
UNIVERSITY
OF TRENTO
DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

Article Clustering in Newspaper Pages
Proposal and Comparison of Three NLP Algorithms

Marco Aiello & Andrea Pegoretti

November 2004

Technical Report # DIT-04-102



.



Aiello & Pegoretti Article Clustering

The first experiment was run to determine what was the optimal value for the threshold.

We applied the tests to the first half of the data set, employing all three indexing strategies.

For each page, we repeated the algorithms with different thresholds, evaluated the results and

kept the threshold leading to the best WHM value. In Figure 14, we summarize the results.

best value algorithm macro-mean micro-mean

WHM Agglomerative clustering with stop indexing 75.54% 75.74%

Precision Comparative clustering with bigram indexing 83.26% 82.22%

Recall Agglomerative clustering with base indexing 73.54% 71.60%

Figure 14: Results for optimal value determination.

The second group of tests was devoted to the research of the similarity threshold that should

be used by a program that implements the algorithms, i.e., a single threshold that should

be applied to all the pages of a given set of documents. This threshold was searched on the

same data set of the previous tests. Trying the values around the mean value of the best

thresholds found (in the latter test), we searched the value that, when applied to all the first

half of the pages in the collection, brought the best macro and micro mean of the performance

evaluations. We tested all the three algorithms on all the three groups of vectors, as done

before. In Figure 15, we summarize the results.

best value algorithm macro-mean micro-mean

WHM Agglomerative clustering with bigram indexing 70.95% 71.50%

Precision Comparative clustering with bigram indexing 77.36% 73.26%

Recall Agglomerative clustering with bigram indexing 72.60% 68.80%

Figure 15: Results for the threshold value determination.

Finally, we tested the algorithms working with a threshold chosen a priori. We applied

the fixed threshold found in the latter test to the second half of the document collection.

We tested all the three algorithms over all the documents indexed in the three different

ways. In Figure 17 we present the results with the base indexing strategy. In Figure 18 we

present the results with the stop indexing strategy. In Figure 19 we present the results with

the bigram indexing strategy. Finally, in Figure 16 we summarize the overall experimental

results highlighting the best algorithms.

19



Aiello & Pegoretti Article Clustering

best value algorithm macro-mean micro-mean

WHM Simple clustering with stop indexing 59.77% 58.91%

Comparative clustering with bigram indexing 59.72% 58.25%

Precision Simple clustering with stop indexing 65.41% 58.25%

Recall Agglomerative clustering with stop indexing 66.90% 67.02%

Figure 16: Results for the threshold value determination.

3.4 Discussion

The three algorithms gave very similar results. The best results for each test (obtained

sometimes with the stop indexing and sometimes with the bigram indexing) differ one from the

other for few percentage points. In the Best Result tests, where Agglomerative Clustering with

bigram indexing obtained a WHM value of 75.74% (micro-mean), the other two algorithms

proved to be almost equally good: Simple Clustering obtained with stop indexing a WHM of

73.34% and Comparative Clustering with stop indexing obtained a WHM of 73.23%. In the

other tests the situation does not vary much: the best results of each algorithm never differ

one from the other for more than 3%. Thus, there is apparently no need for the additional

operations made by the two variants of the Simple Clustering Algorithm.

We can see how the Simple Clustering algorithm and the Comparative Clustering one

give the same results when the base indexing is used. It is because, with all stopwords

included in the vectors, each block always brings a similarity degree with all the other blocks

different from 0 (they always share some terms), so the Comparing Clustering does not

prevent any edge of the connection graph. The Agglomerative Clustering always shows the

worst performances when it uses vectors indexed with base indexing. This way of indexing

increases the probability of making errors; when the algorithm merges two wrong blocks the

errors tend to propagate (errors generate more errors). Compared to the Simple Clustering,

we can state that it is more robust but less stable: it commits less errors, but when it incurs

in an error the results are unpredictable.

The best and the worst results always correspond to the same documents. The worst

results are given by the pages with a low number of articles all discussing more of less the

same subject, divided into many blocks. On the other hand, the best results are given where

few articles discuss heterogeneous topics and are divided into few big blocks. Even a human

reader, put in front of the raw text of the blocks, can have serious difficulties in reconstructing

20



Aiello & Pegoretti Article Clustering

Simple clustering with base indexing

threshold WHM precision recall distribution

Best 0.0802 0.875 0.917 0.846 0.857

Worst 0.0802 0.183 0.333 0.100 0.750

Macro-mean 0.0802 48.44% 55.56% 53.53% 76.50%

Micro-mean 47.31% 36.57% 51.31% 83.18%

Comparative clustering with base indexing

threshold WHM precision recall distribution

Best 0.0802 0.875 0.917 0.846 0.857

Worst 0.0802 0.183 0.333 0.100 0.750

Macro-mean 0.0802 48.44% 55.56% 53.53% 76.50%

Micro-mean 47.31% 36.57% 51.31% 83.18%

Agglomerative clustering with base indexing

threshold WHM precision recall distribution

Best 0.0704 0.875 0.917 0.846 0.857

Worst 0.0704 0.086 0.037 0.714 0.800

Macro-mean 0.0704 43.80% 47.05% 53.86% 73.17%

Micro-mean 39.46% 25.84% 52.36% 89.90%

Figure 17: The experimental results using the base indexing strategy.

the different articles in the most complex cases.

As expected, the base indexing proved to be the worst type of indexing, leading to the

worst results in every test. In particular, in the Best Result tests, it leads to a great number

of wrong edges, bringing high recall value and very low precision values. Stop indexing and

bigram indexing gave more or less the same results: sometimes the best result is obtained with

stop indexing, sometimes with bigram indexing. Since the first one is simpler, it is preferable

to the second one, but the data set is too small to exclude one of the two. Actually, bigram

indexing can give good results in most cases, since the Keyword-extractor system we used to

compute the indexes is still imprecise and the errors eliminate the advantages brought by the

right bigrams found.

21



Aiello & Pegoretti Article Clustering

Simple clustering with stop indexing

threshold WHM precision recall distribution

Best 0.0572 0.896 1.000 0.800 0.923

Worst 0.0572 0.0000 0.000 0.000 0.800

Macro-mean 0.0572 59.77% 65.41% 59.35% 82.34%

Micro-mean 58.91% 51.36% 59.16% 82.41%

Comparative clustering with stop indexing

threshold WHM precision recall distribution

Best 0.0440 0.896 1.000 0.800 0.923

Worst 0.0440 0.183 0.333 0.100 0.750

Macro-mean 0.0440 58.99% 61.80% 61.08% 83.01%

Micro-mean 58.29% 50.23% 57.59% 89.00%

Agglomerative clustering with stop indexing

threshold WHM precision recall distribution

Best 0.0384 0.909 0.857 0.923 1.000

Worst 0.0384 0.183 0.333 0.100 0.750

Macro-mean 0.0384 57.04% 54.54% 66.90% 87.30%

Micro-mean 55.98% 40.89% 67.02% 94.68%

Figure 18: The experimental results using the stop indexing strategy.

The best algorithm proved to be the Agglomerative Clustering applied to vectors given by

stop indexing, but only for less than 2 percentage points. This is due to the fact that, even

if it has the same best results as Simple Clustering, it has only 2 pages with a WHM value

under 60% against 4 pages for Simple Clustering. Since Agglomerative Clustering with base

indexing gave the best recall value coupled with the worst precision value, we understand

that when the algorithm makes a mistake it tends to put together wrong blocks and not to

separate similar blocks. The Comparative Clustering algorithm proved to be the most precise

among the three, with a consequent loss in recall, due to the prevention of both wrong and

right edges. Some articles include blocks that have a degree of similarity of 0 with other

blocks of the same article, and the algorithm avoids these arrangements. Anyway, since they

22



Aiello & Pegoretti Article Clustering

Simple clustering with bigram indexing

threshold WHM precision recall distribution

Best 0.0446 0.896 1.000 0.800 0.923

Worst 0.0446 0.207 0.096 1.000 0.800

Macro-mean 0.0446 57.03% 61.85% 63.66% 85.44%

Micro-mean 55.38% 42.25% 62.83% 89.90%

Comparative clustering with bigram indexing

threshold WHM precision recall distribution

Best 0.0384 0.896 1.000 0.800 0.923

Worst 0.0384 0.245 0.115 1.000 1.000

Macro-mean 0.0384 59.72% 62.87% 60.57% 79.18%

Micro-mean 58.25% 51.43% 56.54% 86.41%

Agglomerative clustering with bigram indexing

threshold WHM precision recall distribution

Best 0.0291 0.811 0.833 0.769 0.857

Worst 0.0291 0.207 0.096 1.000 0.800

Macro-mean 0.0291 56.40% 55.36% 66.09% 84.39%

Micro-mean 54.47% 39.68% 64.40% 96.74%

Figure 19: The experimental results using the bigram indexing strategy.

are quite rare the worsening is roughly equivalent to the improvements (i.e., the number of

cut right edges roughly equals the number of avoided wrong edges).

As for the threshold determination, one discovers the (relative) weakness of the Simple

Clustering opposed to the robustness of the other two algorithms, which gain the best results

in WHM, precision and recall. Our conclusion is that the Agglomerative Clustering, if applied

with a good threshold, can give the best overall results. The Comparative Clustering produces

the best results in precision, due to the fact that it checks all the edges before adding them

to the graph.

In the overall experimentation, one can conclude that the Simple Clustering algorithm is

the one with overall best performance, proving to be not only the simplest and to have less

23



Aiello & Pegoretti Article Clustering

computational complexity, but also to be more flexible than the other two.

4 Complexity analysis

It is interesting to compare the three algorithms not only from the point of view of their

performance, as we did in the previous section, but also in terms of their complexity. In

the following we consider worst case time complexity, best case and present a representative

case. We show that the three algorithms are all polynomial, but do have an increasing time

complexity.

We assume to have b blocks per page and that the total number of distinct words (per

page) is n. To compute the number of operations to perform in a typical case,1 we consider

the following numbers:

different words per page n = 1000

different words per block nb = 100

number of blocks b = 21

number of articles a = 7

4.1 Indexing, Weighting and Similarity Matrix computation complexity

In indexing, when we parse the lists of the indexed terms, we obtain b vectors with the

frequency of the terms. Each vector has only a number of elements equal to the number of

different words in the single block, that is much less than n; we have no need to allocate space

for the missing terms, since we already know that their frequency is 0. In the worst case each

block has n different words. In the best case each word appears just in one block and the

number of different words in a block is
n

b
. Usually, each block has more or less n

10 different

terms with base indexing and the ratio is even smaller with stopword and bigram indexing.

The exact complexity of the indexing is out of the scope of the current presentation.

In weighting, one computes the weight of terms recurring in a given block, as the other

terms have a weight of 0. The weight is computed according to Equation (1). From the

indexing step we already know freqi,j for every i, j and the number of blocks b, but we still

have to compute the maximum frequency present in each block, and the number ni of blocks

in which the term ki appears. Both operations can be performed during the same cycle by

considering all the frequency vectors, which lead to a worst case complexity of O(b × n). If
1We talk of typical case, to avoid confusion with the well-known average complexity concept.

24



Aiello & Pegoretti Article Clustering

each block has
n

b
elements, we have O(

n

b
× b ) = O (n) operations. In the typical case, the

number of operations is: 100× 21 = 2100 operations. As for the idfs values for all the terms,

these are constant and can be computed in o(n). For the typical case, assume a logarithm

and a division need 3 operations, then we have a total of 3×n operations = 3000 operations.

Finally, the computation of the weights is simply a division and a product, that is, O(n× b)

in the worst case, O(n) in the best case and 2100 × 2 = 4200 operations in the typical case.

In summary, for weighting we have

O(b× n) + O(n) + O(b× n) = O(b× n) worst case

O(n) + O(n) + O(n) = O(n) best case

2100 + 3000 + 4200 = 9300 op typical case

In computing the similarity matrix, one computes the similarity between all the pairs of

blocks. One notices that the similarity matrix is symmetric, thus the number of computations

is only half of the size of the matrix’s size. The formula to compute the similarity is Equa-

tion (2). In the worst and best case, each vector contains all n words of the article yielding

a complexity of O(n). In the typical case, some terms will be missing in both blocks. The

experimentation showed that one usually compares blocks with no more than 10 common

terms. The norms of the vectors are constant through all the operations, so we can calculate

them just once for each vector. These can be computed once by performing n products plus

a sum and a division, yielding the complexity of O(n) for the worst case, O(
n

b
) for the best

case, and 10+1+1 = 12 operation for the typical case. As for the computation of the norms,

in the worst case the vector has n elements, thus, we have to compute n squares, n sums, and

a square root for a total of O(bn) operations. In the best case, each vector has
n

b
elements so

the we have O(
n

b
× b) =O(n). In the typical case, we have 100 elements, thus, 201 operations

per block. In summary, for weighting we have

O(
b(b− 1)

2
× n) + O(n× b) = O(b2 × n) worst case

O(
b(b− 1)

2
×

n

b
) + O(

n

b
× b) = = O(b× n) best case

21× 20

2
× 21 + 201× 21 = 6741 op typical case

25



Aiello & Pegoretti Article Clustering

4.2 Simple clustering complexity

To compute the connection graph one needs to compare each element of the similarity matrix

with the threshold value. Since the number of elements in the similarity matrix is
b(b− 1)

2
,

the cost is O(b2). In Figure 20, the total complexity of the simple clustering algorithm is

reported.

Simple clustering complexity

phase Worst Case Best Case Typical Case

Weighting O(b× n) O(n) 9300

Similarity matrix O(b2 × n) O(b× n) 6741

Connection graph O(b2) O(b2) 289

Total O(b2 × n) O(b2 + b× n) 16300

Figure 20: Simple clustering complexity.

4.3 Comparative Clustering complexity

In the comparative clustering, the computation of the connection graphs is more expensive,

as several cycles are necessary. In the worst case, all the blocks make up a single article and

each block has n distinct words.

To connect all the b blocks we have to discover b−1 edges, so we have to use the first b−1

best values in the similarity matrix. Suppose we set in each iteration the maximum value to

an infinite minimum value, so each time we have to check all the
b(b− 1)

2
terms to find the

maximum. In total
b(b− 1)

2
× b(b − 1) operations are required. If we sort the values in the

matrix (e.g., in time O(
b(b− 1)

2
× log

b(b− 1)

2
) with a quicksort) this operation has no cost.

It is easy to prove by induction that at the end of the process, independently of the order in

which the connections have been discovered, we have to check
b(b− 1)

2
×

b(b− 2)

2
similarities

between blocks, due to the checks made by the Comparison Clustering. In summary, the total

26



Aiello & Pegoretti Article Clustering

cost with or without a quicksort respectively is:

O(
b(b− 1)

2
× (b− 1) +

(b− 1)(b− 2)

2
) = O(b3)

O(
b(b− 1)

2
× log

b(b− 1)

2
+

(b− 1)(b− 2)

2
) = O(b2 × log (b2))

In the best case, we have no connection between the blocks and
n

b
elements in each vector.

The cost is simply the one of finding the best value in the similarity matrix. If we use

quicksort, the price of its cost is compensated by the fact that we know at no cost whether

the maximum value is smaller than the threshold or not. In summary, the total cost with or

without a quicksort respectively is:

O(
b(b− 1)

2
) = O(b2)

O(
b(b− 1)

2
× log

b(b− 1)

2
) = O(b2 × log (b2))

In the typical case, with 21 blocks in 7 articles and 3 blocks per article, referring to CCA

algorithm presented in page 10, we have:

step 1 0 operations

step 2
b(b− 1)

2
= 210 operations

step 3 210 operations

step 4 1 operation

step 5 1 operation

step 6 1 operation

step 7 0 operations

step 8 0 operations

Step 3 to 6 are repeated for the 7 articles, plus the initialization operation. In total, we have

2961 operations. Notice that, using a sorting algorithm, one would have 3038 operations, so

in the typical case there is no practical advantage to use sorting and in fact we do not use

sorting.

In Figure 21, the total complexity of the comparative clustering algorithm is reported.

4.4 Agglomerative clustering complexity

In the agglomerative clustering algorithm, the weights and the similarity matrix are computed

several times during one run. We do not give here all the details to compute the complexity

27



Aiello & Pegoretti Article Clustering

Comparative clustering complexity

phase Worst Case Best Case Typical Case

Weighting O(b× n) O(n) 9300

Similarity matrix O(b2 × n) O(b× n) 6741

Connection graph O(b3) O(b2) 2961

Total O(b2 × n + b3) O(b2 + b× n) 19009

Figure 21: Comparative clustering complexity.

of each step of the algorithm, rather, we summarize the results:

Step Total number of operations

Read frequency vector n

Compute idfs 2× n

Compute weights 2× n

Compute sim. matrix
2(b− 1)3 − 6(b(b− 1)2)− (b− 1)2 + 6b2(b− 1)− 2(b− 1)

12

Best value search
2(b− 1)3 − 6(b(b− 1)2)− (b− 1)2 + 6b2(b− 1)− 2(b− 1)

12
Vector merge n

Then, for the worst case, we have that computing the weights has a total cost of O(b2×n), the

cost for the similarity matrix is O(b3×n+b2×n2), O(b3) is for best value search and O(b×n)

is for merging vectors. For the best case, the situation is analogous, except that the vectors

have size
n

b
, which yields values of O(n), O(b × b), O(b2) and 0 for weighting, computing

the similarity, searching for the best value and vector merging, respectively. Finally, for our

typical case we have the following situation:

Step Total number of operations

Read frequency vector 29.400

Compute idfs 30.000

Compute weights 58.800

Compute similarity matrix 47.235

Best value search 1486

Vector merge 140

28



Aiello & Pegoretti Article Clustering

Summarizing,the worst and best case complexity of the agglomerative clustering algorithm

are reported in Figure 22, together with the typical case.

Agglomerative clustering complexity

phase Worst Case Best Case Typical Case

Weighting O(b2 × n) O(n) 118200

Similarity matrix O(b3 × n) O(b× n) 47235

Best value search O(b3) O(b2) 1486

Merging O(b× n) 0 140

Total O(b3 × n) O(b2 + b× n) 167061

Figure 22: Agglomerative clustering complexity.

4.5 Discussion

The three algorithms have all polynomial complexity, though there is a strict increase in

worst case complexity, going from the simple algorithm to the comparative clustering one,

and finishing with the agglomerative clustering algorithm. In Figure 23, we summarize the

complexity of the three algorithms. One also notices that the best case cost is the same for

all the three, and in particular, it is the cost of the computation of a single similarity matrix.

Algorithms’ complexity

Algorithm Worst Case Best Case Typical Case

Simple Clustering O(b2 × n) O(b2 + b× n) 16300

Comparative Clustering O(b3 + b2 × n) O(b2 + b× n) 19002

Agglomerative Clustering O(b3 × n) O(b2 + b× n) 167061

Figure 23: Summary of the time complexity results.

The typical case gives us an indication of the fact that simple clustering and comparative

have similar cost, on the other hand, agglomerative clustering is typically very expensive.

The Agglomerative Clustering cost is one order of magnitude higher than the others, due to

the iteration of the weighting step and of the computation of the similarity matrix.

29



Aiello & Pegoretti Article Clustering

4.6 A note on execution times

The execution times on the pages of the data-set confirm the theoretical complexity results of

the previous section. In Figure 24, we show the execution times in milliseconds of the three

algorithms using the three different indexing strategies implemented in Perl on a standard

PC equipped with Pentium 4 2400 with 256 MB of RAM memory, running the Windows

XP operating system. The times represent the average wall clock time of the execution of

the algorithms on all the data-set excluding the pre-indexing step which is the same for all

algorithms.

Algorithms’ execution times

indexing strategy base stopword bigram

Clustering Algorithm

simple (SCA) 70 48 43

comparative (CCA) 72 49 45

agglomerative (ACA) 444 291 286

Figure 24: Execution times in milliseconds for the three algorithms.

One notices that the simple and comparative clustering are very close in execution times

and that the agglomerative one is significantly slower. Using the base indexing slows down

computations as there are more words to compare, i.e., the vectors are bigger. The stopword

and bigram strategies are similar with respect to execution time.

In summary, we may conclude that the execution times are low, all below the second, and

make the approach feasible for use as part of a document understanding systems.

5 Conclusions

Newspapers are a hard test for document understanding systems as they usually have a high

number of document elements, several independent articles scattered on the same page and

layouts which are not standardized and not geometrically simple.

We introduced three algorithms to attack the article clustering problem within real news-

paper pages. The three algorithms are based on text processing techniques and differ in

their last step, that is, in the way the aggregation of blocks into articles is performed. The

experimentation, though performed on a small collection of pages, has shown how the per-

30



Aiello & Pegoretti Article Clustering

formance of the algorithms does not differ much. In particular, the best results for each test

(obtained sometimes with the stop indexing and sometimes with the bigram indexing) differ

from another for few percentage points. For instance, in the Best Result tests Agglomerative

Clustering with bigram indexing obtained a WHM value of 75.74%, while Simple Cluster-

ing obtained with stop indexing a WHM of 73.34% and Comparative Clustering with stop

indexing obtained a WHM of 73.23%. If the performance of the three algorithms is not so

significant, the difference in complexity is significant. All algorithms are polynomial, but the

worst case complexity is one degree less for the simple clustering algorithm.

The absolute values of the performance of the algorithms are in the 70% range. These

values, which may appear good, but not outstanding, should be considered in the context of

a whole document analysis architecture, where our algorithms are a component of a larger

system. Just as in [Aiello et al., 2002] the text processing component worked together with

a spatial reasoner to identify unique reading orders from documents, a system for newspaper

page understanding would have a document clustering component based both on natural

language and on spatial clues.

Systems to analyze documents are commercially available. For instance, Textbridge

(http://www.scansoft.com/textbridge) correctly handles most newspaper pages where ar-

ticles are divided into blocks, but where blocks of the same article are spatially contiguous.

The algorithms we propose could complete such a system to perform understanding of news-

paper pages with articles whose blocks are scattered on one page.

The results presented in this article open a number of issues for future investigation. First,

one may want to consider larger newspaper collections in languages different from Italian. The

techniques used are independent of Italian and our implementation can be easily ported to

other languages. Second, one may attempt to consider all the articles in the same newspaper,

not only on the same page. It is often the case (especially on the first page) that the same

article goes from one page to one or more following ones. Third, one may investigate the

result of combining text processing with spatial clues to perform article clustering.

We have shown how article clustering can be effectively performed using text processing

techniques and in particular we may conclude, as it has been often concluded in dealing with

Information Retrieval problems, that ‘simple is beautiful’. The simple clustering algorithm

performed after having simply removed stop words has a high performance rate while keeping

a low computational complexity.

31



Aiello & Pegoretti Article Clustering

Acknowledgments

We thank Enrico Blanzieri, Bernardo Magnini, Christof Monz, and Emanuele Pianta for

comments and discussion on the topic, in addition, Emanuele offered valuable support with

the tools described in [Tonella et al., 2004]. Pegoretti thanks the Department of Information

and Communication Technologies of the University of Trento for the support while completing

his ‘Tesi di Laurea Triennale’ in Computer Science.

References

[Aiello, 2002] Aiello, M. (2002). Document image analysis via model checking. AI*IA Notizie,

XV(1):45–48.

[Aiello et al., 2002] Aiello, M., Monz, C., Todoran, L., and Worring, M. (2002). Document

Understanding for a Broad Class of Documents. International Journal of Document Anal-

ysis and Recognition IJDAR, 5(1):1–16.

[Aiello and Smeulders, 2004] Aiello, M. and Smeulders, A. (2004). Thick 2D Relations for

Document Understanding. Information Sciences. To appear.

[Allen, 1983] Allen, J. (1983). Maintaining knowledge about temporal intervals. Communi-

cations of the ACM, 26:832–843.

[Baeza-Yates and Ribeiro-Neto, 1999] Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern

Information Retrieval. Addison Wesley.

[Balbiani et al., 1998] Balbiani, P., Condotta, J., and Fariñas del Cerro, L. (1998). A model

for reasoning about bidimensional temporal relations. In Cohn, A., Schubert, L., and

Shapiro, S., editors, Proceedings of the 6th International Conference on Principles of

Knowledge Representation and Reasoning (KR’98), pages 124–130. Morgan Kaufmann.

[Cesarini et al., 1998] Cesarini, F., Gori, M., Marinai, S., and Soda, G. (1998). Informys: A

flexible invoice-like form-reader system. IEEE Transactions on PAMI, 20(7):730–746.

[Dengel and Dubiel, 1997] Dengel, A. and Dubiel, F. (1997). Logical labeling of document

images based on form layout features. In Proceedings of the 1997 Workshop on Document

Image Analysis, DIA’97, pages 26–31, Ulm, Germany.

32



Aiello & Pegoretti Article Clustering

[Klink et al., 2000] Klink, S., Dengel, A., and Kieninger, T. (2000). Document structure

analysis based on layout and textual features. In Proceedings of Fourth IAPR International

Workshop on Document Analysis Systems, DAS2000, pages 99–111, Rio de Janeiro, Brazil.

[Lee et al., 2000] Lee, K., Choy, Y., and Cho, S. (2000). Geometric structure analsysis of

document images: A knowledge approach. IEEE Transactions on PAMI, 22(11):1224–

1240.

[Li and Ng, 1999] Li, X. and Ng, P. (1999). A document classification an extraction system

with learning ability. In ICDAR’99, pages 197–200, Bangalore, India.

[Palmero and Dimitriadis, 1999] Palmero, G. S. and Dimitriadis, Y. (1999). Structured docu-

ment labeling and rule extraction using a new recurent fuzzy-neural system. In ICDAR’99,

pages 181–184, Bangalore, India.

[Pegoretti, 2004] Pegoretti, A. (2004). Clustering of article blocks in newspaper pages.

Master’s thesis, Univ. of Trento. Available from http://dit.unitn.it/~aiellom/

tesiSvolte.html.

[Tonella et al., 2004] Tonella, P., Ricca, F., Pianta, E., and Girardi, C. (2004). Using keyword

extraction for web site clustering”. In Proc. of WSE 2003, 5th International Workshop on

Web Site Evolution.

[Tsujimoto and Asada, 1992] Tsujimoto, S. and Asada, H. (1992). Major Components of a

Complete Text Reading System. Proceedings of the IEEE, 80(7):1133–1149.

[Walischewski, 1997] Walischewski, H. (1997). Automatic knowledge acquisition for spatial

document interpretation. In Proceedings of the 4th ICDAR’97, pages 243–247, Ulm, Ger-

many.

33




