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Abstract

In this paper we examine the well-known magneto-quasistatic eddy current model for
the behaviour of low-frequency electromagnetic fields. We restrict ourselves to formula-
tions in the frequency domain and linear materials, but admit rather general topological
arrangements.

The generic eddy current model allows two dual formulations, which may be dubbed
E-based and H-based. We investigate so-called hybrid approaches that combine both for-
mulations by means of coupling conditions across the boundaries of conducting regions.
The resulting continuous and discrete variational formulations will be discussed. It is wor-
thy to note that for this approach no difficulties arise from the topology of the conducting
regions.

Keywords. Time-harmonic eddy current problems, hybrid formulation, mixed finite
element approximation.
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1 Introduction

The typical setting for an eddy current model distinguishes between a bounded conducting
region Q¢ C R? and its complement, the non-conducting region Q! := R3 \QC, which is also
referred to as “air region”. Here we assume that all bounded domains are curvilinear Lipschitz
polyhedra in the parlance of [18]. In addition, for the sake of simplicity both Q¢ and Q' are
assumed to be connected, so that T' := 9QC consists of only one connected component (the
general case can be treated as in [6]).

The spatio-temporal evolution of the electromagnetic fields and currents E,H, B, D, J is
governed by Maxwell’s equations. The interaction with matter is modelled through material
laws. In what follows we will only deal with linear materials, for which the material laws
become

B=pH , D=€kE , J=0cE+J..

Here p is the magnetic permeability, € the dielectric tensor, and o stands for conductivity,
and J. is a generator current [26]. Physics teaches that p and € have to be uniformly positive
definite symmetric 3 x 3-matrices, whereas o vanishes in Qf, but is supposed to be symmetric
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and uniformly positive definite inside Q€. All the material parameters are functions of the
spatial variable x only. Under these circumstances time-harmonic excitations will imply the
same harmonic dependence on time of all quantities. In short, we can switch to the frequency
domain and end up with linear equations connecting complex amplitudes (phasors) of elec-
tromagnetic fields. From now on, the temporal behaviour of all fields will be assumed to be
time-harmonic with a fixed angular frequency w # 0. Moreover, all symbols for field quantities
will refer to complex amplitudes.

In many situations the full Maxwell’s equations can be traded for simplified models that
still offer a sufficiently accurate description of electromagnetic phenomena. The most popular
among these simplified models is the so-called eddy current model. Formally, it can be derived
from Maxwell’s equations by setting € to zero. Physically speaking, this amounts to completely
neglecting the electromagnetic energy contained in the electric field E. As a consequence, the
propagation of electromagnetic waves is suppressed. Therefore, the eddy current model is
rated as magneto-quasistatic. Another consequence of € = 0 is that no space charges can
occur.

A crude criterion for the applicability of the eddy current model relies on the following
non-dimensional problem parameters being very small

LlwlvVer <1 and |wlea ' < 1.

Here, an overline marks “typical values” of the material parameters and L stands for the
diameter of Q°. In addition, all geometric details of Q¢ have to be of scale L. A qualitative
discussion can be found in [19] and an aymptotic analysis in terms of w is given in [1] and [7].

The following strong transmission formulation of the eddy current model can be directly
obtained from Maxwell’s equations: it comprises Faraday’s law

curlEc = —iwpHce in QY | curlEr = —iwpH; in Q) (1)
and a reduced Ampere’s law
curlHe = 0Ec +Jec in Q' |, curlH;=J.; inQf. (2)

(Here and in the sequel we denote by v, the restriction of v to QF, L = I, C.) These have to
be complemented by requiring the characteristic tangential continuity of E and H across the
boundary T of Q¢:

Ecxn—E;xn=0 , Hoxn—-H;xn=0 onl, (3)

where n denotes the unit normal vector on I' pointing towards Q. Compliance with Ampere’s
law (2) entails

divJ.; =0 inQ" |, /Lfnwzo. (4)
I

Putting it differently, J. ; has to be compatible with vanishing space charges.
Obviously, we cannot expect a solution for E to be unique, because it can be altered by
any gradient supported in Q! and will still satisfy the equations. Imposing the constraints

div(eE;) =0 inQf | /eEI -ndS =0, (5)
r



will restore uniqueness of the solution for E. Please note that (5) represent gauge conditions
in the sense of [28], that is, a recipe for selecting a representative of an equivalence class that
is obtained as a solution of the basic model. It might sound odd that the electric field is
subjected to gauging. Yet, recall that in the case of the eddy current model in the frequency
domain no distinction can be made between a suitably chosen magnetic vector potential A
and the electric field in Q. We point out that the gauge (5) is particular, as it selects a
meaningful electric field that makes all space charges vanish in Q.

Remark 1.1. A fundamental difference of the eddy current model and the full Maxwell’s
concerns the broken symmetry between E and H. This is clearly reflected by the above-
mentioned non-uniqueness of E, and also by the fact that H has to satisfy the algebraic
constraint curlH; = J, 1 in Of. AN

The discrete models investigated in this paper will be based on finite element techniques.
They can only be applied on bounded computational domains. Therefore, we introduce an
artificial computational domain Q C R3, which is to be a box containing ﬁc, and we now

set Qf := Q\ QY. This approach is justified in light of the decay properties of the fields [7,
Proposition 3.1]

H(x) = O(]x|?) , E(x)=0(x|"?) for|x|—oco.
On 992 homogeneous boundary conditions for either H or E are imposed: below we demand
Hxn=0o0nod.
This implies another compatibility condition for J. 7, namely
Jer-n=0 onodQ, (6)
and another gauge condition
€eE;-n=0 ondQ. (7)

(therefore, due to the divergence theorem, in (4) and in (5) the integral condition on I' can
be dropped).

This cut-off technique is widely used in engineering and will lead to moderate errors
provided that 0 is sufficiently far from Q€ and the support of J el

Let us introduce some notation. As usual, we denote by H*(Q2) or H*(99), s € R, the
Sobolev space of order s of real or complex measurable functions defined on 2 or 012, respec-
tively. If ¥ C 99 we denote by H&,E(Q) the subspace of H!(f2) consisting of those functions
¢ satisfying gz, = 0. As usual Hj(Q) := Hp 5(Q)-

Given a differential operator D in the sense of distributions and a generic domain Q C R3,
we will consider

H(D,Q) := {u € L*(Q) | Du € L*(Q)},
H(D0,Q) :={u € H(D,Q)|Du =0},

Hilbert spaces equipped with the graph norm. Particular examples are H(curl;Q) and
H(div; ), see [21, Ch. 1]. If ¥ C 99Q, by H 5 (curl; 2) we denote the subspace of H (curl; £2)



of those functions v satisfying (v x n)x, = 0. We set Ho(curl; ) := Hgpq(curl; Q). We also
recall the trace space for H(curl; Q)

H 2(divp,T) := {v x n|v € H(curl; Q)} ,

see, e.g., [16], [2], [14]. For ease of reading, in the sequel we always express duality pairings
by (surface) integrals.

The plan of the paper is as follows. In Sect. 2 we present the two dual formulations of
the eddy current problem that emerge by retaining either H or E as principal unknown. In
Sect. 3 we elucidate the main idea of hybrid coupling in the case of scalar second-order elliptic
problems. This idea, in two different versions, will be applied to the eddy current problem in
Sections 4 and 5. Appropriate finite element discretizations of the hybrid variational problems
will be also proposed and examined.

2 Omne-field variational formulations

In the H-based model Ampere’s law in Q€ is used to replace E in Faraday’s law. This results
in the following second order differential equation for the magnetic field in the conductor

curl(oc ™ curlHe) + iwpHe = curl(o™'J. ¢) in Q.
In the insulator Ampere’s law and the magnetic form of Gauss’ law are considered:
curlH; =J.;, div(pH;)=0  in Q.

Concerning the transmission conditions for the magnetic field across I" we impose the tangen-
tial continuity of the magnetic field H and the normal continuity of the magnetic induction
pH. For an interface of general geometry these two conditions are insufficient to determinate
uniquely the magnetic field and the following non local transmission condition must be also
imposed (see [5]):

/iwuHI-pl-I—/[O'_l(curlHC—Je,C)] xn-p,=0 Vli=1,...,p,
Qf r

where p = B1(Q!), the first Betti number of Q, and p; are the basis functions of the finite
dimensional space of harmonic fields

H, (0 T) == {vy € (L*(Q1))?| curlv; = 0,div(pvy) = 0,
vixn=0 ondQ,uvi-n=0 onT}.

(8)

In fact, the independent interface conditions implicitly contained in the Maxwell system
are the tangential continuity of both magnetic and electric fields. The normal continuity of
pH, that is a consequence of the tangential continuity of the electric field and Faraday’s law,
is weaker than the tangential continuity of the electric field. For an interface I' of general
geometry it must be strengthened in a suitable way. If the magnetic field H does not satisfy
the non local transmission condition then no electric field exists that satisfies both Ampeére’s
law an Faraday’s law in the whole ).



Hence the H-based formulation of the eddy current problem reads:

curl(oc ! curlHe) + iwpHe = curl(o1J, ¢) in Q¢

curlH; =J.; , div(pHr) =0 in Qf

H; xn=0 on 0f)

[iwpHr - p + [[eHeurlHg —J. o) xn-p, =0 Vi=1,...,p 9)
Qf r

pHr-n—pHe-n=0 onT
Hxn—Hgxn=0 onl.

In order to obtain the weak formulation of (9) one introduces the Hilbert space of complez-
valued vector functions

VO .= {v € Hy(curl;Q) | curlv; = 0 in Q'} .
and the space
Vel .= {v € Hy(curl; Q)| curlv; =J 1 in QI} .
The H-based weak formulation of eddy current problem reads (see [10], [5], [9])

([ Find H € Ve guch that:

f (e~ curlHe - curl Ve +iwpHe - Vo) + f iwwpHy -V
< (918 ol (].O)

= [ o7'Jc - curlvg VveVvo,
\ Q¢

The existence and uniqueness of solution of (10) follows from Lax—Milgram lemma since
the bilinear form

a(u,v) := /0'_1 curluc - curlve + /iwp,u-V
Qc Q

is coercive in V0.
We have now to determine the electric field in 2. From Ampere’s law

Ec=o0'curlHe -0 'J. ¢ . (11)
In order to determine E; we must take into account Faraday’s law in Qf
curlE; = —iwpH; in o,

the interface condition
Ecxn—Erxn=0 onl,

and the gauge conditions (5) and (7).
So we must solve:

curlE; = —iwpH; , div(eE;) =0 in Qf

€eE; n=00nd) , E;xn=Egxn onl. (12)



As shown in [5], if the magnetic field H is the solution to (9) and E¢ is given by (11), this
problem has a unique solution.

The other one-field formulation we can consider is in term of the electric field E. Com-
puting the magnetic field from the Faraday’s equation (1) and inserting it in the Ampeére’s
equation (2) one finds

curl(p!curlE¢) + iwoE¢ = —iwd. ¢ in Q¢

curl(p ! curlEf) = —iwJ, s in Qf

Ecxn—E;xn=0 onT (13)
plcurlEc xn—plcurlE; xn=0 onT

pleurlE; xn=0 on 0F) .

Clearly, uniqueness of E; is not guaranteed, and one has to add the gauge conditions (5)
and (7):

div(eE;) =0in Qf | €E;-n=0o0ndf. (14)
Let us now consider the vector space
Z := {z € H(curl;Q) |z satisfies (14)} ,

that is a closed subspace of H(curl; ), therefore a Hilbert space with respect to the scalar
product of H(curl; Q). Therefore the weak formulation reads:

Find E € Z such that:

15
[pleurlE-curlz+iw [ 0Ec Zc = —iw [J. & VzeZ. (15)
Q Qc Q

The proof of the existence and uniqueness of a solution to (15) can be done as in [3],
Theorem 3.1. In fact, it can be proved that the bilinear form

b(w,z) := /p,_l curlw - curlz + jw / owW(C - Zc
Q nc

is coercive in Z. The existence and uniqueness is therefore a consequence of Lax—Milgram’s
lemma.

Remark 2.1. A finite element method for the weak H-based model or the weak E-based
model would have to deal with the constrained space VI« or Z, respectively. Alternatively, an
equivalent saddle-point variational formulation of (10) has been considered in [6], and of (15)
has been proposed in [27] (for a domain of simple topology). Finite element discretizations
are available for both these saddle-point H-based and E-based models. Yet, they invariably
require meshes that are conforming across I'. A

3 Hybrid coupling

There is a general principle underlying the two different formulations of the eddy current
problem presented in the previous section. It is the principle that many second order elliptic



boundary value problems allow two variational formulations that can be viewed as dual to
each other. As in [30] let us consider the standard second order scalar elliptic boundary value
problem

—Au=f imnQ , u=0 ondQ, (16)

for some f € L?(Q). This way to write the boundary value problem is called the primal
formulation. The corresponding dual formulation relies on the first order system

j—gradu=0, divj=—f inQ , u=0 ondQ. (17)

This is sometimes referred to as the mized formulation of (16). Primal and dual formulations
give rise to different variational problems. It is the gist of the hybrid coupling approach
to employ these two variational formulations on different subdomains of a partition of the
computational domain. An important restriction is that the same formulation must not be
used on adjacent sub-domains.

Let us assume that () is partitioned into two connected Lipschitz subdomains QF (“pri-
mal”) and QP (“dual”) such that 0QF N Q = §. Let T be their common interface, with the
unit normal n on T’ pointing into 2P. On QF we resort to the primal variational formulation
obtained from integration by parts applied to (16): seek v € H'(QF) such that

/gradup-gradv—/v gradup-n:/fv Voe HY(QY). (18)
QrF QP
On QP the mixed variational formulation will be used, which emerges from casting the first

equation of (17) into weak form and retaining the second strongly: seek jp € H(div;QP),
uP € L2(QP) such that

[ipz + [divzup + [upz-m = 0 Y z € H(div; QP)
[ divjpq = — [ fq VqeIL*QP)
Qb fo)2]
(remember that n is the unit inward normal vector on T' = 9QP).
Both problems can be linked by the transmission conditions on I':
UP|FZUD|F y gradup-n:jp-n. (20)

We can use these to express the interface terms in both (18) and (19) through quantities
from the other subdomain. Subsequently merging the variational formulations we arrive at
the final coupled problem:

( Find (up,jp,up) € HY(QF) x H(div; 2P) x L?(2P) such that:
[ gradup-gradv — [jp-nv = [ fv VwveHY(QP)
{ Qr I QP
Jupz-n + [ip-z + [divzup = 0 Y z € H(div; QP)
r Qb Qb
[ divipng = — [ fq YqeI*QP).
\ Qb Qb

(21)



Let us denote by B the bilinear form on H'(QF) x H (div; 2P) corresponding to the left-upper
2 x 2 block of (21). The crucial observation is that B itself features a block-skew-symmetric
structure, which involves

B((v,z), (v,2)) = / |grad v|? + / lz?, ve H HYQP), z ¢ H(div;QP), (22)
QP Qp

because the interface contributions cancel. This makes it possible to show that B satisfies an
inf-sup condition on H'(QF) x H(div0; Q). Beware, that this is not straightforward from
(22), because the one-dimensional topological subspace of constants on QF requires a special
treatment. Then the theory of saddle-point problems confirms existence and uniqueness of so-
lutions of (22). Moreover, Galerkin approximations by the standard conforming finite element
spaces for H'(QF), H(div; QP) and L2(QP) will enjoy quasi-optimality [12], [13].

It is important to note that the coupling of the two subdomains in (22) is purely vari-
ational, because none of the transmission conditions (20) shows up in the definition of the
spaces. This makes (22) attractive, if unrelated (“non-matching”) finite element meshes are
to be used on QF and QP, ¢f the rationale behind the so-called mortar finite element schemes
[31].

Figure 1: Example of two subdomains equipped with non-matching grids

To what extent do these considerations apply to eddy currents? The answer lies in the
intimate relationship of the eddy current equations with scalar second order problems: just
look at

—divgradu + ou = f,
curlcurlu + i‘wou f.

In fact, both second-order problems are members of a larger family of problems, for which the
differential operators arise from the so-called exterior derivative in the calculus of differential
forms. In fact, the above boundary value problems just differ in the degree of the differential
form, see [23].

Thus, many of the preceding considerations will also apply to the eddy current problem.
However, new difficulties are introduced due to the non-trivial kernel of curl (compared to
the very simple kernel of grad) along with the fact that o = 0 in parts of .



4 Hybrid E¢/H; formulation

4.1 Variational formulations

In addition to the H-based and E-based models presented before, we want to consider a
primal-dual coupling, in which the magnetic field H; in the air region Q! is an unknown,
while the other one is the electric field E¢ in the conductor Q€. Since for these two vector
fields we need not impose any matching condition on I', we can use non-matching grids in the
finite element scheme we are going to introduce for numerical approximation (see Sect. 3).

The variational formulation is derived as follows: from the first equation in (13), for each
zc € H(curl; Q%) one finds by integration by parts

/,u_l curl E¢ - curlzg + iw / oEc -zc — /,u,_1 curlEc X n-zg = —z'w/Je,c “Zo .
Qc Qc r Q¢
Therefore, from Faraday’s law and from the matching condition for the magnetic field we

have

/u_lcurlEC-curlEC-I—iw/aEC-EC-I—iw/H[xn-i(;:—iw/.]e,c-ic.
T

0c Q¢ 0c

On the other hand, integrating by part the Faraday’s equation in Q' and using the match-
ing condition for the electric field one has

‘I;(AJ/[.LH['V[:—/CUI'IE[-V[:—/Ecxn-V[
Ql ol T

for each test function v; such that curl vy = 0 in Qf and v; x n = 0 on 9.
We have thus arrived at the following formulation:

( Find (E¢, H;) € H(curl; Q) x V*!

[ (p~teurlEc - curlze + iwoEc -Zc) — iw [Zcxn-H = —iw [ Jec-Zc
Qc r Qc
<
—iwa(;xn-VI + w2pr1-V[ = 0
I Ol

| for all zc € H(curl;Q°),v; € V9,

where ;
Vi

and similarly for V?.
Problem (23) is associated to the sesquilinear form

“ti={vs € Ho,ag(curl;QI) | curlvy =J.; in o},

c((we,ur), (zc,vi)) = [ (p !curlwe - curlze + iwowe - Zc)
(918

—iw [Ze xn-ur—iw [we xn-vy+w? [ pur-vr,
T T Qr



which can be seen to be coercive in H(curl; 2¢) x V9. In fact, we have

le((we,ur), (we,up))? = ([ p'eurlwe - curlwe +w? [ pur-1)?
Ol

w2(f owc W —2Re [we x n - uy)?
Qc r

Taking into account that curlu; = 0, from the continuity estimate
1/2 1/2

2 /wc xn-ur| < ko /|u1|2 /(|wc|2 + | curl wel|?)
r 1 c

and the inequality (A + B)? > A2?/2 — B2, we find

([ owc-We —2Re [we x n-1p)?
Qc T

> ([ owe-We)?/2— k3 (f \u1|2) (f(|wc|2+\curlwc|2)>

Q¢ ncC

(] owo-We)?/2 - 5-%3(9[1 ur]?)?/2

(914
2 2
—(5k8 (f |wc|2> — (5k§ (f |cur1wc|2> ,
nC (914

for each § > 0. Finally, for each 0 < v < 1/2 we also have

2
<f oW - wC—2Rewaxn ul)

0C

2
> 2yw? (f awC-Wc—2Refwcxn-ﬁI> ,
1Y T

so that the proof of the coerciveness of ¢(-,-) follows by taking at first § small enough and

then v small enough.

Therefore, the existence and uniqueness of a solution to problem (23) follow from the Lax—
Milgram lemma. However, in view of numerical approximation, we would like to reformulate

the problem in a non-constrained vector space.

A first possible approach is to introduce a scalar magnetic potential in Q! (see, for instance,
[3], [11]): this needs the construction of a suitable set of cutting surfaces and of the related
basis functions of the space of harmonic fields (see Sect. 5). Algorithms for this construction
have been proposed by [22] and [29]. In complicated geometrical configurations, this approach
can be computationally expensive. A second approach, the one we will adopt in the sequel,

relies on Lagrangian multipliers.

10



Consider the saddle-point problem
( Find (E¢,H, Af) € H(curl; Q%) x Hy s0(curl; Q) x (L?(927))? such that:

C((Ec,HI), (Zc,VI)) + f curlvy;- Ay = —iw f Je,C cZCo

¢ Qf Qc (24)
V (z¢,vi) € H(curl; Q%) x H sq(curl; Q)

f curlH[ -ﬁ] = f Je,I -N[ VN[ € (LQ(QI))3 .
\ Of (914

This problem has no unique solution, since it is possible to add to A; any function of
Hyr(curl; Q) N H(curl0; Q). Tt is not difficult to see that any solution of problem (24)
satisfies curl A = —w?uH;(= —iwcurlE;) and A; x n = —iwE¢ X n(= —iwE; x n) on T,
so in order to deal with a well-posed saddle-point problem it is natural to look for Ay in the
constrained space Wy, given by

W, = {N; € (L*(Q))? | N, satisfies (14)} .

In this way A; = —iwE;.
Noting also that

Vie!l = {v; € Hopo(curl; Q) | /curl"l Ny = /Je,f Ny YNy €W},
Qf af

as can be seen by taking Ny = € !(curlvy — J. ), we are led to consider the following
problem:

[ Find (Ec,H, A;) € H(curl; Q) x Hy sq(curl; f) x W such that:

c((Ec,Hy), (z¢,vy)) + f curlv; - A; = —jw f Jec-Zc

¢ ol Qc (25)
V (z¢,vr) € H(curl; Q) x Hysq(curl; QF)

fCHI'lHI-ﬁIZ fJe’[-NI VN; e W;r.
\ Qf o

It can be proved that this problem has a unique solution (E¢, Hy, Aj), but again the space
W/ is not easily approximated by finite element spaces. As for equation (15), we introduce
another Lagrange multiplier. We note that conditions (14) can be rewritten in a weak sense,
namely,

W; = {N; € (I3(Q"))? | /eNI -grad ¢y = 0 for all 4 € Hyp(Q")}.

of

11



Now we deal with the following problem

( Find (Eg, Hy, ¢1, A1) in H(curl; Q°) x Hy po(curl; QF) x Hjp(QF) x (L*(Q7))? :

C((Ec,H[), (Zc,V[)) + f curlvy- Ar+ f €A; - grad@l = —iw f Je,C - Zo
ol o Oc¢
\ V (z¢, v, 91) € H(curl; Q) x Hy gq(curl; Q) x H&F(QI)

f curl Hy - N] + f GNI -grad ¢; = f Je’[ . N] VN7 € (L2(QI))3 .
\ f Qf Qf
(26)
Setting A := H (curl; Q°) x H sq(curl; QF) x H&F(Q[),
r(-,) s A x (L2(QD))3 = C
r((z¢,vr,%1),Nr) := [(curlv;- Ny + €Ny - grad p) ,
[o14

and

&) :AxA—C

c((we,ur,¢r), (zc, vi,%r1)) = c((we,ur), (z¢, vi)) ,
problem (26) reads

( Find [(Ec, Hr, ér), Ar] in A x (L2(Q1))3 :

c((Ec,Hy, ¢1), (20, V1, %1)) + (20, Vi, 91), Ar) = —iw [ Jec-Zc

Q¢ 27
< V (z¢,vr,¥r) € A 27)

r((Be,Hr, ¢1),N7) = [Jer-Nr  VNje (L2(Q1)3.
0l

\

Theorem 4.1 Problem (27) has a unique solution.

Proof. Tt is a consequence of the general theory of variational saddle-point problems. We note
that, if r((zc, vi,91),N;) = 0 for all N; € (L2())3, then v; € V? and v; = 0 (it follows
taking in (27) N7 = e !curlv; and N; = grad vy, respectively). Then the bilinear form
¢(+,-) is coercive on the space

{(z¢,vr,¥1) € A r((z¢,vr,¥r),N;r) =0V Ny € (LQ(QI))?’} = H(curl; QC) X V? x {0}.

On the other hand we recall that any given vector function N; € (L%(Q2))? can be decomposed
into the following sum

N; =€ !curlq; + grad ¢; , (28)

where q; € H pq(curl; ), ¢; € H&I(QI), and that there exists a positive constant C such
that

INllz2 01y 2 Clllarll greursnry + @1l 10r)
( )

12



(see, e.g., [6]).

Hence, it is easy to see that the following inf-sup condition is satisfied
r((zg,v N

sup (( CH Ia¢[), I)

(z¢,vi,¥1) € A ||ZC||H(curl;QC) + ||vI||H(curl;QI) + HwIHHl(QI)
(zc>vi,¥r1) #(0,0,0)

> C1IN1l z2(ary -

In fact, it follows by taking (z¢, vy, 1) = (0,qr, ¢r), being N; = € ! curl q; + grad ¢; as in
(28). O

4.2 Finite element discretization

Our aim is to find a Galerkin finite element discretization of (27). We want to verify the
assumptions of the theory of discrete saddle-point problem [13, Chap. 2].

We assume that Q, Q¢, Q! are Lipschitz polyhedral domains and consider two families of
regular tetrahedral meshes 7¢j and 77, of Q¢ and Qf, respectively.

We employ the (complex valued) Nédélec curl-conforming edge elements of the lowest order
X1 4 to approximate the functions in H(curl; L), L = I,C. The homogeneous boundary
conditions on 9 are incorporated by setting degrees of freedom on 92 to zero. So we consider
the space

Vi =X N Hypo(curl; Q) .

For additional information about edge elements the reader is referred to [24, Chap. 3], and
[21, Chap. III, Sect. 5.3].

In order to approximate the space H&,F(QI ), let us start with denoting by Py the standard
space of complex polynomials of total degree less than or equal to k with respect to the real
variable x. The nonconforming Crouzeix-Raviart elements are defined as follows:

Urp = {¢rn € L*(Q)) | Yrnk € PLVK € T and 1y is continuous at the
centroid of any face f common to two elements in 77}

Then the discrete 17, will belong to
Mrp = {¢rn €Urp [¢rp(p) =0 for all centroids p of faces of '} .

Note that, since functions in Uy, are no longer continuous, they are no longer in H(Q!).
Therefore we must define a modified sesquilinear form r, acting also on H&F(QI )+ M p, and
a norm on H&F(QI) + My . This can be done as follows: first, for each 17 € [H(},F(QI) + M p]

we denote by g/r\ait/ilp[ the function in (L2(Q))3 defined as

(gradyr) i = grad(Yrx) VK € Trp.

Note that if 97 € Hy (), then grady; = grad 9r. Then, we define the norm in H} (1) +
Mj p as

lrlp =Y [ 1grad = llgradvilagar,
K K
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For all z¢ € H(curl; Q°), ur € Hy sq(curl; 1), 4y € [Hé,F(QI)—FMLh] and N € (L%(Q))?

we set

rh((zo,ur, ¥r) == /curlul N7+ Z/GN] -grad ¢ = /(curl ur-N;+ €Ny - g?a{(/i¢[).
K K

! (924

To discretize the Lagrangian multiplier A; € (L%*(21))? we choose piecewise constant
vector functions in the space

Qup = {Npp € (L*(Q))® | Nppx € (Po)* VK € Trp} -

So, defining Ay, := X p X Vi x My, the finite elements approximation of (27) can be
formulated as follows:

( Find [(Bcp, Hrp, é1p), Arp] in Ay X Qpp -

((Ecn, Hip, é1,0), (2o, Vi Y1n) + ro((Boh, Vip, Y1 n) ALn)

. _ 2
=—iw [ Jec-Zon Y (Zeh, Vi Pin) € An (29)
QC

rh((Ben, Hip, ¢10),Nip) = [Jer Nrp VYN, €Quy .
QI

\

The following results will be crucial in the proof of existence and uniqueness of solution
of problem (29). For the proofs see [6].

Lemma 4.2 We have the L?>(Q!)-orthogonal decomposition Qr,p =curl Vy, @ grad My .

Lemma 4.3 There exists a positive constant Cp, independent of h, such that for all prp €
(Vi*
IPrallzzo;) < Colleurlprallze(q;) -
Here, the following notation has been used:
V9 =VianVvy o (V2 ={prn€ Vil / Prh-Vin=0Yvin € V],}.
Q
Now we are in a position to proof the main result of this section.

Theorem 4.4 Given a triangulation Trp of O, assume that the entries of the matriz € are
piecewise constants in Q. Then problem (29) has a unique solution.

Proof. We can proceed as in the continuous case. Using Lemma 4.2 it is easy to see that if
(Zoh, VIhY1,n) € Ay is such that 7,((zcn, Vin, ¥r,n), Nrp) = 0 for all N7, € Qg p, then
curlvy, = 0 and 97 = 0. Therefore, it is clear that the bilinear form ¢(:,-) is coercive in
the space

{(zchvip, ¥rn) € An | Th((Zeh Vip, Y10), Nrp) =0V Nrp € Qrp}-

14



Concerning the discrete inf-sup condition, by Lemma 4.2 for any given Ny, € Qr j there

exist q;p, € Vi, and o1, € My such that Ny, = curlqry + g?a_:igcaf,h. Moreover it is
possible to choose q;, € (V?,h)L and then, by Lemma 4.3,

—— 2
INralZ2ry = Il eurlarulizsqry + lgraderpllizony > Cllarnlleeurian + lermlh)-
Now taking (0,qr s, € 1¢r) € Aj one has
rh((zc,h, Vi, ¥1,0), N1p)
sup

(Zc,h> VI h>¥1,0) € A ||zc,h||H(cur1;QC) + ||v1,h||H(cur1;QI) + ||¢I,h||h
(2c,n>VI,h>¥1,n) # (0,0,0)

> Co|IN1allL2ar)-

a

The convergence theory is now standard (see [13] and [6]), and yields the quasi-optimality
of the Galerkin finite element approximation.

5 Hybrid Hy/E; formulation

5.1 Topological prerequisites

As already hinted in Sect. 3, certain topological aspects will enter into the theoretical treat-
ment of hybrid coupled variational formulations. Let p := (;(Q!) stand for the first Betti
number of Q!, a topological invariant measuring the number of holes drilled through Q. Re-
call that in Q! there will be p mutually disjoint, orientable two-dimensional surfaces called
cuts such that Qf \ ($; U...U Z,) has trivial first homology group.

Let us denote by #! the space of harmonic Neumann vector fields in Q':

HT .= H(curl0; Q1) N H(div0; Qf) N Hy(div; Q7).

It is well known [8] that dim H! = p and that it possesses a representation based on the cuts:
denote by kj, a harmonic function in H'(Q! \ ;) that has a jump of height 1 across X, and
such that grad ki - n = 0 on 90 \ . Then {g/r\éam, . ,g/l_‘\é:iﬁp} will be a basis of H,
g/r;a/ﬁk denoting the extension to ! of gradky, computed in Qf \ 3.

On T' we can find 2p non-bounding homologically independent fundamental cycles
Yi,---,Y2p that represent generators of the homology group Hi(I'). They can be chosen
such that v, = 0%, k = 1,... ,p (see [25]). Moreover, ¥p11,... ,72p can be chosen dual to
Y1,--- ,Yp, Which implies

/g?&mj-dgzakj, kjef{l,...,p}. (30)
Yo+k
5.2 Variational formulation

Now, we are ready to consider the second primal-dual coupling, namely the H¢ /E; formula-
tion, in which the unknows are the magnetic field in the conductor Q¢ and the electric field
in the air region Q.
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From the first equation in (9), for each vo € H(curl;Q°) one finds by integration by
parts

/(cr_1 curlH¢ - curl v + iwpHe - Vo) — /(cr_1 curlHp) X n-ve
Qc r
_ / o3, 0 - curlve — / (6 J0) xn-va. (31)
Qc r

Using the Maxwell transmission conditions for the electric field and Ampeére’s law in Q¢

/(a'_1 curlH¢ - curl v + iwpHe - Vo) — /EI Xn-vge
Qc r

:/a'_l.]e,c-curlvc. (32)
[o1¢4

Analogously, from the second equation in (13) for each z; € H(curl; Q') one finds by inte-
gration by parts

/p,_lcurlEI - curlzy + /(p,_lcurlEI) X n - zr = —iw/Je,I - zr, (33)
0l T Ol

and using the Maxwell transmission conditions and Faraday’s law in Qf
/u_l curlE; - curlz; — iw/Hc XNn-Zy= —iw/Je,I -ZJ. (34)
ol r Qf
Taking into account the gauge conditions (14) for E;, and setting
Z; = {z; € H(curl;Q')|z; satisfies (14)} ,
the weak formulation of the hybrid H¢/E; formulation reads
( Find (He,Ef) € H(curl; Q%) x Z; -

[ (67 curlHe - curl Vo + iwpHe - Vo) + [Vexn-Ef = f(ve)
Qc r

<
[He xn-7; + iw ! [ pTlcurlE;-curlz; = g(zp)
r Qf

| for all vg € H(curl;Q%),z; € Z;,

where

flve) = /a'_lJep -curlve
(918

olzr) = / Jos 71 .

Ol

16



It can be shown, via the standard theory for saddle-point problems, that this problem has
a unique solution. Unfortunately, the proof relies on the stability of the pairing (u,w) —
Jr(uxn) W on H > (divp,T') x H: (divp, T'). However, this stability is very hard to preserve
in the discrete setting. For a detailed account of this problem see [17, Sect. 3].

A remedy is offered by working on a smaller constrained space. Assuming for simplicity
that suppJ. N T = (), one sees that H; is curl-free in an exterior neighborhood of T'. By
tangential continuity of H we can infer that

divi(Hg xn) =curlH;-n=0 onT.
Let us define the spaces
X¢ = {ve € H(curl; Q) |divy(ve x n) = 0 on I'}
and
= {z; € H(curl; Q) | /Z[ -gradip; = 0 for all ¢y € HY(Q))} .
Qr

Note that they are closed subspaces of H(curl; Q) and H (curl; Q7), respectively. Moreover,
Z; is the space of z; € H(curl; Q) such that divz; =0 in Q/ and z;-n =0 on §QUT.

Before analyzing problem (35) in XC x Z 1, we need some preliminary results. First of all,
we recall that the following orthogonal decomposition holds (see, e.g., [2, 20]):

(L2(Q")? = (H(curl0; Q")) @ H' @ grad H'(Q') , (36)

where L denotes the L%(Q')-orthogonal complements, and ! is the finite-dimensional space
of harmonic Neumann vector fields in Qf. Therefore, it is easy to see that the following
Poincaré-type inequality will hold:

Theorem 5.1 There exists a positive constant Cy such that
Iwill 2y < Ct leurl will 2gar) ¥ wr € (H(curl0;27)* (37)
We are now in a position to prove:
Theorem 5.2 The variational problem (35) has a unique solution in Xc X Zy.

Proof. To prove that (35) has a unique solution in X¢ X Z; we appeal to saddle-point theory.
Since we have the direct sum decomposition

Z; = (H(curl0; Q1)) o #H!, (38)

we can rewrite (35) in equivalent form as: seek He € X¢, Ef € (H(curl0; Q)L E# e #!
such that
A((Hc, Er), (vo,27)) +fVc xn-Ef = f(vo)+g(zr)

[Hc xn -z} = g(z})
T
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for all v¢ € X, z; € (H(curl0;Q))*, and z7 € H'. The abbreviation A is used for sum
of the two left-hand sides of (35), namely, the sesquilinear form

A((uc,wr), (ve,z1)) == [ (o7 curluc - curl Ve +iwpuc - Vo) + [ Vo X n-wy
Qc r

+fuc X -z +iw ! f p~!curlw; - curlz; .
T ol
It can be proved that it is coercive in X¢ x (H (curl 0; Q7))": in fact, based on (37), the proof
is analogous to that presented for the sesquilinear form c(-,-) in Sect. 4.
Now, we only need to check the inf-sup condition

fVC Xn -E}{
3B >0: sup — >R ||Z-77{HL2(QI) Vazlt el (39)
ve E;ZOC ||VC||H(curl;QC)
veo

For the sake of simplicity, we will assume that Q€ is a simple loop, i.e., it has the first
Betti number equal to 1. A typical example is a torus. Then for L = I,C we can find an
orientable two-dimensional surface % such the Q¥ \ ©¥ has trivial first homology group.

Figure 2: The cutting surfaces ¢ and %'.

}" = c grad k7, where k1 has a jump

Recalling the results presented in Sect. 5.1, we have z
of height 1 across £/, and ¢ € C. Then we can use as special candidate for vo € X¢ the

Neumann harmonic vector field ¢ g/r;;i k¢, where now k¢ has a jump of height 1 across 3¢.
We have (remember that 0%¢ = v¢)

fcgfr;;ikcc xn- -zt :cfc/u\rl/p/ﬁci}":c [ kcecurlzl -n+c [zZ¥-ds
r r e v
(40)
=c [z} -d5i=|c[? fg/r;:i/ﬁ-dgz le|?
gle, glel
having used (30). Since ||z}"HL2(Q,) =] Hg/r\a_a mHLz(QI)’ we arrive at
=H
fvc Xn-zj zH
T 2001
sup o > |c| - ” HL (Sl/
o7 IVelaeuior)  |lgrad o |xad e |
fce;éxoc (curl;QC) grad k¢ H(curk:0©) grad k¢ 1200) grad xr @)
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If the first Betti number of Q¢ is equal to p > 1, by proceeding in a similar way one can easily
see that the constant 8 in the inf-sup condition is given by

f= mi lef?
- %l%}’ (MCc-©)Y/2(Mlc-c)l/2”’

where My, L = I,C, is the matrix given by MkL] = fQL g’rEka,L . g/rzu/:lmj,L, k,g=1,...,p.
O

In order to get rid of the constrained space ic x Z I, we can make use of the fact that
both the constraints can be included in an augmented variational problem as extra linear
conditions. Let us define the space

X% = {vc € H(curl; Q°) |divr(ve x n) € LA(T)},
endowed with the graph norm
Ivellxz, = lIvell gearine)y + ldive(ve X )| 2y

(which coincides with ||ve || g(curi;oc) when ve € Xo).
The unconstrained variational problem that we consider is:

( Find (He, Ef, Q, ¢1) € X§ x H(curl; Q) x L%(T)/C x HY(!)/C such that:

A((Hg, Eg), (veo,21)) — Ffdin(Vc xn)Q— [zZ;-grad¢; = f(ve)+g(z1)

of
4 !din(HC X n)ﬁ =0 (41)
[ Er-grady; =0
(o214

| for all v¢ € X}, 21 € H(curl; ), P € L*(T')/C,yr € H(Q!)/C.

Theorem 5.3 The variational problem (41) has a unique solution in X}, x H(curl; Q) x
L3(T)/C x HY(Q)/C.

Proof. It is clear that the two last equations in (41) imply that (He, E;) € X¢ x Z;. Therefore,
from Theorem 5.2 and the classical theory for saddle-point problems ([12], [13]), we only need
to prove the inf-sup condition

[divr(ve xn) P+ [ z; - grad¢;
T Qf

I3pB* > 0: sup
(VC,zI)EXExH(curl;QI) ||VC|
(ve,z1) #(0,0)

X& + ||ZI||H(curl;QI) (42)

> B (Pl ey + Wt ary) ¥ P € LA(D)/C,pr € HYQD)/C.

We choose z; = grad; and v¢ such that divp(ve x n) = P. This can be done since
there exists A € H!(I')/C such that A\ = P and | grad, Mgy < 1Pl p2(ry, and we can
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take for vo a continuous extension in H (curl; Q) of gradp A € H™ %(dIVF, I'), namely,
ve xn = gradrp . In particular ve € X and ||vel|x:, < Ci(||gradr >\|| . —I— 1Pl p2ry) <

Ca [|P||>(ry - Hence

fdlvr ve xn)P+ [ z7-gradi;

I
sup e
(ve,2z1) € X& X H(curl;QI) ||VC||X*C + ||ZI||H(CUI‘1;QI)
(ve,z1) #(0,0)
[P+ [ |grady:|?
r Qf
~ Co||Pll2(ry + llgrad ¥l p2(qry
and the inf-sup condition follows using the Poincaré inequality in H'(Q!)/C. O

Remark 5.1. Tt is worthy to note that the solution E; to (35) (considered in X¢ x Zj) or
to (41) is not the physical electric field we are looking for. In fact, what we have determined
satisfies the interface condition E; - n = 0 on I', which is not the case for the correct electric
field (see (3)). Therefore, it has to be interpreted as a vector potential for the magnetic field
H; = iw_lp,_l curl E;.

In order to be sure that we have really solved the eddy-current problem, we have thus to
check that the magnetic field (H¢, Hy) satisfies (9).

First of all, choosing P = divpr(H¢ X n) one has at once divr(H¢ x n) = 0 on I'. Then,
choosing as v¢ a smooth vector function with compact support we find (9);, the Faraday
equation in Q€. Moreover, (9)3 is trivial from the definition of H;. In order to verify (9)2,
the Ampére equation in Qf, we first have to show that grad ¢; = 0. Taking z; = grad ¢, it
follows

/\gradqﬁf :/ eI-gradaf—/Hcxn-grad%:O,
ol r

having taken into account that divJ,; = 0 in Qf Jer'n=00n0QUT and divr(He xn) =0

on I'; therefore grad ¢; = 0 in Q!. Taking now as z; a smooth vector function with compact

support we obtain (9)2, and then a similar choice with z; vanishing only in the neighborhood

of I' gives Hy x n = 0 on 012.

Concerning the interface conditions, the choice vo = grad n¢, where n¢ is an arbitrary
function in H'(QY) (so that divr(grad nc x n) = curlgrad ¢ -n = 0 on I'), gives easily that
iwpHg n+curlEf -n = 0 on T, hence (9). On the other hand, choosing z; € H (curl; Q)
and using the Ampere equation in Q! and the boundary condition Hr x n = 0 on 9 one
finds at once Hc x n —iw™'pu~!curlE; x n = 0 on I, namely, (9)7.

The last condition (9)5 follows by taking vc = Ry, an extension of the trace p; x n in Q€.
Clearly, R; € X, as divp(R; x n) = divp(p; x n) = curl p;-n = 0 on I'. This choice and the
Faraday equation in Q€ yield

= [~ (curlH¢ — Jec)-curlR; +iwpHe - R+ [R; X n-E;
QcC r

= f[o-’l(curch — Je,c) — E[] xn-Ry,
r
and therefore (9)s, recalling that Ry x n = p; x non I and curlE; = —iwpH; in Q. A
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5.3 Finite Element Discretization

Let us start by approximating the variational problem (35) in X x Z;. We introduce the
finite element spaces

iC,h = {VC,h S XC,h | din(VC,h X n) =0on F} (43)
and
Zip = {zrp € Xy | /zl,h -gradyrp, =0V 9 € Hrp}, (44)
Qf

where X j, and X7 have been defined in Sect. 4.2 and
Hyp = {¢rn € COQ") | ¢rpx € P, VK € Trp} .

We consider the following finite element approximation of the hybrid He /E; formulation:

( Find (Heop, Erp) € Xop X Zrp,

f (0'_1 curl HC‘,h . cuerc’h + iwuHC’h . VC’,h) + fVC,h X n- EI,h

C

’ ' = f(veon)
< fHC,h Xn-Zrp + w1 f [l,_l curl El,h - curlil’h

I

' " = 9g(zr,n)

 for all Ve € iC,h,ZI,h € Z[’h .

(45)
Theorem 5.4 The variational problem (45) has a unique solution in i(;,h X Z[,h-

Proof. First we note that the space Z 1,» can be decomposed similarly to Z; in (38). In fact,
we have grad Hy; C H(curl0; ohn X7, (note that in general topology we do not have the

equality). Consequently, [H (curl0; /) N XLh]L C 2I,h. Denoting
H] := H(curl0; Q') N Z[,h

(in the discrete case this corresponds to the space of harmonic vector fields #H!, though it is
not a subspace of it), we finally have

Z1 = [H(curl0; Q) N X7t @ Hi . (46)

It is also checked easily that dim ! = dim’H{L.
Based on (46) we can rewrite (45) in equivalent form as: seek Hep € Xcp, E},h €
[H(curl0; Q1) N X, )4, E}'fh € H! such that

A((HC,haE%’h)a (Vc,hazf,h)) + [Von xn- E}’fh = flven) + Q(Zf,h)
r

JHop xn zf, = g(z},)
I
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for all v, € Xcp, 21, € [H(eurl0;Q7) N X )4, and 2}, € Hj.
To prove that A(-, -) is uniformly coercive on )Nic,h x [H (curl 0; 21)NX; 4]+ we can proceed
as in the continuous case, since there exists a constant Co, independent of h, such that

lwr |L2(QI) < Oy ||curlw1,h||L2(QI) V wrp € [H(curl0; QI) N XLh]J‘

(see [24, Theorem 4.7] for a proof).
Now we need to check the discrete inf-sup condition

fVC,h X n 'Z}{,h

~ r ~
6 >0: sup >p ”z}'fh”m(m) Vz}fh € Hp . (47)
vo,n € ;(%h ||vC,h||H(curl;QC)
Ve,

Let us assume that the families of triangulations 7¢, and 77, are obtained as a refinement
of coarse triangulations 7¢ p+ and 77 p+ for a fixed h*.

For the sake of simplicity, we will assume that Q is a torus. Let us denote by IT; , L = I, C,
the piecewise linear function taking value 1 at the nodes on one side of ©” and 0 at all the other

nodes. Then g/r\éa IT} belongs to H(curl/()i_f/ll) NXr,p, but clearly g/r\zia IT; ¢ grad H; . Any

function z}{h can be written as z7", = ¢ grad I} + grad ¢ j for some ¢ € C and 97 € Hy .

Therefore we choose vg, = ¢ gradIl, € iC,h, and we can proceed as in the continuous
case. At first, we have to note that for grad ¢ the line integral on a closed cycle is always
vanishing. Moreover, we have

H |2 _ H o H = [ H AT H
HZI,hHLZ(QI) = /ZI,h “Zip = C/Zl,h -grad I} < |c| ‘ grad II7 2(01) ||Z1,h||L2(QI) )
Qf Q!
so that z}" ‘ < I ‘ g/r;(/il'[? . Therefore, the proof ends as in the continuous
sh L2(Q) L2(Q)
case.

For the Betti number p > 1, one arrives at the inf-sup constant

= : |e/?
B = & (A[Ce.\1/2( e m1/2
e (MCc-e)'2(M'c €)Y

where ML, L = I, C, is the matrix given by M% = oz g/r\e_u/:lHZ,L-g/r;(/iHj,L, k,j=1,...,p.
Od

_ Remark 5.2. From the arguments of Theorem 5.4 we readily derive that for all (Fp,Gyp) €
(Xc,n)' % (Zr,p)" there exists a unique solution of the problem

Find (ucph, wrp) € )NCC,h X ZI,h such that:
A((uch, wrn), (Ver, z1,n)) = (Fryven) + (G, 21p) (48)

for all (Vc,h,Z[yh) S ic}h X z],h .

Moreover the solution is bounded as follows:
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The constant C' depends on the continuity constant of the bilinear form A(-,-) in Xo %
(H(curl0; Q1))+, on its coerciveness constant in X, x [H (curl 0; Q) NX; 4], and on the

constant § in (47), hence it is independent of h. As a consequence, it is easily shown that
there exists a constant «, independent of A, such that

A((uch, wrn), (Ve 21,n))
sup

ve,nizrn) € Xon X Zrp ||vcah||H(curl;Qc) + HZI,hHH(curl;QI)
ve,ns2rn) #(0,0) (49)

for all (ugp, wrp) € ic,h x ZI,h- 2

For devising a suitable conforming finite element approximation of problem (41) we need
another discrete space, namely,

Y i={Py € L*(T) | Pyr € R VT € Trp},

where Tr , is the restriction to I' of the mesh 7¢ .
We consider the problem

( Find (Hc,h,E[,h, Qh, ¢I,h) € XC,h X X],h X Yp,h/c X H[’h/(c such that:

A((Hcp, Erp), (Von,zr,p) — [ dive(Vop xn) Qn — [ Z1-gradérn = f(von)

T Ol
+9(2zr,n)

3 fdiVF(HC,h X 1’1) ﬁh =0

T

J Erp-grad El,h =0

Ol
. for all veoh € XC,h,ZI,h € XI,h,aPh € Yr_h/c, ’lﬁ[,h € HI,h/(C.

(50)

Theorem 5.5 The variational problem (50) has a unique solution in X¢ p x Xy p X Y ,/Cx
Hpp/C.

Proof. Since divr(H¢, X n) € Yr,/C we have that (Hep, Eryp) € iC,h X Zj,h. Therefore
estimate (49) holds, and, as in the proof of Theorem 5.3, we only need to verify the uniform
discrete inf-sup condition

[dive(vey xn) Py + [ 21, - grad i,
T [o)4

3B« >0 sup
’ (vo,n-21,n) € Xon X X ||VC’,h||X*C + ||ZI;h||H(curl;QI) (51)
(ve,n-Z1,n) #(0,0)

> BullPall 2y + 1¥1pllar ) ¥ Po € Yro/Cothrn € Hrn/C.
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We choose zr, = grad;; and vey such that divr(ve, x n) = Py,. More precisely, let us
denote by Ry, the space of tangential traces on I' of X¢ 5, (namely, the Raviart-Thomas finite
elements on I') and by R% the kernel of the divr operator in Ry,. Since divrRy, = Y1 ,/C,
there exists a function r, € (RY)* such that divrr, = P,. We can take for v, a uniformly
continuous extension in X, of ry, so that vo, x n =ry, (see [4]). By proceeding as in [15],
Theorem 4.2, it can be shown that there exists a positive constant C, independent of A, such
that
Ishllz2ry < Clldivesllzery  Vsh € (RR)™

Hence
Iverlxy = lIvonl giearrac) + 1dive(ven X 0)| g2
< Cullrnlly g oy + 1Pkl L2y
< CollPullaqry
and, by proceeding as in the continuous case, we have (51). O

The convergence of the solution of problem (50) to the solution of problem (41) is a conse-
quence of the standard theory of saddle-point problems (see [12], [13]). The quasi-optimality
of the discrete solution is a consequence of (49) and (51).
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