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Abstract

Interoperability among systems using different term vocabularies requires
some mapping between terms in the vocabularies. Matching applications
generate such mappings. When the matching process utilizes term mean-
ing (instead of simply relying on syntax), we refer to the process as seman-
tic matching. If users are to use the results of matching applications, they
need information about the mappings. They need access to the sources
that were used to determine relations between terms and potentially they
need to understand any deductions performed on the information. In this
paper, we present our approach to explaining semantic matching. Our ini-
tial work uses a satisfiability-based approach to determine subsumption
and semantic matches and uses the Inference Web and its OWL encoding
of the proof markup language to explain the mappings. The Inference
Web solution also includes a registration of the OWL reasoning compo-
nent of JTP, as well as other reasoner registrations, and thus provides a
foundation for explaining semantic matching systems.

1 Introduction
The amount of disparate online information is increasing as is the need for inter-
operability. This combination increases the need for managing semantic hetero-
geneity (e.g., [15]). Many solutions to the problem include “matching” terms in
one information source to terms in another. We will view the information sources
to be graph-like structures containing terms and their inter-relationships. The
Match operator takes two graph-like structures and produces a mapping be-
tween the nodes of the graphs that correspond to each other. We are interested
in match operations that take the term meaning into account and thus produce
a kind of semantic match.



We classify approaches that use syntactic similarity measures or syntax
driven approaches as syntactic matching since, while they may use syntactic
context, they do not analyze term meaning directly, e.g., [13]. We are interested
in a semantic matching approach that generates mappings between terms (e.g.,
nodes of graphs) by computing semantic relations (for example, equivalent or
subsuming elements), instead of computing coefficients rating match quality in
the [0,1] range. We are also interested in determining semantic relations by an-
alyzing meaning (concepts, not labels as in syntactic matching) captured in the
ontologies.

In our effort to produce understandable systems, our goal is to be able to
explain the mappings (whether they are complete, partial, or failed to be gen-
erated). In this paper, we present our approach to semantic matching as first
introduced in [6], and implemented within the S-Match system [7]1. An exam-
ple is presented to illustrate the semantic matching approach. Then we describe
the Inference Web (IW) infrastructure [9] for explanations in distributed, het-
erogeneous environments and its Proof Markup Language (PML)[4]. Using the
matching example, we describe how the Inference Web explanations increase
user understanding of semantic matching mappings, thereby increasing trust.
This work is described in more detail in [14].

2 Semantic Matching
We will focus on class matching and motivate the problem by a simple catalog
example shown in Figure 1. In this scenario, an agent may need to exchange
documents stored according to the two class hierarchies called A1 and A2 re-
spectively.

Figure 1: Simple catalog matching problem

Our semantic matching approach distinguishes the following relations be-
tween terms: equivalence (=, mutual subsumption); more general (�, sub-
sumer); less general (�, subsumee); mismatch (⊥, disjoint); overlapping (�,

1The current version of S-Match as described in this paper is a rationalized re-
implementation of the CTXmatch system [3] with a few added functionalities.



there may exist an instance of both classes). The relations form a partial order
according to binding strength, with equivalence being stronger than subsumer or
subsumee (which have equal binding strength) being stronger than overlapping.

The semantic relations are calculated by mapping meaning which is codified
in the element descriptions and the graphs in two steps: obtaining a representa-
tion of the node meaning and by determining the meaning of the node position
in the graph. In this example, we would view a node labeled Pictures to repre-
sent the concept ”documents which are about pictures”. In order to obtain some
information about the node labels, our initial implementation accesses WordNet
to obtain information about senses and subclass hierarchies. Extensions to the
work would also take other DL representations of the classes as input such as
full OWL ontologies. Just obtaining term information from WordNet (or any
ontology) however does not account for graph position. In this example, the
fact that Pictures is below Europe in A2 means that documents stored below
Pictures are actually documents that are both about Europe and pictures. Thus,
for A2, CPictures = CEurope � CPictures.

A mapping element is a 4-tuple < IDij, n1i, n2j , R >, i=1,...,N1; j=1,...,N2;
where IDij is a unique identifier of the given mapping element; n1i is the i-th
node of the first graph, N1 is the number of nodes in the first graph; n2j is the
j-th node of the second graph, N2 is the number of nodes in the second graph;
and R specifies a semantic relation which may hold between the concepts at
nodes n1i and n2j. Semantic matching can be defined as the problem: given
two graphs G1, G2 compute the N1 × N2 mapping elements < IDij , n1i, n2j,
R′ >, with n1i ∈ G1, i=1,...,N1, n2j ∈ G2, j=1,...,N2 and R′ the strongest
semantic relation holding between the concepts of nodes n1i, n2j. We define a
mapping as a set of mapping elements [6].

In the example, we would have a mapping element between the node labeled
Europe in A1 and the node labeled Pictures in A2. Since Europe is below
Images in A1, documents classified under it are about images and which are
about Europe. If one knows, from WordNet or other sources, that Images and
Pictures are equivalent, then we can conclude that the extension of Europe in
A1 is the same as that for Pictures in A2: < ID22, CEurope, CPictures, = >

Semantic matching translates the matching problem into a validity check of
the appropriate propositional formula. A translation encodes concepts at nodes
using a logical propositional language where atomic formulas are atomic con-
cepts, written as single words, and complex formulas are obtained by combining
atomic concepts using the connectives of set theory and set theoretic seman-
tics. The semantic relations are also translated into propositional connectives,
namely: equivalence into equivalence, more general and less general into impli-
cation, and mismatch into negation of the conjunction.

The goal then is to prove that given a particular context or background
theory, the semantic relation rel (translated into the propositional theory) holds



between the representation of C1i as the concept of node i in A1 and C2j as
the concept of node j in A2. We write this as: Context −→ rel(C1i, C2j).
The background theory is the conjunction of all the relations between concepts
of the labels mentioned in either graph.

From the example, trying to prove that Europe from A1 is the same as
Pictures in A2, requires constructing:

((C1Images ↔ C2Pictures) ∧ (C1Europe ↔ C2Europe)) →
((C1Images ∧ C1Europe) ↔ (C2Europe ∧ C2Pictures))

The algorithm then checks for sentence validity by proving that its negation is
unsatisfiable. Our implementation uses the JSAT SAT reasoner. In this exam-
ple, the negated sentence is false, thus the equivalence relation holds between
the nodes. Since this is the strongest relationship, no additional checks need to
be made and the S-Match algorithm terminates and concludes that documents
stored under Pictures in A2 are an appropriate match for documents stored
under Europe in A1.

3 Explaining Matching
Inference Web enables applications to generate portable and distributed expla-
nations for answers. In order to explain semantic matching and thereby increase
the trust level of its users, we need to provide information about background
theories (initially Wordnet), the JSAT manipulations of sentences, and the se-
mantic match translations of graphs into propositional sentences. This paper
addresses the first two topics.

In order to use Inference Web to provide explanations, question answering
systems need to have their reasoners produce proofs of their answers in the Proof
Markup Language, publish those proofs on the web, and provide Inference Web
with a pointer to the last step in the proof. Inference Web also has a registry[10]
of meta-data that is populated with information about objects used in the proof
(ontologies, inference engines and their rules, etc.). In the example case, it
contains meta information about JSAT and WordNet.

Proof and explanation documents are represented in PML and are composed
of PML node sets. Each node set represents a step in a proof whose conclusion
is justified by a set of inference steps associated with a node set. This represen-
tation could be viewed as the web-ized distributed OWL version of one author’s
previous work on explaining description logics [11].

The IW Browser is used to present proofs and explanations. Exploiting PML
properties, meaningful fragments of S-Match proofs can be loaded on demand.
Users can browse an entire proof or they can limit their view and refer only to
specific, relevant parts of proofs since each node set has its own URI that can
be used as an entry point for proofs, proof fragments.



4 Producing Explanations using Inference Web
Users may need different types of explanations. For example, if agents are
familiar with each other, and trust each other’s information sources, explanations
should focus on the S-Match manipulations. If on the other hand, the sources
may be suspect, explanations should focus on meta information about sources.
We will provide a few descriptions of explanations available from our work.

In a simple case, consider the explanation in Figure 2 for why S-Match
mapped Europe in A1 to Pictures in A2 (and thus returned documents labeled
with A1:Europe as results to the query find ”European pictures”).

Figure 2: An explanation in English

Users then see that Images in A1 and Pictures in A2 are equivalent words
(and similarly in this unpruned version, that Europe in A1 denotes the same
concept as Europe (European) in A2). If the user needed to see information
about the sources of the information used, they could also obtain an explanation
that reveals the provenance information about equivalences displayed. Figure 3
shows that all the information used in the S-Match proof came from WordNet

Figure 3: Source metadata information

(which included that the first sense of pictures is a synonym for the second



sense of images). The meta information about WordNet from the IW Registry
is included in this presentation.

If a user wants an explanation of the inference engine(s) embedded in a
matching system, a more complete explanation may be required. Our current
version of S-Match uses JSAT, and in particular the Davis-Putnam-Longemann-
Loveland (DPLL) procedure [5].

SAT engines build an assignment µ ∈ {	,⊥} to atoms of a propositional
formula ϕ such that it evaluates ϕ to true. Then, ϕ is satisfiable iff µ |= ϕ
for some µ. The basic DPLL procedure recursively implements the three rules:
unit resolution, pure literal and split [5]. Our implementation works on an
unoptimized version of DPLL for simplicity of the explanation effort. In the
interest of space, we focus on the unit resolution rule.

Let l be a literal, ϕ - a propositional formula in CNF. A unit clause has
exactly one unassigned literal. Unit resolution rule is an application of resolution,
where one clause is a unit clause.

unit resolution :
ϕ ∧ {l}
ϕ[l | 	]

Let us consider the propositional formula standing for the problem of testing
if the concept at node 2 in A1 is less general then the concept at node 2 in A2.
To simplify the presentation we use in the following a label as a placeholder of
a concept the given label denotes. DPLL procedure as implemented in JSAT
handles only CNF formulas. Thus, the propositional formula and its equivalent
in CNF (see Figure 4) is input into the DPLL procedure:

((Images ↔ Pictures) ∧ (Europe ↔ Europe))∧
¬((Europe ∧ Images) → (Pictures ∧ Europe))

An intuitive reading of the SAT problem is ”is there any situation such that the
concept Images of Europe is less general then the concept European Pictures
assuming that Images and Pictures denote the same concept?”. The IW proof
defending the negative answer is shown in Figure 4.

5 Discussion
While there are a number of other efforts in semi-automated ontology matching
(see surveys in [13, 15]), we are not aware that any provide explanations. The
DPLL procedure implemented in our approach, while unoptimized, includes the
essence of the state of the art SAT engines such as Chaff [12], etc. Thus, one
could consider using another optimized SAT reasoner that may be chosen for
particular matching problems and using explanations generated by our system.

Recently there has been work on verifying SAT solvers. A direct solution is
provided in [1]. They introduce a proof-producing infrastructure based on natu-
ral deduction for SAT engines (e.g., Chaff ). Another approach uses explanations



Figure 4: A graphical explanation

in terms of ”equivalent” inference systems [2] in order to provide explanations of
potentially alternative deductive paths. The key distinctions of S-Match proofs
are:

• They are produced by a modified version of JSAT in S-Match that imple-
ments the Barrett and Berezin approach for generating proofs;

• They are formatted in PML and consequently they are designed for use in
a distributed Web environment;

• Their sentence propositions are mapped into meaningful terms rather than
numbers in sentences using the DIMACS format;

• They are supported by the Inference Web tools for explanation and inter-
active proof presentation.

6 Conclusion
In this paper we presented an approach for explaining answers for the semantic
heterogeneity problem. By extending S-Match to use the Inference Web infras-
tructure, we demonstrated our approach for explaining matching systems that
use background ontological information and reasoning engines. We presented
DPLL-based IW explanations of the SAT engine used in the S-Match system.
The explanations can be presented in different styles allowing users to under-
stand the mappings and consequently to make informed decisions about them.
The paper also demonstrates that S-Match users can leverage the Inference Web
tools, for example, for sharing, combining, browsing proofs, and supporting proof
meta-information including knowledge provenance information. Future work in-
cludes using more expressive background ontologies and other SAT engines as



well as other non-SAT DPLL-based inference engines, e.g., DLP, FaCT [8] and
an evaluation effort.
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