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Abstract

The goal of our research is to provide techniques that can assess and vali-
date the results of SVM-based analysis of microarray data. We present prelim-
inary results of the effect of mislabeled training samples. We conducted several
systematic experiments on artificial and real medical data using SVMs. We
systematically flipped the labels of a fraction of the training data. We show
that a relatively small number of mislabeled examples can dramatically de-
creases the performance as visualized on the ROC graphs. This phenomenon
persists even if the dimensionality of the input space is drastically decreased,
by using for example feature selection. Moreover we show that for SVM re-
cursive feature elimination, even a small fraction of mislabeled samples can
completely change the resulting set of genes.

This work is an extended version of the previous paper [MBN04].

1 Introduction

Gene-expression microarrays make it possible to simultaneously measure the rate at
which a cell or tissue is expressing (translating into a protein) each of its thousands
of genes. One can use these comprehensive snapshot of biological activity to infer
regulatory pathways in cells, identify novel targets for drug design, and improve
the diagnosis, prognosis, and treatment planning for those suffering from disease.
The amount of data this new technology produces is more than one can manually
analyze. Thus, applying data mining techniques is necessary. However, while data
mining techniques are proved successful for business applications, gene expression
data sets have characteristics rather different from those of business data sets. We
observe three key issues: high dimensionality, small sample size, and noise.
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2 A. Malossini, E. Blanzieri, R. Ng

• The dimensionality of the data, p, can be very high. In the human genome,
there are at least 20,000 genes. And in the human body, there are more than
a million proteins. Thus, for one patient, there can quite easily be over 50,000
pieces of data.

• The number of samples, n, can be small (relative to typical business applica-
tions). For many biomedical and pathology studies, 40-80 patients are con-
sidered decent-sized. Sample sizes in the order of hundreds are less common.
There are a number of reasons why this is the case. First, data acquisition
itself may be very expensive. While microarray costs are decreasing, other
costs (e.g., wet laboratory cost for micro-dissection of tissues) remain high.
For instance, the cost associated with one patient can very easily exceed 10,000
Euros. Money aside, the second reason is that for many diseases, there are
simply not enough patients available. One prime example is early stage lung
cancer (e.g., carcinoma-in-situ). Because early stage lung cancer is very hard
to detect by normal pathological means (e.g., x-rays), we do not know of any
medical research center in the world which has a database of such patients
exceeding 100. Finally, the third reason is that even if the patients are there,
many of them or their families may not want to participate in research studies.

• Biomedical data can be very noisy. One reason is that data may be acquired
in laboratory environment, which sometimes can be hard to keep unchanged.
Another reason is that making diagnostic decisions (e.g., grading a biopsy) is
not completely objective or black-and-white. For the same medical condition,
there may be different gold-standards, which could lead to different decisions.
Thus, robust techniques are very important.

Recently a state-of-the-art classification method, Support Vector Machine [CV95]
has been used successfully in microarray data analysis [Gea99, Fea00, Val02, LL03,
Sea04]. Unfortunately microarray data sets are characterized by the huge dimen-
sionality of the input space p (which comprises thousands of genes) versus the
extremely low number n of training samples (usually of the order of tens) as shown
in Table 1. In such cases, a small error in the training set could result in a really
poor-performance classifier.

The goal of our work is to assess the reliability of the results obtained by SVM
techniques on microarray data. Here we present preliminary work that considers
mislabeled training samples as a possible source of unreliability.

2 Is the SVM reliable for microarray data sets?

Initially, we started to investigate the problem of mislabeled samples on an artificial
dataset and assess the performance of the classifier.

We generated a two-class classification problem with an input space of p = 2000
features. The first class, labeled with “-1”, is sampled from a multivariate normal
distribution with µ = 0 and Σ = 3 · I, where I id the identity matrix. The second
class, labeled with “+1”, is distributed as the first class except for 20 features
where the component of the mean is µi = 3 and Σ = I. This procedure has been
adopted in order to simulate the differential expression of a limited number of genes.
Sampling from the distributions described above, we generated a series of training
sets with n = 10, 20, 30, 40, 50, 100, 200 elements and a test set of 100 elements.
Each training set and test set has half of the elements labeled as “+1” and half
labeled as “-1”, i.e. is balanced. For each training set we trained 5 different SVM
classifiers. One on the unmodified training set, and the other 4 on the training set
with different percentage of label flipping. We trained the SVM on the training set
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Source n p p after
feature

selection
West et al. [Wea01] 49 7129 -
Golub et al. [Gea99] 38 6817 -
Vapnik et al. [Vea02] 38 6817 16
Alon et al. [Aea99] 62 2000 -
Alizadeh et al. [Aea00] 96 4026 -
Ramaswamy et al. [Rea03] 76 16063 -
Furlanello et al. [Fea03] 76 16063 315

Table 1: Number of features p and number of available samples n in microarray
data analysis literature ( “-” means no feature selection is performed in the paper).

and then we randomly flipped the labels of a fraction of the training set and trained
other SVMs. We used the standard value for the regularization parameter C = 1,
which measures the trade-off between error and complexity. We performed the
flipping on the original training set for percentages of {5, 10, 15, 20}% (the number
of flipping has been truncated to an integer). For each classifier we calculated the
accuracy on the test set. For each experiment identified by a value of n and a
flipping percentage, the entire procedure has been repeated 20 times and mean and
variance of each classifier’s accuracy has been calculated.

To visualize the performance of each classifier obtained we used a boxplot. In
Fig. 1 we show the results of the simulation for different percentage of label flipping
for a training set of 20,30,40,50,100,200 elements respectively. We can note that
that with only 10% of flipping the difference between the unflipped and flipped
accuracy’s classifiers is about 0.1 (i.e. 10% difference in accuracy). By incrementing
the number of training samples, the variance decreases but there is still a difference
in accuracy. In Fig.2 we show two examples of non-linear SVM classifiers, using a
polynomial kernel of degree 2 and a radial basis kernel. The effect of the flipping is
still there and in it is more accentuate.

The problem of overfitting which arises when the number of features is much
greater than the number of training samples can be lowered by reducing the number
of features. Some wrapper techniques for feature selection involving SVM have been
developed (e.g. the Recursive Feature Elimination (RFE) [Vea02], E-RFE (entropy-
based feature elimination) [Fea03]), which have been used to reduce the number of
features as shown in Tab. 1.

In Fig. 3 we show the effect of reducing the number of features from 2000 to 200,
but including all the important features which permits to separate the two classes.
Notice that even if the number of features is low, p = 200, given a low number of
samples, the effect on the the accuracy of the mislabeled classifiers is still present
despite the classifiers generated have good absolute accuracy.

Since a real dataset is far more complex than the synthetic data we generated,
we tested the procedure on a real biological dataset, a human breast cancer dataset
from [Wea01], which included 49 samples, 24 marked as ER+ and 25 marked as
ER-. We built randomly two training sets of 20 and 30 elements and test the
SVM classifier on a disjoint random test set of 19 samples. In Fig. 4 we show
the results on the Breast Cancer dataset using the SVM and randomly flipping a
percentage of the original labels. Again with 10 % of flipping the resulting classifier
has an lower accuracy (about 0.1) than the unflipped classifier. This means that
only 2 or 3 wrong labels suffice to have a sensible degradation of the accuracy.
Class prediction is not the only purpose of SVM application in microarray data
analysis. In fact SVM is used for discovering of important genes by using feature
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Figure 1: Boxplots of the accuracy of the SVM classifiers. An incremental per-
centage of random flipping of the labels is performed and the SVM tested on a
100-samples unflipped test set.
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(a) A polynomial kernel of degree 2 is used in the
SVM classification.
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(b) . A radial basis kernel is used in the SVM
classification

Figure 2: Boxplots of SVM classifiers for some non-linear kernels. Artificial dataset
of 2000 features and 20 training samples.
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Figure 3: Boxplot of SVM classifiers. An incremental percentage of random flipping
of the labels is performed and the SVM tested on a 100-samples unflipped test set.
Each experiment is repeated 20 times.
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Figure 4: Boxplot of SVM classifiers for the breast cancer dataset. An incremental
percentage of random flipping of the labels is performed and the SVM obtained
tested on a 19-samples unflipped test set. Each experiment is repeated 20 times.
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selection [Gea99, Vea02, Fea03]. In Fig. 3 we reduced the number of features from
2000 to 200 but including all the relevant features. In real data sets we do not know
which are the important features, hence mislabeling could also affect the outcomes
of a feature selection procedure. If in the training set there are some mislabeled
patterns, these misleading information will propagate through the feature selection
procedure so we expect, finally, to get a different set of important features (genes).
For investigating this effect we tested the recursive feature elimination [Vea02] on
the Breast Cancer dataset with percentage of flipping of 5 % and 10 %. As shown in
Table 2, only 5 genes over 32 are common to the final pool of genes in the unflipped
and 10 % flipped cases. Moreover the ranking is completely different. For a 5 % of

Rank 0 % of flipping 5 % of flipping 10 % of flipping
1 X03635 at U81984 at L38608 at
2 X55037 s at • M23263 at U39840 at
3 U57650 at U77665 at X59131 at
4 M23263 at X65977 at M33493 s at
5 M26311 s at M61853 at U09196 at
6 L43366 at U67963 at M13699 at
7 X91220 at • M62403 s at U68019 at
8 U39817 at X03656 rna1 at • M23263 at
9 U96113 at HG742-HT742 at • D38550 at
10 M62403 s at U41060 at X65977 at
11 U05340 at • D63485 at • Z29083 at
12 X58072 at Z49878 at X86681 at
13 L20860 at D26599 at L77864 at
14 X57351 at X69636 at M60614 at
15 D63485 at • X03635 at • X58072 at
16 D45906 at HG3105-HT3281 s at L23333 s at
17 U32907 at U78180 at S38953 s at
18 U46746 s at J04056 at X98260 at
19 D38550 at X95677 at M35851 s at
20 U61232 at • U62325 at D38500 at
21 U63455 at • U57650 at D79988 at
22 U21931 at • U05340 at U57093 at
23 M83652 s at D16105 at X95826 at
24 U27193 at M29877 at M64347 at
25 U62325 at HG3543-HT3739 at U81984 at
26 U34044 at U60319 at D28124 at
27 J03910 rna1 at D78586 at X74262 at
28 Z29083 at L20591 at • L43366 at
29 X16866 at X90840 at X06323 at
30 L38932 at J03827 at U03886 at
31 U68385 at J03242 s at D79994 at
32 X63578 rna1 at • U61232 at HG3123-HT3299 at

Table 2: Lists of genes selected by SVM-RFE from the Breast Cancer data set with
growing percentage of flipping, respectively 0 %, 5 % and 10 %. The genes indicated
with a • are present also in the list of genes selected from the unflipped data set.

flipping (in our case about 3 mislabeled samples over 49) there are only 8 common
genes. We repeated 20 times the recursive feature elimination on Breast Cancer
data by flipping randomly a 10 % of the labels. In Table 3 is shown the genes with
higher frequency of presence in the final lists of 32 genes each one. Only 4 genes
are present in at least 10 of the selected pools. The others are not in the selected
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Gene Frequency
X03635 at 18
M23263 at 16
X55037 s at 16
X58072 at 10
U41060 at 9
U32907 at 9
L43366 at 8
U79293 at 8
U96113 at 8
U62325 at 8
Z29083 at 8
D38550 at 7
U57650 at 7
X16866 at 7
M65062 at 6
U05340 at 6
M26311 s at 6
M62403 s at 6
U21931 at 6
D82343 at 5
HG3400-HT3579 at 5
D38437 f at 5
M26061 at 5
U46746 s at 5
X65977 at 5
AF000234 at 4
D26135 at 4
D50370 at 4
D63485 at 4
X91220 at 4
X98834 rna1 at 4
(Other) 417

Table 3: Genes that appear with higher frequency in the list of selected genes in 20
repetitions of SVM-RFE from Breast Cancer data set with 10 % of flipping.

list in the majority of the repetitions. Hence the effect of a 10 % of label flipping
on the RFE procedure is to produce a very variable set of selected genes.

In real data set however, the situation is much more complicated than the relative
simple situation described in the synthetic data set. Correlation between genes and
the much higher variability of the expression values, surely play a crucial role for
the sensitivity of SVM to mislabeled samples.

3 Conclusion and future work

We presented the results of experiments on artificial and medical data aimed to
assess the sensitivity of SVM classification and feature selection with respect to
mislabeled training samples. This is a preliminary step toward the definition of
new techniques devoted to evaluate the reliability of the use of SVM for analysis
of microarray data. Obviously, scientists should guarantee the quality of the data
they use for their research, however, our results show that the robustness of this
approaches can be a critical issue. It seems crucial now to take care of this source of
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error because neither by increasing the number of training samples or decreasing the
number of features is a good recipe to increase the performance of a SVM classifier.
A statistical/computational method for detecting and solving such problem should
be developed because the microarray analysis based on SVMs is wide-spreading in
the scientific community.
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