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ABSTRACT 

 
The paper develops a theory of biases in decision making. Discovering a 
strategy for solving a game is a complex problem that may be solved by 
decomposition; a player decomposing a problem into many simple sub-
problems may easily identify the optimal solution to each sub-problem: 
however it is shown that even though all partial solutions are optimal, the 
solution to the global problem may be largely sub-optimal. The conditions 
under which a decomposition process gives rise to a sub-optimal solution are 
explored, and it is shown that the sub-optimalities ultimately originate from 
the process of categorization that governs the creation of a decomposition 
pattern. Decisions based on a strategy discovered by decomposition are 
therefore frequently biased . The persistence of biased behaviours, observed in 
many experiments, is explained by showing the stability of different and non 
optimal representations of the same problem. An application to a simplified 
version of Rubik cube is finally developed. 

 
 
 
1. Introduction 
 
 
One of the most widely known heuristics to solve problems suggest to decompose it into parts (sub-
problems) which can be solved separately. The decomposition process is repeatedly applied to each 
sub-problem until elementary sub-problems, easy to be solved, are identified. Applications to games 
and puzzles are very usual: Hanoi tower, Rubik cube, chess, are typical contexts in which 
decomposition is usefully applied and leads more easily to discover a solution strategy. During 
decomposition players identify progressively simpler sub-games, until they reach elementary sub-
games that are no more decomposable. Given the simplicity of these elementary sub-games, players are 
supposed to be able to discover the optimal strategy for each of sub-game. This is apparently the key to 
reduce the complexity of research and obtain optimal global solutions.  
 However, as we will demonstrate in this work, when a problem is decomposed into parts, the pattern 
of decomposition that players – consciously or not – adopt, introduces hidden sub-optimalities. Hence, 
although the solution of each sub-problem is optimal, generally the global solution is largely 
suboptimal.  
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Decisions based on a suboptimal strategy discovered by decomposition are therefore biased . As we 
will see, biases and errors are ultimately originated by the process of categorization that governs the 
creation of a decomposition pattern.   
Let me give a rough idea of the reasons and the effects of the imperfections in decomposition patterns, 
focusing on puzzles that provide a context in which the imperfections emerge clearly. In puzzles the 
optimal solution is given by the shortest path from the starting configuration(s) to the goal; given the 
enormous number of game configuration that should be analyzed to get an optimal solution, to obtain a 
simple representation of the solution players classify the states of the puzzle in a relatively low number 
of categories:  large sets of game configurations are therefore aggregated in categories, and this 
categorization implicitly lead to a decomposition pattern.  
Categories are the result of a process of abstraction and classification based on the salience of symbolic 
features of the configurations of the game. In Rubik for example, the disposition of colours of the tiles 
along one, two... corners are salient elements to categorize classes of configurations that are supposed 
to be progressively nearer to the final configuration. The same categories therefore allow identifying 
sub-goals with which the original puzzle is decomposed. 
Players consider as equivalent large classes of states because of some similarities among them and try 
to order them in terms of distance to the target, i.e. to establish a metric among the categories. But 
frequently the order that players conjecture does not hold for all elements of the categories: for example 
in Rubik cube players may believe that a cube with three faces with the same colour is nearest to the 
goal than a cube with two faces with the same colour, which is not necessarily true for all elements of 
these two categories. Consequently the  procedure he will adopt cannot be optimal for all 
configurations. Thus players achieve relatively simple and abstract representations of the strategy by 
categorization, but the evaluation of the order among the categories may be inaccurate; because of this 
distortion, the players do not always get close to the goal through the shortest path, but on the contrary 
at least for some configurations they achieve the goal following a tortuous path that in some steps gets 
farer from the goal.  
The most intriguing aspect of this situation is that, while the paths to the goal generated by a unique 
procedure are optimal for some of the elements (the “right” ones) but not for all of them, when players 
solve the puzzle for the “right” elements they will be confirmed in the optimality of their decisions. 
Therefore they cannot easily perceive that they have made a wrong classification and modify their 
decomposition pattern.   
Hence biases in decision making are originated by the inconsistency between the categorization on 
which the solution of the game is based and the metric of the original problem. A player decomposing a 
problem into abstract and easily controllable sub-problems may easily identify the optimal solution to 
each sub-problem: however it frequently happens that, even though all partial solutions are optimal, the 
solution to the global problem is sub-optimal. I will call “metrically invariant” a decomposition pattern 
if by optimizing separately the sub-problems in which the problem is decomposed, we get the optimal 
solution. 
It is intuitive to understand that there are different categorizations and decomposition patterns to each 
problem, some which keep the metrical features of the original problem, whilst the vast majority does 
not respect that feature and generates decision biases; this work will illustrate the formal conditions 
under which a decomposition pattern applied to a puzzle maintains (or not) its original metric and will 
explain the reasons why distortions of metric give rise to sub-optimal strategies. 
 
The experimental data available to date in puzzle solving show that most individuals, once a strategy 
has been identified, remain stably anchored to it even though it is not optimal.  
This  tendency has been proved by Luchins (1942) and Luchins and Luchins (1950) who conducted 
experiments with subjects exposed to problems that had solutions and displayed different levels of 
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efficiency. The authors show that subjects, having identified the optimal solution of a task in a given 
context, may “automatically” and systematically use such solution applying it also to contexts where it 
proves to be sub-optimal.  This process is called “mechanization of thought”.  
The experiments with Target the Two (Cohen and Bacdayan 1994, Egidi and Narduzzo 1997) confirm 
that a similar process is also implemented in the behaviour of a team, in an even more evident and 
persistent manner: groups of subjects who are to jointly solve a shared problem may remain even more 
stably “trapped” into sub-optimal solutions than single individuals.  In fact, while difficulties 
encountered by a single subject when solving a problem in a new way depend on the possibility to 
discover a new solution to a problem and are influenced by cognitive limitations to individual learning, 
this is even more difficult in a group because there is a need to identify new ways to cooperate in 
problem solving  to discover and adopt an alternative solution jointly. 
 
The sub-optimality which is inbuilt in many decomposition patterns will enable us to later explain the 
phenomenon of the mechanization of thinking and some classes of error representation in problems, 
which have been observed in experiments conducted during strategy games. The explanation of the 
lock-in process into systematically biased decisions is based on the features of the non invariant 
decomposition patterns: when subjects discover a decomposition pattern, they do it in the context of a 
specific run or repeated sequences of runs. This means that they build up their categorisation and the 
consequent decomposition pattern upon a limited domain of game configurations. In the specific 
context where a pattern is discovered, the decomposition, though not invariant, may generate a locally 
optimal solution, and the subject may not be able to perceive that the validity of his discovery is 
limited.  
Finally, it will be suggested that the imperfections in a decomposition pattern are related to the fact that 
the description of a puzzle and of its rules gives naturally rise to a system of categories ; for example in 
Rubik cube, the disposition of the colours along a corner, an edge or a face may be the basis for natural 
categories. Frequently this natural categorization is not invariant and therefore to discover an invariant 
decomposition pattern players have to re-codify the game and modify the categories and their level of 
abstraction. But re-codification requires to abandon the simplicity of the natural classification. 
Therefore, as we will see later, there is a trade-off between the simplicity of representation of a strategy 
and its efficiency.  
After studying the features of decompositions and related categorizations, we will later apply them to a 
game which is a simplified version of Rubik cube, while comparing different decomposition patterns, 
both invariant and non invariant; we will then analyse some experimental data, showing that a large 
part of deviations from rational behaviour are the result of the adoption of weakly sub-optimal 
strategies, due to non invariant decompositions patterns. 
 
 
2 Setting definitions and basic questions in puzzles solving  
 
 
In puzzles, a specific problem is defined by a pair of states, i.e. starting and final state of the game, and 
a solution consists of a strategy which, starting from the initial state, allows the player to reach the final 
state. The strategy can be represented by a list of conditions-actions, where each state of the game 
(condition) is associated with an action (the adequate move); The path from the initial state to the goal 
is generated as follow: while comparing the starting state of the problem with the condition-action list, 
the move to be applied is identified and a second state is obtained (successor); by repeating this 
process, the final state is reached through a “path” composed of a sequence of connected states.  
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I refer to a specific problem because its reference elements - the starting state and the target state - are 
single states. In general however, a problem is defined with reference to classes of states,  the class of 
the starting states P and the class of goal states G. A solution can be therefore defined as a strategy 
which - starting from each state pεP, allows the player to reach a final state g ε G. 
 
To formally represent a puzzle, the following shall be defined 
 
1 A set of  states  X={x1, x2, x3,….. xn} of the game and two subsets, P and G which are the set of 
starting and goal (final) states respectively. If a problem is a specific one, P and G are composed of a 
single element each.  
 
2 A set of  moves M={m1, m2,  ....mm} 
 
3 A set of rules indicating to which states a move is applied and the configuration of the puzzle after 
that move is applied. This set of rules can be written in the form of a matrix of state transition, A, 
where its element aij it represents the move mk that must be applied to the state xi to reach the state xj. 
This state is called successor of state xi  and vice versa  xi  is called predecessor of state xj; aij =0 means 
that there is no move connecting state i with state j . (1) The transition array A  can be used to represent 
the puzzle as a (directed) graph where nodes represent the states of the game whereas the moves are 
represented as directed arches connecting two nodes. The graph is supposed to be strongly connected, 
i.e. it is assumed that all goal states are reachable by any starting state. A is related to the adjacency 
matrix of a graph  C={ cij }is defined as follows: cij=1 if arc (xi,xj) exists in graph Γ ;cij=0 if arc (xi,xj)  
does not exist in Γ . Thus the adjacency matrix C can be obtained by  transition matrix A, by simply 
setting cij =1 if aij =mk  and cij =aij =0 otherwise. (1) 
 
 
2.1 Decomposition patterns and mental models 
 
As stated in the literature (Nillson 1986), a problem can be decomposed into a tree of and/or sub-
problems. In the first instance, to solve a problem one must solve all sub-problems the problem  is 
composed of, while in the second case one should solve just one of the problems it is made up of. The 
identification of sub-problems is achieved through processes of abstraction (each and  structure is an 
abstraction based on salient elements) and specification (given a problem, any or subset is a 
specification of its special conditions).  
Decomposition is a recursive process where sub-problems, sub-problems of sub-problems, and so 
on…are identified until problems having a “minimal” size, i.e. one which can be solved in just one 
move, are finally achieved. Terminal sub-problems, i.e. those which can be solved in just one move, are 
the finest “grid” where a problem can be defined and solved : a terminal sub-problem  is composed of  
two subsets, Yh and Rh  (starting and final states) and solved in just one move mw: Yh ØmwØ Rh  .  
The list of all terminal problems (each provided with the relevant move) can be considered as a 
program, 1 in the form of condition-action equations Yh Ømw , which solves the problem. Yh  is the set 
of starting states of  the kth sub-problem, which will be called kth building block of the decomposition 
pattern.  
The instruction Yh Ømw, means that the same move mw can be applied to all configurations belonging 
to the same building block Yh . In “natural” human problem decompositions, the sub-problems are 

                                                 
1 Each strategy can be considered as a program as it is made of a condition-action sequence, taken from a transition matrix. 
As such a programme is equivalent to an automaton and not to a Turing machine. 
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normally identified by  abstractions and categorizations; consequently the sets of starting and target 
states in a terminal sub-problem are normally categories, and is natural to search a move that applies to 
every element of the first category (starting states) to reach the second (goal states).  
More generally the solution of a terminal sub-problem {Yh , Rh} may consist in a different move for 
every pair {x, x’}, (xœYh  x’œRh ), and therefore is composed by Ah, a sub-matrix of A that connects 
the state  xœYh  with the states  x’œRh  . 
A full decomposition pattern of a given problem is obtained when the decomposition into sub-problems 
is developed until the terminal problems {Yh Rh}are achieved.  
 
When decomposing a problem according to and/or trees, the building blocks can be usually described 
through abstractions made on symbols describing the configurations of the game. For example, in 
Rubik cube, each configuration is described by the position of the coloured tiles on the six faces of the 
cube, and if we want to operate on the configuration with a corner, we may generally think that every 
configuration is described by a combination of k symbols  α1, α 2, α 3, … α k. A configuration is 
described by a string of n such symbols , in the form of xi = [α r, α s, α w, … α x ]. A string where the 
symbol # (don’t care) appears in position h is used to indicate a category obtained by abstraction on the 
hth element.   
The transition matrix describes the whole game in extended form. It must be noted that generally a 
game is not described in extended form: it is generally expressed in a much more compact form where 
moves are applied to very broad categories of states. In the Rubik cube, for example, the legal moves 
(vertical and horizontal rotations) are applied to the cube regardless of the configuration of the game. 
The same happens for final configurations. For example, the definition of “winning configuration” in 
chess implies a large (and unknown!) number of different configurations,  which all share the same 
property: the king must be under checkmate.   
When determining the strategy of a game, individuals try to identify rules which are valid not for a 
single state but for broad classes of game configurations. The compact representation of a strategy, 
implying the grouping of many configurations into classes, is “naturally” performed by the human 
mind which simplifies and focuses its attention on special configurations, while abstracting some 
properties. The strategy is thus described as a more limited list of instructions which can be more easily 
handled than the extended representation. 
When terminal problems and building blocks are identified by decomposition, they are generally 
identified in the form of categories, i.e. sets of configurations that share some common, salient, feature 
and therefore can be represented without taking into consideration the non-salient features. In this way 
for every different decomposition pattern vast sets of configurations, to which the same move is 
applied, are grouped and described as a single strings. The list of a strategy described extensively, i.e. 
indicating the action to select for each configuration, may then be represented synthetically, provided 
building blocks can be represented into categories.  
The strategy (or program) can be described in a compact form as set of building blocks, to each of 
which and an action is connected. A complete programme can therefore be composed of a relatively 
short list of instructions defined by building blocks of the following kind:. 
 
 
C1 = # αr, αs, #, …# αx  Ø mw 
C2 = # # αr, αs, , … αx   Ø ms 
C3 = αr, αs, #, …  αx      Ø mt 
C4 = αr, αs, #, … αx #  # Ø mu 
. . . . . . . . . . . . . . . . . . .  
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Cn = αr, αs, #, … αx  #   Ø mz 
 
every row of the program is composed by a category Cs that represent a set of configurations and by a 
move mu. The category is an aggregation of configurations. This aggregation can also be considered  a 
classifier, because every category allows the player to classify a set of different elements on the basis 
of some common and salient properties. We can therefore consider Ck as classifiers or equivalently as 
mental categories, created by abstractions leaded by salience. Following Holland (1988) we can 
consider a mental model as the system of classifiers C1..Cn . For the strategy to be complete, each 
configuration should belong (at least) to one  of  the Ci components i.e. that the  property C1 »  C2  » C3 
….. »  Cn » G= X is valid, where X is the set of all possible configurations and G is the set of goal-
configurations. The components may be independent or not. In the first case Ch … Ck = «  for every 
h∫k. In the second case for some  h∫k, Ch … Ck ∫ «, and therefore some state xs, belongs to both  
components: this implies a conflict in the decision to be made. In Holland (1986, cap. 2) the conflict is 
solved by attributing a higher weight to the most specific component.  
 
 
3 Theorems and general properties 
 
Strange properties of distances 
 
The properties of a decomposition pattern are strictly related to the features of the shortest paths 
between starting states and goals of every sub-problem. Therefore we start the discussion by stating 
some properties of shortest paths. 
The distance between two nodes in a graph can be defined as the number of arches within the shortest 
path, connecting the two nodes, i.e. the length of the shortest path connecting the two nodes. In puzzles 
and games, the goal might be composed of a set of nodes, and the same may happen in configurations 
characterising the starting states; it is therefore worth defining the meaning of “shortest path” or 
“distance” between sets of nodes. 
 Suppose that G is the set of  target  nodes and s is a node in the graph (not belonging to G). Consider 
the set M of shortest paths between s and all nodes of G. We define as “the shortest path between s and 
G” the shortest element of M. The distance between s and G is the length of the shortest path. This 
means that the distance between a node and a set G is defined as the shortest distance between that 
node and the nodes in G. Put in different terms,  suppose that, among all elements of G,  gk ε G  is the 
“closest” element to s; the shortest path between  s and G is by our definition the shortest path between 
gk and s . 
This definition may easily be generalized to sets of nodes: the shortest path between two sets  A and G 
will be the shortest path between the two closest elements of A and G. 
Distances exhibit some “strange” properties, and noticeably the non-reversibility; in fact the following 
property holds: 

 
For directed graphs :   While the transition matrix of a puzzle is not necessarily symmetric, the shortest 
path from node xh to node xk  not necessarily coincides with the “inverse” shortest path from xk  to xh. 
The pair (xh, xk) may have a different distance than the pair (xk, xh).   Therefore we have  

D(xh, xk)∫  D(xk, xh) 
 
For nondirected graphs:  for every pair of nodes, (xh, xk) we get  
 

D(xh, xk)= D(xk, xh). 
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In fact, the distance between node xh and node xk is given by the length of the shortest path connecting 
node xh to node xk ; let ( xh , xs, xt …,xv , xk) be  the nodes along the shortest path. These nodes are 
directly connected, and therefore the coefficients of the adjacency matrix are non zero : ahs=ast…= avk 
=1. While the graph is nondirected, the adjacency matrix is symmetrical, i.e. aij =aji  " i,j.  It follows 
that the inverse shortest path from xk to xh exists and has the same length of the shortest path from xh to 
xk, because for the symmetry of the adjacency matrix  the coefficients  akv,…ats ash  are nonzero.  
 
3.1 Backward branching algorithm in the search for shortest paths 
 
Suppose that a hyper-rational player exists, provided with unlimited computational and memory 
capacity. Assume for a moment that the goal of the puzzle is composed by only one state. To discover 
the shortest path to the final goal in a puzzle the hyper-rational player may implement a “backward 
branching” strategy as follows: starting from the final configuration of the puzzle, the player labels all 
“previous” configurations, i.e. those leading to the final goal in a move, and then those leading to the 
final goal in two moves, and so on, thereby assigning to each configuration the distance to the goal.  
The states of the game are thus classified and ordered in relation to the distance to the final goal and an 
order of configurations in established in relation to the distance to the objective.  
The same algorithm can be improved if the goal is  a set of states.  
Call G the set of target nodes.  S1 is built as the set of nodes adjacent and directed at least to one of the 
nodes in G, which will be labelled at a distance 1.4   Let us then build  S2 , the set of nodes directed at 
least to one of the nodes of S1, excluding nodes belonging to G;  they are labelled at a distance 2; 
similarly, S3 is built, being the set  of nodes directed to at least one of the nodes of S2 , excluding those 
belonging to S1 » G;  in this way, after N iterations (N≤ number or nodes in G), all elements of the 
graph will have been reached and labelled. The sets S1 , S2 , S3 … SN  that have been identified with 
this procedure will be called “layers” at distance  of 1,2,3… steps to G. All nodes in layer k are at  k 
distance to the final goal G.  
 
We will show that any decomposition pattern whose building blocks are layers, is invariant. To get a 
clear description of this property, it is convenient to re-describe the backward branching procedure in 
terms fit to the matrix representation of the graphs.  
 
We will come up to the matrix representation by using an iterative method: first we show how to build 
up a matrix representation of a layer Sk+1  if  Sk still exists , for every k; finally we apply the method to 
S0=G. 
Assume that the by applying iteratively the backward branching procedure we have built up the layers 
S1 , S2 , S3, …. Sk. Our goal is to build up Sk+1. Remember that S1 is the set of the predecessors of G, S2 
the set of predecessors of S1, and so on.  
Call Zh the set of indexes of the nodes (configurations) that belong to the layer Sh and call zh the 
number of elements in Zh. For continuity of the representation, call Z0 the set of indexes of the nodes in 
G. For example if Sk={ xr, xs , xt, xu }then  Zk={r,s,t,u} and zk=4.  
The following properties hold: " h, k (h∫k) Zh … Zk  = « , ( because two nodes belonging to different 
layers cannot have the same distance to the goal) and Z0 » Z1 » Z2 » Z3 »….Zs={1,2,3,…n}, where s is 
the number of layers. 
 
To identify the predecessors of a given node xh œ Sk we have first to find out the columns of A whose 
indexes belong to Zk. Suppose that jœ Zk . Check the coefficients aij along the column j, for i=1,..n. If 
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aij∫ 0 than the link between xi and xj exists. This means that the node xi is adjacent (and directed) to 
node xj and therefore is a predecessor of xj.  Therefore by repeating the same procedure for all elements 
j in  Zk , we collect all indexes i for which aij∫ 0, jœ Zk. It is easy to recognise that the set of all such 
indexes i is  Zk+1 , because Zk+1 is by definition the set of xi  that are predecessors of xj œ Zk .  
This procedure can be applied first to the elements of the goal G, to obtain the first layer S1 and its 
indexes Z1 and then iteratively to all other layers.  
Finally, call Ak+1,k the submatrix of A composed by the coefficient aij with iœ Zk+1 and jœ Zk . Ak+1,k is 
composed by the coefficients aij that link the layer Sk and its predecessor Sk+1.  
 
So far we have identified both the sequence of layers Z0 , Z1 , Z2 , »….Zs and the sequence of sub-
matrices A10, A21,…As,s-1 that link the adjacent layers. Using this procedure we can now build up the 
matrix of optimal links, B. This matrix is composed by the coefficients of A that represent links among 
layers, and therefore that give rise to the shortest paths from every initial state x to the goal G. The 
matrix is represented in fig.1 
 

Fig. 1

Z0 Z1 Z2 Z3 Z4
Z0 A00=«

«
Z1 A10 A11=«

Z2 A21 A22=«

A32 A33=«
Z3

«
Z4

A43 A44=«

 
 
 
Rewriting the transition matrix 
 
It is interesting to compare the original transition matrix A with the matrix B  of shortest paths. 
Let us restart the process of discovery and identification of  the layers; at the first step, permute the 
columns of A in such a way to  put the in the first z0 positions the columns of indexes jœ Z0 of matrix 
A. Then by identifying - within the first z0 columns - the indexes i for which the coefficients aij are 
nonzero, we get Z1 and A10 . Permuting the rows of A to put in the first z1 positions  the rows of 
indexes iœ Z1 we now have the sub-matrix A10 in the first z0 rows and z1 columns of A. By continuing 
this process we identify Z2 and A21 , and by permutation of rows and columns we put A21 in the 
columns from z0 to z0+z1 and in the rows from z1 to z1+z2.  By continuing this procedure, we get finally 
a new matrix which is perfectly equivalent to A: the original array A in fact has been simply modified 
by permutations of rows and columns.  
Call P a permutation matrix composed in the following way: the first z1 column of P are composed by 
the unity column-vectors ei with iœZ1; the next z2 columns are composed by the unity column-vectors 
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ek with kœZ2, and so on. Our final permuted matrix is given by   A*= P-1AP. The permuted matrix A* 
is reported in fig. 2. 
 
 

Fig. 2

Z0 Z1 Z2 Z3 Z4
Z0 A00

Z1 A10 A11

Z2 A21 A22

A32 A33
Z3

Z4
A43 A44

 
 
 
Note that A*, while is perfectly equivalent to A, makes more evident some interesting properties that 
relate the layers with the matrix. First of all, the relation between the matrix of shortest paths B and A* 
can be written now in a very clear and simple form, as follows: 
 
Property 1 
 
Consider the sub-matrices Ahk, for hœ Zh, k œZk that are component of A*; the matrix B of shortest 
paths (or optimal links) can be obtained by putting Ahk=« for k∫h-1 within matrix A*. 
 
Property 2 
 
If the graph is not directed, Ahk=« for h-1 >k> h+1 because layers k and h≤s, s>1 are not adjacent. 
The only nonzero sub-matrices of A* are therefore Ahh-1, Ahh+1, that put in relation pairs of adjacent 
layers, and Ahh , that describes the connections within the same layer.  
 
In general, the shortest path between two nodes is generally not unique and hence many equivalent 
paths can take origin from one state xk ; in this case several optimal links will  connect state xk with 
some of its successors.  This means that in the matrix B, for a given state xk (and row k) there is more 
than one link to the successor states, and consequently more than one optimal action.  In this case there 
will obviously be several shortest paths, which obviously will have the same length.  
 
3.2 Properties of invariant decomposition patterns 
 
Let us now divide the graph into two parts while using a layer Sh  or, which is the same, decompose a 
problem S → G into two sub-problems S →  Sh and Sh → G . 
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Call S≤h ={Sh » Sh-1 » Sh-2 ….» S2 » S1 »G} the set of layers that have a distance not greater than h to 
G . Call S¥h ={ Sh »Sh+1 » Sh+2 ….» SN } the set of layers that have a distance greater or equal than h to 
G .     The following properties hold: S≤h»S¥h= G, S≤h…S¥h= Sh). This decomposition of the graph is 
equivalent to decompose the problem SØG into two sub-problems SØ Sh and Sh ØG.  
 
 
Property 3.   If  Sh  is a layer, the matrix of shortest paths of problem S → G  is perfectly decomposable 
into the matrix of shortest paths  of sub-problem S→  Sh and the matrix of shortest paths of  Sh → G. 
 
To get a simple proof, let consider the permuted matrix A* and decompose it into two sub-matrices  
A(S, Sh) an A(Sh, G) respectively defined by the layers { Z0,Z1,Z2,…Zh} and {Zh,Zh+1,…ZN} (see fig.3 ) 
 

Fig. 3

Z0 Z1 Z2 Z3 Z4
Z0 A00 A01 A02

Z1 A10 A11 A12

Z2 A20 A21 A22 A23 A24

A32 A33 A34
Z3

Z4
A42 A43 A44

 
 
According to our definition, the sub-problem Sh → G is represented by a sub-graph containing the 
nodes of S≤h and having layer Sh  as “starting” nodes and G as final nodes. A(Sh, G) is the related 
matrix. Analogously, the sub-problem SØSh is represented by a sub-graph containing nodes S¥h and 
having the layers  S¥h  as “starting” nodes and Sh as final nodes. A(S, Sh) is the related matrix. 
 
Following Property 1 the matrices  B(Sh, G) and B(S, Sh)  of shortest paths can be obtained by putting 
Ahk=« for k∫h-1 respectively within matrix A(Sh, G) and A(S, Sh) .It is therefore evident that B is 
perfectly composed by the two matrices  B(Sh, G) and B(S, Sh)  because B=B(Sh, G) » B(S, Sh)  and 
B(Sh, G) … B(S, Sh) = Ahh=« . 
Fig. 4 shows the nonzero components of the two matrices B(Sh, G) and B(S, Sh) and make even clear 
that by optimising separately the paths of the two matrices A(Sh, G) and A(S, Sh) we get exactly the 
same result than optimising the paths of the global matrix  A .  
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Fig. 4

Z0 Z1 Z2 Z3 Z4
Z0

Z1 A10

Z2 A21

A32
Z3

Z4
A43

 
 
 
Hence the matrix of optimal links of the original game is composed by the two sub-matrices of optimal 
links of the two sub-problems. The decomposition pattern is invariant, in the sense that the matrices of 
the two sub-problems can be independently optimised to get a global optimisation.  
From property 3 we may conclude that each decomposition of a problem into two sub-problems, 
having a layer Sk  as separating set, is invariant; moreover, the following equality holds   
 

D(S,G) = D(S, Sk)+ D(Sk , G) 
 
where D is the distance i.e. the length of the shortest path, between S,S’ and G. 
We may therefore establish the propriety of triangularity of distances, based on the previously seen 
properties; if  C, C’,…are the building blocks of a decomposition pattern, then  
 
 

D(C,G) ≤ D(C,C’)+ D(C’G) 
 

This inequality will be discussed more carefully in the context of Property 6 
 
Propriety 4  Any decomposition into sub-problems having the layers as separator elements is invariant  
and therefore by optimising separately every sub-problem defined by  a pair of layers we get a global 
optimal solution.  
This property is the extension of Property 3 to any other decomposition having - as building elements - 
layers ordered according to the distance to the goal. The permuted transition matrix A* can be 
decomposed perfectly into the sub-matrices Ah,h-1  (h=1,..N) and correspondingly the original problem 
is decomposed into the sequence of elementary sub-problems SN → SN-1 , SN-1  → SN-2  , ……  S1  → G.  
A full decomposition pattern will be composed by pairs of  adjacent layers, or pairs of subset of 
adjacent layers. 
 
To understand why the construction of a full and invariant decomposition pattern is quite unusual in 
human  problem solving , note that, once we have got as terminal sub-problems pairs of layers, not 
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necessarily the sub-problem Sk+1 ØSk can b solved by a unique move, the same for all nodes in Sk. 
Hence layers are not usually categories in a decomposition pattern. However, a pair of layers Sk+1 , Sk 
can be decomposed into homogeneous parts, i.e. into pairs of subsets each of which is connected by the 
same optimal move. We can therefore compact the strategy representation while grouping parts of a 
layer into building blocks, and a single (optimal) move will match each of them so that a compact and 
invariant representation is achieved. Of course any decomposition patterns where building block are 
subsets of layers Sk is invariant. 
Unfortunately, this kind of decomposition, and the clustering of sub-sets of layers, normally cannot be 
described by abstract strings based on the natural code description of the game.   
The subsets of layers to which it is applied the same, optimal move, in general are not classifiers Cs , i.e 
are aggregations that cannot be represented as categories, insofar are not defined on the basis of 
abstractions . This discrepancy between the sub-sets of layers and a compact representation based on 
classifiers created by abstractions, is an important origin of the distortions, because human reasoning is 
fundamentally based on categorization.  
 
Property 5 Any decomposition pattern based on aggregation of adjacent layers maintains the metrical 
invariance. 
 
If S1, S2, S3,..  are the layers at distance 1,2,3,… to goal G and we create a new goal is G’= G » S1, the 
whole system of distances is not changed; node x - which used to be at a distance k to G will now be at 
a distance  k-1 to G’, but the same will happen to all the other nodes, and hence the metric will be 
unchanged. In other words, for each pair of nodes {x, y} not belonging to G»S1 we will have d(x, G)-
d(x, G » S1)= d(y, G)- d(y, G » S1).  Consequently, the matrix of minimal links related to goal G and 
the new matrix of minimal links related to goal G ∩ S1 are identical in their common parts (the matrix 
of G» S1 has obviously no links in the rows corresponding to the nodes of S1). The same is true for 
goal G»S1»S2  and for any other combination of adjacent layers . 
 
 
3.3 Aggregations distorting the metric  
 
We have shown that layers are aggregations which can be made with no modifications of the system of 
distances to the final goal, i.e. that the decomposition patterns made by layers or combinations of 
adjacent layers are invariant; the opposite is not necessarily true: in fact, there are invariant 
decompositions patterns which violate the condition to be based on pure layers or combinations of 
adjacent layers. Small “deviations” from this rule are therefore allowed, as we will see in this section, 
and a more general condition for invariance will be discussed in section  3.4. The main properties of 
invariant decomposition patterns based on aggregations different from layers descend from a property 
of “triangularity” that we state now. 
 
 
Propriety 6 - Triangularity in relation to the domain of  shortest paths. 
 
For any given state x, it may exist one or many shortest paths to the goal G. Consider the set of shortest 
paths between x and G (where G may be a set of target nodes).  
Call Λ  the set of the nodes of such paths. For every x’ (x’≠ x, x’≠ G) we have 
 
If x’ε Λ  
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d(x,G)=d(x,x’)+d(x’,G) 
 
If x’ – Λ  

d(x, G)<d(x, x’)+d(x’,G) 
 
Demonstration: 
If x’ε Λ the equivalence is valid for the definition of distance: x’ is in fact the node of a shortest path 
between x and G and the distance is by definition the number of nodes in a shortest path. 
Let us take x’– Λ.  x’ obviously belongs to one of the layers of G, let us suppose it is layer k at a 
distance Sk . If  Sk  is more distant from G than x, i.e. if  d(Sk, G)>d(x, G) , then, as d(x’,G)= d(Sk, G) 
we will have d(x’,G)>d(x,G)  ; all the more so  
 
                                                         d(x’,G)+d(x, x’)>d(x, G) 
 
                                                         
If, on the contrary d(Sk ,G) ≤d(x, G), there surely will be at least one  x*ε Λ in layer Sk, and hence 
d(x*,G)=d(x’,G). But d(x, x*)<d(x, x’) because x*ε Λ while x’– Λ.  
Hence, d(x, G)=d(x, x*)+d(x*,G)< d(x, x’)+d(x’,G). 
This concludes the demonstration. 
 
 
Let us now examine what happens when a new goal is created by adding a new node G’ to an existing 
goal composed by only one node G.  
It is useful to compare the system of distances to the old goal G with the system of distances to the new 
goal G» G’. To this purpose, take randomly a node x different from G and G’, and consider its distance 
respectively to G and to  G»G’. 
By definition d(x, G»G’)=min(d(x,G),d(x,G’)). Hence, if  d(x,G’)≥d(x,G) the distance label of x is 
unchanged and we will have d(x,G)=d(x, G»G’). On the contrary, if d(x,G’)<d(x, G) then, based on the 
definition of distance, d(x, G»G’)=d(x,G’): here the distance label changes and is defined in relation to 
the new node G’ which has been included.  
Therefore  we can say that the introduction of a new node G’ distorts the metric for nodes x of the 
graph which are “closer” to G’ than G. It is intuitive to realize that if G’ is far from G large parts of the 
graph will exhibit relevant distortion to the original metric; in fact consider the nodes x along a shortest 
path between G and G’: for any x that is nearer to G’ than to G,  the path to the goal is directed to G’ 
and therefore a player starting to x and approaching to G»G’ along the shortest path, gets far from G. If 
on the contrary G and G’ are adjacent, the distortion of the system of distances is irrelevant, as we will 
see.  
 
Property 7 - If  we add to a target node G some nodes of the first layer, the metric is unchanged 
 
Assume that the goal G is composed by only one node, and call G1, G2  ,… Gs  the nodes of the first 
layer S1 of G.  
For every x (x∫G) of the graph, the shortest paths to G starting from x will include a node of the first 
layer. For a given Gk consider the set Bk of nodes xi whose shortest paths to G pass through Gk . Bk can 
be considered a “basin of attraction” of Gk because all nodes xi œ Bk have a shortest path to Gk. The 
basins of attraction of different nodes of the first layer may have non empty intersection, i.e. it may 
happen that from a given xj there is a shortest path to G passing through Bk and a shortest path to G 
passing through Bh. 
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Now let’s build up a new target composed by the old one, G, plus a new one, Gh .  If the distance of a 
node x* of the basin of attraction of Gh to G was d(x*, G) =d*, the distance to G»Gh will be given by 
d(x*, G»Gh) =d*-1. In fact, for property 8, d(x*, G) =d(x*, Gh) +d (Gh, G) because Gh belongs to the 
shortest path from x* to G. As consequence, d(x*,G»Gh)=d(x*,Gh)=d(x*,G)- d(Gh,G) =d(x*,G)- 1. 
If , besides the shortest path passing through Gh, x* admits a shortest path passing through a different 
node  Gk of the first layer, the corresponding link in the matrix of shortest paths must be set to zero. In 
fact, call x’ the successor of x* along the shortest path from x* to G through Gk. Since 
d(x’,G)=d(x*,G)-1=d*-1= d(x*,G»Gh), and d(x’,G)=d(x’, G»Gh ), x* and x’ have the same distance to 
G»Gh .Therefore in the matrix of shortest paths the coefficient that links x* with x’ must be deleted. 
Therefore along the boundary between two basins of attraction to G some links must be set to zero. 
This reduces the number of shortest paths from some nodes to the goal, but does not modify the 
residual links, because the shortest path from x* to G»Gh coincides with the shortest path from x* to G 
for all steps (excluding of course the last one, from Gh to G which must be obviously deleted).  
Beside to delete some links into the array of shortest paths, the creation of the new goal G»Gh  re-
establishes new links; in fact if  in the transition array there was a links aij between xi, in the basin of 
attraction of Gh and xj in the basin of attraction of Gk , and in the matrix of shortest paths to G this link 
was deleted because xi and xj were at the same distance to G, i.e. d(xi, G)=d(xj, G), now the link aij 
must be re-established because xi is nearer than xj to the new goal G»Gh  : d(xi, G»Gh )=d(xi,G)-
1=d(xj,G)-1.  
Consequently xi is now the successor of xj along a new shortest path from xj to G»Gh  .This new path 
from xj is added to the pre-existing shortest path from xj to G through Gk, and therefore the new path 
does not alters substantially the matrix of  shortest paths.  
Summing up, the introduction of a new goal node, adjacent to the old one, does not modify 
substantially the structure of the matrix of shortest paths; while some coefficients are deleted, and other 
coefficients which was zero are re-established, the matrix M(G) of shortest paths to G and the matrix 
M(G» Gh)of the shortest paths to G» Gh have, for every row j at least one common coefficient ajn. In 
consequence the matrices define at least one common shortest path from every starting node xj. 
The reasoning we have conducted so far can be extended to the case in which more than one node of 
the first layer is added to the original target-node G, and therefore we can conclude that the 
introduction of new adjacent nodes (belonging to the original first layer) , while requires cuts and  
seams to the graph of shortest paths, preserves at leas one shortest path to the goal from every starting 
node.  
 
There is an intuitive explanation of property 9 that helps to understand why the distance among an old 
target node and new targets to be added matters.  
If, in fact, we add new adjacent nodes to the former node G, the shortest paths to it are in the same 
direction as the shortest paths to G»Gk»….Gh. As we will see immediately, if the new nodes Gh are far 
from the former node G a part at least of the shortest paths change direction, because by approaching to 
some Gh the path get far from G.  
 
Large  distortions 
 
Let us now  include a new goal G’ at a greater distance than 1 from the old goal G. In this case a 
separation is created between a sub-graph that contains the shortest paths that are directed towards G 
and the sub-graph that contains the shortest paths  directed towards G’. Two sets are here generated, 
too: the set of points x’ which are nearer to G’ than to G, that is for which d(x’,G’)<d(x’,G) and vice 
versa the set of points x closer to G, i.e. those for which  d(x,G)<d(x,G’) (see fig. 5). The frontier is 
composed either of nodes xF for which d(xF,G)=d(xF,G’) or is composed by pairs of nodes xF ,xF’ for 
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which d(xF,G)=d(xF’,G’). The basins of attraction of the two nodes G and G’ do not have any common 
shortest path. In this case, the shortest paths starting  from  points x’ cannot pass through G (because G’ 
is closer to x’ than G) and hence the player, while following a minimal path towards G’  moves away 
from G. 
 
 
 

Fig. 5
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Suppose that a player, in order to reach the final goal G, uses G »G’ as an intermediate goal. For states 
x’ the player, while moving along the optimal path to G’, moves away from G; this means that the 
triangular inequality analysed above  d(x’, G)< d(z’,G’) + d (G’,G) holds. 
Therefore the player, while moving along the optimal path to a sub-goal moves away from the final 
goal  and does not optimise its global path. 
The features we have seen so far can be easily generalised to the case where goal G is a set of nodes. 
 
3.4 Further properties of decompositions, beyond the layers 
 
Remember that a decomposition has been defined invariant if the optimisation of the sub-goals leads to 
the optimisation of the global problem. 
Property 8 A decomposition of a problem YØG into two and sub-problems YØR & RØG is invariant 
if and only if for all (xœY, yœ R) the equality of distances holds: 
 

D(x,G)=D(x,y)+D(y,G)   
 
 
Because of property 6, if every element of R belongs to a shortest path between Y and G, ("xœY, yœR 
Ø yœ L(x)) then the equality of the sum of the distances holds; this means that any shortest path from x 
to G pass through a node yœR, and therefore the path can be split in  two paths, from x to y and from y 
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to G, each of which is the shortest in his domain. Consequently by optimizing separately the two sub-
problems we get two parts of the same shortest path, joined in some yœ R. 
Vice versa, again because of property 6, if some element of R does not belong to any shortest path 
between Y and G the inequality  

D(x,G)<D(x,y)+D(y,G) 
 
holds for some (xœY ,yœ R) and therefore the decomposition is not invariant. 
But if all the shortest paths between Y and G pass through an element of R, each shortest path between 
Y and G can be split into a shortest path between Y and R and a shortest path between R and G. From 
this we may conclude that  
 
Property 9  if and only if a decomposition of a problem Y G into two sub-problems Y R & R G is 
invariant, R is a barrier with respect to the nodes of Y. 
In fact if each shortest path from an element of Y to G passes through R i.e. R is a barrier, 
D(x,G)=D(x,y)+D(y,G) for Property 8. 
Vice versa  if the equality holds, i.e. if "xœY , $yœ R: D(x,G)=D(x,y)+D(y,G) , all nodes yœR are 
either starting states or  intermediate states within a shortest path from Y to G. Therefore there are no 
shortest paths which do not pass through R. 
Layers are a clear examples of  barriers. 
 
Consider now a decomposition developed iteratively until the terminal sub-problems are reached. If the 
decomposition of the game YØG in » & RØG is further developed, RØG will in its turn be 
decomposed into an and sub-problem or specified in or sub-problems, and the same applies to YØR. 
We can apply the same considerations as previously: namely that if the RØG problem is decomposed 
into two and sub-problems, RØC  & CØG, the new decomposition will be invariant if the nodes of C, 
too, will act as a barrier between R and G.  
If the RØG problem is instead decomposed into or sub-problems, the player will decompose R into 
sub-sets Y1 Y2 …. YkŒ R so that Y1»Y2 ….»Yk = R , Yh …Yk =« which constitute the points of 
departure for further sub-problems  YkØG. These new sub-problems will in their turn be decomposed 
into and nodes.  
Proceeding in this manner, the decomposition of each sub-problem terminates when reaching the 
terminal sub-problems YkØRk , whose solutions consist of only one move. This obviously means that 
the nodes of Yk are adjacent to the nodes of Rk. If the decomposition is invariant, all elements x’i œRk 
are nearer to the goal than their predecessors xi œYk along the path to the goal. Otherwise, some x’i will 
be nearer, other x’i will be farther than his predecessor to the goal. 
 As we have previously remarked, the move that solves a terminal sub-problem, may be different for 
any different element xiœYk  , or the same for all elements xiœYk. In the last case, if the elements of Yk 
in turns can be represented as a unique category, the elementary problem is represented in one only 
condition-action statement. 
 
 
Property 10 - In a decomposition developed until the terminal sub-problems YkØRk have been reached, 
if every Rk acts as a barrier for its  Yk, the decomposition is invariant. 
 
A complete decomposition pattern consists of an and/or set of elementary sub-problems YhØRh .  
If the successor of each x œYk in Rk belongs to the shortest path from x œYk to G, all the successors of 
an x œYk are comprised in another building block Yh (or in G). For every Rk, in fact, there is a 
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minimum cover Uk composed of the union of some Yh: that is, there exists a Uk =S»Yj such that Rk Œ 
Uk ,  Uk … Rk = Rk e Uk » Rk = Uk 
Consequently, every x œYk has a successor in a x’œYh which is one step closer to G. Hence a minimal 
global path between a given x and G can be decomposed as follows: given x, the building block Yk to 
which it belongs is identified and then the terminal sub-game YkØRk. This sub-game is resolved by a 
sub-matrix Akh which associates with each x œYk a move mw which puts x in a x’œYh which is one step 
closer to G. In its turn, x’ belongs to a sub-problem YhØRh, so that there is a sub-matrix Ahs which 
associates with each x’ œYh a move mw that puts x’ in a x’’œYs one step closer to G. All the 
concatenated sub-problems YkØYh, YhØYs ….,YvØG and their optimal solutions are iteratively 
identified until objective G is reached along a minimal path. Thus, by resolving each sub-game with an 
optimal move, the minimal global path from x to G is constructed.  
 
 
3.5  Non invariant decomposition patterns     
 
Conjectures and biases 
 
Of course in real contexts players may build up a decomposition pattern in a very chaotic way, 
sometime disregarding the requisites of logical coherence typical of the  and/or trees creation. We do 
not pretend to model the decomposition process, i.e.  the process of creation of a decomposition 
pattern, which is matter experimentally unexplored .  We simply note that the requirements for a 
decomposition pattern may be relaxed; in particular we can in some situations relax the or 
decomposition feature, by assuming that for some  YkØRk we may have Rk Œ Y1»Y2 ….»Yk ; 
moreover we can relax the and decomposition requirements, by admitting the property Yk …Yk≠« for 
some building block. 
Whatever the features of a decomposition process are, if the process is developed until the terminal 
sub-games have been reached, the states of each pair {Yk Rk }are adjacent because they are connected 
by one single move. On identifying the relation Yk Ø Aij ØRk, the player implicitly assumes that the 
move takes him one step closer to the goal, and therefore that all the states of the set Rk are one step 
closer to the objective with respect to the states of the set Yk.  
This means that players performing the decomposition conjecture an order among pairs of sets (Yk, Rk) 
that generally are categories. It must be emphasized that if Yk are categories including very large sets of 
configurations, the attempts of players to establish an order among categories are not contrasting with 
bounded rationality assumptions. Players in fact try to decompose the problem in very few, general 
categories, easy to be compared, focusing the attention on few salient features of the game, simplifying 
as possible the game description and therefore conjecturing an order among a very limited number 
categories. 
If player’s conjecture is correct, i.e. if in every subproblem (Yk, Rk), Rk is closest to the goal than Yk , 
than the strategy yielded by the decomposition is optimal and the decomposition is invariant.  
If the conjecture is not correct, errors occur which are often difficult to detect. In fact, categorization 
enables identification of terminal problems{Yk Rk}which are solved by applying the same move mw to 
all the states of the elementary component Yk to achieve the partial objective Rk. However, there is 
often no single action which, when applied to Yk ØmwØRk, yields a set of adjacent states all one step 
closer to G. On the contrary, some of these xi œYk states are such that move mw takes one step away 
from the objective, while other xj œYk states take it one step closer to the objective. In this case the 
player has made a partly inaccurate conjecture in which the error is generated by the categorization. 
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Moreover, having identified the terminal sub-problems, and having assumed that the solution consists 
in applying the same move to all the components of the sub-problem, even if the player optimizes each 
single sub-prolem (with the constraint just stated) he will not be able to achieve the global optimum.  
In fact, if xi œYk ed xj œYk and the player has identified the solution Yk Ømw, and if move mw applied to 
xi leads to a (closer) successor whereas if it applied to xj  it leads to a node further away, the player 
cannot improve his strategy. Even if he attempts to apply moves different from mw to the xj œ Yk, its 
solution cannot achieve the optimum because there is no single move that makes this possible. The 
player must therefore modify the composition of the building blocks Yk, assuming a decomposition 
pattern.   
We have already pointed out that when a player modifies a condition-action instruction, if the condition 
is given by a category, he modifies the action to be carried out in relation to all the configurations that 
belong to the category. Therefore by introducing a representation of a strategy based on categories the 
representation is simplified but this limits the set of possible elementary modifications that can be 
applied to achieve the optimal solution. Consequently, as we have seen, some decomposition patterns 
of the problems necessarily produce sub-optimal strategies. This implies that the larger is the domain of 
the categories, the lower the number possible modifications to achieve the optimum.  
 
Fitness 
 
The sum of the distances between every starting state and the goal is a benchmark to measure the 
efficiency or the fitness of the strategy and compare the “deviation” of different decompositions 
patterns to optimality.  
We can compare different types of decompositions patterns by associating to each of them, as a 
measure of fitness, the length of the paths from every starting state xi to the goal, defined as follows: 
given the list of instructions of the strategy derived from a given decomposition pattern, we can 
calculate the length of path L(xi ,G) between every starting configuration xi  and the goal G based on 
the building blocks of the decomposition pattern. The length of L(xi ,G) is the sum of the lengths of the 
paths between every pairs of sub-problems that compose the problem. If a problem is fully 
decomposed, the length of the paths of the terminal sub-problems is 1, and therefore L(xi ,G) is simply 
equal to the number of terminal sub-problems that are involved in the decomposition. 
The sum of lengths LTOT= ∑i L(xi ,G) is called “global path” . 
Note that  
 

L(xi ,G ) ≥ D(xi,G) 
 
Where D(xi,G) is the distance between xi and G, that is the number of steps of the shortest path, or, 
equivalently, the label of distance associated through the  backward branching algorithm; 
LTOT will vary with the different decomposition patterns and, within the same decomposition pattern, 
with the moves associated to every building block . For all invariant decomposition patternsLTOT will 
have the same value, the minimum, that is ∑i L(xi ,G)  = ∑i D(xi ,G) and LTOT= ∑i L(xi ,G) = ∑i D(xi 
,G). For the not invariant decomposition patterns we will have L (xi ,G) ≥  D(xi ,G) and  
 
                                                                 ∑i L(xi ,G) > ∑i D(xi ,G). 
 
Hence ∑i L(xi ,G) can be naturally assumed as a measure of the fitness of a strategy (and of the 
associated decomposition pattern) 
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Suboptimalities 
 
The non invariant decomposition patterns give rise to sub-optimal strategies for the reason we have just 
seen: ∑i L(xi,G) > ∑i D(xi ,G). But they display a more subtle property:  they are - in general -  optimal 
in a sub-domain of the configurations of the game. In fact, once a strategy is constructed according to a 
decomposition pattern, if  the corresponding move of a given building block Yi is  mh, and if xr and xs 
are two configurations of Yi  it may happen that for configuration xr ε Yi we have L(xr ,G )> D(xi,G) 
while for xs ε Yi we have L(xs ,G ) = D(xi,G)., because, as we have shown, the same move  mh, applied 
to two different states of  Yi, can get the player nearer or farther to the goal. 
 This means that in a non invariant decomposition pattern there can be numerous configurations, for 
every building block, for which the moves of the strategy are optimal. If the number of configurations 
for which the moves of the strategy are sub-optimal is low, it becomes extremely difficult to discover 
them, and a player can persist in using a  strategy, without perceiving that there are sub-optimal 
characteristics.  
 
Landscape 
 
We have assumed the  “total path” LTOT= ∑i L(xi ,G), as a measure of the fitness of a strategy. Every 
strategy is based on a decomposition pattern, and therefore the fitness  varies with the decomposition 
pattern discovered by the player. For a given decomposition pattern, a player can try to modify the 
fitness of his strategy by modifying the moves, within the constraint imposed by the building blocks. 
It is possible to demonstrate that, if there are not restriction on the moves to be selected within the 
transition matrix,  the fitness function admits absolute minimums (all equal) corresponding to the sum 
of the shortest paths. Moreover the minimal value is reachable by modifying the moves by trial and 
errors, despite a positive epistatic degree. (Egidi 2000, 2002). An hypothetical player that builds up his 
strategy in the extended form can therefore improve it while modifying by trials and errors the actions 
matching every condition of the program, until the optimal value of LTOT is reached.  
This property seems to be in contrast to the behaviours that have been observed experimentally, which 
indicate that individuals insist in using sub-optimal strategies,  and do not modify them incrementally 
for improvement, as it would be possible. The notion of building block allows us to explain the 
apparent contrast: the strategies adopted by players are not in extended form - they are in fact compact-, 
and based on building blocks allowing much less mental effort  thanks to categorization. However, the 
building blocks limit the possibilities to modify the moves of a strategy, because they constitute a 
constraint: all configurations of a given block must have the same move, and therefore if the move is 
modified to be applied to configuration xi ε Yi  one must also modify the moves of all other 
configurations of Yi in the same way. Therefore, in the search of a minimal value of LTOT, the imposed 
constraints only allow to reach a local minimum. 
Consequently what makes a relative minimal value stable is the difficulty that players encounter in  
modifying the set of selected blocks, i.e. the decomposition pattern, and to adopt a different one. This 
difficulty depends on the fact that building blocks are represented abstractly and synthetically, they are 
in fact mental categories, that are obviously difficult to modify. 
A strategy generated from a non invariant decomposition pattern therefore admits a stable local 
optimum in the sense that, for a given decomposition pattern, once one relative minimum has been 
identified, if the actions matching the building blocks are modified, the programme turns out to be less 
efficient, that is the number of moves necessary in order to reach the goal increases. Therefore, the 
solution based on the non invariant decomposition pattern though being sub-optimal cannot be 
improved -  it is “locally” optimal and stable. In order to improve the strategy it is therefore necessary 
to modify the building blocks, i.e. introduce a new decomposition pattern.  
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Extrapolation and case based reasoning 
 
It is a matter of understanding how players create the “wrong” building blocks, by discovering sub-
optimal strategies where they remain entrapped. 
If individuals are involved in a game or puzzle where they have to find a resolutive strategy, instead of 
having to solve a problem theoretically, with the necessary time, and if the game is repeated, the 
learning process cannot be implemented as it happens when the solution is looked for theoretically, a 
different learning system is implemented, based on extrapolation  from specific  cases.  
As we will see from the experiment in the next section  the players identify a  series of building blocks 
based on experience acquired during the different runs  of the game while trying to derive general rules 
from individual experiences. When possible, the players apply a mental exercise of generalization-
extrapolation while widening as much as possible the domain of validity of the rules that they have 
discovered.  
In general, the extension procedure creates systems of rules that are described with a certain degree of 
abstraction (the building blocks). The system of rules that constitute a strategy is complete, that is any 
configuration of the game has its corresponding rule, even if the player does not have direct experience 
in most configurations. 2  Also here the crucial mechanism is the symbolic representation and 
abstraction and categorization based on the focalisation of the salient features of the game.  
An attempt is made by extrapolation to identify a decomposition pattern that is valid in the series of 
repeated experiments; but the classifications and abstractions can comprise non perceivable hidden 
errors, as we noted in the paragraph on sub-optimalities. 
To identify them we should examine all existing “condition-action” relationship in detail in all possible 
cases of the game. This is an extremely time-consuming practice that would nullify all the advantages 
of a compact representation. Therefore subjects cannot actively search for the exceptions to the rules 
that they have established in order to resolve a problem. The example of MiniRubik (section 4) shows 
that one should be guided by the exceptions that have been identified to correct the errors hidden in 
abstract rules. 
 
 
The locally optimal solutions where subjects might be entrapped when  analysing a problem are 
therefore due to the limits in their ability to falsify the rules they have defined in all the related domains  
and to discover the hidden errors. When subjects perceive a new example that can be resolved more 
efficiently with the activation of a new rule in place of the standard rule, they have two possibilities: 
consider the new example as an exception to the previous general rule or  try and define again the 
building blocks of the system of the rule, resolving the conflicts between the rules. This is extremely 
mind-consuming and therefore, although a single mutation may improve the performance of the 
system, it would probably be considered an exception so abstract sub-problems would not be redefined.  
In the event the number of “exceptions” becomes too high -  and this happens systematically during a 
game - individuals cannot simply continue to keep new exceptions in mind: they must in fact 
“restructure”  the space of the rule, re-codifying the information. In other words, they must modify the 
representation. Such modification might be very discontinuous since it generally requires that the 
problem decomposition is de-structured, and the problem has to be reconstituted with new building 
blocks. 

                                                 
2 because some simple abstract conditions can encompass all ignored configurations. 
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The errors hidden within sub-optimal representations can essentially be found and corrected while “re-
thinking”  the representation, that is formulating a new division into sub-problems - and modifying it. 14 
 
4 An application: Minirubik  . 
 
Minirubik is a simplified version of Rubik cube. In the experiments that we will illustrate, the player 
sits in front of the screen of a computer where two squares composed of four tiles of different colours 
are displayed (fig.6). On the bottom right of the screen, the arrangement of tiles to be reached as a goal 
is displayed. In the centre, tiles are arranged differently and the player can modify the arrangement, 
exchanging tiles horizontally or vertically, until the goal configuration is achieved. (For the sake of 
simplicity, when necessary, we will use letters, A, B, C, D instead of colours). 
 

Fig. 6

State of the game

D B
C A

Goal

A B
D C

 
 
 
As indicated in Fig.7, tiles can be moved and exchanged in the horizontal or vertical direction. The 
players must reach the final configuration  
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Fig. 7

D B UP B D
C A C A

D B DOWN D B
C A A C

D B RIGHT D A
C A C B

D B LEFT C B
C A D A

 
 
The players gain points according to the number of moves they make to reach the goal: they are granted 
an initial  sum which diminishes at every move they make: the lower the number of moves made to 
resolve the problem, the greater the residual amount that remains at  the end of the game.  
In order to simplify the description in the discussion that follows, a configuration can be indicated as a 
sequence of four letters (or colours) instead of a square of four letters (or colours), applying the 
following rule: start from the upper left corner of  the square and list the elements in the square, moving 
clockwise. The positions of A, B, C and  D in Fig. 8 are positions 1, 2, 3 and 4, respectively.  
 
 

    

Fig. 8

1 2 1 2 3 4
A B A B C D
D C
4 3  

 
 
With this representation strings can be written like groups of four letters (or colours), like for example 
CBDA or A##C that represents the set of configurations where A is the first position (upper left corner) 
and C is the last (lower left corner). The transition matrix is illustrated in fig. 9 
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Fig. 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 D R U L
2 D R U L
3 R D U L
4 D R L U
5 R D L U
6 R D L U
7 U D R L
8 U D R L
9 R D U
10 L D R U
11 R D L U
12 L R D U
13 U D R L
14 U L D R
15 U R D L
16 L U D R
17 L R D U
18 L R D U
19 U L D R
20 U L D R
21 U L R D
22 L U D R
23 L U R D
24 L U R D

L

 
 
 
Fig.11 shows the game’s optimal solution obtained with the backward branching method discussed 
earlier. By permuting the rows and columns of the matrix according to the indexes of the layers given 
in fig.10, we obtain the matrix of fig. 11, in which, as shown above, the coefficients in the sub-matrixes 
Ahh-1 (to the left of the main diagonal) indicate the adjacency matrix of the game’s shortest paths. 
 
 

Fig. 10

Layers Distance from G States
G 0 1

S1 1 2,3,7,22

S2 2 4,5,8,9,12,13,16,20,21,24

S3 3 15,19,18,11,14,10,23,6

S4 4 17
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Fig. 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4
1 2 3 7 22 4 5 8 9 12 13 16 20 21 24 6 10 11 14 15 18 19 23 17

0 0 1 D R U L
1 1 2 D R U L
2 1 3 R D U L
3 1 7 U D R L
4 1 22 L U D R
5 2 4 D R L U
6 2 5 R D L U
7 2 8 U D R L
8 2 9 R D U L
9 2 12 U L R D
10 2 13 U D R L
11 2 16 L U D R
12 2 20 L U D R
13 2 21 D U L R
14 2 24 L R U D
15 3 6 R D L U
16 3 10 L D R U
17 3 11 R D U L
18 3 14 U L D R
19 3 15 U R D L
20 3 18 L R U D
21 3 19 U L D R
22 3 23 L R D U
23 4 17 L R D U

 
    
Fig. 12 below illustrates the graph of the game. The configurations are ordered in relation to the 
distance from the final goal, as in the matrix of shortest paths (to the left of the main diagonal in fig. 
11). The layers are clearly identified by vertical planes which separate groups of nodes in the graph. 
The shortest paths are determined as a consequence.  
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Fig.12

16

15 13

21

19
5

2
18

23 24

3
17 14 8

1

11 9 7

4
10 22

20

6 12

S4 S3 S2 S1

 
 
 
4.1 Invariant decomposition patterns 
 
 
The reader can easily ascertain the properties demonstrated in paragraph 3.2: in particular, when 
decomposing a problem into  sub-problems having layers as separators, the metric of  the 
decomposition is unvaried. If the set of nodes at distance 2 is chosen as an intermediate set, that is S2 
={4, 5, 8, 9, 12, 13, 16, 20, 21, 24} and problem S → G is decomposed into two sub-problems, S →  S2 
and  S2 → G , (S= S4 » S3 ) the matrices of optimal links are in turn reported in the table: one can 
immediately verify that the optimal path  from every node s1 ε S to G is exactly the sum of the optimal 
path from  s1 to a node of S2  plus the optimal path from S2 to G. This decomposition pattern has 
therefore preserved the metric of the game. The matrices of shortest paths of sub-problems    S → S2 
and S2 → G are reported in Fig.13.  
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Fig. 13
S-->G S2-->G S-->S2

A00 A00 A00
A10 A11 A10 A11 A10 A11

A21 A22 A21 A22 A21 A22
A32 A33 A32 A33 A32 A33

A43 A44 A43 A44 A43 A44

 
 
 
4.3 Saliency-guided decomposition patterns 
 
Obviously players do not calculate the optimal distance the way we have seen. They try to represent a 
problem in a simplified way, concentrating on some properties of the game and creating, by 
abstraction, the elementary building blocks. There are many possible decomposition patterns (every 
structure of aggregation of states is a decomposition pattern) but some are simpler to represent and are 
therefore preferable for the low number of calculations needed to implement them. A strategy that has 
been frequently implemented by players in some preliminary experiments, is based on a simple and 
sequential decomposition of the problem, and players use it to place pieces orderly, one at a time until 
the final position is achieved. Let us see an example and suppose that the starting and  final 
configurations are strings BDAC and ABCD respectively, as indicated in Fig.14  
 
Fig.14

Starting Final Positions

configuration configuration

B D A B 1 2

C A D C 4 3

 
 
The sequential strategy to move from this particular starting configuration to the final configuration 
suggested by players is composed of the following instructions:  
 
Sequential strategy “First A”: 
 
 1 - Move A from the starting position, anti-clockwise, until the final position (position 1). 
 2 - If B is not yet in the final position, move it to position 2, leaving A in its position. 
 3 - If C and D are not yet in the required final positions, exchange them.  
 
 
We can immediately appreciate that this sequence of instructions can be applied to any other starting 
configuration, only by modifying the first instruction in the most “natural” way, that is moving A from 
the starting position to position 1 with the least number of moves.  
This strategy, where one must concentrate on the position of a tile at a time (first move A, then B and 
finally C and D) is based on the decomposition into  three sub-problems, each one being implicitly 
based on an adequate categorization: the categories A###, #A##, ##A#, ###A, A#B #…. that players 
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order in their minds to decide how to approach the goal. These categories constitute the building blocks 
of the First A decomposition pattern.  
Figure 15 illustrates the diagram of  the first part of the strategy: the sub-problem consists in how  to 
move A from its starting position to position 1. In our version of the problem, the player decides to 
move A anti-clockwise  if A is in position 3, but this solution displays similar properties even if the 
player moves the tile clockwise.  
 

Fig. 15

A

B3 = # A # #

Right 7 Up
8 A
13

A 14

19

B2 = # # A # 20 B4 = A # # #

9 1

11 2

15 A 3

17 4

21 B1 = # # # A Left 5

23 6

10

12

16

18

22

24

 
 
The building blocks on which the representation is based therefore include categories B1= ###A,  B2 = 
##A#  B3 = #A##,  B4 = A###.  When the player plans to move A from position 3 to position 2, and 
finally to position 1, he implicitly orders the three building blocks B1 , B2 , B3 in terms of distance to 
the goal G=ABCD. In fact the player presupposes that a configuration belonging to B3 = #A##, is 
nearer the goal compared to a configuration that belongs to B2 = ##A# or B1= ###A. Therefore, if D is 
the distance between block  B1 and goal G, we will have  
 

D(A###, G)< D(#A##,G) < D(##A#,G). 
D(A###, G)< D(###A,G) < D(##A#,G) 

 
This system of  relative distances can be illustrated as follows: 
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B1  =  ###A = (10,12,16,18,22,24) ;    Presumed distance = 1 
B2  =  ##A# = (9, 11, 15, 17, 21, 23);  Presumed distance = 2 
B3  =  #A## = ( 7,8,13,14,19,20) ;       Presumed distance = 1 
B4  =  A### = (1,2,3,4,5,6);     Presumed distance = 0 

 
Therefore the player classifies the building blocks according to an order that defines the relative 
distances to the goal. This clarifies the reasons why errors appear: if such a system of distances defined 
at an abstract level of representation is isomorphic with the minimal distances that are obtained by 
applying the method of backward branching to the extended description, then the decomposition in Bi 
blocks is optimal while – if this is not the case - the decomposition will introduce hidden errors.  
In order to verify such property a graph of the game has been drawn in the extended form (Fig. 15), 
associating to every node the blocks defined in Fig.14, according to the presumed distance to the goal. 
The results are quite interesting: the elements of building block B4  =  A### =  (1,2,3,4,5,6) are not to 
be found at the same distance to the goal and they do not fulfil the properties seen in par. 3.3; they 
therefore introduce a systematic distortion in the system of the distances to the goal.  
At the same time, if we consider the building block B4= {1,2,3,4,5,6}  as a goal, the other building 
blocks B1 , B2 , B3 are layers, or  - in other words – sub-systems of layers at a constant distance B4 .  In 
fact,  if the system is constructed by means of the backward branching method, the set of nodes 1, 2 
…from B4 , (B1 ∩  B3) is at distance 1, and B2 is at a distance 2. The strategy “First A”  effectively  
identifies the optimal moves that connect building blocks B1 , B2 and  B3  of this sub-problem.3 
If we compare the distances from nodes in the graph to node 1 with those in set B4  (1,2,3,4,5,6) one 
discovers that they coincide only in part with the nodes of the graph. In two cases, and precisely nodes 
12 and 20, this does not happen; the reason for this is that 12 and 20 are the two nodes that are nearer to 
6 than to 1: d(12,1)>d(12,6) and d(20,1)>d(20,6). The shortest path from node 12 to node 1, that  is 
(12→22→1) does not coincide with the shortest path  to approach B4={1,2,3,4,5,6}, - that is (12→6) – 
from node 12; in other words, among the nodes in B4,  node 6 is closer to node 12 than node 1: 
d(12,1)>d(12,6). The same applies to node 20. The sub-optimalities are generated because 
configurations that belong to block B4 do not respect the rules of distance from the final goal G, and 
that distorts all the space of relative distances.  
 
This distortion is clearly illustrated in Fig. 16 that represents the graph of the distances to building 
blocks Bi. By comparing Fig. 16 to Fig.12 the distortions can be seen very clearly, in the form of paths 
along which – in a part of the route – one moves away from the goal while believing to getting closer to 
it.  
Consequently, the shortest path in the representation based on building blocks Bi coincides with the 
shortest path only in a part of the configurations - and when the two paths do not coincide, as it 
happens for nodes 12, 20 and 21 -, the representation “First A” provides  sub-optimal paths  .4 

                                                 
3 with only one exception, due to B1 and B3 being a partition of layer  S1, at distance 1, which is imperfect: not all 
configurations of B2 = ##A#  are in fact solved by moving A anti-clockwise: there exists a configuration  - number 21 - 
where the optimal move is clockwise. Hence the “First A” decomposition pattern is optimal  to B4, with the exception of  
only one configuration. 
 
4 For example: starting from configuration 20, DACB, the only optimal move is Left. Hence, 20→6→5→2→1. Let us 
suppose that DCBA and ABCD are the starting and final configurations, respectively. The optimal sequence  - which can be 
calculated with the matrix of optimal links – is DCBA→Right→DACB→Left→BACD→Up→ABCD, while the rules in 
our procedure provide the following sequence: DCBA→Right→DACB→Left→BACD→Up→ADCB→  
Down→ADBC→Right→ ABDC→Down→ABCD  which obviously includes more moves. 
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7  
Fig. 16 "First A"

9 B2

23 B2 20 B3 7 B3

12 B1
22 B1

6 B4 21 B2

19 B3 5 B4

16 B1 2 B4 1

18 B1

8 B3
11 B2

15 B2 13 B3

24 B1 3 B4

17 B2 14 B3 4 B4

10 B1

 
 
In this way the source of errors is explained: they are generated by the categorization players use to 
simplify the representation of the game and create the building blocks; the categorization - being 
founded on salient blocks, i.e. one tile at a time -  is generally simple though imperfect: it groups  
“inhomogeneous” blocks since the system of distances among building blocks is not isomorphic with  
optimal distances. 
 
To cross check what we have observed, a comparison can be made between the optimal strategy and 
the “First A” strategy expressed in the form of the matrix of shortest paths: three “discrepancies” are 
immediately apparent (Fig.17) , that is three specific configurations for which the “First A” strategy 
does not prescribes an optimal move: The configurations n. 12, 20 and 21 , shaded in fig 17 
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Fig. 17
Z1 Z2 Z3 Z4 Z5 Z6

0 1 1 2 2 3 1 2 2 3 3 2 3 2 2 3 1 2 2 3 3 4 2 3 Distance
1 2 3 5 4 6 7 8 13 14 19 20 10 12 16 18 22 24 9 11 15 17 21 23

0 1 A B C D

Z1 1 2 A B D C

1 3 R A C B D

Z2 2 5 R A C D B

Z3 2 4 D A D B C

3 6 D A D C B
1 7 U B A C D
2 8 U B A D C

Z4 2 13 U C A B D

3 14 U C
3 19 U D A B C
2 20 U D
3 10 L B
2 12 L B

Z5 2 16 L C B D A

3 18 L C D B A
1 22 L D B C A
2 24 L D C B A
2 9 R B
3 11 R B

Z6 3 15 R C

4 17 R C
2 21 R D
3 23 R D

A D B

A C B
C D A
D C A

C A D
D A C

B A D

D A B
B A C
C A B  

 
The configuration n.20 is in fact at distance 3 to the goal, (the distances to the goal are reported in the 
third row of fig.23a) and the move U leads to the configuration n. 6 which is at distance 4 to the goal 
(G=1); therefore this move gets far the player from the goal. The same holds for the two other critical 
configurations. 
In the right part of fig 17 the configurations of the game are listed in the extended format. It is evident 
that the sets of indexes Zk make possible to classify the configurations in 6 different categories: ###A, 
##A#,   #A## , A#B#, A##B, AB##.  This allow to represent the “First A” strategy in a remarkably 
simpler way than the optimal strategy, despite some distortions of the metric.  
Figure 17 illustrates the aggregation based on the 6 categories, that is consistent with the symbolic 
content of configurations: the states characterized by the same optimal action are aggregated according 
to their common and salient features  defined by the categories.  
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Fig. 18

ANTI-CLOCKWISE

"First A" strategy Defined conditions
Conditions Action

# # # A 1 Left 10,12,16,18,22,24
# # A # 2 Right 9,11, 15,17,21,23
# A # # 3 Up 7,8 13, 14, 19, 20
A # # B 4 Down 4,6
A # B # 5 Right 3 ,5
A B D C 6 Down 2

Optimal strategy Defined conditions
Conditions
# # # A 1 Left 10, 16,18,22,24
# # A # 2 Right 9,11, 15,17,23
# A # # 3 Up 7,8 13, 14, 19
A # # B 4 Down 4,6
A # B # 5 Right 3 ,5
A B D C 6 Down 2

B D C A 1* Up 12
D B A C 2* Down 21
D A C B 3* Left 20

 
 
 
The criterion used by the player in  “First A” to build the  categories is that of aggregating all the 
configurations where the tiles A (then A and B and finally A,B and C) are in the same position.  This 
criterion does not allow to cluster configurations at the same distance to the goal and therefore the 
signal of the distance to the goal that the player obtains while observing the position of A is partially 
wrong.  The error is however limited to a few configurations, and is therefore very difficult to find.  
For example, the category ###A is composed of states (10, 12, 16, 18, 20, 22, 24); by applying the 
move  “left”  to any configuration of this category, A  is moved to position 1 and the player thinks to  
obtain a configuration that is nearer to the goal  ( ###AØleftØA###) while this is true for all the 
configurations except one: n. 12 (BDCA). The symbolic manipulation made on the states of the game is 
not therefore a safe criterion to identify the sets which are equidistant to the goal and as such this is a  
“natural”  source of distortions.  
  
 
4.4 Proprieties  of the “First A”  decomposition pattern 
 
Sub-optimalities 
 
As we have demonstrated, the “First A” procedure proves to be optimal in a sub-domain of 
configurations of the game. Therefore, when adopting this procedure, the players have the advantage to 
use a simple, abstract and complete representation but at the price of inefficiencies since the number of 
moves necessary to reach the goal is on occasions greater than the optimal value. The “First A” 
strategy is therefore described by a compact though sub-optimal list of instructions 
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Stability  
 
This  strategy has a remarkable advantage: the comparison between different alternatives to moving A 
first,  then B and finally C in to the final position is  immediate and is not very mind-consuming for the 
players. It is therefore quite natural to order the categories and find the optimal moves that connect 
them. Hence, the instructions of the strategy determine a locally stable optimum. The strategy is locally 
stable, in the sense that it cannot be improved by simply modifying the actions matching the 
elementary building blocks. In fact, if the instructions are modified, with the constraints imposed by  
the structure of building blocks,  the programme turns out to be less efficient, i.e. the number of moves 
necessary to reach the goal increases. Therefore the solution based on the “First A” decomposition 
pattern – though being sub-optimal -  cannot be improved, and is locally optimal and stable. In order to 
improve the strategy it will therefore be necessary to modify the building blocks.  
 
  
4.5 An invariant decomposition pattern: the ”First row” strategy 
 
A different representation of the problem that some players have discovered during the different runs, 
is based on a more careful analysis of the properties of the game. Some players, instead of moving the 
tiles sequentially, as in the “First A” strategy, did take into  consideration the interdependence among 
the various positions of the tiles, observing that moving  a tile means moving at the same time a second 
tile associated to the action.   The suggested strategy consists in taking into account the effect that an 
action on the tile has on tile B. 
The strategy consists therefore in moving A and B to the final position, that is in the first row, in 
position AB ##, regardless of the positions of B and C, while the “First A” strategy  suggests to move 
A regardless of  B,C and D; in this case more comparisons are needed than in “First A” and hence more 
efforts in terms of memory and calculations: however, as we will see,  the strategy designed in this way 
is optimal.  
 
“First row”  strategy 
 
Let us take  A and B and place them in the first row, in position AB ##, while comparing the number of 
moves needed to reach the goal whenever there are possible alternatives.  
This comparison is generally easy. For example, let us consider configuration 10, B##A; it is easy to 
compare the two possible solutions: solution 1 consists in “moving A anti-clockwise”  and it requires 
three moves. Solution 2 consists in “moving B to its final position and then move A”: this requires  two 
moves. The sequence of actions illustrated in Fig.18 is hence derived.  
Here the categories are  AB ##, A#B #, # AB #, ## AB #, BA #....., respectively; here, too, the problem 
consists in establishing an order in terms of proximity to the goal.  
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Fig. 19
States Moves States Moves

States 1 2 3 4 Moves

1 2 A B # # 1,2 A B 13,19 A Up

3 5 A # B # Right B
4 6 A # # B Down

7 8 B A # # Up 3,5 A Right 14,20 A Left

9 11 B # A # Right B B
10 12 B # # A Up

13 19 # A B # Up 4,6 A Down 15,21 B Down

14 20 # A # B Left B A
15 21 # B A # Down

16 22 # B # A Left 7,8 B A Up 16,22 B Left

17 23 # # A B Down, Left, Right A
18 24 # # B A Left, Right

9,11 B Right 17,23 Down

A B A Left,Right

10,12 B Up 18,24 Left,Right

A A B

 
 
The “First row” strategy, that simplifies the extended representation of the game, allows to maintain the 
metric. Based on what was demonstrated in par. 3.3, we note that this strategy identifies the building 
blocks that – while not fully fulfilling the conditions defined by the layers - , do generate an optimal 
strategy. 
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Fig. 20

9, 11

B
A

17, 23 14, 20 7, 8

A B A
B A B

10, 12

A

15, 21 16, 22 1, 2

B B
A A

18, 24

A B

13, 19 3, 5

A A
B B

4, 6

A
B

A B

 
 
 
Interestingly, this decomposition pattern allows to compact the graph of the game so as to halve the 
number of states, which is equivalent to decomposing the graph into two perfectly identical ones. In 
this way we have identified building blocks that allow an invariant aggregation of the strategy.  
The reader may well appreciate that besides the “First row” strategy – for which the graph was 
designed -, the “second row” and “first column” strategies  are invariant too and allow  some “savings” 
in the representation. 
 
5 Preliminary experiments 
 
An experiment on Minirubik, with 20 subjects, showed that a large number of players discovered the  
FirstA decomposition pattern, thereby making systematic errors in some configurations of the game. 
The errors were in line with the predictions (fig. 18 and fig.18) of FirstA strategy . Other players 
discovered the “First row” strategy, that allowed them not to make errors though “saving” in terms of 
memorization and calculation.  
  
In Fig.21 the global errors are compared (i.e. discrepancies to the optimal strategy) to the biases, that is 
the deviations to the optimal strategy consistent with the “First A” strategy. It is clear that most “errors” 
are actions that are perfectly consistent with the “First A” strategy:  the players have discovered the 
simplified representation of the game and they use it rationally; this is an interesting example of 
bounded rationality. In fact, the players behave in completely rational way within the FirstA 
decomposition pattern, which hiddenly makes them deviate from optimality.  
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Fig. 21 
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6 Concluding remarks 
 
 
The decomposition of a problem allows players to successfully find the optimal strategies to the 
elementary sub-problems, but as we have seen, the decomposition patterns are usually non invariant 
and therefore the final result is not an optimal strategy. As we have seen, the processes of abstraction 
and categorization used by players to identify a pattern of decomposition in a puzzle use some salient 
features of the game as a guide, which do not usually reflect correctly the metric of the problem, i.e. the 
order among the categories in relation to the distance to the goal. Therefore the biases in decision 
making are originated by the nature of decomposition process, since the identified sub-problems do not 
reflect the metric of the problem correctly.  
The errors are therefore created by the representation and can only be corrected if the representation - 
that is, the pattern of decomposition into sub-problems - is revised and modified appropriately. 
Moreover some decomposition patterns are invariant in limited sub-domains and it is therefore 
extremely difficult for an individual to notice errors and to correct them.  
This explains the stability of the non invariant representations: in fact, correcting hidden errors should 
be extremely expensive in terms of calculation and memorization and therefore to correct the errors 
players are normally guided by exceptions that accidentally emerge. Any attempt to actively discover 
the errors would demand a complete and detailed description of the configurations of the game thus 
nullifying the “parsimony effect” obtained by the categorization, and nullifying the attempt to express 
the strategy in a simple manner. 
We noted that the key element in the representation of a strategy is that of building blocks (that 
normally are represented as categories); given a puzzle, we know that there are different 
representations of it, each of them being defined by a different structure of building blocks. The wider 
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the extension of a building block, (the number of configurations involved), the lower the number of 
building blocks needed to represent the game and identify the winning strategy. If players, in order to 
get a clear and simple representation of the game, try to increase the extension of the building blocks, 
easily introduce hidden errors into the categorization. Generally the categories are created by the 
players during the runs of the game, on the basis of their direct experience. If they try to extend the 
rules that have experimented as optimal in a specific game context, to a larger domain, they may 
inadvertently include domains where the rules are suboptimal. Consequently, the errors in the mental 
representation of a problem can be the natural effect of the categorization and identification of building 
blocks beyond their “right” domain. This explains the “mechanization of thought” shown by Luchins 
and Luchins (1950) experiments.  
Our approach explains the existence and stability of different and non optimal representations of the 
same problem. These alternative solutions can also be interpreted as different systems of expectations 
which are “rational to a limited extent”, and may provide a platform for a formal approach to the 
treatment of boundedly rational expectations.  
The discussion we have conducted so far emphasizes some important aspects of the approach of 
bounded rationality, on the one hand because suggest that the construction of  a strategy is based on 
categorization guided by salience and  simplification, on the other hand because shows that the 
categorization allows to simplify problems and at the same time generates biases and sub-optimalities. 
This shows an intrinsic limit to rationality due to the trade-off between the simplicity of representation 
and the optimality of the strategy used to solve a problem.  
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