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Abstrac t  – This paper deals with an innovative strategy to shorten the record size required to estimate the 
Integral Non-Linearity (INL) of Analog-to-Digital Converters (ADC’s) through the so-called Sinewave 
Histogram Test (SHT). Such a size reduction is achieved by low-pass filtering the collected sequences of test 
samples using a simple moving average filter. After some preliminary simulations, the validity of the 
proposed approach have been confirmed by some experimental results. 
 

I. Introduction 
 
Nowadays, characterization and testing activities are a major factor of cost in integrated circuit (IC) 
manufacturing. In fact, testing mixed-signal circuits may cover nearly 50% of the whole production 
budget [1]. Among all the possible testing procedures, Histogram Tests are probably the best-known 
strategies to characterize the linearity features of an ADC. These techniques estimate the converter 
transition levels by analyzing the ADC output codes when the stimulus has a known probability density 
function [2]. The main advantage of Histogram based Tests, such as the Sinewave Histogram Test 
(SHT), is that the estimator variance can be made arbitrarily close to the Cramer-Rao lower bound, 
while the theoretical and computational complexity of the algorithm is very low [3][[5]. Unfortunately, 
for ADC with more than 12 bits of nominal resolution, achieving an estimator accuracy lower than a 
Least Significant Bit (LSB) may require data records consisting of millions of test samples [6]. 
Therefore, an accurate INL estimation can be very expensive and time-consuming, because of the large 
data acquisition and transfer times. 
Several techniques have been proposed to decrease the total number of samples required by the SHT. 
Some of them are based on a frequency domain analysis of the estimated INL [6][7]. Others rely on 
proper analytical models describing the dependence of the INL patterns on the code bins [8][9]. In this 
paper, it is shown that the constraint on the record size can be relaxed by applying moving average 
(MA) filtering upon the SHT results obtained with a small size data set. In particular, the proposed 
technique allows a fast and very accurate estimation of the low frequency code component (LCF) of 
the INL sequence, which often represents a major information about converter nonlinearity [8]. 
Nevertheless, the high frequency code (HFC) component of the INL can still be estimated with a given 
accuracy, if a suitable tradeoff is found between the length of the MA filter and the size of the data 
record employed in the test.  
The paper is organized as follows. At first, the general SHT design criteria are shortly recalled. Then, 
the theoretical effect of MA filtering on SHT outcomes is described and compared with meaningful  
simulation results. Finally, the results of an experimental validation of the proposed testing procedure 
are reported and commented. 
 

II. Theoretical Analysis 
 
A. The design of the Sinewave Histogram Test  
 
The SHT is based on the acquisition of a large number of data obtained by sampling a high-accuracy 
sinewave affected by a known amount of Additive White Gaussian Noise (AWGN). In fact, not only 
can sinusoidal stimuli be generated easily, but also they allow the frequency characterization of the 
ADC under test. In SHT, the converter transition voltages Tk, k=1,…,N-1, are estimated by means of a 
two-step procedure. At first, collected data are used to build a cumulative histogram in which the value 
ck associated with the k-th column of the histogram represents the total number of acquired samples 
exhibiting an output code equal to or lower than k. Then, the corresponding transition level Tk is 
estimated by inverting the known probability distribution function of the input test stimulus. In fact, it 
has been proved that the estimate of the k-th ADC transition level kT̂  is given by [2]: 
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where A and d are the amplitude and the offset of the sinewave, respectively, M is the length o
collected record, and N is the number of ADC output codes. The SHT accuracy when a sinus
stimulus is affected by an AWGN has been already analyzed in previous research works, showin
the AWGN introduces both a random contribution and a bias into the estimator uncertainty [10]
The estimator bias can be made negligible by overdriving the ADC, i.e. by applying a sine
amplitude suitably higher than the ADC Full Scale (FS) [10]. Conversely, for large values of M
variance of (1) is given by [4]: 
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σ being the standard deviation of the AWGN. Observe that the estimator variance tends to zero
increases. Moreover, if the AWGN estimator bias is made negligible, (2) can be inverted to obta
data record size M as a function of the target SHT accuracy [10], thus obtaining: 
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where UINL is the target expanded INL uncertainty and Kν is the coverage factor corresponding
degree of confidence ν  [11]. 
 
B. Effect of Moving-Average Filtering on SHT results 
 
The traditional SHT procedure does not take advantage of the characteristics of the INL pattern, w
may be decomposed in two components, a LCF and a HCF ones [5]. The idea behind this work i
the LCF component can be estimated by observing that the estimated INL sequence can be written

[ ] [ ] [ ]kekINLkLNI +=ˆ ,    k=1,…N-1,    

where it has been shown that the estimation error [ ]⋅e  can be assumed to be a white sequen
random variables as long as the input noise level is lower than the code bin width ∆ [6]. Thu
appropriate low-pass filtering of the INL sequence provided by the SHT may remove high-frequ
random contributions affecting the estimator, leading to a significant accuracy improvement i
estimation of the LCF-INL pattern.  
Consider, for instance, the sequence [ ]⋅INL  obtained by applying a low-pass moving-average 
filter over P estimated INL values related to adjacent code bins: 
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It can easily be shown that the variance 2
INLσ  at the output of the MA filter is 

∆<≅ σσσ ,/22 PeINL .   

where 2
eσ  represents the variance of the estimation error. Thus, if the code bin width is smaller

the input noise level [9], the MA filtering leads to an LCF-INL estimator variance that is propor
to 1/MP. Consequently, as long as the estimator bias is negligible, the same estimator uncertainty 
SHT performed on M’=MP samples may be achieved by averaging over P values the SHT r
obtained using a record of M samples.  
Notice that, if the input noise level exceeds the code bin width, the estimation errors in adj
transition levels are correlated. Hence, the resulting 2

INLσ  could be quite greater than (6). Neverth
the record size M may be noticeably lower than that usually required by conventional SHT.  
One limitation of the proposed approach is that while the filtering process does not affect the
component of the INL pattern, the HCF content could be considerably smoothed if large values
are used. Thus, a suitable tradeoff between the data record size M and the filter length P must be 
As a rule of thumb, in order to minimize the distortion introduced by filtering, 1/P should be at
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one order of magnitude larger than the bandwidth of the INL sequence. 
 

III. Simulation Results 
 
The proposed test strategy has been applied to a simulated 12-bit ADC converter with a Full Scale 
FS=10 V. The maximum INL error has been set equal to 0.7 Least Significant Bits (LSB). In order to 
minimize the estimator bias, a 25 kHz sinewave with a small overdrive of 0.04 V and no offset 
(A=10.04 V, d=0.0 V) has been chosen for the test [10]. The AWGN superimposed to the sinewave has 
been assumed to have a standard deviation σ=0.5 LSB. The SHT has been initially designed to achieve 
a target expanded uncertainty UINL=0.1LSB. Consequently, by assuming a coverage factor Kν=3, 
according to (3) the SHT requires a data record consisting of M’=1.650.000 samples. Alternatively, a 
faster test can be performed using only M=66.000 samples and a MA filter with length P=25. Fig. 1(a) 
shows the INL patterns estimated using both the conventional SHT and the MA filtered SHT as a 
function of the transition levels. Observe that the filtered results still provide a good estimate of the 
INL pattern, but using a data record size 25 times smaller. The estimator error variances for the SHT 
performed with M=66.000, before and after applying the MA filtering are plotted in Fig. 1(b). In 

Fig. 1: (a) Estimated INL patterns of a simulated 12-bit ADC, obtained with a conventional SHT 
for M’ = 1.650.000 (grey curve) and a MA filtered SHT for M=66.000, P=25 (black curve). (b) INL 
estimator error variances for the MA filtered SHT, both before and after averaging; the black 
curves correspond to the theoretical expressions (2) and (5), while the grey curves are simulation
results. 
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Fig. 2: (a) Estimated INL patterns of a simulated 12-bit ADC, obtained with a conventional SHT 
for M’ = 1.650.000 (grey curve) and a MA filtered SHT for M=16.400 and P=101 (black curve). 
(b) INL estimator error variances for the MA filtered SHT, both before and after averaging; the 
black curves correspond to the theoretical expressions (2) and (5), while the grey curves are 
simulation results. 
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particular, both the theoretical variance values obtained from (2) and (5), and the simulation results are 
reported as a function of the transition levels. Notice that the SHT accuracy is actually improved by the 
low-pass filtering, and that the simulation-based results show a good agreement with the theoretical 
model. The analysis has been repeated for different values of M and P. In particular, Fig. 2(a) and 2(b) 
are obtained considering a SHT on M=16.400 samples, followed by a MA filtering with P=101. Again, 
Fig. 2(b) shows that the record size can be considerably reduced without affecting the estimator 
variance. However, in this case the estimated INL looks slightly distorted with respect to the pattern 
resulting from the conventional SHT (see Fig. 2(a)). This is due to the narrow bandwidth of the adopted 
MA filter (i.e. to the large value of P), which reduces the sensitivity of the test procedure to fast INL 
variations. 
 

IV. Experimental Results 
 
In order to validate the results described in section II, several experiments have been performed to 
estimate the INL of an 8-bit ADC embedded in a NI 5911 high-speed digitizer. The device under test 
can be fully characterized using the default setting of the digitizer, i.e. a sampling rate equal to 100 
Msamples/s and a Full Scale (FS) range equal to ±10 V. A 25 kHz low-distortion sinewave produced 
by a Stanford Research DS360 function generator has been used as input stimulus for the test. The 
number of samples and the amount of overdrive required by the procedure depend on the desired 
expanded uncertainty levels, and can be established after estimating the noise standard deviation σ. In 
the considered case, UINL=2.5% LSB and σ=0.052 V, so that the overdrive voltage is Vod ≅  0.45 V, 
while the offset d of the waveform is assumed to be 0 V [2]. In order for the SHT random uncertainty 
to be lower than 4% LSB, according to (3) about 106 test samples should be collected. On the other 
hand, only 106/P samples are required to estimate the same INL pattern with the same accuracy when 
the fast SHT procedure is applied. In Fig. 3 the estimated INL patterns using 106, 2·105, and 105 test 
samples are shown before and after the appropriate MA filtering operations. In order to achieve the 
same target estimation accuracy, the SHT results obtained from 106 samples are not filtered, whereas 
the INL values calculated using 2·105 and 1·105 test data, are averaged over P=5 and P=9 values, 
respectively. Observe that the low-frequency content of the INL pattern is estimated with good 
accuracy in all cases, whereas the high-frequency components are increasingly smoothed as the cut-off 
frequency of the MA filter decreases. The estimated and theoretical variances of the INL estimation 
errors before and after the averaging operations for P=5 and P=9 are shown in Fig. 4(a) and 4(b), 
respectively. Notice that while in the previously discussed simulation data sets case there is a very good 
accordance between theoretical and experimental variances, in present analysis, involving experimental 
data sets, the actual variance seems to be slightly larger than expected. Most probably, this is due to a 
certain amount of residual cross-correlation between subsequent INL estimators, which decreases the 
effectiveness of the averaging operation. 

Fig. 3: INL patterns of the 8 bit ADC employed in an NI5911 digitizer, obtained with a conventional 
SHT and two fast MA-based SHT. The INL values are estimated using 106, 2·105, and 105 test data 
samples and with an appropriate MA filtering. In order to preserve the expected accuracy in the 
estimation process, the INL values obtained from the record consisting of 2·105 data are averaged 
over P=5, whereas the results derived using 105  samples are averaged over P=9. 
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V. Conclusions 

 
In this paper a very simple strategy to speed up the INL estimation of high-resolution ADCs is 
presented. According to the proposed approach, by low-pass filtering the INL sequence estimated 
through the Sinewave Histogram Test, a remarkable accuracy improvement can be achieved, thus relaxing 
the usual record size requirements. In fact, since the INL estimation errors can be usually modeled as an 
almost white broadband process, a simple low-pass filter such as a moving average over an adequate 
number of adjacent INL values can greatly attenuate the high-frequency random contributions without 
affecting significantly the INL pattern. Simulations and experimental results in two different cases of 
study confirm that MA filtering can provide a considerable improvement in estimation accuracy, 
although such an improvement can be lower than expected when the input noise level is greater than 
the code bin width. 
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