
UNIVERSITY
OF TRENTO
DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

Applying the Tropos Methodology for Analysing Web Services
Requirements and Reasoning about Qualities of Services

Marco Aiello and Paolo Giorgini

May 2004

Technical Report # DIT-04-034

.

Applying the Tropos Methodology for Analysing

Web Services Requirements and Reasoning about

Qualities of Services

Marco Aiello and Paolo Giorgini

Department of Information and Communication Technology

University of Trento - Italy

{aiellom,paolo.giorgini}@dit.unitn.it

May 7, 2004

Abstract

The shift in software engineering from the design, implementation

and management of isolated software elements towards a network of au-

tonomous interoperable service is calling for a shift in the way software is

designed. We propose the use of the agent-oriented methodology Tropos

for the analysis of web service requirements. We shown how the Tropos

methodology adapts to the case of web services and in particular how

it can be used to model quality of service requirements. We base the

investigation on a representative case study in the retailing industry.

1 Introduction

The opportunities offered by the growth of the Internet in terms of networking
infrastructure, open standards, and reach of users, are focusing research and
industrial interests on application areas such as electronic commerce, enterprise
resource planning, supply-chain management, and peer-to-peer computing, to
name the most prominent ones. This is deeply and irreversibly changing our
views on software and, in particular, software engineering. Interoperability and
scalability play a fundamental role in the development and management of soft-
ware as nowadays a piece of software cannot be thought in isolation, but rather,
as an element of a network of interacting software elements. Continuous evo-
lution to meet changing and new requirements is becoming an essential feature
of software. Software must also operate on different platforms, without recom-
pilation, and with minimal assumptions about its operating environment and
its users. As well, software must be robust and autonomous, capable of serving
end users with a minimum of overhead and interference.

Software is thus becoming more and more a service offered to a human user
or to another software element rather than an isolated application running on

1

a specific machine for a specific predefined requirement. This is the view of
software as a ‘service’ well conceptualized by the service-oriented computing
paradigm [18]. The most prominent example of the service-oriented computing
paradigm is to be found on the Internet, where the set of standard interfaces for
the interaction of software elements is well-known as web services. Web services
are a set of standardized interfaces for the description, discovery, invocation,
composition, orchestration of independent loosely-coupled software elements re-
siding on the Internet.

As software is changing, one of the challenges is to find appropriate concepts,
tools and technique to design, engineer and manage software. Traditional soft-
ware engineering methods may prove to be cumbersome or to not capture the
full potential of the service-oriented paradigm. Differences between objects and
services are, for instance, presented in [1]. In [8], UML is used to design business
processes that manage the execution and interaction with various independent
web services. Aspect-oriented programming is investigated in [12] for designing
web service based electronic utilizes, i.e., distributed applications. But all these
approaches lack fundamental features of web services, that is, the autonomy of
services, the need to model services at a high level of abstraction in terms of
what a web services goal is rather than all its atomic functionalities, and the
need for run-time support for changing execution environments.

Agent-oriented software development methodologies are gaining popularity
over traditional software development approaches [13, 9]. After all, agent-based
architectures do provide for an open, evolving architecture that can change
at run-time to exploit the services of new agents, or replace under-performing
ones. In addition, software agents can, in principle, cope with unforeseen cir-
cumstances because their architecture includes goals along with a planning ca-
pability for meeting them.

Most often software is thought in terms of its functional behavior, i.e., what
the software does. But this does not completely describe the software’s behavior.
Non-functional properties, such as for instance the average execution time, are
important elements to determine the usability and utility of a software product.
With the term Quality of Service (QoS, for short), we refer to the non-functional
properties of a software service. In the context of web services, QoS is a critical
task for a number of reasons: first, autonomous services depend one another
for their functioning and they need to be aware of the QoS of the collaborating
services; second, services may compete one another and a service requester may
decide for a service based on its QoS properties; third, a service provider may
offer the same function with differentiated QoS, for instance at different prices,
and must therefore publicize the difference qualities of the same function.

There is no consensus on what are the qualities that fall in the QoS of a web
service. The traditional view inherited from the networking community places
only performance and availability in the set of QoS, but other properties are
also relevant such as accessibility, integrity, reliability, regulatory, security [16].
Some authors assume that any custom parameter that can be modeled as non-
functional property of a service may be considered as an element of the QoS [20,
21, 17]. In this paper, we consider a wide spectrum of QoS properties, such as

2

performance, cost, reliability, security, and we introduce a framework that is
flexible and open to any user-defined quality as QoS.

We propose the use of the agent-oriented methodology Tropos [4, 2] for
the analysis of web service requirements. We show how this methodology is
particularly well suited to reason about quality of service requirements for web
services. We present a representative case study and show that a wide range of
non-functional properties can be captured by the proposed framework.

Tropos is based on two key features. First, the notion of agent and related
mentalistic notions are used in all software development phases, from the early
requirements analysis down to the actual implementation. Second, the method-
ology emphasizes early requirements analysis, the phase that precedes the pre-
scriptive requirements specification. In this respect, Tropos is quite different
from other agent- and object-oriented software development methodologies.

Paying attention to the activities that precede the specification of prescrip-
tive requirements for the system-to-be [6, 24] means that developers can capture
and analyze the goals of stakeholders. These goals play a crucial role in defining
the requirements for the new system. Put another way, prescriptive require-
ments capture the what and the how for the system-to-be. Early requirements,
on the other hand, capture the reasons why a software system is developed.
This new perspective, in turn, supports a more refined analysis of system de-
pendencies and a more uniform treatment of functional and non-functional re-
quirements.

The paper is structured as follows. Section 2 introduces the Tropos method-
ology, where concepts, modeling and analysis techniques are presented trough
a representative case study. In Section 3 we propose a goal analysis framework
for qualitative and quantitative reasoning about QoS. Section 4 discusses how
the framework relates to existing web service standards. Concluding remarks
are summarized in Section 5.

2 Requirements Analysis with Tropos

Tropos rests on the idea of using requirements modeling concepts to build a
model of the system-to-be within its operational environment. This model is in-
crementally refined and extended, providing a common interface to the various
software development activities. The model also serves as a basis for documen-
tation and evolution of the software system.

Requirement analysis represents the initial phase in most software engineer-
ing methodologies. Requirements analysis in Tropos consists of two phases:
Early Requirements and Late Requirements analysis. Early requirements is con-
cerned with understanding the organizational context within which the system-
to-be will eventually function. Late requirements analysis, on the other hand,
is concerned with a definition of the functional and non-functional requirements
of the system-to-be.

Tropos adopts the i* [24] modeling framework for analyzing requirements. In
i* (which stands for “distributed intentionality”), stakeholders are represented

3

as (social) actors who depend on each other for goals to be achieved, tasks to be
performed, and resources to be furnished. The i* framework includes the strate-
gic dependency model (actor diagram in Tropos) for describing the network of
inter-dependencies among actors, as well as the strategic rationale model (ratio-
nale diagram in Tropos) for describing and supporting the reasoning that each
actor goes through concerning its relationships with other actors. These mod-
els have been formalized using intentional concepts from Artificial Intelligence,
such as goal, belief, ability, and commitment (e.g., [5]). The framework has been
presented in detail in [24] and has been related to different application areas,
including requirements engineering [22], software processes [23], and business
process reengineering [25].

During early requirements analysis, the requirements engineer identifies the
domain stakeholders and models them as social actors, who depend on one
another for goals to be fulfilled, tasks to be performed, and resources to be
furnished. Through these dependencies, one can answer why questions, be-
sides what and how, regarding system functionality. Answers to why questions
ultimately link system functionality to stakeholder needs, preferences and ob-
jectives. Actor diagrams and rationale diagrams are used in this phase.

An actor diagram is a graph involving actors who have strategic dependencies
among each other. A dependency represents an “agreement” (called dependum)
between two actors: the depender and the dependee. The depender depends on
the dependee, to deliver on the dependum. The dependum can be a goal to be
fulfilled, a task to be performed, or a resource to be delivered. In addition, the
depender may depend on the dependee for a softgoal to be fulfilled. Softgoals
represent vaguely defined goals, with no clear-cut criteria for their fulfillment.
Graphically, actors are represented as circles; dependums – goals, softgoals,
tasks and resources – are respectively represented as ovals, clouds, hexagons and
rectangles; and dependencies have the form depender → dependum → dependee.

Figure 1 shows the actor diagram for an online retail store example. This
example is an extended and revised version of the example introduced in [14].
The diagrams presents the principal stakeholders and their interests. The Cus-

tomer actor has the goal to buy products and the softgoal to buy at lowest prices.
It depends on the Retailer actor for having good services and on the Bank for
use bank services. The Retailer actor has the softgoal of maximizing profit and
depends on the Bank for the bank services (some of these services can be totally
different from those of used by the customer), on the Credit Authority to validate

the customers’ ability to pay, and on the Direct Supply Vendor to ship products

to the customers. The Direct Supply Vendor depends on the Retailer for products

offering and on the Transport Center to ship goods.
Actor diagrams are extended during early requirements analysis by incre-

mentally adding more specific actor dependencies which come out from a means-
ends analysis of each goal. This analysis is specified using rationale diagrams.

A rationale diagram appears as a balloon within which goals of a specific
actor are analyzed and dependencies with other actors are established. Goals
are decomposed into subgoals and positive/negative contributions of subgoals
to goals are specified.

4

maximaze
profit

retain
customer

ship prod.
to customer

products
offering

maximaze
profit maximaze

profit

maximaze
profit

bank
services

buy products

services
bank

good
services

goods
deliver

validate
customers’
ability to

pay

lowest prices
buy at

Customer Retailer

Direct
Supply

Vendorship goods
Transport

Center

Authority
Credit

Bank

Figure 1: Actor diagram for the online retail store example

Figure 2 shows part of the rationale diagram for Retailer actor. The diagram
analyzes to main goal for the retailer: increase return on investment, mainly
related to the softgoal maximize profits, and sell products. The goal increase

return on investment is AND-decomposed in increase sales volume and increase

profit per sale, which are further OR-decomposed. In particular, increase sales

volume is decomposed in increase customer appeal and expand market, whereas
increase profit per sale is decomposed in increase sale price, lower fix costs, and
increase high margin profits. The goal sell products is OR-decomposed in three
subgoals which identify three different selling modalities: self serve, auction, and
salesperson. Each of these subgoals are further AND-decomposed in subgoals.
So for instance, the auction goal is decomposed in cataloging, handle order, and
handle request from bidder. In turn these subgoals are further analyzed and
decomposed. The diagram shows also contribution links (positive and negative)
between goals. For instance, the adoption of the auction selling modality gives a
positive contribution to the satisfaction of the goals increase sale price and lower

sale price, whereas the modality salesperson gives a negative contribution to lower

sale price and a positive contribution to the goal increase customer appeal.
During late requirements analysis, the conceptual model developed during

early requirements is extended to include the system-to-be as a new actor, along
with dependencies between this actor and others in its environment. These
dependencies define functional and non-functional requirements for the system-
to-be. Actor diagrams and rationale diagrams are used also in this phase.

Figure 3 shows part of the rationale diagram for the retailer actor. In par-
ticular, the diagram focus on the dependencies between the retailer and retailer

5

products
sell

self serve "saleperson"

cataloging
handle

request from
bidderorder

handle
feedback
provide

auction

delivery
handle handle

payment

use DHL

use

service
external

use UPS

use email
use web

forms

AND AND AND

OR

OR AND
use

service
internal

increase
return on
investment

sales
volume

increase increase

per sale
profit

increase
customer

appeal markets
expand

increase
high margin

sales
sale price
increase

fix costs
lower

AND

OR OR

+

_

_

++
+
+

_

_

OR

OR

Retailer

Figure 2: Rationale diagram for the Retailer actor

system actors. Retailer depends on the Retailer System to sell products guaran-
teeing security, reliability, and performances.

sell products

security

reliability

performances

Retailer
System

Retailer

Figure 3: Part of the actor diagram focusing on the functional a non-functional
requirements the Retailer actor delegates to the Retailer System

In Figure 4 shows part of the rationale diagram for the retailer system.
Basically, this analysis extends the goal analysis done for Retailer actor. The
extension includes the analysis of the services (hexagons) that can be adopted
in order to satisfy the Retailer System’s goals and how such services impact
on the qualities of the system, namely the softgoals security, reliability, and
performances. For sake of simplicity, the diagram reports only some of the
possible contribution links between services and qualities.

6

products
sell

self serve "saleperson"

cataloging
handle

request from
bidderorder

handle

auction

delivery
handle handle

payment
use

service
external

day
same

time
definite

day
definite

sonic
air

next
day

next day
air

Performance

AND

OR

OR AND

use

service
internal

service
warehouse

orders
dep.

 service

service
eShop

service
eCatalog

use DHL use UPS
PayPall

use

Express
American

use

VISA

use

eBay
yahoo

Availability
Transaction
Failability

Tollerance

Security

Privacy

Integrity

Availability

+

++

−−

+

+

++
−

+ ++

++

−−

−

−−

−
−−

−−

+

−−

+
−

OR

latency Throughput

Accessibility

Retailer

System

Figure 4: Part of the rationale diagram for the Retailer System.

7

3 Reasoning about Qualities

The adoption of specific web services can have different consequences on the
qualities of the software system. In order to reason about these effects, we
propose to adapt and use the Tropos goal analysis techniques presented in [10,
19].

The analysis starts from the goal models developed in the late requirements
phase, and in particular focuses on the models developed for the system we want
to develop (the Retailer System in our example). The goal model consists of a
set of nodes (goals and services/tasks) and relations over them, including the
n-ary relations AND, OR and the binary relations (contribution links) + and –.
These relations have been presented in [10]; here we briefly recall the intuitive
meaning.

G2
+S7−→ G1 [resp. G2

++S7−→ G1] means that if G2 is satisfied, then there is
some [resp. a full] evidence that G1 is satisfied, but if G2 is denied, then nothing

is said about the denial of G1; G2
−S7−→ G1 [resp. G2

−−S7−→ G1] means that if G2

is satisfied, then there is some [resp. a full] evidence that G1 is denied, but if
G2 is denied, then nothing is said about the satisfaction of G1. The meaning
of +D, −D, ++D, −−D is dual w.r.t. +S, −S , ++S, −−S respectively. (By
“dual” we mean that we invert satisfiability with deniability.) The relations +,

−, ++, −− are such that each G2
r

7−→ G1 is a shorthand for the combination
of the two corresponding relationships G2

rS7−→ G1 and G2
rD7−→ G1. We call the

first kind of relations symmetric and the latter two asymmetric.
Figure 5 presents part of the goal model for the Retailer actor extended

with the analysis concerning the adoption of the adopted services and their
impact on the qualities of the system. For sake of simplicity, we have used only
symmetric binary relations and we have reported only the analysis regarding
privacy quality. The contribution links between services and privacy quality are
both qualitative and quantitative, next we present the difference between the
two.

3.1 Qualitative reasoning

Let G1, G2, ... denote goal labels. We introduce four distinct predicates over
goals, FS(G), FD(G) and PS(G), PD(G), meaning respectively that there is
(at least) full evidence that goal G is satisfied and that G is denied, and that
there is at least partial evidence that G is satisfied and that G is denied. We
also use the proposition > to represent the (trivially true) statement that there
is at least null evidence that the goal G is satisfied (or denied). Notice that
the predicates state that there is at least a given level of evidence, because in a
goal graph there may be multiple sources of evidence for the satisfaction/denial
of a goal. We introduce a total order FS(G) ≥ PS(G) ≥ > and FD(G) ≥
PD(G) ≥ >, with the intended meaning that x ≥ y if and only if x → y. We
call FS, PS, FD and PD the possible values for a goal.

We want to allow the deduction of positive ground assertions of type FS(G),

8

products
sell

self serve "saleperson"

cataloging
handle

request from
bidderorder

handle
feedback

provide

auction

delivery
handle handle

payment

use DHL use UPS

use

service
external eBay

yahoo

day
same

time
definite

day
definite

sonic
air

next
day

next day
air

PayPall
VISA

American
Express

internal
email

service

use web
forms

use email

service
eCatalog

service
eShop

Privacy

hotmail

yahoo

AND AND
AND

OR

OR AND

use

service
internal

OR

yahoo
internal
service

service
warehouse

orders
dep.

 service

increase
return on

investment

sales
volume

increase increase

per sale
profit

increase
customer

appeal markets
expand

increase
high margin

sales
sale price
increase

fix costs
lower

AND

OR OR

+

_

_

++

+
+

_

_

++

−

+

+ +

++
−

++ −
++

(+1.0)

(−0.5)

(+0.3)

(+0.4) (+0.6)

(+0.9)
(−0.5)

(−0.3)
−

−
(−0.5)

(−0.4)
− (+0.9) (−0.4)

(+0.9)

OR

Figure 5: Partial goal model used for the reasoning about qualities

9

FD(G), PS(G) and PD(G) over the goal constants of a goal graph. We refer to
externally provided assertions as initial conditions. To formalize the propagation
of satisfiability and deniability evidence through a goal graph, we introduce the
axioms described in Figure 6.

(1) states that full satisfiability and deniability imply partial satisfiability
and deniability respectively. For an AND relation, (2–3) show that the full and
partial satisfiability of the target node require respectively the full and partial
satisfiability of all the source nodes; for a “+S” relation, (4–7) show that only
the partial satisfiability (but not the full satisfiability) propagates through a
“+S” relation. Thus, an AND relation propagates the minimum satisfiability
value (and the maximum deniability one), while a “+S” relation propagates at
most a partial satisfiability value.

We say that an atomic proposition of the form FS(G), FD(G), PS(G) and
PD(G) holds if either it is an initial condition or it can be deduced via modus
ponens from the initial conditions and the ground axioms of Figure 6. Notice
that all the formulas in our framework are propositional Horn clauses, so that
deciding if a ground assertion holds not only is decidable, but also it can be
decided in polynomial time.

Goal Invariant Axioms

G : FS(G) → PS(G), FD(G) → PD(G) (1)

Goal relation Relation Axioms

(G1, ..., Gi, ...Gn)
and
7−→ G : (

^

i

FS(Gi)) → FS(G), (
^

i

PS(Gi)) → PS(G) (2)

^

i

(FD(Gi) → FD(G)),
^

i

(PD(Gi) → PD(G)) (3)

G2

+S
7−→ G1 : PS(G2) → PS(G1) (4)

G2

−S
7−→ G1 : PS(G2) → PD(G1) (5)

G2

++S
7−→ G1 : FS(G2) → FS(G1), PS(G2) → PS(G1) (6)

G2

−−S
7−→ G1 : FS(G2) → FD(G1), PS(G2) → PD(G1) (7)

Figure 6: Ground axioms for the invariants and the propagation rules in the
qualitative reasoning framework. The (or), (+D), (−D), (++D), (−−D) cases
are dual w.r.t. (and), (+S), (−S), (++S), (−−S) respectively.

Forward propagation. The algorithm and its implementation for this kind of
reasoning has been presented in [10]. Given a goal graph, the user assigns some
initial values to some goals (typically leaf goals), then these values are forward
propagated to all other goals according to the rules above described. As the
goal graph may be cyclic, the process stops when a fixpoint is reached. The
user then can look the final values of the goals of interest (typically root goals),
and reveal possible conflicts. The whole algorithm is linear in time as it requires
no form of search.

For the example in Figure 5, we could, for instance, be interested in finding

10

the effects of adopting a set of services over the top goals (i.e., increase return on

investment and sell products) as well as over the privacy softgoal (i.e., Security).
So for instance, suppose we decide to use the following services (i.e., assigning
FS label to them): eShop service, day definite (by DHL), and PayPall. With this
configuration we obtain that Privacy is partially satisfied (PS), sell products is
fully satisfied (FS), and increase return on investment is partially denied (PD).
Note that we have not said anything about the satisfaction of the subgoals of
the goal increase return on investment. Of course, we could suppose that expand

the markets and then increase return on investment will be also partially satisfied.
However, in this case we will have a conflict, that is, we have evidence both for
the satisfaction and the denial of the goal.

Goal satisfiability. The implementation of this type of reasoning has been
presented in [19]. In particular, the implemented tool solves the following two
problems: (1) find an initial assignment of labels to leaf goals which satisfies a
desired final status of root goals by upward value propagation, while respecting
some given constraints; and (2) find a minimum cost assignment of labels to
leaf goals which satisfies root goals.

For our example, we might be interested in finding a set of services (at the
minimum cost) that satisfy our top goal sell products and Privacy softgoals. So
for instance, suppose we want to fully satisfy sell products and at least partially
satisfy Privacy softgoal. The software gives no solution for the fully satisfaction
of softgoal Privacy, but it produces several solutions for its partial satisfaction.
Fixing the same cost for all services, one of this solution consists of the following
services: same day (by DHL), PayPall, and internal email service.

3.2 Quantitative reasoning

The qualitative approach allows for setting and propagating partial evidence
about the satisfiability and deniability of goals and the discovery of conflicts.

We may want to provide a more fine-grained evaluation of such partial ev-

idence. For instance, when we have G2
+S7−→ G1, from PS(G2) we can deduce

PS(G1), whilst one may argue that the satisfiability of G1 is in some way less
evident than that of G2. For example, in the goal model of Figure 5, the use of
the service PayPall may not necessarily imply satisfaction of Privacy softgoal, so
it may be reasonable to assume ”less evidence” for the satisfaction of the latter
compared to the former. Moreover, the different relations which mean partial
support – i.e., +S, −S, +D, −D – may have different strengths. For instance,
in our example the sonic air service may have a bigger impact on Privacy than
eShop service.

To cope with these facts, we need a way for representing different numerical
values of partial evidence for satisfiability/deniability and for attributing differ-
ent weights to the +S , −S, +D, −D relations. the formal framework to reason
with such quantitative information has been presented in [10, 7]. We recall in
the following briefly the main features.

We introduce two real constants inf and sup such that 0 ≤ inf < sup. For

11

each node G ∈ G we introduce two real variables Sat(G), Den(G) ranging in
the interval D =def [inf, sup], representing the current evidence of satisfiability
and deniability of the goal G. The intended meaning is that inf represents no
evidence, sup represents full evidence, and different values in]inf, sup[represent
different levels of partial evidence.

To handle the goal relations we introduce two operators ⊗,⊕ : D×D 7−→ D
representing respectively the evidence of satisfiability of the conjunction and
that of the disjunction [deniability of the disjunction and that of the conjunction]
of two goals. ⊗ and ⊕ are associative, commutative and monotonic, and such
that x ⊗ y ≤ x, y ≤ x ⊕ y; there is also an implicit unary operator inv(),
representing negation, such that inf = inv(sup), sup = inv(inf), inv(x ⊕ y) =
inv(x) ⊗ inv(y) and inv(x ⊗ y) = inv(x) ⊕ inv(y).

We also attribute to each goal relation +S , −S, +D, −D a weight w ∈
]inf, sup[stating the strength by which the satisfiability/deniability of the
source goal influences the satisfiability/deniability of the target goal. As in the

qualitative approach, we use the symmetric relation —such as, G2
w+
7−→ G1— as

a shorthand for the combination of the two corresponding asymmetric relation-

ships sharing the same weight w —e.g., G2
w+S7−→ G1 and G2

w+D7−→ G1.
There are a few possible models following the schema described above. In

particular, here we adopt a probabilistic model, where the evidence of satisfia-
bility Sat(G) [resp. deniability Den(G)] of G is represented as the probability
that G is satisfied (respectively denied). As usual, we adopt the simplifying
hypothesis that the different sources of evidence are independent. Thus, we fix
inf = 0, sup = 1, and we define ⊗,⊕, inv() as:

p1 ⊗ p2 =def p1 · p2, p1 ⊕ p2 =def p1 + p2 − p1 · p2, inv(p1) = 1 − p1

that is, respectively the probability of the conjunction and disjunction of two
independent events of probability p1 and p2, and that of the negation of the
first event. To this end, the propagation rules are those of a Bayesian network,

where, e.g., in G2
w+S7−→ G1 w has to be interpreted as the conditional probability

P [G1 is satisfied | G2 is satisfied].
As with the qualitative case, we call a value statement an expression of the

form (v ≥ c), v ∈ {Sat(Gi), Den(Gi)} for some Gi and c ∈ [0, 1], with the
intuitive meaning “there is at least evidence c of v”. We want to allow the user
to state and deduce non-negated value statements of the kind (Sat(G) ≥ c) and
(Den(G) ≥ c) over the goal constants of the graph. As before, we call externally
provided assertions about the satisfaction/denial of goals initial conditions.

To formalize the propagation of satisfiability and deniability evidence values
through a goal graph, for every goal and goal relation, we introduce the axioms
(8)-(15) in Figure 7. Unlike those of Figure 6, the relation axioms in Figure 7
are not ground Horn clauses —thus, propositional—but rather first-order closed
Horn formulas, so that they require a first-order deduction engine.

We say that a statement (v ≥ c) holds if either it is an initial condition
or it can be deduced from the initial conditions and the axioms of Figure 7.

12

Goal relation Axioms

(G2, G3)
and
7−→ G1 : (Sat(G2) ≥ x ∧ Sat(G3) ≥ y) → Sat(G1) ≥ (x ⊗ y) (8)

(Den(G2) ≥ x ∧ Den(G3) ≥ y) → Den(G1) ≥ (x ⊕ y) (9)

(G2, G3)
or
7−→ G1 : (Sat(G2) ≥ x ∧ Sat(G3) ≥ y) → Sat(G1) ≥ (x ⊕ y) (10)

(Den(G2) ≥ x ∧ Den(G3) ≥ y) → Den(G1) ≥ (x ⊗ y) (11)

G2

w+S
7−→ G1 : Sat(G2) ≥ x → Sat(G1) ≥ (x ⊗ w) (12)

G2

w−S
7−→ G1 : Sat(G2) ≥ x → Den(G1) ≥ (x ⊗ w) (13)

G2

++S
7−→ G1 : Sat(G2) ≥ x → Sat(G1) ≥ x (14)

G2

−−S
7−→ G1 : Sat(G2) ≥ x → Den(G1) ≥ x (15)

G2

w+D
7−→ G1 : Den(G2) ≥ x → Den(G1) ≥ (x ⊗ w) (16)

G2

w−D
7−→ G1 : Den(G2) ≥ x → Sat(G1) ≥ (x ⊗ w) (17)

G2

++D
7−→ G1 : Den(G2) ≥ x → Den(G1) ≥ x (18)

G2

−−D
7−→ G1 : Den(G2) ≥ x → Sat(G1) ≥ x (19)

Figure 7: Axioms for the propagation rules in the quantitative reasoning frame-
work.

We implicitly assume that (Sat(Gi) ≥ 0) and (Den(Gi) ≥ 0) hold for ev-
ery Gi, and that the deduction engine —either human or machine— can se-
mantically evaluate ⊗ and ⊕ and perform deductions deriving from the val-
ues of the evaluated terms and the semantics of ≥. For instance, we as-

sume that, if (G2, G3)
and
7−→ G1 is in R, then (Sat(G1) ≥ 0.1) can be de-

duced from (Sat(G2) ≥ 0.5), (Sat(G3) ≥ 0.4), as from (8) it is deduced
(Sat(G1) ≥ 0.5 ⊗ 0.4), which is evaluated into (Sat(G1) ≥ 0.2), from which
it can be deduced (Sat(G1) ≥ 0.1).

Forward reasoning. As for the qualitative reasoning here the problem is
the same with only difference that now we use probability values as initial
assignment. The algorithm and its implementation has been presented in [10].

Suppose in our example, we want to use the services eShop service, day

definite (by DHL), and PayPall (i.e., we assign them 1.0 as initial satisfaction
value). As consequence we obtain that Privacy assumes S=0.4 and D=0.5 and
sell products S=1.0, that is we can satisfy our top goal but we cannot say much
about Privacy. Note that we have not considered the effects produced by the
adopted services on the increase return on investment goal.

Goal satisfiability. The solution and the tool for the quantitative goal satis-
fiability problem has been presented in [7]. The tool is based on a commercial
optimization tool, Lingo 8.0 1 and is integrated with our goal analysis frame-
work.

Analogously to the qualitative case, in our example, we might be interested

1http://www.lindo.com

13

in finding the minimal cost set of services that satisfy totally the top goal sell

products (S=1.0) and partially the Privacy softgoals, let’s say for example S=0.7.
The software produces a set of solutions that satisfy such a request, i.e., a set of
services that, if adopted, produce the desiderata results over sell products and
Privacy.

4 Quality aware web services

The qualities of the retailer system we have presented so far are performance,
reliability and security. These are custom QoS measure for software and, in par-
ticular, for services, but are not the only possible ones. Availability, integrity,
regulatory conformance are other QoS that may need to be modeled, further-
more, other parameters specific to the application at hand may need modeling.
The framework proposed does not commit to any specific quality, but rather
gives freedom of choice to the designer.

This freedom must be reflected at the service level, in other words, services
must be able to describe their qualities and have shared vocabulary of service
qualities. Standard service description languages such as WSDL lack the neces-
sary constructs to address this issue. Two approaches are possible: on the one
hand, one can extend WSDL with ports for the description of quality proper-
ties of the services (such as in [11]); on the other hand, one could complement
WSDL interfaces with ancillary documentation for the description of quality of
service characteristics of the service.

In [17] a symmetric model based on constraint satisfaction techniques is
used to verify QoS desires coming from the requester. In [21], a XML based
language used for negotiating QoS values among service requester and provider
is presented. A semantic web approach in which services are searched based
on quality of service attributes semantically tagged is presented in [20]. A
predictive QoS model for workflows involving QoS properties is proposed in [3].
In addition, the industry has proposed a number of standards to this end: IBM
Web Service Level Agreement (WSLA) and HP’s Web Service Management
Language (WSML) are examples of languages used to describe quality metrics
of services, [15]. What is missing is a framework to design composition and
orchestrations of services with desired global QoS requirements and, dually, to
analyze global QoS properties of web service compositions.

The framework we propose is independent from the choice made on whether
one extends WSDL or one uses an extra document for the description of service
qualities such as WS-Policy. The only requirement is, naturally, that all the
services implement the same infrastructure for service quality description and
use a negotiated and agreed ontology for describing the qualities. Let us consider
the Privacy quality of the Retailer System example by adapting WS-Policy to
our framework. Suppose the PayPall service publishes the following policy:

01<wsp:Policy xmlns:wsse="..." xmlns:wsp="...">

02 <wsp:ExactlyOne>

03 <wsse:SecurityToken wsp:Usage="wsp:Required" wsp:Preference="80">

14

04

<wsse:TokenType>wsse:SecureSocketLayerVersion3.1</wsse:TokenType>

05 </wsse:SecurityToken>

06 <wsse:SecurityToken wsp:Usage="wsp:Required" wsp:Preference="60">

07

<wsse:TokenType>wsse:SecureSocketLayerVersion3.0</wsse:TokenType>

08 </wsse:SecurityToken>

09 <wsse:SecurityToken wsp:Usage="wsp:Required" wsp:Preference="10">

10

<wsse:TokenType>wsse:SecureSocketLayerVersion2.0</wsse:TokenType>

11 </wsse:SecurityToken>

12 </wsp:ExactlyOne>

13</wsp:Policy>

In our framework, this policy would be interpreted as the fact that the PayPall is
providing its services with three different qualities, the three SecurityTokens.
At least one of these needs to be chosen, line 02. The different quality of service
of these is represented by the wsp:Preference attribute on lines 03, 06, 09.
This is interpreted as the fact that the first choice (line 04) gives a contribution
to Privacy of 0.8, while the second (line 07) of 0.6 and the third (line 10) of 0.1.

5 Concluding remarks

The shift in software engineering from the design, implementation and man-
agement of isolated software elements towards a network of autonomous in-
teroperable service is motivating the investigation of new modeling and design
techniques. We have proposed the use of the agent-oriented methodology Tro-
pos for the analysis of web service requirements. We have shown how the Tropos
methodology adapts to the case of web services and in particular how it can be
used to model quality of service requirements.

Forward reasoning and goal satisfiability have be proposed to design an
architecture meeting given QoS requirements, but also to understand which QoS
properties will a system have and how the various services influence the QoS
parameters. We have based our investigation on a representative case study and
have shown that a wide range of non-functional properties can be captured by
the framework we propose. Finally, we have shown how one can adapt existing
web service technologies to be included in the proposed framework.

A limitation of the proposed approach is that the contribution of the single
service to a given element of the quality of service set is independent from those
of the other services, that is, the combined effect of different services to the
same quality is not captured. Future investigation will be devoted to solving
this issue by considering global interaction of quality features.

Acknowledgments We would like to thank John Mylopoulos, Mike Papa-
zoglou, and Roberto Sebastiani for useful comments, discussions and feedback.

15

References

[1] V. D. Andrea and M. Aiello. Services and objects: Open issues. In G. Pic-
cinelli and S. Weerawarana, editors, European workshop on OO and Web
Service, pages 23–29, 2003. IBM Research Report. IBM. Computer Science,
(RA 220).

[2] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini.
Tropos: An Agent-Oriented Software Development Methodology. Journal
of Autonomous Agents and Multi-Agent Systems, 8(3):203–236, May 2004.

[3] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality of service
for workflows and web service processes. Journal of Web Semantics, 2004.
To appear.

[4] J. Castro, M. Kolp, and J. Mylopoulos. Towards Requirements-Driven In-
formation Systems Engineering: The Tropos Project. Information Systems.
Elsevier, Amsterdam, the Netherlands, (to appear).

[5] P. Cohen and H. Levesque. Intention is choice with commitment. Artificial
Intelligence, 32(3):213–261, 1990.

[6] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed require-
ments acquisition. Science of Computer Programming, 20(1–2):3–50, 1993.

[7] S. Fante. Goal-Oriented Requirements Engineering: tecniche Numeriche di
Analisi Top-down and Bottom-up. Master’s thesis, Department of Infor-
mation and communication Technology - University of Trento, 2004.

[8] T. Gardner. UML modelling of automated business processes with a map-
ping to BPEL4WS. In G. Piccinelli and S. Weerawarana, editors, European
workshop on OO and Web Service, 2003. IBM Research Report. IBM. Com-
puter Science, (RA 220).

[9] P. Giorgini, J. Müller, and J. Odell, editors. Agent-Oriented Software En-
gineering. LNCS 2935. Springer, 2003.

[10] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. Formal
reasoning techniques for goal models. Journal on Data Semantics, Springer,
2004.

[11] D. Gouscos, M. Kalikakis, and P. Georgiadis. An approach to modeling
web service qos and provision price. In 1st Web Services Quality Workshop
(WQW2003) at WISE, 2003.

[12] B. Hailpern and P. Tarr. Software engineering for web services: A focus
on separation of concerns. Technical report, IBM Research Reports, 2001.
RC22184 (W0109-054).

[13] N. R. Jennings. On agent-based software engineering. Artificial Intelligence,
117(2), 2000.

16

[14] D. Lau and J. Mylopoulos. Designing Web Services with Tropos. In Pro-
ceedings of the 2004 IEEE International Conference on Web Services, San
Diego, California, USA, July 6-9 2004.

[15] H. Ludwig. Web services qos: External slas and internal policies or: How
do we deliver what we promise? In 1st Web Services Quality Workshop
(WQW2003) at WISE, 2003.

[16] A. Mani and A. Nagarajan. Understanding quality of service for web
services, 2002. http://www-106.ibm.com/developerworks/library/

ws-quality.html.

[17] O. Martn-Daz, A. R. Corts, A. Durn, D. Benavides, and M. Toro. Au-
tomating the procurement of web services. In Service-Oriented Computing
(ICSOC), pages 91–103. LNCS 2910, Springer, 2003.

[18] M. P. Papazoglou and D. Georgakopoulos. Service oriented computing.
Communications of the ACM, 46(10), 2003.

[19] R. Sebastiani, P. Giorgini, and J. Mylopoulos. Simple and minimum-cost
satisfiability for goal models. In Proceedings of the 16th Conference On
Advanced Information Systems Engineering (CAiSE*04). LNCS, Springer,
2004.

[20] M. P. Singh and A. S. Bilgin. A DAML-based repository for qos-aware
semantic web service selection. In IEEE International Conference on Web
Services (ICWS 2004), 2004.

[21] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller. A concept
for qos integration in web services. In 1st Web Services Quality Workshop
(WQW2003) at WISE, 2003.

[22] E. Yu. Modeling organizations for information systems requirements engi-
neering. In Proc. of the 1st Int. Symposium on Requirements Engineering,
RE’93, pages 34–41, San Jose, USA, Jan. 1993.

[23] E. Yu. Understanding ’why’ in software process modeling, analysis and
design. In Proc. of the 16th Int. Conf. on Software Engineering, ICSE’94,
pages 159–168, Sorrento, Italy, May 1994.

[24] E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD
thesis, University of Toronto, Department of Computer Science, 1995.

[25] E. Yu and J. Mylopoulos. Using goals, rules, and methods to support
reasoning in business process reengineering. International Journal of Intel-
ligent Systems in Accounting, Finance and Management, 5(1):1–13, 1996.

17

