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Abstract

We present an algorithm to compute the topology of a non-singular real algebraic
surface S in RP3, that is the number of its connected components and a topological
model for each of them. Our strategy consists in computing the Euler characteristic
of each connected component by means of a Morse-type investigation of S or of
a suitably constructed compact affine surface. This procedure can be used to de-
termine the topological type of an arbitrary non-singular surface; in particular it
extends an existing algorithm applicable only to surfaces disjoint from a line.

1 Introduction

The aim of this paper is to give an algorithm to determine the topological type
of a non-singular real algebraic surface S of degree d in the real projective
space RP?, computing the number of the connected components of S and
characterizing topologically each of them.

Our procedure will rely on some basic classical results concerning topological
and algebraic surfaces that we now briefly recall; for a proof of these facts we
refer the reader to Massey (1991) and, for instance, to Viro (1998).

If the degree d is even, the surface and all its connected components are ori-
entable. By the topological classification theorem for surfaces, we know that
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any compact connected orientable surface is homeomorphic to the connected
sum of a sphere and g tori, i.e. it is homeomorphic to a torus with g holes, with
g > 0 (meaning that a torus with 0 holes is a sphere). The number g, called
genus, is a complete topological invariant for connected orientable surfaces,
hence it is possible to characterize topologically each connected component of
an even-degree surface computing its genus or, equivalently, its Fuler charac-
teristic x = 2 — 2¢g, which is always an even integer.

Fig. 1. A torus with 3 holes

If d is odd, S contains exactly one non-orientable connected component, while
all the other components are orientable. The topological classification theo-
rem for surfaces ensures that any compact connected non-orientable surface
is homeomorphic to the connected sum of either a projective plane or a Klein
bottle and a compact connected orientable surface of genus g; the Euler char-
acteristic is then respectively either y = 1 — 29 or x = —2g¢, that is either
odd or even. Since a surface with an even Euler characteristic may be either
orientable or non-orientable, the only knowledge of the characteristic is in gen-
eral not sufficient to determine the topological model of a compact connected
surface, unless we know whether it is orientable or not. In our case however
the situation is simpler because the Euler characteristic of a non-orientable

connected surface contained in RP? is necessarily odd (for a proof, see Viro
(1998), 1.3.A).

Thus, even if the degree is odd, the knowledge of the list of the Euler character-
istics of the connected components of S determines the topological type of S,
since any component, having an even characteristic x is necessarily homeomor-
phic to the corresponding orientable model, that is to a torus with 2—;X holes,
and the unique component having an odd characteristic x is homeomorphic
to the connected sum of a projective plane and a torus with ka holes.

The problem of the algorithmic determination of the topological type of a
non-singular real projective algebraic surface has already been solved in For-
tuna et al. (2003) for surfaces disjoint from a line (hence of even degree and
orientable), in particular for all non-singular compact algebraic surfaces con-
tained in R3. In this paper we will extend that result computing the topology
of an arbitrary non-singular projective surface S; the basic idea is proving that
the topological type of S can be algorithmically recovered from the one of a
suitable compact algebraic surface Sin R?, and then computing the topology



of S by means of the algorithm presented in Fortuna et al. (2003). Section 2
is devoted to construct S starting from S and to relate their topological types
from a theoretical point of view. In Section 3 we briefly recall the compact-case
algorithm of the cited paper and present an improvement to it; then, in Section
4, we turn the results of Section 2 into constructive procedures and present
the general-case algorithm. The last section contains some examples and also
some remarks on the computational aspects and on the implementation of the
algorithm.

2 Reduction to the compact affine case

Let S be a non-singular real projective surface in RP? defined by the equation
F(z,y,2,t) = 0, where F' is a homogeneous polynomial of degree d with real
coefficients. By saying that S is non-singular we mean that no point in RP?
annihilates F' and all its first partial derivatives, while the complex zero-set
defined by F' may contain non-real singular points. In this section we will see
how the topological characterization of S can be reduced to the topological
investigation of a compact affine surface S in R3.

The projective space RP? can be seen as the quotient space of the 3-sphere 53
with respect to the antipodal equivalence relation which identifies every pair of
diametrically opposite points in S3, relation induced by the map 7 : S? — RP?
associating to any point (z,y, z,t) € S* the point of homogeneous coordinates
[z,y, z,t] in RP3. In this way S turns out to be a 2-sheeted covering space of
RP®. Consider in S® the non-singular surface

=7 =1(z,y,2,t) € z,Y,2,t) =0} NS°.
S=a71(S) = {( ) ER' | F( )=0}ns?

If we denote by ap : S* — S® the antipodal map defined by ap(v) = —v,
evidently ap(S) = S; more precisely ap transforms each connected component
of S into a connected component, acting therefore as an involution on the set

F of the connected components of S.

Taking into account the action of ap on the connected components of S, we
can split F as the union of F; and F,, where

Fi={T|TeF, ap(T)=T} and F,=F\ZF.
In particular ap induces a pairing among the elements of F.

If we consider the preimage of a connected component of S through the double
covering m, we can immediately observe:



Lemma 2.1 Let Y be a connected component of S and let Y = 7= (Y).
Then

i) x(Y) =2 x(Y)
i) sz is not connected, then it has exactly two connected components Y: and
Ya, each homeomorphic to Y, and ap(Yl) Ys ~
iii) if Y is non-orientable, then Y is connected and Y € F.

Proof. i) and ii) follow from the fact that 7|5 : Y — Y is a 2-sheeted covering
of Y.

iii) Y is surely orientable. Then Y is connected, because otherwise, by part ii),
each of its two connected components would be homeomorphic to Y, which is
non-orientable. Since ap(Y) =Y, then Y € F. O

As explained in the introduction, in order to compute the topological type of
S it is sufficient to count the connected components of S and to determine
them topologically by means of their Euler characteristics. Next proposition
shows how these data can be recovered from the knowledge of the connected
components of S and of the sets F; and Fo:

Proposition 2.2 Assume that

Fi = {’fl, e ,Tm} and Fp = {TmH, e ,’fq, ap(TmH), e ,ap(Tq)}.

Xgl))u...UM(@)UTm—I—IU--'UTq: where

Then S is homeomorphic to M (

a) if r is an even integer, M(r) denotes the orz'entable connected surface with
Euler characteristic r, that is a torus with 2 L holes,

b) if r is an odd integer, M(r) denotes the non orientable connected surface
with FEuler chamcteristic r, that is the connected sum of a projective plane
and a torus with 1 * holes.

Proof. If T € F, then Y = 7(T}) is a connected component of S such that
T (Y) = T and x(7T;) = 2 x(Y). . .
If T; € F, then Y = 7(T;) is homeomorphic to T; and 7=*(Y) = T; U ap(T}).

O

Remark 2.3 Note that, in the previous proposition, it is not necessary to
know the exact pairing ap among the components in F,. Namely, by Lemma
2.1 we know that, if a surface appears in F,, then F, contains an even number
of surfaces homeomorphic to it. It is then sufficient to insert half of them in
the list of the topological models of the components of S coming from F,. O

A first observation in the direction of computing F; and F5 can be made
considering for instance the intersection of S with the ap-invariant subset



W={z=0}nS>

Since W disconnects S3 into two parts transformed each into the other by
ap, if T € Fi, then necessarily T N W # 0; in other words, if T NW = 0,
then T € F,. Observe however that the converse is not true, so that a more
accurate investigation is needed to split F.

If W is transversal to S , then WnSisa non-singular curve and ap induces,
by restriction, an involution also on the set O of the connected components
of WnNS.

For any w € O we will denote by T(w) the connected component of S con-
taining w. Using the fixed notations, we get the following first characterization
useful to split F into F; U Fo:

Proposition 2.4 T € F, if and only if there exist wi,wy € O (possibly
coinciding) such that T(wy) = T(wy) =T and ap(w,) = ws.

Proof. If T € Fi, then TNW # 0. If w is a connected component of T n W,
then also ap(w) is a connected component of T n W, since ap(T) = T and
ap(T N W) =T NW. Then T(w;) = T(ap(w,)) = T.

Conversely, let € w, C T. Then ap(z) € wy C T and also ap(x) € ap(T).
Then T and ap(f) are connected components having ap(x) as a common point;
hence ap(T) = T and therefore T € F;. O

Proposition 2.2 transforms our original problem into that of studying the
surface S in S3, its connected components and the splitting F; UF,, which can
be detected by means of the criterion given in Proposition 2.4. As a matter
of fact, we can actually perform this investigation not working on S, but
on a compact affine surface S in R3 homeomorphic to it and obtained via
stereographic projection.

Namely, up to an affine translation, we can assume that [0,0,0,1] ¢ S C
RP?; hence N = (0,0,0,1) ¢ S and (0,0,0,—1) ¢ S. Then the stereographic
projection ¢ : S\ {N} — R?, given by ¢(z,y,2,t) = (%, lyt, =), is a
homeomorphism transforming S 1nto the compact affine surface S = <p(S) C
R3, which is the zero-set of F' o ¢~! and does not contain the origin.

If we denote X = (z,v,2) € R?, then p~}(X) = (%, Hﬁ“%) and hence

F(2Xa ||X||2 - 1))

R oX  IXPP-1\ 1
(Foy ><X>—F(| )—(|

(X2 + 171X + 1 | XJ* + 1)
where d = deg F, and || X||? = 22 + y* + 2%. Thus, if we set

G(X) = F2X,[|X]* - 1),



then G = 0 is a polynomial equation for the algebraic surface S C R3. Observe
that, if S (and hence S) is a non-singular surface, since ¢ is a biregular iso-
morphism between 3\ {N} and R?, also the image surface S is non-singular.
Note also that, since F'(0,0,0,1) # 0, then F contains a monomial ct? with
¢ # 0; hence deg G = 2d.

A straighforward computation shows that the antipodal map ap in S? is con-
jugated to the map inv = poapop ' : R\ {0} — R\ {0} given by

inv(X) = —”))((”2.

Let W = o(W \ {N}) = {z = 0} Cc R®. We will denote by F, Fi, Fy,O
the sets of components corresponding through ¢ to F, F1, F,, O and, for any
w € O, we will denote by T( ) the connected component of S containing w.
In particular Proposition 2.4 turns into

Proposition 2.5 T € F if and only if there exist wi,wy € O (possibly
coinciding) such that T(w1) = T(ws) =T and inv(w,) = w,.

3 The compact-case algorithm

In the next section we will describe a constructive precedure to compute the
topology of an arbitrary non-singular real projective surface in RP?, general-
izing the algorithm presented in Fortuna et al. (2003). Both for the previous
algorithm and for the new general one, the core of the procedure is the topo-
logical determination of a non-singular compact affine surface in R3. In this
section we will briefly recall, at least in its main steps, how the “Compact-Case-
Algorithm” (for short CCA) works, referring to the original paper Fortuna et
al. (2003) for most of the theoretical and algorithmic details. This gives us the
opportunity to describe some situations that had not been considered in the
previous paper, and also to present some modifications we have made to the
original version of the algorithm, resulting in an improvement of the numerical
stability of the whole procedure.

So, in the present section, S will denote a compact affine surface in R? defined
by the polynomial equation G(z,y, z) = 0. We assume that S is non-singular,
that is no point in S annihilates all the first partial derivatives of G.

To compute the topology of S we use as a basic tool Morse theory (see for
instance Milnor (1963) or Hirsch (1976)), since, up to a generic linear change
of coordinates, one can assume that the function p(z,y, z) = z projecting S to
the z-axis is a Morse function and that distinct critical points correspond to
distinct critical values. To check that p is a “good projection” in the previous
sense, we need to compute the real critical points of p (that is the points in



S where the first partial derivatives of G with respect to z and y vanish) and
to test that all of them are non-degenerate. The non-singularity test and the
computation of the critical points are the most delicate and time-consuming
tasks in the whole algorithm; additional comments can be found in the final
section.

After computing the (finitely many, non-degenerate) critical points for p on
S, we can consider an interval [—N, N] containing all the critical values of p
and subdivide it as [-N, N] = [=N,a1] U [a1,a2] U ... U [as, N| in such a way
that each a; is non-critical for p and each interval [a;, a;11] contains only one
critical value in its interior part.

The strategy for computing the topology of S consists in iteratively recon-
structing the topology of the level surfaces S,, = p *([—N, a;]) = SN{z < a;}
passing from one level a; to the higher level a;,1; this is sufficient since S = Sy.
By Morse theory, if [a;, a;11] contains exactly one critical value ¢ for p, with
a; < ¢ < a;41, and k is the index of the corresponding non-degenerate critical
point, then S,, , is homotopically equivalent to the space obtained attaching
a k-cell to S,,. This is sufficient for our aim, because homotopically equivalent
spaces have the same homology groups and the same Euler characteristics.

The iterative step of the CCA algorithm requires to detect how the k-cell
attaches to S,; and to reconstruct some data concerning the boundary of S,,_,
starting from the corresponding data for the level surface S,,. In Fortuna et al.
(2003) it is explained how the knowledge of these data allows us to compute
the number of connected components of S,;,, and their topological types.
First of all we need to study the shape of the level curves C,, = p~'(a;) =
S N{z = a;}, whose connected components are the boundary components
of the level surface S,,. Since the levels a; are non-critical values for p, any
level curve to be studied is a non-singular compact affine curve of even degree.
Then all its connected components are ovals, i.e. each of them disconnects R?
into two connected components, one homeomorphic to a disc and called the
interior part of the oval, the other not bounded and called the exterior part of
the oval. Recall also that an oval is called empty if no other oval is contained
in its interior part; moreover a list [wq, ... ,wy| of ovals of a curve is called a
nest of depth m if wy is empty, w; is contained in the interior part of w;,; for
alli=1,...m — 1 (and any other oval containing w; contains also w;;1) and
Wy, 1s not contained in the interior part of any oval of the curve. The shape of
any level curve is completely determined when the set of its nests is known.

The second main point in the iterative step of the algorithm is reconstructing
the function p,, that associates to any oval w of the curve C,, the connected
component f,, (w) of S,, containing w in its boundary. Observe first that, if
an interval [a,b] contains no critical value, then C, has as many ovals and



as many nests as C, and it is easy to compute y; starting from p,. Namely,
assume that P is a point in the center of a nest n of C,, that is P is internal to
the first (i.e. the innermost) oval of the nest and therefore internal to all the
ovals of the nest. If we lift P up to the level b following a continuous path that
does not intersect the surface, the endpoint P’ of this path lies in the center
of a nest N of (), of the same depth as n. Then the k-th oval of N belongs to
the boundary of the connected component of S, that contains also the k-th
oval of n. The choice of a point P in the center of a nest and the computation
of the ovals containing P’ can actually be performed, since we have added to
the curve-algorithm two special functions:

- the function findOvals, given a point P € R? and a curve C, returns the list
of the ovals of C' containing P ordered by inclusion starting from the innermost
oval,

- the function findPoint, given an oval w of C, returns a point lying inside
w, more precisely a point () such that w is the first oval of the sequence
findOvals(Q).

Just to fix notations, if R is a point in the plane {z = a} and b > a, we will
denote by roadMap(R,b) the final point (1) of a continuous semialgebraic
path a : [0,1] — {a < z < b} such that a(0) = R, «(1) € {z = b} and
a([0,1]) NS = @. Similarily, if b < a, we will denote by invRoadMap(R, b) the
final point (1) of a continuous semialgebraic path g :[0,1] — {b < z < a}
fulfilling the same conditions as « here above.

For intervals [a;, a;11] containing a critical value, the method outlined above
does not allow to fully compute the function p,,,, since there is not a bijective
correspondence between the set of the ovals of C,, and the set of the ovals
of Cq,,,. In Fortuna et al. (2003) the authors proposed a way to develop
the previous idea into a reconstructive procedure for y,, using an additional
roadmap starting from a point next to the critical point. We are now able
to propose a different method, still based on roadmaps, but which avoids the
problems of precision due to the choice of a point sufficiently near the critical
point. Let us start to illustrate this new method in details in the case of
critical points of index 1, because this is the case presenting the widest range
of situations.

To simplify our notations, we will describe how to compute u, starting from
e When [a, b] is an interval containing in its interior part exactly one critical
value ¢, which is the image of a unique critical point P € S. If P has index
1, Sy is obtained from S, by attaching a 1-cell to the boundary of S,. There
are two possible situations: either the 1-cell is attached to a single oval of the
level curve C,, or it is attached to two distinct ovals of it. It is easy to realize
which is the situation, because in the former C}, has more ovals than C,, in
the latter it has fewer ovals. Since the two situations are nearly symmetric,
we will describe the details of the reconstructive procedure for p, only in the



first case.

Figure 2 shows the possible situations that can occur attaching a 1-cell to an
oval n of the curve C,, which, in the passage through the critical value, gives
origin to two distinct ovals wy,wsy of the curve Cj.

Case (A2) Case (B2) Case (C2)

Fig. 2. List of possible situations when C} has more ovals than C,

We can assume that, by the previous iterative step, we already know the list
[(Py,n1),. .., (Pg,ng)|, where nq,..,n; are the nests of the curve C, and P,
is a point in the center of the nest n;. Denote by [/Vy,... , Ny| the list of the
nests of C. Moreover, for any list [, denote by [.i the i-th element of the list.

The essential step to compute the function y;, (and consequently to compute
the topology of Sy) is just computing, fori =1,... ,k,

Q; = roadMap(P;,b) and Owv(Q;) = findOvals(Q;).

It may happen either that Ov(Q;) coincides with a nest N; of C, (and then
we say that N; is reached through a roadmap) or not.

If n; is a nest such that the list Ov(Q;) contains as many elements as n;,
then pp(Ov(Q4).7) = ta(ni.g) for all j. In this way in particular we succeed
in computing u, for all ovals belonging to nests of C} that contain neither of
the ovals wy,ws originated from the splitting of the oval n of C,. In order to
complete the computation of uy, it is necessary to detect n,w;, ws; let us see
how we can do that, first of all deciding in which of the cases (A1), ..., (C2)
of Figure 2 we are.



Start by comparing the integers k£ and s, that is the number of the nests
respectively of C, and Cj,.

Case 1) : s < k.

Looking at Figure 2, the only case in which C}, has fewer nests than C, is (C1).
In this case there exists a unique P; such that (); is not in the center of any
nest of Cp. Then ws = Ov(Q;).1 and 1 = n;.1. Moreover there exists at least
one P; such that Ov(Q);) is a nest containing more ovals than n;, precisely
# Ov(Q;) = # n; + 2. Then wy appears as one of the ovals in Ov(Q;): if
wy = Ov(Q;).r, then wy = Ov(Q;).(r — 1).

Case 2) : s = k.
The possible cases in which C}, has as many nests as C, are (B1), (A2) and
(C2).

e If there exists a (unique) nest N € {Ny,...,N;} not reached through a
roadmap (i.e. N & {Ov(Q;)}i=1,.. k), then we are in case (B1). In this sit-
uation there exists a unique nest n; such that Ov(Q;) is not a nest of Cy;
then w; = N.1, wy = N.2 and n = n;.1.

e If all the nests of C} are reached through roadmaps (in other words if
{Ov(Qi) }i=1,.. s = {N1, ..., Ny}) and, for all i, we have # Ov(Q;) = # n;,
then we are in case (A2). The ovals 7, w;,ws can be found inspecting how
ovals common to distinct nests in C, lift though roadmaps. Namely, in case
(A2) there exist at least two nests n; # n; such that, for some integers r and
m, we have n;.r = nj.m but Ov(Q;).r # Ov(Q;).m. Then n = n,.r (= n;.m),
while w; = Ov(Q;).r and we = Ov(Q;).m.

e Otherwise we are in case (C2). Denote by L, the list of the nests n; such that
# Ov(Q;) = # n;+2, and by Lg the list of the n; such that # Ov(Q;) = # n;.
Note that in case (C2), both L, and Lj are non-empty. Let n; be any element
of Ly and let r be the smallest integer such that Ov(Q;).r € Ov(Q);) for
some n; € Ly. Then wy = Ov(Q;).(r — 1) and wy = Ov(Q;).r. Moreover if
Ov(Q;).r = Ov(Q,).m, then n = n;.m.

Case 3) : s > k.

The possible cases are (A1) and (B2). In both cases there exists a unique nest
N € {Ny,..., Ny} not reached through roadmaps, i.e. N & {Ov(Q;)}iz1,... k-
Then w; = N.1. To determine n and ws we take () in the interior part of w;
(for instance Q = findPoint(w;)) and compute P = invRoadMap(Q, a). Let
r = # findOvals(Q)) and m = # findOvals(P) (possibly m = 0, if P is not
contained in any oval of C,).

e If r = m, we are in case (A1) and 1 = findOvals(P).1. Once we have found
a nest n; such that n = n;.7, then wy = Ov(Q;).j5.

e If 7 > m, we are in case (B2). This time wy = N.2. If wy = Ov(Q;).j, then
n=n;.jJ.
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We proceed in a similar way when a 1-cell is attached to two distinct ovals
w1 and wy of C, that glue together into a single oval n of C}. The oval 7 is in
the boundary both of the connected component of S, containing w; and of the
component containing wo. This is the only case when two distinct connected
components of S, may glue together : if pg(w1) # pe(ws) (i-e. wi and wy
bound distinct connected components of S,), then the distinct components
ta(wi) and p,(w2) glue into a single connected component py(n) of Sp.

After the previous considerations, it should be clear how to reconstruct pu,
when we pass through a critical point of index 0. In the case of index 2, it is
sufficient to adapt the previous method preliminarily computing, by means of
findPoint, a point (); in the center of each nest N; of C}, and the corresponding
point P; = invRoadMap(Q;, a).

Example. Let S C R? be the surface defined by the equation

F(x,y,2) = g062° + g5 (111549 + 1114127 + 11059) 2* — 4y 23+

21801, 4 | (42757,.2 , 1340243 33534 , 107211,2 _ 667\.2
+(%am0 ¥" + (ezs0 %™ + 6250 )y® +1000 + 500 5 )2+

+256(1 — 2” — y°)yz + 25959% + 575= (158082 — 1225408) 3"+

616 99216 46952 2008
+(ﬁ$4 125 z? + )y + 533 5 2t + 910022 — 9000 = o.

Since the projective closure of S in RIF’3 defined by
the homogenized polynomial ¢® F'(2, %, t) does not
meet in real points the plane at infinity {t = 0},
then S is compact in R3. After testing that S is
non-singular and that the projection p : § — R,
p(z,y,2) = z, is a Morse function, the algorithm
computes 6 critical values contained in the inter-
val [—10,10], which is subdivided as [—10,—-7] U
[—7,—4]U[—4,0]U[0,4]U[4, 7T]U[7,10] so that each
subinterval contains exactly one critical value. By
an abuse of language we will say that a critical value
has index r if it is the image through p of a critical
point of index 7.

Each of the first two intervals [—10, —7] and [—7, —4]
contains a critical value of index 0 and the level
curve C_,4 consists of two ovals each external to the
other. The third critical value, lying in [—4, 0], has
index 1. Since Cy has only one nest of depth 3, then
Cy has more ovals than C_4 (i.e. the 1-cell is attached to a single oval of C_,),
but fewer nests, hence we are in Case (C1) of Figure 2. Lifting from level 0 to
level 4, we pass through a critical value of index 1 and C, has two nests, each
of depth 1. Hence the 1-cell is attached to two distinct ovals of Cj, that we can

z=-7
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detect simply computing the endpoint @) = roadMap(P,4) for a point P in
the center of the unique nest of Cy and finding, using findOvals, the smallest
oval of Cy containing @). The investigation of the last two intervals [4, 7] and
[7,10], each containing a critical value of index 2, allows us to realize that S
has two connected components, respectively of Euler characteristic 0 and 2.
Thus S is the disjoint union of a torus and a sphere.

4 The general-case algorithm

In this section we want to see how we can algorithmically proceed to compute
the topology of a non-singular real projective surface S defined by the equation
F(z,y,2,t) = 0, with F' a homogeneous polynomial of degree d. Recall that
checking that S is non-singular means to check that the algebraic variety
defined by the homogeneous ideal generated by all four partial derivatives of
F(z,y,z,t) does not contain any real point, while complex singularities are
allowed.

If S does not intersect (in real points) the line L = {z = ¢ = 0}, we are in the
situation when the topology of S can be studied using the algorithm presented
in Fortuna et al. (2003). From now on, we will therefore assume that SNL # (),
which for instance always occurs if the degree d is odd. In this situation, as
we have already seen in Section 2, the topological determination of S can be
reduced to studying the compact affine non-singular surface SCRS defined
by the equation G(z,y,z) = 0 and to recognizing the sets of components
and F». The former task can be achieved applying to S the algorithm CCA
recalled in the previous section; thus, when CCA stops, we know the connected
components of S (or equivalently of S ) and their Euler characteristics.

In order to complete the topological determination of S we only need to com-
pute the sets F; and .7-"2 recalling that, by Proposition 2.5, T € F if and only
if there exist wy, wp € O, possibly coinciding, contained in the same connected
component of S and such that inv(w;) = wy. In particular all the components
of S not intersecting W necessarily belong to F». Thus, the further tasks we
have to perform algorithmically are to determine the list O of the connected
components of the curve Cy = W NS = {G(z,y,0) = 0} and, for each oval
w € (5, to recognize both the connected component of S where it is contained
and the corresponding oval inv(w). Up to a translation of the surface S, we can
assume that 0 is not a critical value for the projection p so that we can choose
0 as one oAf the non-critical levels a; mentioned above. Thus W is transversal
to S and Cj is non-singular. Since 0 appears among the levels a;, at the corre-
sponding iterative step the algorithm CCA applied to S already performs the
following tasks:
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T1. it computes the list O of the ovals of Cy and the shape of C‘O; more pre-

cisely the function nestsZero returns a list [(P,n1), ..., (Pr, n.)], where
ni,..,n, are the nests of Cy and P; is a point internal to all the ovals of
the nest n;,

T2. it computes a function pg : O — 3, where S denotes the set of the
connected components of the level surface Sy = SN {z < 0} and, for each
oval w of the curve Cj, po(w) is the connected component of So containing
w in its boundary.

Note that if wi,wy € O and pg(w1) = pg(ws), then the connected components
T(w;) and T(w,) of S, respectively containing w; and ws, coincide. On the
contrary, if ug(wi) # po(ws), we can only be sure that w; and wy belong to
different components of the level surface So. Nevertheless it may happen that
the two components are then glued in S (and hence T'(w;) = T(w2)) when
passing through a critical value > 0 by the attachment of a 1-cell to two
distinct ovals oy and oy of a level curve Cy, such that p,,(o1) contains w; and
o, (02) contains wy (see for instance Figure 3). This is simple to detect by

means of the procedure described in Section 3.

Fig. 3. Distinct components of §0 that glue in S.

The only left question is therefore, for each oval w of C’O, determining the oval
inv(w). Next proposition shows how this can be done using the mentioned
functions findOwvals and findPoint. Observe that the restriction of inv to W\
{0} is an inversion transforming points next to 0 to points “next to infinity”
and viceversa. If we identify W with R? and denote by R? the extended plane
obtained adjoining co to R?, then we can consider inv as a continuous function
on R? such that inv(0) = co and inv(oo) = 0.

Proposition 4.1 Let w be an oval of Cy and denote by int(w) the interior
part of w.

a) If 0 & int(w), then findOvals(inv(findPoint(w))) = [inv(w), .. .].

b) If findOvals(0) = [wo, - - . ,wpl, then inv(w;) = wp—; for alli=0,...,p.
c) If [wi, ... ,wn] is a nest of Cy and j is the biggest index in {1,... ,m}
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such that 0 is not internal to w;, then
findOvals(inv(findPoint(w))) = [inv(wi), ... ,inv(w;), ... ].

Proof. a) Note that inv transforms each connected component of R? \ w into a
connected component of R? \ inv(w). If 0 & int(w), then 0 and oo belong to the
same component of R? \ w and therefore also inv(0) and inv(co) belong to the
same component of R? \ inv(w). Thus 0 ¢ int(inv(w)). By the same argument,
if P € int(w) (i.e. P and oo lie in different components of R? \ w), then
inv(P) € int(inv(w)), so that inv(int(w)) = int(inv(w)). As a consequence, if
we take P = findPoint(w), then inv(P) € int(inv(w)). Moreover inv(w) is the
first oval containing inv(P): otherwise, if there exists w’ such that inv(P) €
int(w') C int(inv(w)), then by the same argument P € int(inv(w')) C int(w).
This is impossible because, by the definition of findPoint, w is the smallest
oval containing P.

b) If 0 € int(w), then 0 € int(inv(w)): otherwise, by a), 0 € int(inv(inv(w))) =
int(w). Since Cy is non-singular, one of the ovals w and inv(w) is contained in
the interior part of the other, and therefore inv permutes the ovals wy, . .. , w.
We get the thesis simply observing that, for all 4, inv transforms int(w;) into
the exterior part of inv(w;).

c) is readily proved using the previous arguments. O

By Proposition 4.1, in order to subdivide the set of the connected components
of S into F; and .7?'2, it is sufficient, when passing through the level 0, to
compute findOvals(0) and findOvals(inv(F;)) for the points P, given above
in T1. After doing that, as a consequence of Remark 2.3 we know that, if an
integer appears in the list L(ﬁg) of the Euler characteristics of the components
in .7?2, it appears an even number of times. It is then sufficient to create a new
list of integers as follows: if y appears 2n times in L(.7?2), we insert it n times in
the new list. The integers in this new list represent the Euler characteristics of
the connected components Tm+1, .. ,Tq in Proposition 2.2 and topologically
determine them.

5 Final remarks and examples

Although our emphasis was put on the theoretical aspects of the problem, we
have in fact developed a preliminary implementation of the algorithm and we
were forced to confront some technical problems that we outline below.

The general-case algorithm consists of three main parts: the reduction to the
study of a suitable compact affine surface S, the use of CCA to compute its
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topology and finally the reconstruction of the topology of S. The first and third
parts are relatively simple, while the second part is very demanding both for
the complexity of its implementation and for its computational cost. Clearly
the computational cost of this step is greatly influenced by the degree of the
polynomial defining the surface; since studying S instead of S doubles the
degree of the defining equation, the efficiency of the whole algorithm can be
heavily affected. Therefore, in order to obtain a satisfactory implementation,
very sophisticated tools should be used.

The most delicate steps from this point of view are certainly the non-singularity
test, the non-degeneracy test for the real critical points, the computation of
the real critical points and values and the lifting of the needed system of data
from one level to the next one in the iterative procedure.

The first two tasks require to decide whether the real zero-set Vg (I) of an ideal
I of Rz, y,z|, possibly 1-dimensional, is empty, distinguishing between the
real and complex solutions of the corresponding polynomial system. Taking
advantage of the low dimension and the specific geometric features of our
situation, we used a special purpose method, based on Grobner bases and
a related structure theorem for 1-dimensional ideals, which is described in
Fortuna et al. (2003) and Fortuna, Gianni, Parenti (2003). Hence these tasks
can be completely performed with exact arithmetic.

Instead, for the computation of the critical points and for the lifting process,
the difficulties that arise are mainly of numerical nature. We need to compute
the critical points with very high precision, thus this part of the algorithm
needs highly optimized software. An accurate complexity analysis of the nu-
merical aspects, though, was out of the scope of this paper, so we defer such
a study to further research.

Example 1. Let F(z,y,2,t) = =23+ (y + 1 — 4t)2> + (—y? — 2yt — x> + 8zt +
2t%)z + y? + (z — 6t)y? + (2 — 10zt + 10t%)y + 2 — 1622t + 70> — 65¢3.
The projective surface S defined by the homogeneous equation F'(z,y, z,t) = 0
is non-singular. Since the degree of F' is odd, surely S intersects the line
L = {z =t = 0} in at least one real point, so that the Compact-Case-
Algorithm cannot be applied to S. Thus we consider the compact 6-degree
surface S in R3 defined by G(z,y,2) = F(2x,2y,22,22 +y?*+ 22 —1) = 0 and
compute its topology.

The restriction to S of the projection p(x,y, z) = z turns out to be a Morse
function having 6 distinct critical values, respectively of index 0,0, 0,2, 2, 2,
contained in the interval [—3, 3]. This interval is then subdivided as [-3,a;]U
[a1, as] U [ag, 0] U [0, as] U [as, as] U [as, 3] (i.e. we can choose ag = 0) in such
a way that each subinterval contains exactly one critical value in its interior
part. R
The algorithm iteratively reconstructs the topology of the level surfaces S, ;
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in particular, when passing through the level a3 = 0, it gives us the following
additional information:

a) the function nestsZero returns the list [[P, [wq, w1]], [@, [ws]]]- Thus we rec-
ognize that the level curve C, contains two nests: the first consists of two ovals
wo and w; with P a point internal to both ovals; the second nest contains a
single oval w3 containing the point @),

b) the output of the function pg tells us that wi,ws,ws are contained in 3
distinct connected components of SN {z < 0}.

When the Compact-Case-Algorithm stops, we see that S has 3 connected
components, each having Euler characteristic 2, i.e. each is a sphere. More-
over there was no gluing of surface components passing through the critical
values > 0 (which is obvious since in this example there is no critical value of
index 1).

In order to compute the topological type of S we need to split F = {Tl, TQ, T3}
into F;, U Fy. First of all, using Proposition 4.1, the algorithm computes the
ovals inv(wy), inv(ws), yw(wg) corresponding through inversion to the ovals
w1, wa,ws of the curve Cy. Since findOvals(0) = |w1], then inv(w1) = w1. More-
over since findPoint(ws) = P and findOvals(inv(P)) = |ws], then inv(wy) = ws
and inv(ws) = ws.

Fig. 4. The shape of the curve Cy in Example 1

As a consequence of the criterion given in Proposition 2.5, we get that .7?1~:
{T,} and F, = {TQ, T} Coming back to the surface S, we have that F; = {T}}
and F, = {Ty, T3 = ap(T)}, where T; is a sphere for i = 1,2, 3. Then, by

Proposition 2.2, S is homeomorphic to the disjoint union of M (% (2 )y = M(1)

and Ty. Thus S has two connected components: one of them is a projective
plane and the other one is a sphere.

Example 2. Let S be the projective surface defined by F(z,vy, z,t) = 2yz? —
(4y? + 22y + 2yt)z + by + (4o + Tt)y* + (22 + 4ot — t?)y + 2%t — 22t* + 3 = 0.
S is non-singular and intersects the line L, so we preliminarily study the
compact 6-degree surface S CR.

The CCA algorithm computes 6 distinct critical values of index 0,1,1,1,1,2
contained in the interval [—4, 4] and subdivides it as [—4, —1] o8l U

32768
[~ &85, 0]U [0, B2 [, 1] U[1, 4
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The level surface S_; is topologically a disc; then we successively pass through
four critical values of index 1, that CCA investigates as explained in Section
3. So we see that both in [—1, —325] and in [0, 2] a 1-cell is attached to a
single oval, which splits into two ovals; in the first interval the two new ovals
form a nest (so we are in case (B1) of Figure 2), while in the second interval
the two ovals are each external to the other (so we are in case (Al)). On the

contrary in both intervals [— 5ok 0] and [232T, 1] a 1-cell is attached to distinct

ovals that are glued together. Figure 5 shows some sections of S at different
levels

-1 0 1 2 3 1 [} 1 2 3 a 0 1 2 3
x X X

Section at level —0.3 Section at level —0.216 Section at level —0.09

o o [
05 -05 -05
y y y

a 0 1 2 3 1 [ 1 2 3 Y 0 1 2 3
X X X

Section at level 0.204 Section at level 0.288 Section at level 0.456

Fig. 5. Some sections of the surface S of Example 2

Eventually we get that S is connected and its Euler characteristic is —2, that
is S is a torus with 2 holes. Necessarily Fi = {8} and F, = 0. By Proposition

2.2, S is homeomorphic to M (X (2 )y = M(—1), that is S is the connected sum
of a projective plane and a torus.

Example 3. The projective surface S defined by F(z,y,z2,t) = 2* — 8223 +
2% +T2? +12) 22+ 8(23 — zy? —2t?) 2+ y* + 2(T2? +12)y? — 152 — 2222 +1* = 0
is non-singular and intersects the line L = {z =t = 0}. So we start to study
the 8-degree affine surface S obtained in the usual way. The projection p has
8 non-degenerate critical points on S respectively of index 0,0,1,1,1,1,,2,2
and the corresponding 8 critical values are contained in the interval [—5, 5].
When studying the level surface SN {z < 0}, the algorithm output tell us that
a) nestsZero=[[P, [w]], [Q, [wo]]], i.e. Cy contains two ovals w; and ws each ex-
ternal to the other,

b) po(w1) # po(we), that is w; and we bound two distinct connected compo-
nents of SN {z < 0}.

At the end of the iterative steps of CCA, we see that S has 2 connected com-
ponents T, and T} each having Euler characteristic 0, i.e. S consists of two tori.
We also see that w; and wy are respectively contained in T, and T. Since 0 is
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external both to w; and to wy and findOvals(inv(P)) = [wo], then inv(wi) = w,
and inv(wq) = ws. Thus we recognize that 7, = () and Fy = {11, T>}; therefore
S is homeomorphic to 77, that is to a torus.

Example 4. The non-singular surface S defined by the homogeneous equation
(y —22)2% + y® — (422 + 1)y + 2xt® — 413 = 0, being of odd degree, intersects
the line L. Computations yield that its “doubled” surface S is connected,
with Euler characteristic 2, i.e. it is a sphere. Then necessarily F = {5’}
and F, = 0; hence S is homeomorphic to M(@) = M(1), that is S is
topologically a projective plane.
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