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Introduction

Most population models usually assume that all individuals of the population live
in the same habitat and interact homogeneously with each other, but natural popu-
lations often have a more complex structure : in this thesis, we deal with metapop-

ulation models.

The term metapopulation was introduced in the works of Levins in 1969 and 1970
([Lev69], [Lev70]) to denote a population, which is divided into local subpopulations

(in the literature, these local entities are called patches).

In table 1, we show some characteristics of mathematical models for metapopulation

dynamics (see also [met97]).

no localized interactions

fraction of occupied sites

Model Number of Variables Mathematical
habitat patches tools
Levins' model infinite p ODE

Deterministic
structured
models

infinite

no localized interactions

p; fraction of sites with i-individuals
or
p(x) density of size x

system of ODEs
or
PDE

Spatially explicit

infinite

interaction only

a vector of

lattice model

Approaches among nearby cells presence and absence cellular automata
Stochastic x; fraction of sites with i individuals
finite or Markov chains
models vector of presence and absence

Table 1: Metapopulation model
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We are actually interested in the relationship between deterministic and stochas-
tic models, focusing especially on the structured ones: before introducing our mod-
els, we give a brief description of the models that appear in Table 2

Deterministic Stochastic
Unstructured Levins Gyllenberg & Silvestrov
Val et al. Metz
Structured
Gyllenberg & Hanski Ch.2, Ch3

Table 2: Deterministic versus stochastic

Levins’ model

Levins’ metapopulation model makes the following assumptions:

A) the number of patches is very large (effectively infinite);
B) all patches are either occupied or empty and have the same size and quality;

C) the exchange rate of individuals among local populations is so low that migra-
tion has no real effect on local dynamics;

D) spatial arrangement of patches is ignored and all patches communicate equally
with all others.

This approach leads to an ordinary differential equation

dP(t
dP(t) =mP(1 - P)—eP (1)
dt
for the scalar variable P(t), which is the fraction of patches occupied at time ¢,

with m and e colonization and extinction parameters respectively. The equation (1)



is formally the same as an S — I — S epidemic model, if we identify the occupied
patches of the metapopulation with the infective individuals and the empty patches
with the susceptibles. Also, in an epidemiological framework, it is often assumed
that there is homogeneous mixing of a large number of individuals, and that all in-
fective individuals are equally infectious. These assumptions can be satisfactory for
a disease spread in a population of freely moving individuals, but are not completely
satisfactory for local populations with a fixed spatial location.

Deterministic structured models

To relax assumption B), structured metapopulation models have been suggested: in
Levin and Paine [LP74],[LP] the structure variables are age and size, in Hastings
and Wolin [HW89] the variable is age, but neither model takes into account the
effect of migration on local dynamics (they keep assumption C) ).

The model proposed in Gyllenberg- Hanski [GH92] gives up B) and C) and describes
explicitly the within-patch consequences of migration, introducing the dispersers. To
build their model, they implicitly assume that a minimum k of inhabitants per patch

is required for it to be considered occupied, and they take ¢ = — as a parameter in

a heuristic model, where the local population size is the structuring variable and it
is labelled by x (we can interpret z as the number of individuals, rescaled by k); the
population in a patch is considered large enough that its growth can be described
by a deterministic model

where g is a known function that governs the local dynamics. The migration is
modeled by introducing a migration rate .(z) and the number D.(t) of dispersers
per patch at time ¢; the local population size can change from

Tz —x—¢e atrate y.(x) due to emigration

x — x+e atrate aD.(t) due toimmigration of dispersers;

the dispersers that arrive in an empty patch colonize it with probability p., and the
patch population instantaneously reaches the critical size 1 — ¢.

Let P.(t) be the proportion of occupied patches, expressed by ff’fs pe(t, z)dz, and
let E.(t) = 1 — P.(t) be the proportion of empty patches.

Their eventual PDFE model describes the evolution of the normalized patch-size
distribution p(¢, z), which is obtained as a limit of p.(¢,z) as € | 0. Assuming the
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existence of the following limits

y(z): =lim. 0.
ST Pe
p: =lim,,o—
€
D(t) L= limg_)o ng(t)
p(t,z) : =lim. o pe(t, )
E(t): =lim.0 E.(t),

they can write down the following set of differential equations

= —u(z)p(t, x)
= = _(oﬁuu)D(t)Jr/1 7(@)p(t, x)dz

ot Dp(t1) = paD(t) (1— / wp(t,w>) @)
p(0,z) = po(x) D(0) = D,

where [ p(t,z)dz represents the proportion of occupied patches, u(z) is the ex-
tinction rate of a local population of size x, v is the death rate of dispersers and «
is the rate at which the dispersers arrive at a patch.

The model proposed in Val et al. [VVM96] for a structured metapopulation is very
similar to the previous one: it is a deterministic model with the size of a patch
as a structuring variable and with migration that influences local dynamics. Here
no critical size for the patch is assumed (in [GH92] the critical size is 1), so that
the proportion of occupied patches P(t) can be written as fooo p(t, z)dz; moreover,
partial disasters are allowed, causing so that local size can change from y — 2 > 0
with probability ¢;(z, y) and from y — 0 with probability ¢o(y) under the condition

y
¢o(y) +/ o1(z, y)dz = 1.

0
The evolution equations for this model are

Oip(t,z) + Ou(v(t, 2)p(t, 2))=—p(z)p(t, x) + /0 " e, (e, 2)d

%ft) = —(a+v)D(t) + /O “(@)plt,)da

o(t, 0)p(t, 0) = 0 (1 - ?(t,m) (-0 [Ceulan(@lpte, i, 3)
p(0,2) = po(z) D(0) = Dy

where u is the probability that, after a total disaster, a patch becomes unsuitable
for habitation and % is the mean time to regain habitat quality after a disaster.



The model of [GH92] is essentially different from this one in the boundary condition
(see (2) in comparison with (3)): if u = 0, there are no empty patches, because, after
a total disaster, patches get suddenly colonized; even if we set u = 1 and go(z) =1,
(3) covers (2)-case, only when the size of the instream of dispersers affects the re-
covery of habitat, i.e. 8 is a function of D.

In those articles, the authors are interested in equilibrium solutions and in their
stability: under some assumptions on the function g — v (which show the existence
of a carrying capacity of the patch, as a function of the number of dispersers),
the models allow alternative stable equilibria, not found in the models that ignore
the effect of dispersal on local dynamics. From those structured models, it is also
possible to come back to a simplified one, in the spirit of Levins’, when the local
dynamics is supposed to take place on a much faster time scale than the dynamics
at the metapopulation level.

Stochastic models

In reality, we have a finite, though possibly large, number of patches with different
characteristics and different local population sizes, which are coupled in a compli-
cated manner. When the number of patches is finite, the model should be stochastic
(the dynamic processes are actually discrete and random in their development). A
mathematical tool to describe this kind of modelis a stochastic Markov process, as
used throughout this thesis.

A stochastic metapopulation model with finite number of patches is proposed
by Gyllenberg and Silvestrov [GS94| (see this article for further references about
stochastic models) and [Pol99]: it takes the spatial arrangements of patches into
account and keeps track of which patches are occupied and which are empty. The
time-evolution of the system is described by a time-discrete Markov chain 7(t) =
(m(t),...,nu(t)) with finite state space X = {Z = (z1,...,2m) : x; € {0,1}} (the
random variable 7;(t) takes the value 1 if the i-th patch is occupied and 0 if the
i-th patch is empty at time ¢). The dynamics is assigned by an interaction matrix
Q@ = (gji): gii is the probability that, in the absence of migration, the population
in patch 7 will go extinct in one time-step, g;; is the probability that patch i will
not be colonized in one time-step by a migrant originating from patch j. Under the
assumption that local extinction processes and colonization attempts from different
local populations are all independent, the conditional probabilities ¢;(Z) for patch i
to be empty at time ¢ + 1, given the configuration Z at time t is

M
«(@) =]
j=1
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Hence the transition matrix for this homogeneous Markov chain is

M

P(z,9) = HQi(f)l_yi(l -¢(z)¥  zyeX

j=1

They are interested in the long term behaviour of the metapopulation : if there
is no mainland (g; > 0 for all ), the metapopulation will certainly go extinct,
so they study in particular the case with ¢;; = 0 and ¢; > 0 for ¢ > 1 ( from the
metapopulation point of view, the patch labelled by 1 plays the role of the mainland),
introducing a perturbation that depends on a small parameter € which is of the same
order as the extinction probability of patch 1 (the 'quasi-mainland’). A perturbed
chain 7(®)(t) is built up from a perturbed interaction matrix qj(f) = gj; + €Gj; + o(e)
for ¢ — 0 with §;; € [0,400). The limiting procedure is performed as ¢ — 0 and
t — oo simultaneously, assuming that

t—o00 as € »>0and et — sas e — 0, where 0 < s < o0.

The authors point out that their model is adequate for a moderate number of
patches: when the number of patches is very large, a different limit procedure,
where the number of patches tends to infinity, seems to be more satisfactory.

Deterministic approximation
of stochastic models

The main purpose of this thesis is to look into the relationship between some deter-
ministic and stochastic models that can describe the evolution in time of a metapop-
ulation : is it possible to obtain deterministic models as an approximation of a family
of stochastic ones?
This kind of problem has been suggested by H. Metz [Met]: his starting point is a
model with M equal finite patches each of size N: the population size in each patch
follows a stochastic birth and death process, with the possibility of catastrophes,
which set a patch population to zero; the patches are coupled by migration in a
fully symmetric manner, through a common disperser pool; both the catastrophe
rates, the emigration and immigration rates may depend on the local population
size. He also adds two parameters measuring the overall migration speed and catas-
trophe rate. The aim is to let either or both the parameters M and N go to infinity
and either of the two rate parameters go to zero, after some appropriate rescaling
of local population sizes, patch numbers or time.

Deterministic models as approximations of stochastic ones have been studied in
a more general setting for a long time, especially in works by T.G. Kurtz ([Kur70],
[Kur71],[EK86]) and A.D. Barbour [Bar74], [Bar80]: for a large class of differen-
tial equations, the deterministic solutions can be viewed as limits in probability of



pure jump Markov processes. The results in [Kur70],[Kur71],[Bar80] and in [Pol90]
concern the so-called density -dependent or asymptotically density-dependent one-
parameter family of Markov chains; they are useful to describe epidemic models, pop-
ulation growth, chemical reactions [EK86] [Bal99], parasite models [Pol90], [BK93].
In particular, the density dependent models for macro-parasites [BK93], [KA93]
show some similarities with our metapopulation models (the hosts can be consid-
ered as patches and the parasites per host represents the local size); in [KA93] the
model is deterministic, while in [BK93] the deterministic system is the limit of a
stochastic one, when the number of hosts is large, and it describes the evolution
over time of the proportions of the population with different parasite loads.

The model presented in Chapter 2 of this thesis describes a metapopulation with
M patches and size of patches IV, similar to that described above by Metz; we anal-
yse the model behaviour as M increases to infinity. From the mathematical point of
view, we consider a pure jump M-dimensional Markov process, whose components
are the number of individuals in the i-th patch: the local dynamics includes births,
deaths, migrations and catastrophes. To study the limit, we choose as variables of
our process the proportion of patches with j individuals; thus we are dealing with a

Z
Markov process with values in (M N[0, 1])N. The result is that this process tends in

distribution to a deterministic one, under some assumptions concerning the asymp-
totic behaviour of the initial distribution. The limit satisfies a infinite system of
differential equations (there are analogies to the model in [JM99], where the num-
ber of differential equations is finite, because the number of individuals per patches
cannot exceed a fixed k). The mathematical tools used in this chapter are martin-
gale theorems and convergence of processes on the space D[0,T] (with references
to [Bal99], [BK93], [Luc99]) to get the deterministic approximation, and semigroup
theory to prove the existence and uniqueness of the solution of the deterministic
system ([Paz83],[BIT91]).

In the model of Chapter 3, which describes the spread of an epidemic of S-I-S
type in a population structured in subpopulations (as has been introduced in [Bal99]
and in [BMST97]), the number of individuals per patch is finite, with the population
at each site fixed at a constant N. Also for this model, we have two parameters: M,
the number of patches, and N, the number of individuals per patch: if we keep one
parameter fixed and let the other tend to infinity, we can directly apply the theorems
of Kurtz [EK86] and Barbour [BK93] to get a deterministic limit, which satisfies a
finite system of ordinary differential equations: when N is going to infinity, the
variables are the proportion of infectives per patch, and when M is going to infinity,
the variables are the proportion of patches with j infectives.

The main results in this chapter concern the case when both the parameters go
to infinity, taking the proportion of patches with a percentage of infectives in a
assigned range as the variable that describes the spread of the epidemic: from a
mathematical point of view, this is a stochastic process with values in M(]0,1]),
the space of probability measures on [0, 1]. The two iterated limits both lead to the
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same non-linear differential equation for an unknown measure p(t): if we assume
that this measure is absolutely continuous for all ¢ in the interval [0,7], that is
u(t) = h(t,z)dz, the differential equation turns into a first order PDFE for h(t, ).
We show the existence and uniqueness of the solution to the equation in the general
case, and we study the asymptotic behaviour in time.

Among the problems that still remain open, we mention in particular the proof of
a central limit theorem studying the deviations of the process from its deterministic
approximation, under a proper rescaling (as is shown for general density population
processes in [EK86] and recently applied to an epidemic model in [ABQO]), the
analysis of the asymptotic behaviour in time for the deterministic metapopulation
model and the possibility of performing the double limit also in the metapopulation
model of Chapter 2. As both M and N increase to infinity, the idea is to introduce
a carrying capacity K for the local population and to perform the limit also as
K — o0, in order to get a partial differential equation for the distribution of the
structuring variable z (heuristically, x = %, with j the number of individuals in
a patch); it may be possible that such limit procedures give rise to deterministic
models similar to those in [GH92] and in [VVM96], under proper assumptions on
the asymptotic behaviour of the other parameters involved.



Chapter 1

Preliminaries

In this preliminary chapter we introduce some basic notation and concepts, that will
be used to study the models from the mathematical point of view: we give some
basic definition about stochastic processes, Markov chains and martingales.
We suggest some works from the reference that cover this material:[And91], [BR97],
[EK86],[Fel68],[Fel66], [Nor98], [Reu57],[RY99].

Let E a metric space, B the o-algebra of the Borel sets in F and I = [0, +00);
let (Q2, F,P) a probability space.

Definition 1.1 A stochastic process X with state space (E) defined on a probability
space (2, F,P) is a function defined on I x Q with values in E such that, for all t,
X(t,") : Q — E is a E-valued random variable.

We say that a process X is measurable if X : I X w — FE is B(I) x F-measurable.
The function X (-,w) is called the sample path of the process at w; if for almost
w € Q the sample path X (-,w) is (right, left)continuous , then the process is said
(right, left) continuous.

The information obtained by observing the process X up to time ¢ is ’contained’ in
the natural filtration associated to to X

FX=0(X(s):s<1)

A process is adapted to a given filtration F; if FX C F,.
We notice that every right (left) continuous F-adapted process is measurable.
The processes that will appear in the following chapters are pure jump processes
with values in a countable state space and their sample paths are constant except
for isolated jumps and right continuous .
A key concept related to the evolution in time of stochastic processes is the
following

Definition 1.2 A real valued process X with E(|X(t)|) < oo for allt € I and
adapted to a filtration Fy is an {F;}-martingale if

E[X (¢ + s)|F] = X(t) t,5>0
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The processes involved in the description of our model are Markov processes.
Definition 1.3 X is a Markov process if
P[X(t +s) € T|F*] = P[X(t + s) € [| X (t)] (1.1)

for all s,t >0 and T € B(E).
Note that (1.1) implies

E[f(X(t +5))| 7] = E[f(X(t + 5))| X (2)]
for all s,t > 0 and f € B(E)(f is a bounded function defined in E ).

Definition 1.4 A function P(s,z;t,I') defined on R, x E X R, X B(E) for s <t
1s a transition function if

1. P(s,z;t,-) is a probability measure on E
2. P(s,-;t,T') is B(E)-measurable
3. P(s,z;s,T) = 6,(T)

4.
P(s,z;t,T) = / P(u,y;t,T)P(s, z;u,dy) s<u<t
E

The transition function is called homogeneous if P(s,x;t,T') = P(s+ r,x;t+r,T)
so that we define P(t,z,T') = P(0,x;t,T).

A transition function is a transition function for a Markov process X if
P[X(t) e T|X(s)] = P(s, X(s);t,T) a.e.

Taking a version of the conditional probability, the last property can be written
as
PX(t) € T'|X(s) = z] = P(s,x;t,T)

The simplest Markov process to describe is a Markov jump process with countable
state space, that we denote by Z;(-) = X (¢, -); we labelled its countable states with
the integers 7 € Z* and introduce two new functions

1. the intensity function g;(t), which has the following probabilistic interpreta-
tion:
gi(t)h + o(h) is the probability that Z; will undergo a random change in the
interval (¢,t + h), conditioned by Z; = i;
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2. the relative transition probability function II;;(t), which is the conditional
probability of Z assuming the value j at time ¢+ h, given Z; = ¢ and a change
has happened in the interval (¢,¢ + h) with the obvious properties II;;(t) = 0

and ZH“ =1.

J#1
For small values of h, we assume that

PlZ(t+h) =jlZ(t) =1 = (1 = g(t)h)di; + q:(£)ILi; (£)h + o(R) (1.2)

where lim @ = 0 uniformly in 7, 5. Put
h—0 h

qii(t) = —aq(t)
3ii(t) = q:(t)IL; (), L F 7
The elements ¢;;(t) have the following properties
a;(t) i# ]
i (t)

+00
Z%’j(t) <0 for all i.
=0

IN IV

0
0

The quantities g;;(t)h + o(h) are called the infinitesimal transition probabilities of
the Markov process Z;. We will adopt the following notation throughout the thesis

i—j atrate g;(¢)

If the process is homogeneous in time, g;;(t) = g;;-
For a homogeneous Markov pure jump process, one can define the times of jumps

{m}
70 =0, Tpy1 =inf{t >, : 2, — Z;- # 0},

with the convention that inf () = co.
By the Markov property, conditionally on {Z, =i} for 7,11 < 00 a.e. we have

a) Tpi1 — Tp is exponentially distributed with a parameter that depens on ¢ and
that we denote by o(z)

b) Z

Tn+1

has the probability distribution = (3, -) = IL;.

If lim 7, = +00, the process is called regular or non-explosive and it can be can be
n—oo

written as
Zy=Z0+ Y Jully <y

n>1
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where {J,} are its jumps, defined by
J() = 0, Jn_|_1 = ZTn+1 - ZTn'

If lim 7, = 7, explosions are possible; the process is not determined by its in-
n—o00

finitesimal transitions, then to completely describe the process, it is necessary to
specify its evolution after the time 7, of the first explosion. In this thesis, we only
deal with regular processes. The process

We mention in particular the Poisson process , with parameter A > 0 where, for
t>0

a=A IL;=

1 ifj=¢+1
0 otherwise

and the birth-and-death process , with parameters A\; > 0, y; > 0 where for i > 0
Ag

it j=i+1
A+ i

¢ =N+ pi, IL;= Hi if j=i—-1
Ai + i

0 if |i—j]>1

with Mo = )\_1 =0.

A homogeneous Markov process generates a semigroup on the space of bounded
functions B(E) (not necessarily a Cyp-semigroup on the whole space): we say that an
E-valued Markov process X corresponds to the semigroup 7'(¢) defined on a closed
subspace G C B(FE) if

(T()f)(X (1)) =E(f(X(t +3))|F]  fE€G, 5t>0.

Given a homogeneous transition function, we can define a semigroup on B(FE) by

/}@wmxﬂw=Twﬂw (1.3)

If P is the transition function of the homogeneous Markov process X, then the
semigroup defined by (1.3) corresponds to X. For example, if we take as state
space Z™, the space B(FE) = £ : a transition function generates a Cy-semigroup on
G = {*. (See for details [And91]).

We have the following proposition from [Kur81]

Proposition 1.5 Let X be an E-valued Markov process with initial distribution v.
Let T'(t) be a semigroup on G C B(E) corresponding to X. If G is bp-dense in B(E)
( that is, G is dense in B(E) in the topology of bounded pointwise convergence), then
T(t) and v determine the finite dimensional distribution of X. In particular

Emmw=4@wmmwn
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Let || - || denote the sup norm on B(E) and G be a Banach subspace of B(E). Let
T(t) be a contraction semigroup defined on G such that T'(t)f(z) is B(I) x B(E)
measurable for all f € G. We can define

Definition 1.6 The full generator L of T(t) is the (in general multivalued) operator
defined by

E:{(f,h)erG: T(t)f—fz/ot T(s)hds}

The (strong)infinitesimal generator L of T(t) is the (single-valued) operator

defined by
L:{(f,h)EGXG: 11_%%:12}

For any multivalued operators

D(L) ={f:(f,h)eL}
R(L) ={g:(f h) €L}

For a Markov jump processes, the infinitesimal generator is

zvu»=ma/kﬂw—fu»wuﬁw

If X is a Markov process with respect to F; corresponding to a semigroup T(t)
with full generator L, then (f, g) € L implies that

ﬂﬂW—Ag@@MS

is a F-martingale

It is possible to use the martingale property to characterize the Markov process
corresponding to a given generator. Let I € B(E) x B(E) and v a probability mea-
sure on E: by a solution of the martingale problem for (L, v) we mean a measurable
stochastic process X with values in £ and initial distribution v defined on some
probability space such that

ﬂmm—Ammmw

is a FX-martingale for every (f,h) € L. We have the following theorem (see [Kur81))

Theorem 1.7 Let L € B(E) x B(E) be a closed, linear, dissipative operator such
that R(Ao—A) D D(L) for some Ao > 0, and suppose that D(L) is bp-dense in B(E).
Let v be a probability measure on E and let X a solution of the martingale problem
for QI:, v). Then X is a Markov process corresponding to the semigroup generated

by A and the martingale problem is well posed (that is, there exists a solution and
every solution has the same finite dimensional distributions).



14 CHAPTER 1. PRELIMINARIES

Remark Also for some kinds of non-homogeneous Markov jump processes, it is
possible to define a family of operators L(t) in an analogous way

L®)f(2) = olt, 2) / (F(v) — F(2)) (t, 2, dy)

If there exists a measurable locally integrable function 7 on [0,+00), such that
o(t,z) < r(t) for all ¢t and z, we define

L={(4, 9(,)/(f(y+ )= f()7(, - dy): f € B(E)} C B(E) x B(E x I)

then the martingale problem for I is well-posed (see [EK86]).



Chapter 2

A metapopulation model

2.1 Introduction

In this chapter, we present a stochastic structured metapopulation model, where
the structuring variable is the number of inhabitants per patch: we consider a pop-
ulation composed of M subpopulations, distributed in patches, labelled with 4, for
1=1,..., M.

The metapopulation dynamics can be described by a Markov jump process, which
takes into account local dynamics (births, deaths and catastrophes) and also migra-
tion from each patch to the others: in the first section, we define the continuous
Markov chains that govern the evolution of the metapopulation .

The main purpose of this chapter is to study the behaviour of the process, when
the number of patches M goes to infinity:in this context, the more suitable variable
seems to be £ (t), whose components «}(t) represents the fraction of patches with
j-inhabitants, for 7 > 0.

+oo
We notice that for every fixed ¢, z}/(t) > 0, fo"(t) = 1, so that {z}'(t)};>0
=0

can be considered as a random probability measure on N.
The quantity

BY(t) =Y jall(t

is the mean of this measure and, if it is finite, it represents the average number of
inhabitants per patch; the quantity

EY(t) = Zﬁ:c;-” (t)

is the second moment of this probability measure.
Our goal is to prove that the random process ™ converges in distribution to
a deterministic process p under some natural assumptions on the convergence of
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the initial value of the process: we assume, in fact, that the initial distribution of
inhabitants z(0) has finite second moment and that

2, M
Sg 1= su E z; (0) < 400 a.e.; 2.1
2 Mp J J ( ) ( )

from this condition, we have existence and boundedness of the first moments, and
we define

+o0
s = suijx;-VI(O). (2.2)
M 4
7=0

The proof consists of many steps. In section [2.4], we will show that the sequence
of probability measures defined on (D([0,7]))* and associated to the stochastic
process zM is tight ( here we use only the fact that s; < +o00, (2.4)). Because of
tightness, we can extract a weakly convergent subsequence, and in section [2.5] we
prove that every limit p of such a convergent subsequence satisfies a set of differential
equations (here we use the the fact that s, < 0o (2.1)). The existence and uniqueness
of the solution for the deterministic system is studied in section (2.6.1) by semigroups
methods: the Banach space on which our sequences live is

m' = {z € KI,Z Jjlz;| < oo}

J

In particular, the uniqueness of the solution implies that the limit for every weakly
convergent subsequence of zM is always the same; this fact together with the tight-
ness is enough to establish that the whole sequence zM is weakly convergent to p as
M — oo.
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2.2 The model

We denote by Y; the number of individuals in the 7 — th patch and by e; the i — th
coordinate vector in N¥; ¥ = (Y;,...,Y)y) is a Markov process with state space
NM and transition rates

—Y +e; at rate Yiby,
—Y —g¢ at rate Yidy, +vYi(1 — p)
—Y —e;+¢ atrate Yiypa

(RS I S

—Y — Y, at rate v
for 7 > 1. The parameters in the model are

e b; >0, 7 > 1 the per capita birth rate. Let us assume that jb; is concave and
increasing in j (in particular, b; is decreasing in j) and set b = max{j € N :
bi};

e d; >0, 7 > 1 the per capita death rate. Let us assume that jd; is convex and
increasing in j (in particular, d; is increasing in j)and set d = min{j € N : d,};

e v is the emigration rate;

e 0 < p < 1is the fraction of emigrants from one patch that succeed in reaching
another patch;

e v is the catastrophe rate.

In order the study the behaviour of the stochastic process when the number of
patches increases to infinity, we consider the process

> My
M = (), ... 2M ) M= r=012,... (2.3)
M
7 N
This is a Markov jump process with state-space (H N 1o, 1]) and transition rates
Tz —z +%(§i+1 —e¢;) atrate Muz;bi i>1
x —z +-(e;,_; —¢) atrate Mai(dii+ (1 — p)i) i>1
r —z +%(§i+1 —¢;) atrate Mpykzyz; 1 >0,
+ar(e1 — &) k>1
T =z +$(§0 —¢;) at rate Mz;v i>2
r —az +a(eg—e) atrate Mz (v+di+(1—p)y)
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1
Let EM(t) = i S M. Yi(t): it represents the empirical mean number of individ-
uals per patch. Using the assumption that

B%(0) = 27 Yo Yi(0) = E(Y ja 0) < 51 (2.9

and a coupling argument (for some basic details about coupling see [Lin92]), we will
prove

M

Proposition 2.2.1 The stochastic process EM = MEM —= ZY; 18 stochastically
i=1

smaller than a pure birth process F™ with per capita birth rate b

PrOOF. Let (Z, Z ) be a pure jump Markov process on a probability space Q2 with
state space N?” and transition rates given by

(Z, Z) = (Z+e; Z) at rate Zibz,

(Z, Z) — (Z, Z+ ;) at rate Zib+ Zi(b—bg,)
(Z2,2) = (Z-enZ+e) at rate  Zidg, +vZi(1 - p)
(2,2) — (Z— Zie;, Z + Zie;) atrate v

(Z, Z) — (Z —¢; + e, Z) at rate p’yﬁZi

for all 1 <4,l < M. The process Z is Markovian having the same generator as Y'; if
Z(0) = 0 the process Z is positive (that is Z; > 0for i =1,... M) for all ¢ € [0, T.
M

If Z(0) has the same distribution as Y'(0), then the process FM = Z(Zz + 7)) is
i1

a pure birth process with per capita rate b; EM < FM_ and EM(0) has the same

distribution of FM(0).

Because of Proposition (2.2.1), we have

Corollary 2.2.2 )
E[ sup EY(u)] <E[ sup F¥(u)]

0<u<s 0<u<s
and then (under our hypothesis the empirical mean EM(0) has finite expectation)

B sup BY(u)] < -e"E(FY (0)) = E(B" (0))e”

0<u<s
Corollary 2.2.3 If C is a positive constant, then

1

P[EM(t) > C] < c

E(E" (0))e"
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PROOF. Because of 2.2.1, P[EM(t) > C] < P[FM(t) > CM].
For a fixed t, let us apply the Markov inequality to the positive random variable
FH(t)

1 M _ 1 M b L M bt
aafEEY (1) = mE(EY(0)e™ = ZE(EY(0))e

E(EM(0))e’T

P[FM(t) > CM] <

IN

Ql—Q

for all t € [0, 7.

The main purpose of this chapter is the proof of

Theorem 2.2.4 If z{" = p° in distribution, with supMijx;-”(O) < o0 a.e.,
i<t
then M = p in (D[0,T])® in distribution, where p is the unique positive solution
of the Cauchy problem
( [ 00
pit)= —[bi+di+y)itv+ ijpy-(t)] pit) i>1

L Jj=0

+ [bica(i — 1) + py ijj(t)] pi-1(t)

Fdis 49 (6 1) pea8)

po(t) = v(1—=po(t)) + (di +7)pr(t) — v (Z jpj(t)) po(t)

0

"3
—
(e
~
Il
"3
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2.3 Martingale tools

Our aim in this section is to show that some processes, functions of our process M,
are martingales with respect to the natural filtration FM = o{z™(s),0 < s < t}.

We recall some results about Markov processes and martingales. First we have
the following expression for the generator L of a Markov jump process Z;:

Lf(z) = of2) / W) — F(2)In(z, dy). (2.5)

where f belongs to the domain of the generator.
In the following table, we mention the positive values of the purely atomic measure
om related to our process zM

Y o(z)m(z, dy)
ﬁ(ﬁiﬂ — &) Mzbi 1>1
iz (€io1 — &) Muz(dit +v(1 — p)i) ©>2
ﬁ(ﬁm —€)+ ﬁ(ﬁkq —ep) Mpvykxyx; 1,k >1
%(Qo_éi) Mz i>2
2 (e — &1) May (v +dy + (1 - p)y)

It is known that, if f is a bounded function, the process

Nl =12~ 1(20) - [ L8 (26)

is a martingale. In Hamza-Klebaner [HK95] and Luchsinger[Luc99], the following
sufficient conditons are given for the integrability of the process f(Z;) and the mar-
tingale property of Ntf , for unbounded functions f.
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Theorem 2.3.1 Let Z; be a reqular process with values in a general space S; we
consider a function f : S — R and assume one of the following conditions:

a) There exists a positive constant ¢ for which
L) = a(a) [ 1)~ £z, dy) < e v IFE))
b) There exists a function F' such that

ILIf(2) < F(z),  E| sup F(Z,)

u€0,s]

<0

If f(Zo) is integrable, then f(Z,) is integrable and N{ is a martingale.

For our purpose, the space S will be the space

={z el z; >0, Z zj < 1,2 jzj < oo}; (2.7)
J J

the function f : ml+ — R will be the j-th projection 7 > 0
filz) =2, zem}
j > 0 and the process Z; will be zM(t).

From now on, we adopt the following notation for j > 1

gj-1; =bj—1(j—1) Gi—15(x) = g1+ py Y i kw
gi+1,j = (djs1+7)(F+1) fij+1,j(£) = Gj+1,
%G = —(Gj-1+ Gg1) G2 —(Gjj-1(2) + @j1(2)) —v
aj(z) = gj-1;(@)Tj-1 + §,j(@)T; + §i+1,5(2) T
ao(z) =—(W+pyd ko) zo+ (di +7)z1 +v
Bi(z) = qj1,(@)rj1 — 4, (@)7; + G, ()T
(2)

Bo =W+pyd i kzr) xo+ (dy + 7))z + v

Lemma 2.3.2 Let us assume that ]E(ij (0)) < 00, j > 0; we define

U 6) = 2(0) = 2}1(0) = [ (e ) du

Then UJM is a martingale with respect to the natural filtration FM.
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PRroOOF. We notice that
UM(t) = £;(M(1) - £;(2M(0)) - / (Lf;) (@ (s)) ds.

Since |L|(f;)(z) < F(z) where

F(z)=2 (max(bjl’ b;)j + max(dj 1, d)) (G + 1) + G+ 1) +v+pv) kzk)

k
=H;+2p7 ) ka;
k

and, by Corollary (2.2.2)

su kxM(u
ogugszk: k(1)

E [ sup F(mM(u))] = H,; +201E

0<u<s

= H; +2pE [ sup EM(U)] < 00,

0<u<s

we can apply Theorem 2.3.1 b).
Before stating next lemma, we present the results in Corollaries A5, A6 of [Luc99],
which involve the higher moments of the distribution 7 (z, dy) for a general process
Z; ; we define

m(2) = [ () n(ady) o) = [ 1) Py

fork=1,2,....
Proposition 2.3.3 Let us assume that
o {fi(Zy)}* is integrable

e there exists a function F : S — R such that

o(2)|m;(2)| < F(z2), i=1,...,k
with
]E( sup F(Zu)> < 00

0<u<s

Then (f;(Z:))* is integrable and

1200 = (@ =X (5) [ otz 20y meiz) as

i

E
-

Il
)

1s a martingale.
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We write down the expressions for these martingales in the cases k = 1, 2.

k=1 NNZ) = (20— (7o) — [ olZma(Z)ds
k=2 N3(Z) =(Z); — [ o(Zs)my(Zy)ds — 2 [ o(Z;))f;(Zs)mu(Z,)ds
(2.8)
Remark : Let [N}, N}] be the quadratic variation process, then
(2 - (2} -2 [ o Z)p(Z)m(Z)ds - [NLNY, (29)

is a martingale.

Also

NENG), — [ elz)ma(z)ds

= N%(t) — {(zt)i —(Z0)? -2 / o(Z,) fi(Z,)my(Z,)ds — [N},N}L}

is a martingale.

Lemma 2.3.4 Let us assume that E((mf[)z(())) < 00, j > 0; we define

2 1 !
Ve = ) - 5 [ e
Then VjM (t) is a martingale with respect to the natural filtration FM.

PrROOF. We notice that
t
V() = (U 0) - [ ole(s)ma(a (s)) ds.
0
and, according to the previous notation,
U/ (t) = Nj(z¥(t)), and  o(2)|lmy|(2) < F(2)
with the same function F' as in Lemma 2.3.2, so that
[Nj, N3], — / o(z™(s))my (™ (s))ds = [U}M, U], — / o(z™(s))mg (™ (s))ds
is a martingale. Since U]M (t) is a martingale, the process
2
7' ®)” - [U;%.1;"],
is a martingale, and by differencing we obtain that
t
2
O 0) = [ e (s)male(s)) ds = V(1)

is a martingale.
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2.4 Tightness

Proposition 2.4.1 For each j > 0, the sequence {x}'} x>0 is tight in D[0,T| and
the limit of any convergent subsequence belongs to C([0,T])

PROOF. In order to show that the sequence {z}'} >0 is tight in D[0, T], we have
to prove that Ve, n > 0, there exist § € (0,1) and My > 0 such that

Pl s ) -af)ze| <n MMy
0<s<t<T, (t—s)<d
We define
w(x;\/-”& — sup |$;W(t) —w;'u(s)L
0<s<t<T,t—s<é
and

—{ sup |2M(t) —aM(s)| > =
t€(5,546) 3

T
First of all, we notice that, setting § = —
n
n—1
{w(@};6) > e} c | AN (2.11)
i=0

T
Let § = — for n > 0.
n

Plw(z}';6) > ] < Plw(z}’;6) > e, > jo} <Cl+P[Y_ja}' >C. (212

j=>0 j20
Since P[ijﬁu > C] < éestl (Corollary 2.2.3), let us choose C such that
=
Loy <1
Because of (2.11), we have
P[w )>e, Y jai <)< ZIP’[AM Y el < C (2.13)
>0 >0

Let us denote

MY et < Cl = Po(A))

j>0

Since

J

" (t) — 2" (s)] < [Uj* () — U (s) |+/ |oj (e (u))] du
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we can estimate

Pe(a) <Po( swp [UN0)-UFE) > )+

0<s<t<s+5 6
¢

g
+Pc< sup |/ o (2™ ()] du > —)
0<s<t<s+8 Js 6

For the second term on the right side of (2.14), we have

(2.14)

Po (/:H o (2 (u))| du > %) <P ((Hj +2p7C)5 > %) .

I3

Let us choose n such that § < ——% —: then
H; +2p7C

€ £
Pc ((Hj +2p7C)0 > 6) <P ((Hj +2p7C)o > 6) = 0. (2.15)

For the first term on the right side of (2.14), we use the martingale property

p( s |U]M<t>—U]M<s>\>g)<?;—6 (U (s +8) - UM(s))]

0<s<t<s+d
= w6+ -muy ) = S [ e ) ad

< 2M5(H +2p7e"sy).

We can conclude that

n—1

6 36
S Po(AY) < nd oo (Hy + 2yeTs1) = T (Hy +2Tsy). (2.16)
=0

e2M
36 bT n
Let us choose M such that T2—M(Hj +2pyeris) < 7" Then
£

Plw(z}"; 6) > €] [

S

(z}156) > e, ijojx;-” < (] +P[Z]‘20j$§w > (]

PIAY > gz} < Cl+P[)_ja} > C]

J=0 J20
=n

VAN IN
NI

+ QMH
N3

Lemma 2.4.2 zM(t) is tight in (D0, T])*®

PROOF. Given € > 0 let K; be a compact set in D[0,T] such that P[z}' € K;] >
1—270te. Then K = [[,, K is compact in (D[0,T])™ and Plz™ € K] > 1 —e
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2.5 Weak convergence

From the previous section, we know there exists a weakly convergent subsequence
{z™+} (for sake of simplicity, we denote it by {z™}); let p(t) = (po(t), p1(t),-..) be
its weak limit. The aim of this section is to prove that

P [p~(t) = p}(0) + /Ot aj(p(u))du forall0 <t < T} =1 (2.17)

First of all, we have

Lemma 2.5.1 For each 7 >0 and e > 0

M—o0 te [O,T]

lim P!sup UM(t)] >e] =0

Proor. Applying the Doob-Kolmogorov inequality to U]M and using the martin-
gale property of VM, we get

P [ sup U ()| > ] < SE(UMT)?) < 5o 3RS, () du

t€[0,T]
1 .7
o Iy (Hy + BT bt () du

S W(H] + estl)T

IN

which converges to zero as M — oc.

Lemma 2.5.2 If 2™ = p, then UJM = U; for any j > 0 where

Us(t) = py(t) — p° - / 0 (p(w)) dus

Proor. For z € (D[0,T])* and j > 0 fixed, we define

h(z)(t) = z;(t) — 2;(0) - /0 ((Bg)j + Py (Z kmk(U)> (z;(u) = xj_l(U))> du

k=1

and
hy(z)(t) = ;(t) — z;(0) — /0 ((Bz)j + py (Z kxk(ﬂ)) (zj(u) — le(ﬂ))) du

where .
(BE)] = qu]xk —vr; — V&é m_l(u) =0
k
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According to that notation, U} = h(z™) and U; = h(p); we must show that
lim E(f(h(z"))) =E(f(h(p)))  Vf € UCK(DI0,T)).

M—o0

Since

IE(f(h(2™))) — E(f(h(p)))| < |E(f(R(z™))) — E(f(hn (z™)))|
+|E(f(hn (2™))) = E(f(hw (p)))]
+[E(f (hn () — E(f(h(p)))],

we are going to estimate every term on the right side.

For the first term, we use the uniform continuity of f and the following Lemmas .
For every positive €, we can choose a § > 0 such that if 2,2/ € D[0,T] with
d(z,2') < 6 then [f(z) — f(2')] < ¢ (remembering that if z,2' € DI[0,T],
d(z,2') < sup [2(t) — 2'(t)]).
0<t<T

h(z™) and hy(z™) are elements of P[0, T] and

h(™) — hn(z™)(t) :/0 P’Y( > kka(U)) (2" (u) — 2374 (u))du.

k=N+1

Therefore, if sup |h(z™)(t) — hN(gM)(t)| < & then |f(h(z™)) — f(hn(z™))| < %
0<t<T
We use some lemmas to get an estimate of the probability of the set

0<t<T

BY = { sup

m/o ( > k:vi”) (@} (u) — 2} (u)) du| >

k=N+1

Lemma 2.5.3 Let ZM be a Markov process with transition rates

Z —Z+e at rate Z;b
Z —Z—e¢ at rate Zid+~Z;(1 — p)
Z —Z—e+e¢ atrate  Ziypig

then YM <5 zM.
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PROOF. Let (W, W) be a 2M-dimensional pure jump Markov process on a prob-
ability space {2 with transition rates given by

W, W) — (W +¢;, W) at rate Wby,

W, W) — (W —¢, W) at rate  Widyw,

(W, W) — (W, W +e,) at rate  (W; + Wi)b — Wibw,
W, W) — (W —e, W +e,) at rate  Wi(dw, — d)

W, W) — (W, W ~e¢) atrate  Wid

(W, W) — (W —¢+e,W) at rate Wi py

(W, E) — (W, E —e +e) at rate I/T/}ﬁpfy

(W, W) — (W —Wie;, W +Wse;,) atrate v

with d; = d; + (1 — p)y and d = d + (1 — p)y. All the transition are non-negative,
because of the assumptions on the death and birth rates.

The process W is Markovian with the same generator as the birth and death process
YM | the process W + W is Markovian with the same generator as the process Z M
Thus we can couple the realization W of the process Y with the same initial
distribution and the realization W + W of the process Z™ with W (0) = 0; it is plain
that W (t) > 0 for all ¢ and then W (t) + W (t) > W(t) for all t.

We define
M
>_ Uiz
zJu:(’Z(J)Ma"'a'zvj'\/‘ra"') ziVI:z:lT 7":0,1,2,...,
so that then, by stochastic comparison, E[Z jai ()] < ]E[Z iz} ()], t € [0,T] .
Jj>N j>N

We use a martingale argument to estimate the right side of the previous inequality.
Let

my! (8) =Y 5% (b); (2.18)
j=1
according to the notation we have introduced in Section 2.3, we define
f(2) =) 7% and c(2) = Lf(2);
j=1

after some calculations, we get

o0 o0

ea(z) =[G+ =75z + (G -1 = dizg + A= o)y D[ - 1) = 5] s+

=1 =1

+p_7z ZM [G+1)% =72+ (k= 1)2 — k] kzz;
(2.19)
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Using Theorem 2.3.1, we can prove

Proposition 2.5.4 IfE(f(2M(0))) < oo, then E(f(2M(t))) < oo, t € [0,T] and

t
WD) =l (6) = mdf(0) - [ ea(¥ () (2.20)
0
1s a martingale.
PROOF. Since
LIf) =Y G+ 17 =3[ bizi + D |G — 1) = | djz
j=1 7j=1

+(1 —P)VZ|(j — 1) — 52| jz

+ov D D |G+ =5+ (k= 1) — K| kzez (2.21)
=b> [2j+1]jz+ (d+ (1—p Z‘QJ_HJZJ
j=1
+ 2:072 |] - k + |ijZk,
Jik

it follows that

LI f(2) < 3bf(2)+3(d+(1—p)7)f(2)+ 207 [(Z kzk) + (Z ksz) (1- Zo)] :

k

For z € m!,, with sz =1, we have
j=0

so that

LI f(2) <3(b+d+ (1= p)y+207)f(2)] (2.22)

Thus, we can apply Hamza-Klebaner theorem (2.3.1).
Hypothesis (2.1) gives us an estimate for E(m3’ (¢)) which is uniform in M: let us
denote Cy = 3(b+ d + (1 — p)) + 6py; taking the expectation in (2.20) we get

mww=MW@HAwmﬂwwu
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but
lea(2(t))] < Camy' (2)

so that .
Bml! (1)) < B(m}!(0)) + Gy [ E(m} (w)du
0
From the Gronwall inequality, it follows that
E(my’ (t)) < E(my' (0))e".

Finally

E (Z jz}" (t)) <E (_Z iz (t))

< LEmM (0))eSt

1
SE(my (1))
];v] ] N (2.23)

N
Applying Lemma 2.5.3, we can give an estimate of the probability of the set BY
indeed,
BY c { sup /2p’y Z kz) (u) | du> 6
0<t<T N
)
{/ (Z kzM (u )du>—2}
k=N-+1 Y
and thus

P[BY] <P [foT (Ckina hei! (w)) du > %]

2§7E (foT (ZZiNﬂ k! (u)) du) = 2'27 E(X e N1 kTR () du
20 [T B (mi(0))e% du = PV E(mi (0) 5 (e~ 1)

2/ . N ¢ C2
Y Bl N e
5 (reg, )

It thus follows from (2.24) that

|/\ |/\

IN

(2.24)

IE(f(h(z™))) - E(f(hn (z™))| < / F(A(E™)) — F(h(z™))|dP

= [pu [f(h(™)) = f(hn(z™))|dP+

+ [y |F(R(™)) — £ (hny(2™))|dP

< 2||f||oo]P’[B?\?] +5
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If we choose N such that

sl (a7 1)) < &
then .
[E(f (h(z™)) = E(f (b ()] < 5

A similar argument can be used for |]E(f(hN (p)) — E(f(h(g_))))‘ because

]E( zoo: kpk(t)) = sli_glo]E( zs: kpk(t)> < sll%olﬁnjgm( i: kka(t))

k=N+1 k=N+1 k=N+1

- 1
<liminfE | Y kap!(t) SN]E(mé‘”(O))egt

Moo k=N+1
Finally, since f o hy € Cy(D[0,T]) for every N, we have
Jim [E(f (hy (2"))) — E(f (hx (p)))] = 0
and thus we can choose M such that

[E(f (kv (™)) — E(F (b ()] < 5.

As a consequence of Lemma 2.5.1 , Lemma 2.5.2 and because 2™ = BO we therefore
have (3.14) for any weak limit p.
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2.6 Abstract setting for the limit equation

In this section, we will prove the existence and uniqueness of the following Cauchy
problem

; —

pi(t)= —|(bi+di+y)i+v+ P’Yijj(t)] pt) i>1
=0

+ |biz1(i — 1) + py ijj(t)] pi_1(t)
< di + 7] (4 1) pisa (8

po(t) = v(1=po(t)) + (di +7)pu(t) — oy (Z jpj(t)> po(t)

(2.25)

It follows from the previous section (2.5) that the deterministic limit
p = (po,p1, P2, --.) of the stochastic process z™(t) must satisfies (2.25). We can
write down the system for ¢ > 0 in a more compact way as

P = —(Ni + i +v)pi + Nic1Pio1 + Hiv1Dis1

- . . (2.26)
+pv (ijo ]pj) (Pie1 — pi) + V04

where

Piii=0  pp=0, A1=0, N=0bi, p=(di+7)i=di

We identify the problem as an abstract evolution equation in a Banach space X.

2.6.1 Abstract Cauchy Problem

Let X be a Banach space and let A be a linear operator from D(A4) C X into X.
Given ug € X, the abstract Cauchy problem for A with initial data ug € X consists
of finding a solution u(t) to the initial value problem

du(t)
d Auft), >0 (2.27)
u(0) = wuy

where by a solution we mean an X valued function u(¢) such that u(t) is continuous
for t > 0, continuously differentiable and u(t) € D(A) for ¢ > 0 and (2.27) is
satisfied.
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Our problem (2.25) actually gives rise to a semilinear initial value problem

dl;gt) = Au(t) + F(u(t)), t>0 (2:28)
u(0) = ug

where A is the generator of a Cy semigroup (we denote the semigroup by e4) and
F : X — X satisfies a Lipschitz condition in u. If there exists a solution of (2.28),
it satisfies the integral equation

u(t) = eug + /Ot e D4R (u(s))ds (2.29)

We call a continuous solution u of the mild equation (2.29) a mild solution of the
initial value problem (2.28). A classical result assures us of the existence and unique-
ness of mild solution of (2.28) for Lipschitz continuous functions F'.

Theorem 2.6.1 (/Paz83], VI 1.4) Let F : X — X be locally Lipschitz continuous

If A is the infinitesimal generator of a Cy semigroup e* on X, then for every
ug € X there is a tye < 00 such that the initial value problem (2.28) has a unique
mild solution u on [0,t,q,). Moreover, if tpa, < 0o, then lim |lu(t)|| = oo.

max

If we take a function F' that is regular enough, then the mild solution is a classical
solution of (2.28); we have the following theorem of regularity

Theorem 2.6.2 (/Paz83/, VI Th. 1.5) Let A be the infinitesimal generator of a
Co-semigroup; if F' is continuously differentiable, then the mild solution of (2.28)
with ug € D(A) is a classical solution of the initial value problem.

In the next section, we transform the ’concrete’ Cauchy problem (2.25) into an
abstract one.

2.6.2 The space m!

For our purpose, the appropriate Banach space X is

m' = {z € 61,2 Jlz;| < oo}

J

m! is a subspace of the Banach space ¢! and it is a Banach space itself, equipped
with the norm

lalll = lao| + 3 iz (2.30)
=0

It is actually an L'- space of the integrable functions defined in N, when we consider
the measurable space (N,P(N)) with the measure dm = do + }_,., ©;. Therefore
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its dual space consists of the essentially bounded sequences, that coincides with the
space of bounded sequences, with the supremum norm. The duality map < -,- >
between m! and £ can be explicitly written as

+o0
< p,u>= /gbudm = Poug + Z 10;u; (2.31)
i=1

We construct the operator A that consists of the linear part of the left part
of (2.25); this operator takes into account the linear birth and death part of the
dynamics of our metapopulation . Let Q be the g-matrix

biaG—1),  ifi=j-1
Qi =a; = —(bj+(dj+~))j ifi=j
(dj1+7)(G+1) ifi=j+1

Let us denote ¢; = —gj;, d; = d; + 7 and consider the following linear operator on

ml

Au = uQ, (Au); = quiuk D(A) ={uem: quk|uk| < oo}. (2.32)
k k

The operator A is well-define, that is Au belongs to m* for u € D(A)

;of i|(Au);| = Z;:’fz |@im1,i%i—1 + Qi + Qi1 Wit
= Zj—:ofl ‘bi—l (Z - 1)ui—1 — q;ilU; + d_i_|_]_(l. —+ 1)U,L'_|_]_|
<23 sl + o ] + 205 dgils| < 5307 g

Let us define the map F : m! — m!

F(p) = py(D_ ips) (Tfl(p) —1 (p)> — v +vdy (2.33)

=0

where (T_1(p))i = pi-1,  (I(P))i =pi,  (00)i = 6.

According to that notation, the system (2.26) can be written as

{ Pt = /t_(t) + F(p(t)) (2.34)
=P

2.6.3 A is a Cy-semigroup generator

To prove that A is the infinitesimal generator of Cy-semigroup on m!, we first study
the operator A = A — bl (we recall that b = max{j € N : b;}), where I : m' — m!
is the identity map; our aim is to apply the Lumer-Phillips theorem ([Paz83], 1.4)
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to the closure of A: the operator A will be the generator of a Cy-semigroup of
contractions on m!, so the closure A of our operator, by a perturbation argument,
generates a semigroup on our Banach space.

We recall the definition of the duality set of w, D(u), with u belonging to a
general Banach space X

Definition 2.6.3 D(u) = {p € X*: < p,u >= |[u|®> = ||¢||}

Definition 2.6.4 A linear operator B is dissipative if for every u € D(B) there is
a ¢ € D(u) such that Re < Bu,p ><0

Proposition 2.6.5 The operator A — bl is dissipative.

PROOF. Our Banach space X is the space m'; if we denote by 9||ul|
the sub-differential of u defined by

Olull ={¢ € X*: < d,u>=[luf], [|¢]] =1}

one can easily see that the operator A is dissipative if for every u € D(A) there
exists a ¢ € 0||ul| such that

< (A=bu,o><0

(indeed, if ¢ € 0||ul|, then ¢ = ||u||¢ € D(u)).
The sequence ¢ € £*° defined as

1, ifu; >0
(¢)i=4 -1, ifu; <0

C;, if U; =0

with —1 < ¢; < 1 is an element of 9||u|| and

< (A=b)u,¢ >= go((A—bl)u)o+ Y _ig; (A —bI)u),

i>1
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Now
$o((A—bD)u)g = —gobuo + dodyu,
and
Z i¢i (A—0blu); = Z i0i(Qi-1,1%i—1 + Giithi + Git1,iUiv1 — buy)
i>1 i>1
= Z Z¢z (bz_l(i - 1)’(1,,'_1 - b,zuz - bul)
i>1
i>1
i>1 i>1 i>1
i>2 i>1
= Z(¢i+1ui — Giu;)i’b; + Z i(Pit1uib; — piub)i
i>1 i>1
=+ Z(qb,_luz(z — 1) — quzuz)dzz — d)ldlul.
i>2

Since 0 < b; < b, because of the assumptions on the birth rates, we have

di—1ui < diu;, Git1u;i < diu;
Gi1ui(i — 1) < dui(t — 1) < gqugs dipaush; < diuib; < dyusb.

Hence

< (A-b)u,d > = —dobug + dodius — prdius+
+ Z(¢i+1ui — ¢iu;)i%h; + Z i(@ir1uib; — Pyu;b)i

i>1 i>1
Z(¢z—1uz(z - 1) — qu,uz)(izl < 0.
i>2

Proposition 2.6.6 If i > b, the range of the operator uI — A is dense in m'.

PrROOF. Let A = p + b ; first of all, let us take v € m!, v > 0; we will construct a
solution u of

A=Au=vw

or componentwise

(2.35)
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Let us take the finite approximation of order m of the infinite system of equations
(2.35)

i — 3wy =™ j=0,...,m-1 (2.36)
k<m-—1
where v(™) is an m-dimensional vector defined by v](-m) =v;,forj=0,...,m—1
; we can write down (2.36) in a matrix form
()\I(m) _ A(m))u(m) — (™), (2.37)
Now Al = g5, 1™ =g;, B .= A1tm — A,
7j=0,....m—-1 k=0,...,m— 1.
-)‘_QOO —q10 0 0 |
—qo1 A—qu —gn 0
B/(\m) = 0 —qi2 A—@Qa2 —g3
L 0 0 —Gqm—2,m-1 A— dm—1,m-1
[ 0 | [ ui™
vy u™
) — =
| Um-1 | | u’ErT—)l i

For every m, the linear system (2.37) has a positive solution u™) | because of the
special form of the matrix Bg\m) = A,,— A™); we have the following lemma (relevant
definitions and proof can be found in the appendix (A).

Lemma 2.6.7 The m X m matriz Bf\m) s a non-singular M-matriz, so that

[Bg\m)]_lis strictly positive.

The components u; of a solution of (2.35) can be built as limit of the components

ug-m) for m — oo: for every fixed j, the sequence u§~m) is positive, non-decreasing in
m and bounded.

To see this, note that, for j =0,...,m —1

1 1
)\ugm-i— ) Zkgm uim—l— )Qk:j — v}(m-i—l)

/\ug-mﬂ) - Zkgm—l ugcmH)ij = o™ 4 UngH)CImJ'
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Let us set
[ Vo ] [ UgmH) ] [ Ugrrszrl)fImo ]
U1 Ugmﬂ) ngn +1)Qm1
pm = , alm — ’ pim) —
| Um-1 | i U5Z’f1” ] (mﬂ)qﬂ%m 1]

The vector (™ is non-negative and 7™ + r(™ > (™) 50 we have

-1 -1 -1
am = (Bgm) (5 + o) > (Bgm) (5™) = ( B@) (v™) = ™

which implies u(m+ ) > u!™ for j=0,...,m — 1. To prove the that the solutions
are bounded, let us estimate Z;”;Ol ugm) summing up in (2.36) for 5 =0....,m—1

and remembering that for £ < m — 1, Z _0 qr; < 0, we have

m—1
A u =Z > %+Zv
]:0 ] =0 k<m 1 1 (238)
ORI S SRR o
k<m-1 j=0
From (2.38), we get, for each [ < m,
m—1 m—1 [e'e)
)\ul(m) < ugm) < v](-m) < Zv]

7=0 7=0 7=0

Hence there exists u; = limp, . ug-m) and it satisfies (2.35).

If v is a generic element of m! (not necessarily positive) we can take v, and v_
the positive and negative part of v and solve

A= Auy =vy, A=—Au_=v_

The solution we are asking for is u = u* —u~.
Let us give a sufficient condition on v to obtain that our solution u actually
belongs to D(A). The proof needs two lemmas.

Lemma 2.6.8 Ifv >0 andZw, < oo and A > b, thenszu, < 00 (where u is

the solution of (2.85). PROOF We multiply by © and sum overi fori =10,...,m—1
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in (2.36) with ugm) =0 for ¢ > m, obtaining

m—1 m—1 m—1 m—1
Z ™ =\ Z ™ + Z 2dul™ Z i(i 4+ 1)u™d;
i=1 i=1 i=1 i=1
m—1 m—1
+ 3 @™ = > i — u™bi
i=1 i=1
m—1 m—1
= Z mEm) + ) i?(d; + b,)u(m)
i=1 i=1
m—1 m—2
=3 (= Vida™ =i+ 1)bu™
i=1 i=1
m—1 m—1 m—2
=) Z iuz(m) + Z idiugm) + (m — 1)2bm_1u£;n_)1 - Z ibiuz(m)
i=1 i=1 i=1
m—1 m—1 m—1
>AY (™ 4+ Z idul™ — b Z iul™
i=1 i=1 i=1
so that
m—1 m—1 m—1
(A—=10) Z iugm) + Z idiugm) < Z ivgm)
i=1 i=1 i=1
m—1 m—1
) o . (m) . . (m) _ .
If A > b, then sziui = 7711_{1;0 Zl wdiu; < nll_lgo Zl w;, = Zw, < 0.
7 i= i= i

Lemma 2.6.9 Ifv >0 Zizvi < oo and A > 2b, then Zi2diui < oo, where u s
i i

the solution of (2.35).

PRrROOF. We multiply by > and sum over 4 for ¢ = 0,...,m — 1 in (2.36) with
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m—1 m—1 m—1

0™ =\ Z 2ul™ + Z Bdul™ — Z 2(i + D)ulT) iy

—)\222 (m+2212du m — 1), u'™,
m 1 m—2

m—2
—9 Z 2™ — 3 ™ — 3 ibul™ >

i=1 i=1

> A Z Pu™ +23 " 2daul™ — 23 Phal™ =Y il + di)u™
1 =1 _ i=1 - i=1

A — 2b) Z Pui™ + 23 Pdiud™ = 3 il + di)u™

i=1 i=1

i=1

Thus

m—1 m—1 m—1
A — 2b) Zzzu +2222du _Z 2 i-{-Zi(bi—l—di)ugm)
i—1 i—1 i—1

Since there exists a positive constant C such that b; < b < Cd < Cd;, we have

m—1 m—1
S i+ d)ul™ < (1+0) Y idal™,
=1 =1

and hence, using the previous lemma,

Zzzdu,—él_rgc)z#du <

i=1

(Z i’v; + (14 O) Zw,)

% [

m—1
(nll_r)r;oZz v, +(1+C) sz,ugm))

N = DN =

for A > 2b.
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If we take v € m?> = {u € m* : >, *|v;| < 0o}, then both v™ and v~ belong to

m?2, so applying the previous lemmas, we get

Sosigilu] =30, (b + di)Jug] < (C+1) >, %di|ui| = (C 4+ 1) Y, di(uy +uy)
<(C+1) [X;dau + Y, i dsu; | <
< [Zz iz");r +Zi i%z’_] <(C+ 1)Zz Z'2|vi|

Since m? is a dense subspace of m!, for u > 2b the range of (1 — A) is dense in m?.

Theorem 2.6.10 The closure A of the operator A generates a continuous semi-
group on mt

Proor. Since A is dissipative, it is closable and its closure is dissipative too;
besides, there exists a p such that the range of 4 — A covers m!. We can apply
Lumer-Phillips theorem [Paz83] to show that A — bI is the infinitesimal generator
of a Cj semigroup of contraction of m®.

The closure of our operator A is a perturbation of the operator A via a bounded
operator b, so then A generates a C semigroup . The next proposition shows that
it is a positive semigroup.

Proposition 2.6.11 A generates a positive Cy semigroup.

PrOOF. If u > b, the resolvent operator R(u, A) = R(u, A) is a positive operator:
let v >0 and u = R(u, A), then

(ul —Au=v

Reproducing the steps in the proof of Proposition 2.6.6, one can show that w is
positive.

2.6.4 The map F

The non-linear part F' (2.33) is regular enough to guarantee the local existence of
the mild solution of (2.28).

Proposition 2.6.12 The map F' is locally Lipschitz continuous .

PrOOF. Let p,r € m!, |||pll| < R,|||7|l| < R and let us denote s(p) = kak.
k

First, clearly,
[s(p) = s(x)] < [llp = zlll
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Then we have

[1F(p) = F(0)ll| = py(Is(p)po — s(r)rol + ) kls(p)(pr1 — pr) — s(r) (ri—1 — 7))
+v[lp—rll|

< pv (|s(p)po — s(p)ro| + |s(p) — s(r)| |ro]

s(p)| ‘Z(k + 1)(px — k)| + |s(p) — s(r)]
Zk\ pr — k)| + |s(p

(3p7(|\|pl|\+ Hzlll) +») [llp ==l

We can actually prove that the map F' is continuously differentiable.

Proposition 2.6.13 The map F : m' — m! is differentiable and the Fréchet dif-
ferential F'(p) applied to z € m* is

> (k+ D)y

k

Z kpe| +

)vlllp = rll]

(F'(p) Z]P] zi-1 — %) + (ijj)(pi—l —pi)] — vz, 1 >0,
j=1
where z_1 = p;i—1 =0
PROOF. -
(Fp+2)—F(p)— F'(p)-2), = oy _ iz)(2i-1 — 2)
and

|||ZJ% zie1 — zi)||| < 3] |2l
Proposition 2.6.14 The Cauchy problem (2.84) has a unique mild solution u(t) =
p(t) a priori defined on a maximal interval [0,tmax]).(Ch 6, Th 1.4 of [Paz83])

We have actually proved that the map F' is continuously differentiable, so that the
solution u(t) is differentiable.

We are now interested in the positive solutions of (2.34), when we start with a
positive initial datum.

2.6.5 DPositive and bounded solution

First of all, we notice that for any o > 0, the solution of the problem (2.29) is
equivalent to the solution of

t
u(t) = e Hetuo 1 / e~ 30-9) =4[y (5) 4 aF (u(s))] ds. (2.39)
0

where e is the semigroup generated by the closure of A.
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1
Lemma 2.6.15 Let 0 < a < —————. If p 2 0 [lpll £ R,

Rpy+v
then p+ aF(p) > 0.

PROOF.
(p+ aF(p))i = (1 - va)p; + apy(D_ jp;)(pie1 — pi)
J

= apy()_ ipi)picr + (1 — av — pya(d_ ip;)p

j j
<1 < ! = (1-a(w+prY jp) 20
a< —— < : —a(v+py)_ jpy)) >
Rpy +v (X2 dpi)ey +v —

Proposition 2.6.16 If ]_00 > 0, then the solution of (2.39) p(t) is non-negative on
t € [0, tmax)-

PROOF. Let K = [0,tx] C [0,tmax) be a compact interval and let us take
R = max [[u(t)]].

If g 2 O then from (2.39) one can easily see that u(t) > 0 for ¢t € K.

Proposition 2.6.17 If p, > 0 then there is a global solution of (2.29), that is
tmax = +00 (The solution is bounded on bounded intervals).

PrROOF. We have proved that, if the initial datum p € m! is nonnegative, then
the solution u(t) is non negative to0o on [0, tmax): for such a solution , we shall give
an estimate of the quantities

D pi(t) and po+ Y ipi(t)
=0 i=1

Let L € (m')* be a linear continuous functional; let p° € D(A), so that the solution
u(t) is differentiable, we can take the derivative with respect to ¢ of the function
L(t) = L(u(t)) and

dL(t)

ek L(Au(t) + F(u(t))).

For our purpose, we deal with two different functionals on m!:

o0

Lo(p)=)Y _pi and  Li(p) =po+ > ip:.
=1

1=0
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Since

- (sz) = & Lo(u(t)
= (Ap+ F(ﬂ))z

=v(1—po) + dip1 — py (Z;ozl jpj)

+ D — (bi+di+7)i+y+972jpj(t)] pi(t)  i>1
+ > iy [bil(i — 1)+ py f:jpj(t)]

+ >y [dipr + 7] (6 + 1) piga(2)

= V—VZp,-(t)

it follows that, if » p{ <1 then » pi(t) < L.

To estimate the norm of the positive solution on the interval [0,¢], we use the
functional Ly, obtaining

41ty = & (o (po s zm-(t») S i (Ap+ F),

i=1

o0 00 o0 00 2
2712 iDi — ZZ dzpz Zl2pz - szpz - pY (Z sz) +
i=1 =1

+ZZZ_1 i—1Di— 1+p’7(zzpz>zzpz 1+

i=1
0

+) i(i+1)d +1pz+1+vz (i + 1)piss +
i=1 i=1

+ (1= po) + (di +7)p1 — pv (Z i:m) Po
i=1
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d o

o o o o 2
G La(u(®) = =D Pbipi = D S idipi =Y _ipi— vy ipi— py (Z zp) -
i=1 i=1 i=1 i=1 i=1
o0 o0 o0
+ Zz(z + 1)bipi + py ( ipi) Z(Z + 1)pi +
i=1 i=1

=0
o0 o0

+ 3 ili = Vdips +7Y_i(i — )p; +
i=1 =1

i

+v(1=po) — py (Z ipi) Po
=i — dpi — vlpll +v + (Z ip") (p 12 P - 7)

i=1 i=1
and thus

d = =
@Ll(u(t)) <(b—d)Y ip—vlpll+v+py Y ip;
=1 =1

< (b—d)> ipi —vlpll + v+ pvlpll

i=1

oo

<lb—d>_ipi—vlpl +v+ pvlpll
i=1

< (fb—d+v+p)llpl +v

We denote (|b — d| + v + py) by K and from Gronwall inequality, we get
v

o)) < 7

(" = 1) + [Ip(0)]]e"

Corollary 2.6.18 If the initial datum p° > 0, the unique mild solution of (2.34) is
defined on [0, +00).

PROOF. If tax < 00, sup [lu(t)|| would be finite and this is in contradiction
t€[0,tmax)
with Theorem 2.6.1.
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2.7 Conclusion

We recall the following theorem from [Bil68], that states a necessary and sufficient
condition of weak convergence for probability measures

Theorem 2.7.1 We have Py = P if and only if each subsequence { Py} contains
a further subsequence { Py} such that Pyn = P

Now we can write down the proof of theorem (2.2.4)

PROOF. The sequence of stochastic processes z is tight; because of Prokhorov
theorem [Bil68], it is weakly compact, so that every subsequence zM' contains a con-
vergent subsequence, whose limit is p, depending a priori on the given subsequence;
but this limit satisfies (2.25) and the mild equation (2.29); because of the uniqueness
of the mild solution, the limit p is the same for all the subsequence; Theorem 2.7.1
assures that the whole sequence z™ converges to pas M — oo.



Chapter 3

An SIS model in a structured
population

3.1 Introduction

The stochastic SIS model under discussion describes the spread of an epidemic
among a population partitioned into M households, each of N individuals, as in-
troduced by F.Ball [Bal99]. From a mathematical point of view, this process can be
modeled by a continuous time Markov chain, which involves the two size-parameters
M and N and the infections rates. Our aim in this chapter is to study a deterministic
approximation to the stochastic model, when both the parameters M and N increase
to infinity.

In section 3.2,we give the definition of the Markov chain that describes the evolution
over time of the epidemics, and we suggest two different deterministic approxima-
tions ; the first one is suitable for not so many households with large population,
the second one instead describes a situation of a population of a large number of
small households. Both these stochastic processes are density dependent Markov
processes and we can apply a “law of large numbers”, as Kurtz [EK86] has shown.
In section 3.3, we introduce a new variable, that gives a global description of the
system at time t. It is a random probability measure; roughly speaking, it repre-
sents the fraction of households with a percentage of infectives in an assigned range.
We discuss the existence and uniqueness of the solution of a non-linear differential
equation for the deterministic measure, that can be obtained in a formal way as the
limit of the random probability measures.

Sections 3.4 and 3.5 are devoted to the study of the deterministic approximation of
the random measure as the two parameters M and N go to infinity; we can apply
a slight modification of Kurtz [EK86] and Pollett [Pol90] results for asymptotically
density dependent processes. In section 3.6, the time evolution of the approximating
measure is analysed ( when the epidemic threshold ¢t¢ < 1, every subpopulation
goes to the same endemic equilibrium as ¢t — o).
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3.2 The stochastic model

The epidemic spreads among a population consisting of M households , labelled
1,..., M, each containing N individuals. We describe this process by means of a
continuous time Markov chain with values in the lattice ZM :

X:(leay&aaYM)

where Y;(t) denotes the number of infectives at time t in the i-th household; the
constants involved are c¢ (the local infection rate), d (the global infection rate) and
7 (the removal rate). Let k = (kq,...,kn) be an M-dimensional vector with k; €
{0,...,N} and let e; be the j-th coordinate vector; Y is a jump Markov process
with transition rates

Y =Y +eatrate (N=Y))(cx + 3 i ¥)
Y —Y —e¢;at rate Y]

To start with, we recall two results of approximation of the stochastic model
with a deterministic one: in the first case, let the number of individuals in each site
go to infinity, keeping the number of sites fixed; in the second formulation, let the
number of sites go to infinity, with fixed population for each household.

e Let Xn(t) be the Markov process, whose components represent the fraction of
infectives in each household

X () = (Y;ét)YMT(t)>

Xy is the density process associated to Y (¢). A result of [EK86] for density-
dependent Markov processes shows that if X, (0) — X° a.s. for N — oo,
then

lim sup |Xy(t) = X(@O)]=0 as.
N_)ootE[O,T}

where the vector function X = (Xj, ... X)) satisfies the following ODE system

{ X)) = (1= X)X + 7 5L GEO) - %) g
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e As M — o0, it is useful to consider the fraction of households with j infectives:

M) = (zo,...,2Nn)

M(t) = 21 Eﬁzi](t)

{zM(t),t € [0,00)} is a continuous Markov chain with countable state-space

({0’ . %) N+1

and transition rates

. j d¥N Ix
2 Mt e —ey) atrate M(N—i(ed +2Zke)

e — M (e, —e;) atrate Myjx

The results of Barbour [BK93| and Kurtz [EK86| show that assuming that

N
zM(0) converges a.s., as M goes to infinity, to y € [0, 1]V ! with Zyj =1,
j=1
the stochastic process z™(t) converges a.s. to & = (&, --.,&n) , the solution

of the following deterministic ODE system:

(

() =90+ D& — 5&1+
+e[(N =5+ D)IFg1 — (N = DFE]+
+dZRE (N — j+ 1)1 - (N - 5)8)]

éo(t) =v& — &od Zf\io &l
| &(0) =y;

where 0 < ¢;(t) <1, ¢ €C[0,T], j=0,...,N,and {n4a(t) =0.

3.3 Weak limit equation

Our aim is to study the behaviour of the process as both parameters go to infinity.
In order to do that, we construct a family of probability measures on the interval
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[0, 1] depending on the time parameter t; for every measurable set I C [0, 1], let us
define

M
Zg[YiT(t)eI] | M
YNM () (T) = ﬂT = MZ 0% (I)- (3.3)
i=1

If I = (a,b], YNVM(t)(I) is the percentage of households with a fraction of infectives
between a and b at time ¢; if a = *tand b= £ | we have YVM(¢)(I) = 2j'(t).
Y™M(t) is a stochastic process indexed by two parameters and takes values in the
space of probability measures on the unit interval; with the notation of the previous
section, we get

J
N

YyRM()(I) = ché‘l(tﬁ (1)

The following sections deal with two limits:

A) lim lim YNM(¢)

M—o00 N—oo

B) lim lim Y™VM(¢)

N—o00 M—00

They could a ’priori’ be different, but it will be shown that they both lead to the
same measure on the interval [0, 1], whose evolution is described by the following
non linear 'weak’ equation

t
<o) >=<fipo>+ [ <Hofiu(s)> ds  VfeC'(01) (34

where we denote the action of the generic probability measure p on a continuous
function f: [0,1] - R with < -, - >

< fops= / f(2)u(dz)

and

-
=

z) =yzf'(z)

z) =cz(l—2z)f'(z)
Tf(x) =d(1—a)f(z)

B(u) = [, zu(dx)

H,f =Rf+Sf+EWuTf.

In order to show the existence and uniqueness of a solution of the equation (3.4),
let us first consider the linear equation

< Foult) >=< f,u(0) > + /0t<7"(s,-)f’(-),u(8)>ds VfeC(0,1) (35)
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where r(t,z) is a continuous function defined on [0,7] x [0,1]. Formally, we can
write dyu = A*(t)u where A* denotes the adjoint of the time dependent operator

(At)f)(z) = r(t, z)f'(z).
Let us denote by ®(t; g, z) the solution to the Cauchy problem
{ i) =) 56
y(to) ==

and assume that this solution is defined for ¢ € [tg, +00) and z € [0, 1].

Lemma 3.3.1 Let E € C([0,1]) with 0 < E(t) < 1, z € [0,1] and let ¢T(t, ) be
the solution of (3.6) with to =0 and r(t,y) = cy(l —y) — vy + E(t)d(1 — y).
Then 0 < ¢¥(t,z) <1 ,z €]0,1].

PrROOF. The equation 7(t,y) = 0 defines a function «(t) such that 0 < a(t) <1
and

Ap={(ty):teR,y<at)}, ra, >0
A_={(ty):teR,,y>at)}, ra, <O
Now ¢ (t, r) is increasing in t if (¢, ¢ (¢,x)) € A, and is decreasing if (¢, ¢¥(t,x)) €
A_. Thus 0 < ¢%(t,z) <1
As in the case of an absolutely continuous measure, we can construct the measure
solution of ( 3.5) carrying the initial pg along the flow: for every measurable set A
in Q =[0,1], let
oi(z) = D(¢;0,z)
Pi(z) = 2(0;¢t, z) (3.7)
m(A) = po [¢71(A)N Q]
Since the solution of the (3.6) is unique , we have

O(t, s, ®(s,t,z)) = (3.8)

We take the derivative with respect to ¢ and to  of both sides of (3.8) (9;, i =1,2,3
denotes the partial derivative of ® with respect to the ¢ — th variable)

(01®)(t,s,P(s,t,x)) + (03D)(t, s, B(s,t,2))(P(s,t,z)) =0
(059(t, s, P(s,t,2))(0:P(s,t,z)) =1

Multiplying the first equality by 93®(s,t,x) and recalling that
019(t, s, ®(s,t,z)) =r(t, ®(t,s, ®(s,t,z)) =r(t, x),
we have

02®(s,t,x) + r(t,z)03®(s,t,z) =0 (3.9)
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and for s =0

Oei(z)r(t, ) + Optbe(z) = 0 (3.10)

Lemma 3.3.2 The equation (3.5) has a unique solution.

PROOF.
Note that the one-parameter family satisfies (3.5): for every measurable function

f defined on ) .
/ £ (@)ue(d) = / £ (4(y)) 10 (d)

(see for example [DS88],Th.I11.10.8); hence

4 <fm> =% |y F(8u(y)no(dy)
_fol gtf¢ty) ( y) =
= Jo £'(@4(y) "5 no(dy)
=J £1( ¢t )7 (t, ¢e(y)) po(dy)
- fo f'(@)r(t, @) p(dz).
Let v; be a solution of the equation (3.5). First note that, Vg € C([0,T] x [0, 1])

G <atu>= [ Satumian+ [ Fotprtam@). @1

To show that the family of measures (3.7) is the only solution of equation (3.5),
let us construct the family of measures on {2

M(B) = v [4;1(B) N Q]
For all f € C([0,1])

L <f > =% [ FWy)w (dy)=
=fy [2f wt(y )+ fy [ (FWw))] it )malay) =
= fo f'(e(y) )atlbt( +(dy) +f0 F( "/)t )0y (%:(y))r(t, y) vi(dy)
= [, F'(:(®)) [0, ()r(t, y) + Bntbr(y)] ve(dy) =0

because of (3.10). Hence, Ay = Ag V¢ € [0, T; for all measurable sets B ,
w(B) =w(y, (¢, (B))NQ) = A\(4,(B))

= Xo(4:1(B)) = n(v5 (¢ 1(B) N Q))
=15 (6; (B) N Q) = po(¢7 ' (B) N Q) = w(B)
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In our original weak equation, the function r depends on the measure p but we
can apply the previous argument to construct a contraction map with the usual
sup-norm || - || on C(]0,T]) : a fixed point of this map is the solution of our original
problem.

Theorem 3.3.3 Let us consider M = {E € C([0,T]),0 < E(t) < 1} equipped with
the supremum norm , and let uf be the solution of (3.5) where

r(t,y) =cy(l —y) —yy+d(1—y)E(t).

If T < Ty, with Ty such that Ty exp((|c —v| +1)Ty) =1, the map T : M — M

1
ENE) = | anf(do)
0
18 a contraction.

PrROOF. Let E,F € M and denote Qr = [0,1] x [0,T]

t

65(6,2) = 676, 0)| = | [ 75(6,0%(6,2) = 7 (5,67 (.2 s
< [ oo 052 - 1 (5,655, 00)| ds
+/Ot\rF(s, % (s,z)) — r¥(s, ¢F(s x))| ds

/|¢Esw — 6% (s,0)|ds

< (sup rE — rF|)t+ (SuP

Qr Qr
< dsup |E(t) — F(t)|t + (lc— 7|+ 1)/ |67 (s, 2) — ¢7 (s, 7)| ds
(0,77 0

By Gronwall inequality

|65(t,2) — 6" (t,7)| < dt||E — F||exp[(jc — 7| + 1)1]

(e(E) - TN =| [ 16°(0.2) — )] o) < B Fl x|+ 1)

for all t € [0, T

By iterating the previous procedure, it follows easily that the solution of the equation
(3.4) exists on any compact time interval.
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3.4 First limit

If lim X 5(0) = X° a.s. then weakly

N—o0
1 M
. N,M _ = _
Ji Y0 = o Zf” = 77 2 O
where {X¥}7Z, is the solution of the ODE system (3.1) Hence, we work with the

following probability measures for ¢ € [0, T

1 M
S L o1
i=1

Since the trajectories X belong to the space of continuous functions, we can con-
sider the sequence of probability measures uj; on the space C([0,7T]), each with a
finite support consisting of the M functions XM: for every Borel set A of the space

¢((o, 1) y
1
= M gdxg‘l (4)

Our aim is to prove that the sequence s is tight; tightness implies the relative
compactness of the sequence via Prokhorov theorem [Bal99).

We remind ecall that a sequence of probability measures Py on C([0,T)) is tight iff
the next two conditions hold

i) For each positive 7, there exists an a such that

Py{z :|z(0)| >a} <n N>1

ii) For each positive € and 7, there exist a 6 and an integer Ny such that

Py{z: sup |z(s) —z(t)| 2 e} <n, N=No
|s—t|<d

Lemma 3.4.1 The sequence of probability measures {un} is tight

ProOF. The first condition, which is equivalent to the tightness of the initial finite
-dimensional measure is automatically fulfilled because we deal with measures on
a compact space. Since the functions X are Lipschitz with a uniform Lipschitz
constant

1Xi(t)] < 1= Xi(#)] | Xa(t)] + 11— Xa(®)| £ oMo 1XM| + v/ Xq()|
<c+d+,
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the second condition is satisfied.

For every M, pp(t) satisfies the weak equation :

ds
/ ———fo<»w

td
< foum(t) >—< f, par(0) >:/0 — < fyoum(s) > ds

:Azﬁmwnm—(>w'+—ZX@ i(5))ds

= / (c < Sf,pum(s) > +dE(um) < Tf,pm(s) > —y < Rf, um(s) >)ds
0

for all f € C'([0,1]).

It is easy to see that if ux(0) — p(0)asM — oo, the limit of every convergent
subsequence of measures satisfies the equation (3. 4) because of the uniqueness of
the solution of (3.4), we have that the whole sequence pys has p as a weak limit.

3.5 Second limit

First of all, according to the result of section (3.2), if lim z"(0) =y we have that

M—o0
N N
S etn, - 3o,
J= =0
N :
where {£(t)}7_, satisfies (3.2). Let EV(t) = Z@N(t)%, and define the sequence
=0

of probability measures
N
=) &8,
j=0

In order to prove the convergence for N — oo of this family of measures, we give
a probabilistic interpretation of such a measure: we construct a time continuous
Markov chain Z¥ (¢) on a probability space (2, F,P) with inhomogeneous transitions
and state-space Sy = {0, 1,....N}: un(t) will be the one-dimensional distribution of
that process.

First of all, for every k € Sy we can construct a Markov process J;' (t) on a proba-
bility space (€, F',P') characterized by

PIJR(t+h) =5 + 1T (2)
P[J¢'(0)

] =d"(G,j+Lt)h+o(h) 1#0

J (3.13)
k] =1 k€ Sy

I
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with transition rates
V(i +1,t) =c(N—j)L+dN-jE ()
=Nc(1- L)L +d(1— L)EN(t)]
(G, j—1,t) =vj=yN(E)
NG i+Lt) =0 [I[>1

The functions ¢V (j, j + 1, t) satisfies the hypothesis of Theorem B.2 with

BN(z,1,t) =c(l—x)z+d(1—2)EN(t)
BN (x,—1,t) =~z
BN(z,l,t) = 7| >1
FN(z,t) = (1—£U):L'+d(1—23)EN() v

One can easily show that

Lemma 3.5.1 The family of function E™(t) is equicontinuous and uniformly
bounded on the compact time interval [0, T).

If we restrict ourselves to a subsequence, we have that E(t) = limy_. EV(t),
hence setting F(x,t) = limy_e FN(z,t) = ¢(1 — z)z + d(1 — 2)E(t) — vz, we
have limy .o F¥(z,t) = F(z,t) and we can apply Theorem B.2 of the Appendix,
obtaining

INon (
Corollary 3.5.2 Let zy = L nd Z) (t) = NL() . If lim zy = z, then
N N—o00
lim sup |ZN — Z,| =0 a.e.
N—r00 40,1
where Z, satisfies
t
Zu(t) =2+ / F(Z.(s), s) ds (3.14)
0

Let us suppose that the sequence of measures pl’ converges in distribution to a
probability measure py on [0,1]. First we have the result ([Bil95], Theorem 25.6,
page 333)

Lemma 3.5.3 If A}im p’ = o then there exist random variables Z}', Zy on a com-
—00

mon probability space Y, such that Z¥ has distribution ud, Zy has distribution p,
and ]\}im ZY = Zy for all " € Q".
— 00
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We can consider now the processes
Z(t,w”) = ZZO(w”)( ) and ZN(t W' , W ) ZZN(w”)(t’ w')

on the probability space Q = Q' ® Q" with the product measure. From Corollary
3.5.2 and Lemma 3.5.3, it follows

Lemma 3.5.4 The measure uy(t) is the one-dimensional distribution associated to
the process Zn(t) and for almost every w' € Q' A}im ZN(t, W' W") = Z(t,w") solution
—00

of
¢
Z(t,w") = Zp(w") + / F(Z(s,u"),8)ds  for all " € Q". (3.15)
0

The one-dimensional distribution pu(t) of Z(t) is the requested limit measure.
From the a.s. convergence, we have the weak convergence of the sequence of mea-

sures uy(t), therefore for every f € C([0,1])

lim f( il (dz) = / F(@)lde)

n—oo

If we choose the function f(z) = z, we have that
1

E(t) = lim EN(t) = lim zul (dr) = /0 zp(dzx)

N—oo N—oo 0

The family of measures ux(t) satisfies the following equation

< foun(t) =< f, (0 >+/ Zsj Lyds  vf e C(o,1)

and

Yio&i(OF (%) =70 FEIG + D — 3&1+
e F(E) [(1—ZH) G — 1&g — (1— £)ig] +
[ S (a T 7RI - 37061 = (1= )]
= Y L V) G + (1 — H)EGVE FE)+
+EN) Y- L)V F(E)

where

VY¥f(z) =
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Hence we have

< foun(t) > — < f,un(0) /[—7<V () inls) >

+e< (1) Vif(2), un(s) >
+EY(s) < (1= )V f(x), pn(s) >]ds

(3.16)

If we choose a function f € C?([0,1]) (dense subspace of C([0,1])), we can pass
to the limit in the equation (3.16), using

sup |(f'(2) — VI f(2))z| < supgepq|f(2)ly

z€[0,1]
sup |(f'(2) = VEF(2)A —2)| < subgeppq [f" (@)
this gives
< VYF()un > + < f1()u> <
<< VEFE) -+ C)oun > = < f1() v — >
< el 115 + 1< F1C)s pon — 1> |

and
1
< V) mn > = < f'()m>] < |l IIf”IIN < FEOA =) — > |.

The equation for the measure pu(t) is again the equation (3.4) with

po = lim Zgg

Since there exists a unique solution of (3.4), any subsequence of ux(t) converges to
u(t) and we have that the whole sequence u'¥(t) has u(t) as a weak limit.

3.6 Asymptotic behaviour of the limit measure

We search for an equilibrium measure for the equation (3.4) as a delta measure
W = 6y~ with support z* € (0,1). Since E(u*) = 2*, < Hyf, " >=0 for all
f € C([0,1]) if and only if we have

Gl@*)=c(l—a")+d(l—a")—y=0 (3.17)

The previous equation has a unique solution z* € (0,1) if and only if c+d > . We
notice that, in this case, G(z) > 0 if and only if z < z*.
In order to study the asymptotic behaviour of the measure p(t) solution of (3.4),
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we can take advantage of its representation as the one-dimensional measure of the
stochastic process Z(t), which is the solution of the following Cauchy problem (as
one can easily see from (3.15))

(3.18)

Z'(t) =cZ(t)(1— Z(t) +d(1 — Z(t)E(t) — vZ(t) == F(Z(t), 1)

where Zj is a random variable with distribution py and E(t) = fol zp(de).
We consider the solutions Z,,(t) and Z;(t) of the Cauchy problems

{ Zh(t) = F(Zn(t),1) {Zw = F(Zu(t),t)
VAT

)
Zm(0) =0 0 =1

They bound the solution Z(t), that is 0 < Z,,(¢) < Z(t,w") < Zp(t) < 1; hence
Zm(t) < E(t) < Zy(t)

Proposition 3.6.1 Let «* be the unique positive solution of (3.17) if c+d > -y and
z* =0 if c+d <, both Z,(t) and Zy(t) go to z* for t — +oo.

Proor. If z* =0, Z},(t) < Zy(t)G(Zp(t)) and the conclusion is trivial.
Let z* > 0. If there exists ¢y such that Z,,(t) < z*, then, using E(t) > Z,,(t),

Zp(t) = F(Zin(t),t) 2 Zin(t) G(Zm(t)) = 0

Zm(t) is not decreasing in ¢, so tliglo Zn(t)=m*<z*. If m* < z* we have
Z! (t) > m*G(m*) > 0, in contrast with the existence of a finite limit; so m* = z*.
Analogously, we can prove that, if Zy; > «*, ¢t € [ty, +00), then tllglo Zy(t) = x*.
Assume now that there exists 7 such that z* = Z,,(7) < Zy(7), E(1) > z*, then

Z! (1) = F(Zn(7),7) > 2°G(z*) = 0. (3.19)

Hence Z,,(t) > «* for t € (7,7 + ¢€); if there were 7 > 7 such that Z,,(7') = 2* and
Zm(t) > z*, t € (1,7") we could again obtain (3.19) reading a contradiction; we
will then have Z,,(t) > z* for t > 7. Since z* < Z,,(t) < Zy(t), t € (7,+00),
we can conclude as before that lim; .., Zx(t) = «* and from z* < Z,,(t) < Zu (1),
also that tli}g Zm(t) = x*. Analogously the case where there exists 7 such that
E(r) < a*, Znp(1) < Zy(1) = 2~

Since the support of the measure y(¢) is contained in the interval (Z,,(t), Zum(t)),
we can easily conclude

Theorem 3.6.2 Ast — oo, the measure u(t) tends weakly to the Dirac measure

O .
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Appendix A

M - matrices

In this appendix, we recall some definitions and propositions about the so-called
M-matrices (for detailed references, see [BP94| and [Win89]).

We assume that all matrices under consideration are real and square of order
n > 2.

Definition A.1 A matriz A = (aij) 1s said to be strongly row diagonally dominant
if
\aii\ > Z \aij\, V1.
Vi

If the transpose AT is strongly row diagonally dominant, then A is said to be strongly
column diagonally dominant.

Proposition A.2 If A is strongly row or column diagonally dominant matriz, then
detA # 0

Let
7 = {A = (aij) € R . Qi < 0,2 75 j}

The M matrices are a special subclass of matrices in Z"*"™.
Definition A.3 Any matriz of the form

A=slI—-B, s>0, B>0 (A1)
for which s > r(B), the spectral radius of B, is called an M-matriz.

The non-singular M-matrices are those of the form (A.1) for which s > r(B)).
The matrices Bg\m) involved in Proposition 2.6.6, equation (2.37) are L-matrices

Definition A.4 A matriz A = (aij) is called an L-matriz if

Qi > O,Vi, and Q5 <0, 275 J-
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Since any non-singular M-matrix have all positive diagonal entries, such an M-
matrix is an L-matrix; the converse is in general not true, but

Theorem A.5 Let A be an L-matriz which is strongly row or column diagonally
dominant. Then A is a non-singular M-matriz.

Theorem A.6 Let A € Z™" ; A is a non-singular M-matriz if and only if A is
inverse-positive, that is A~ emists and

A1 >0



Appendix B

Random time change

Our aim is to give a representation of a pure jump Markov process as a sum of
independent Poisson processes. We apply some results due to Kurtz [EK86], which
can be used also for some kinds of non-homogeneous transition rates.

Let B(t) be the operator defined on By(Z), the space of bounded functions on the
integers , that vanish off a compact set

B(t)f(z) =) Bilx,t) (flz +1) - f(z)) (B.1)
lez
where ; : Z x [0, T| are functions such that the martingale problem for B(t) is well
posed (see for instance [EK86], Theorem 7.3, page 223).
We can state a slight modification of [EK86], Theorem 4.1, page 236

Theorem B.1 Let E = Z U A, the one-point compactification of Z. If J(t) is
a solution of the martingale problem for B(t) with sample paths in Dg([0,+00)),
J(0) =z, 7o = {inft : J(t) = A} and Y; are independent Poisson processes then

w0 = o3 ([ sues) <

Jit) = A t> To

This representation is useful for investigating the asymptotic behaviour of this kind
of processes. We deal with a family of continuous-time Markov chains {J (¢)} yen
with values in Sy = {0,1,2,...,N} C Z and transition rates ¢~ (j,k,t), j,k €
Sn,t € [0,T]. According to definition 3.1 of [Pol90], the family {J¥(¢)}nen is
asymptotically density dependent if there exists an open set £ € R and a family of
continuous functions {#N} : E x Z x [0, T] such that

kLD = NG (e Lt)  1£0

> 18N (z,1,t) converges for all (z,t) € E x [0,T] and there exists a function F' such
that FV(z,t) := >,V (x,l,t) converges to F(z,t) on E x [0,T]. We recall the
theorem 3.1 of [Pol90]
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Theorem B.2 If |F(z,t) — F(y,t)| < M|z — y| and for all N

sup > [l[Bn(x,,1) < o0

(z,t)€EX[0,T]

lim  sup Z 1| Bn(z,t,1) =0

000 (¢,t)€EX[0,T] T

lim sup |[FY(z,t) — F(z,t)] =0

N—=00 gx[0,T]
JN(t
and limy_, o ( )(0) =z, then
N
Nt
lim sup il )(t) - Zw(t)‘ =0 a.e.

where
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