I2 = d. It is
obvious that I2 is a local interpretation of Wxyz. However, 〈I1, I2〉 is not a PTD
interpretation of SI because

(abcCar:Customer)I2 6= (abcCar:Customer)I1 ∩∆I2 .

PTO interpretation must share the meaning (i.e., the interpretation of the el-
ement that belongs to the shared box). If we extend I1 to I ′1, where ∆I′

1 =
∆I1 ∪ {d} and ·I′

1 extends ·I1 with (abc:Customer)I
′
1 = (abc:Customer)I1 ∪ {d},

then we have 〈I ′1, I2〉 being a PTD interpretation of SI .

Definition 11 (Transparent Entailment). Let S be a partially transparent
ontology space on I, φ a concept axiom, a role axiom or an individual axiom.
We say that S entails φ in the PTO Wi (i ∈ I), written S |=i φ, if, for every
PDT interpretation Ii of S, Ii |= φ. �

In the following theorem we characterise what ontological knowledge is “in-
troduced” to W2, when it declares ontology W1 in its shared box.

Theorem 2. Let S = 〈W1,W2〉 be a partially transparent ontology space, 1:a,
1:b individual URIrefs, 1:A, 1:B concept URIrefs, and 1:r, 1:s role URIrefs. If
〈1, N1〉 ∈ S2, the following statements hold:

1. If {1:A, 1:a} ⊆ N1, then W1 |= 1:A(1:a) implies that S |=2 1:A(1:a) (the
entailment of an instance-of-concept axiom is transferred).

2. If {1:r, 1:a, 1:b} ⊆ N1, then W1 |= 1:r(1:a, 1:b) implies that S |=2 1:r(1:a, 1:b)
(the entailment of an instance-of-role axiom is transferred).

3. If {1:A, 1:B} ⊆ N1, then W1 |= (1:A) v (1:B) implies that S |=2 (1:A) v
(1:B) (the entailment of an atomic concept axiom is transferred).

4. If {1:r, 1:s} ⊆ N1, then W1 |= (1:r) v (1:s) implies that S |=2 (1:r) v (1:s)
(the entailment of an atomic role axiom is transferred).

Proof: For (1). Let 〈I1, I2〉 be a PTD interpretation for S. SinceW1 |= 1:A(1:a),
we have (1:a)I1 ∈ (1:A)I1 . Due to Definition 10, 〈1, N1〉 ∈ S2 and {1:A, 1:a} ⊆
N1, we have (1:a)I2 ∈ ∆I2 . Therefore, we have (1:a)I2 ∈ (1:A)I2 ; hence, S |=2

1:A(1:a).
For (2). Let 〈I1, I2〉 be a PTD interpretation for S. Since W1 |= 1:r(1:a, 1:b),

we have 〈(1:a)I1 , (1:b)I1〉 ∈ (1:r)I1 . Due to Definition 10, 〈1, N1〉 ∈ S2 and
{1:r, 1:a, 1:b} ⊆ N1, we have {(1:a)I2 , (1:b)I2} ⊆ ∆I2 . Therefore, we have 〈(1:a)I2 ,
(1:b)I2〉 ∈ (1:r)I2 ; hence, S |=2 1:r(1:a, 1:b).



For (3). Let 〈I1, I2〉 be a PTD interpretation for S. Since W1 |= (1:A) v
(1:B), we have (1:A)I1 ⊆ (1:B)I1 . Due to Definition 10, 〈1, N1〉 ∈ S2 and
{1:A, 1:B} ⊆ N1, we have (1:A)I2 = (1:A)I1 ∩ ∆I2 ⊆ (1:B)I1 ∩ ∆I2 = (1:B)I2 .
Hence, S |=2 (1:A) v (1:B). The proof for (4) is similar to that for (3). ut

The main message of the theorem is that shared boxes allow ontologies to
share some data as well as some (explicit or implicit) axioms (w.r.t. the shared
data) with other ontologies.

5 Related work

A first notion of OWL space was originally defined in [BGvH+03] as a tool whose
definition was preliminary to the definition of context mappings. As intense
follow-up discussions (which consequently lead to the writing of this paper) have
shown, this notion is actually more important than we originally thought. It
allows us to provide a semantics of how the OWL importing operator works,
and more in general, of the possible interactions between multiple ontologies. As
a side result, this paper shows that the semantics of OWL spaces, as described in
[BGvH+03] do not capture the intended semantics of multiple ontologies linked
by the importing operator. In that paper the authors in fact assumed that the
import operator had transparent semantics.

The opaque and transparent semantics for ontology spaces are obtained by
modifying the original OWL semantics using the ideas and notions originally
developed in the semantics of context (the, so called, Local Models Semantics
[GG01] and its extension to first order logic [GS98]). Roughly, the local model
semantics for a distributed system (where each component is called context)
associates to each context a local interpretation, but only certain combinations
of local interpretations are admitted, i.e, the ones that respect a compatibility
condition. In the opaque semantics, the compatibility condition is always true,
as all the combination of local interpretations for each ontology is admitted.
In partially transparent distributed interpretations, instead, the local interpre-
tations of the ontologies with a non empty shared box Si have to respect the
compatibility conditions 1, 2, and 3 of Definition 10.

The notion of shared box with transparent interpretation, as proposed in this
paper, is orthogonal with respect to the C-OWL language, and one could easily
imagine a situation in which C-OWL and shared boxes are combined in a unique
framework. From a semantic point of view, here we have adopted a semantics
which is homogeneous with respect to the C-OWL semantic (they are both based
on LMS [GG01,GS98]), and therefore they can be easily integrated to provide
a semantics of the global framework. In particular, the main contribution of
C-OWL is a set of primitives which allow to state semantic similarity, between
concept, roles, and individuals of different ontologies. Domains are supposed to
be distinct and a domain relation allow to translates objects of a domains into
object in another domain. Transparent semantics, instead, allows to share object
in a domain, i.e., to allow co-reference to the same “real world” object from two
different ontologies.



The intuition underlying the notion of shared box has a lot of commonalities
with the notion of rigid interpretation/rigid designation in quantified modal log-
ics. Roughly if an individual constant i:c belongs to a shared box of an ontology
Wj, it interpretation in Ii and Ij is rigid, i.e,, it is interpreted in the same
object. As a further investigation on this analogy we plan to reuse some of the
theoretical results developed in quantified modal logics to prove properties on
shared meaning in the Semantic Web.

6 Conclusion

The main contribution of this paper is the notion of OWL space. OWL spaces
allow us to model the fact that, once published, ontologies can be used and
reused by many other ontologies and users, with possibly very different intended
meanings. The notion of opaque interpretation, which, among other things, for-
malizes the intended behavior of the OWL importing mechanism, captures the
fact that each ontology in a OWL space has its own semantics, independently
of the surrounding ontologies. The notion of transparent interpretation allows
us to finely tune, on a predefined set of language elements, the semantics of one
ontology with respect to the semantics of other reference ontologies.

This work is part of a much bigger effort which aims at studying the possible
interactions of ontologies in an ontology space. Much more work needs to be
done. For instance: we need to provide a syntax which allows to state that we
want a transparent interpretation on a certain language element, we need to
integrate this work with the work on C-OWL and provide a uniform syntax for
all these new constructs; we need to start worrying about the interactions among
sub-ontologies, and so on.
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