

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

Forum Session at the First International Conference on Service Oriented
Computing (ICSOC03)

Marco Aiello, Chris Bussler, Vincenzo D'Andrea, and Jian Yang

Nov 2003

Technical Report # DIT-03-056

.

Preface

The First International Conference on Service Oriented Computing (ICSOC) was
held in Trento, December 15–18, 2003. The focus of the conference — Service
Oriented Computing (SOC) — is the new emerging paradigm for distributed
computing and e-business processing that has evolved from object-oriented and
component computing to enable building agile networks of collaborating business
applications distributed within and across organizational boundaries.

Of the 181 papers submitted to the ICSOC conference, 10 were selected for
the forum session which took place on December the 16th, 2003. The papers
were chosen based on their technical quality, originality, relevance to SOC and
for their nature of being best suited for a poster presentation or a demonstration.

This technical report contains the 10 papers presented during the forum
session at the ICSOC conference. In particular, the last two papers in the report
were submitted as industrial papers.

Trento, December 2003

Marco Aiello
Chris Bussler
Vincenzo D’Andrea
Jian Yang

.

Contents

Modeling Services and Components in a Service-Oriented Architecture

Zoran Stojanovic, Ajantha Dahanayake, Henk Sol 1

Polyarchical Middleware for On-Demand and Multi-Standard Services’

Composition for Ubiquitous Computing

M. Yu, A. Taleb-Bendiab, D. Reilly, E. Grishikashvili, Wail Omar 17

A System for Distributed Enactment of Composite Web Services
S.J. Woodman, D.J. Palmer, S.K. Shrivastava, S.M. Wheater 33

Service Oriented Computing in the context of Mathematical Software
Yannis Chicha and Marc Gaëtano 49

An ontology-based method for classifying and searching e-Services*

D. Bianchini, V. De Antonellis and M. Melchiori 63

A Service-Domain Based Approach to Computing Ambient Services

Thin Thin Naing, Seng Wai Loke, Shonali Krishnaswamy 77

Information Gathering for Dynamic Selection of Web Services

Amir Padovitz, Shonali Krishnaswamy, Seng Wai Loke 89

A taxonomy of Information Technology Services: Web Services as IT Services
Andrea Stern, Joseph Davis 99

Extending Web Service Technology towards an Earth Observation
Integration Framework

Marcello Mariucci and Bernhard Mitschang 117

DoJa: Service oriented application platform for mobile phones using Java

M. Tsuda, A. Tomioka, T. Naganuma and S. Kurakake 129

.

Modeling Services and Components in a Service-
Oriented Architecture

Zoran Stojanovic, Ajantha Dahanayake, Henk Sol

Systems Engineering Group, Faculty of Technology, Policy and Management,
Delft University of Technology,

Jaffalaan 5, 2628 BX Delft, The Netherlands
{Z.Stojanovic, A.Dahanayake, H.G.Sol}@tbm.tudelft.nl

Abstract. Component-Based Development (CBD) and Web Services (WS) are
nowadays used for building flexible enterprise-scale systems organized in a
Service-Oriented Architecture (SOA). In order to gain the full benefits of the
emerging technology and standards, an effective approach for modeling and ar-
chitecting this complex distributed computing model is required. Current ef-
forts in this direction are much behind the technology ones. This paper presents
an approach to SOA modeling based on the concept of service component and
standard UML modeling constructs. The service component interface goes well
beyond the simple list of operation signatures in order to specify the complete
contract between the service provider and consumer. The paper defines service
components of different types, scope and granularity and puts them in the con-
text of a model-driven development process in order to provide bi-directional
traceability between business requirements and software artifacts.

1 Introduction

Web services and components have been introduced as promising paradigms for
effective enterprise-scale system development and integration. These self-contained
and self-describing business-driven functional units can be plugged-in or invoked
across the Internet to provide flexible enterprise application integration within the
Service-Oriented Architecture (SOA). Basic elements of the new service-oriented
paradigm are the standards for interoperability - XML, SOAP, WSDL and UDDI that
provide platform-independent communication of software resources across the Inter-
net [16]. On top of that, new languages and specifications for defining the choreogra-
phy of services that forms real-world business processes are emerging, such as
BPEL4WS [4] and WSCI [17]. On the other side of the spectrum, the realization of
Web services are usually done using de facto standard component implementation
platforms - Microsoft .NET and Sun’s Enterprise Java Beans, but also traditional
programming languages such as C/C++ [10]. Although technology and standards are
important in building complex enterprise solutions, they are not sufficient by its own.
Besides that, there is a strong need for modeling and design methods and techniques
that will guide architecting and building these complex solutions. The reasons for that
are manifold. Web services are now becoming more and more an important business

issue and competitive factor among the enterprises. Therefore it is necessary to pro-
vide a way to represent services and their choreography at the level of abstraction that
is above of XML-based languages such as Web Services Description Language
(WSDL) [18], in order to be well-understood by business analysts and users.

Modeling and design of complex service-oriented systems help not only in better
understanding of the problem/solution across the project, but also in better communi-
cation among involved stakeholders, especially when they are physically separated
and/or affiliated to different organizations. Modeling efforts represent a basis of a
service-oriented development process that should guide architects and developers in
mapping business requirements into software artifacts. The process can provide the
quality of a final product, lower the risks in development, deliver solutions on time
and help in managing teams of people involved in it. Since technology and standards
are constantly evolving, the proper way of modeling and architecting complex Web
solutions becomes even more important. Therefore, the new paradigm in system de-
velopment, called Model-Driven Architecture (MDA) has been proposed [13]. MDA
stresses the importance of the platform-independent and platform-specific models to
separate abstract domain knowledge from concrete implementation environment.
With the development of advanced tools for mapping models into the working code
depending on the target platform, the role of models becomes even more important.
Using the MDA, models now represent higher-level programming constructs for
building business applications that are based on traceable business requirements.
Advanced tools can provide automatic generation of XML, Java or other software
code based on given models. A proper modeling method should provide a necessary
support in deciding what part of the application could be exposed as a service for
intra- or inter-organizational purposes, or what part of the system architecture can be
realized by invoking a Web service. All these aspects show a great importance of
proper modeling and architecting complex Web service-based business systems.

Modeling service-oriented solutions is not a straightforward task. Services inherit
many characteristics of their predecessors - objects and components, but also use
some elements of workflows and business processes. Therefore, service modeling
should cover all these different service facets. Using the standard Unified Modeling
Language (UML) as a notation for service modeling is a natural first choice due to its
widespread usage [14]. The UML, although originally devoted to object-oriented
system modeling, can be easily extended to support modeling of other concepts such
as business activities, user interface flows and data schemas. On the other hand, the
UML does not still offer mechanisms for representing components and services at the
logical level. Service-oriented modeling approaches and development processes
hardly exist today. In order to gain the full benefit of new service-oriented paradigm,
an approach for conceptual modeling, architecture and design of services, compo-
nents and related concepts, as well as the mapping of models to software, must be
proposed.

The paper presents an approach to SOA modeling using service-based component
concepts, interface-based design and the Unified Modeling Language (UML) as start-
ing points. The paper proposes a service component as the main building block of
SOA through the set of related concepts, metamodels and granularity types. Business
service components are modeled as contract-based service providers to support or-

ganization’s business processes through a proper choreography. At the same time
they are realized as a composition of lower-level application services and components
that can be further mapped to software artifacts. Modeled in this way, the SOA repre-
sents a layer of abstraction between business and technology reducing the ‘friction’
between the two. The paper is organized as following. In section 2, we give the re-
quirements for SOA modeling and present the current support for them in today’s
modeling methods and notations. Section 3 introduces the concept of service compo-
nent as the main SOA building block, its main aspects and the elements of its con-
tract. In section 4, we give a modeling approach focused on identifying and specify-
ing the service components of different scope and granularity that in choreography
make an e-business solution and provide an effective requirements-to-code mapping.
Section 5 concludes the paper pointing out future research directions.

2 Requirements for SOA modeling

Service-Oriented Architecture is an evolutionary, rather than a revolutionary ap-
proach. A basis of SOA is the concept of service as a functional representation of a
real world business activity meaningful to the end-user and encapsulated in a soft-
ware solution. SOA provides that loosely coupled services are orchestrated into busi-
ness processes that support business goals. Similar initiatives were already proposed
in the past, such as CORBA services or Microsoft’s DCOM. The novelty of SOA is
that it relies upon universally accepted standards like XML and SOAP to provide
broad interoperability among different vendors’ solutions [16]. Even more important
is that the level of abstraction is further raised, so that the main building blocks of
SOA are now real world business activities encapsulated in the services that offer
business value to their consumers.

Due to complexity of service-oriented solutions and diversity of available technol-
ogy platforms, the MDA approach for designing SOA is a natural choice [13]. Fur-
thermore, modeled components and services in an implementation-independent way
represent an abstraction layer between business and technology. Business goals, rules,
concepts and processes are captured by components and services at the specification
level and further mapped to technology artifacts providing in this way an effective bi-
directional traceability between business and technology. The main requirements for
SOA modeling on top of current modeling practice are:

♦

♦

♦

Services and components must be identified and defined in a business-driven way
as larger-grained, loosely coupled units that correspond to real business activities
and add a measurable business value to their consumers.
The focus should be on process-driven rather than data-driven service component
concepts. Services and components should not correspond to a single business ob-
ject such as Customer or Order; they should manage information across the set of
objects in providing required business functionality.
Services of the components in a SOA should support particular steps of a business
process and should be chained and coordinated in a way to create a business proc-
ess flow. The modeling focus should be on representing service interaction, nest-

ing, coordination and mutual dependencies, rather than on service internal realiza-
tion.

♦

♦

The best practices of interface-based and contract-based design should be applied.
The interface of a service component must be extended beyond simple operations’
signatures to represent a real business contract between the provider and con-
sumer of the service. Complete and precise, implementation-independent service
specification provides effective service discovery and usage.
It is essential to define different scopes and granularity levels of services fulfilling
different roles in business/technical system architecture through recursive compo-
sition and choreography. This means that each service can be realized through
lower-level services and at the same time is a part of a higher-level service.

The logical starting points for modeling in the SOA are component-based and in-
terface-based modeling and the standard UML. The question is to what extent com-
ponent-based approaches and the UML can fulfill the requirements above and pro-
vide necessary concepts and mechanisms for modeling the SOA, such as componenti-
zation, low coupling – high cohesion, interface-based design, hidden implementation,
as well as flow of objects and activities.

First-generation component-based development approaches treated components as
implementation, binary or source-code software artifacts. That was strongly influ-
enced by the standard UML (version 1.3) where components are defined as imple-
mentation diagrams and represented through the implementation diagrams that show
aspects of physical implementation [14]. This bottom-up approach to components
suggests practicing object-oriented analysis and design and packaging the highly
coupled classes/objects into deployable components at the end of the system lifecycle.
Such way of thinking certainly results in a semantic gap between objects and Web
services, where services are mainly business-driven units rather than low-level pro-
gramming constructs. Let us see how the standard UML defines some important con-
cepts for SOA modeling, such as Component, Interface, Subsystem, Collaboration,
Action and Activity.

After original implementation definition of components, more specification view
has been introduced in the UML standard 1.4 and the latest version 1.5, where a com-
ponent is defined as “a modular, deployable and replaceable part of a system that
encapsulates implementation and exposes a set of interfaces.” The major revision of
the UML (version 2.0), which is expected during this year, promises further im-
provements in representing components as design-level artifacts. The concept of
Interface as defined by the UML standard can have only operations. This does not
suite well to the SOA needs for representing the outside view of services as compre-
hensive contracts between providers and consumers. Further improvements are ex-
pected in defining contract-based interfaces through specifying operation’s pre- and
post-conditions using the Object Constraint Language (OCL) [15]. The concept of
Subsystem in the UML represents a behavioral unit in the physical system; it offers
interfaces and has operations, and its contents are partitioned into specification and
realization elements. Subsystem concept is a good candidate for representing larger-
grained business components. On the other hand, a subsystem has no behavior of its
own; it rather packages and exposes the behavior of its contained model elements.
This does not fit well in the clear intention that services and components in SOA

represent rich behavioral units. The Collaboration in the UML is defined as “a soci-
ety of classes, interfaces, and other elements that work together to provide some co-
operative behavior that is bigger than the sum of all its parts”. Collaboration has two
aspects: a structural part that specifies the elements of the collaboration and a behav-
ioral part that specifies the dynamics of how those elements interact. In relation to
SOA modeling much more emphasis should be put on the concept of Collaboration
since it can represent the main architectural building block and serve as a basis for
defining a service’s internal realization, as well as its usage in the context. Further-
more, the Sequence and Collaboration diagrams that express object interaction must
be enriched to support, beside sequencing, other flow and synchronization constructs
such as selection (alternation), loops, grouping and parallel tasks. The UML activity
diagrams have been already used for business process and workflow modeling [8].
The action semantics is further enriched in the UML version 1.5 and will be further
improved in the version 2.0 by more advanced control flow concepts and notations.
The new action semantics will provide the UML to be more precise in both the exter-
nal definition of an interface’s responsibilities and the internal definition of its reali-
zation within a component, in a form of workflow-based coordination and collabora-
tion of activities provided by finer-grained components and services.

 Parallel to the UML evolution, advanced CBD approaches have recognized the
benefits of using component concepts as design-level artifacts [1,3,5,7,11]. However,
the identification and specification of components are done mainly in an entity-driven
fashion, by close matching the underlying business entities such as e.g. Customer,
Product, and Order. In this way components are treated more as old-fashioned busi-
ness objects than business services. The level of service granularity required by SOA
corresponds to business component systems in the Business Component Factory
method [11] or large system-like components defined in Catalysis [7], but both con-
cepts have not been enough emphasized throughout those methods. The interface of a
component in the CBD methods is defined through operations’ signatures together
with pre-conditions and post-conditions that guard the operations. The methods do
not consider extending the interface construct beyond that to offer the ways of ex-
pressing e.g. coordination parameters, quality service parameters and configuration
parameters that provide much richer component specification.

3 Service Components Concepts

Service-Oriented Architecture in its essence is represented through the choreography
of services that provide business added value and are available on the network. Form
the point of view of service consumer a service is provided by a component-like
entity that hides the service realization details behind the contractual interface. This
interface-based view of the service provider actually abstracts its internal details that
could vary from collaboration of lower level services and components to monolithic
legacy assets and COTS components. It can be said that for each service in the SOA
there is a component-like software structure that is responsible for. We assume that
being component-like means following the basics of the component way of thinking,

such as principles of “low coupling – high cohesion” and “hidden interior behind
exposed interfaces”.

Therefore, for the purpose of modeling the main building blocks of SOA we intro-
duce the concept of Service Component. We define a Service as a distinct functional-
ity offered by a provider to consumer(s) across the Web with the clear purpose and
semantics for both sides. Then, a Service Component is an encapsulated, autonomous
software entity that realizes and provides the Service through its interface in a con-
tract-based fashion without exposing its internal realization details.

In this paper we focus on the conceptual service and component concepts that rep-
resent a foundation of a service-oriented MDA’s Platform Independent Model (PIM)
[13]. These concepts can be further extended with particular lower-level technology
aspects, such as details of underlying communication protocols and the exact service
Web address, and specialized according to the target implementation platform repre-
senting a service-oriented Platform Specific Model (PSM). The service component
meta-model can be divided into two parts. First part defines the basic concepts de-
scribing the very nature of a service component. The second part of the metamodel
defines the basic elements of the contract as the main aspect of a service component.

3.1 Basic Service Component Concepts

A service component is a software entity that exists as a distinct, independent, or self-
contained unit with a clear purpose of existence. The basic elements of a service
component are its context, contract and content (realization). The essence of the ser-
vice component is the explicit separation between its outside and inside using its
contract. A service component does not exist in isolation; it fulfils a particular role in
a given context and communicates with it accordingly. The role of the service com-
ponent is precisely specified by its contract. The contract is realized by the service
component realization that is hidden from the context by the contractual interface.
The component nature of the service component suggests recursive composition. This
means that the service component participates in choreography (i.e. collaborates and
coordinates) with other service components to provide a higher-level service to the
context, and at the same time each service component can be potentially decomposed
into lower-level service components that in choreography realize its contract. The
basic service component metamodel is shown in Figure 1.

Context

Realization

Contract

+abstracts

Role +defined in+specifies

+is determined by

Choreography

Service Component

+exists in+plays

1..*

+is a

1..*

+exposes

+hides

1..*1..*+participates in

+is choreography of

Fig. 1. Service Component metamodel

The component contract is the basic information we have about the component.
The contract can be fully specified using different mechanisms, from a human-
understandable language, to a formal specification language and to an XML-based
language in the case a machine-readable service specification is needed. On the other
hand the service component contract can be realized in various ways, as in-house
made software code, wrapped legacy system, COTS software assets, or as a composi-
tion of lower-level services and components, Figure 2. The way of service realization
is not important from the consumer point of view as long as the contract is fulfilled.

Specification

Service Component

1..*1..*

+has

Contract

+specifies

+specifies Realization

1..*1..*

+has

+realizes

Fig. 2. Specification vs. realization of a service component

3.2 Elements of the Service Component Contract

Fully specified contract elements of a service component represent the complete in-
formation about the service necessary for its consumer to use it without knowing its
realization details. The contract represents an enriched and enhanced basic interface
construct that contains all the information about the service component that must be

known by its context in order to make use of it. In this way a concept of interface
goes beyond simple operations’ signatures to become a real business contract be-
tween a service provider and a consumer.
The following are the basic elements of a service component contract (Figure 3):

Identifier – A service component is identified in the context by its unique name in
the naming space with addition of the description of its purpose in the context and the
goal of its existence.

Behavior –According to its role(s) in the given context, a service component ex-
poses corresponding behavior by providing and requiring operations and/or by pub-
lishing and receiving events to/from its context. Two main types of operations can be
defined – operations that perform some computation or transformation (update type)
and operations that provide some information on request (query type). They are fully
specified in a contract-based manner using pre-conditions, post-conditions, and coor-
dination conditions. Coordination conditions basically specify how provided and
required operations, as well as published and received events of a service component
are coordinated in time. For precise communication with a service component, not
only what operations are provided and required, and how they trigger or are triggered
by events, but also how all these activities are correlated in time becomes important
for the service consumer to use the service properly. An event from the context that
triggers a given operation can be a part of its pre-condition set, while an event emitted
by a successful completion of the operation can be a part of its post-conditions.
Moreover, provided and required operations of a service component must be corre-
lated in order to determine what operation must be completed before activating the
given one, what can be done in parallel or should be synchronized in another way.
For example, in the case of the OrderManager service component, the operation
MakeOrder cannot be invoked until the service consumer has not been properly au-
thorized through the RegistrationManager service component, or the operation De-
leteOrder cannot be invoked if the operation MakeOrder with the same OrderID
parameter has not been completed beforehand.

By composing and integrating this coordination behavior of all service compo-
nents in the given problem context, we can construct a bigger picture of how these
service components collaborate and coordinate their activities inside the business
process to fulfill the common, higher-level business goal.

Information Types – A service component must handle, use, create or simply be
aware of certain information resources in order to provide its services properly. This
element of the contract defines what types of information are of an interest to the
component, association among them, as well as constraints and rules on the instances
of these types. This represents a logical information model of a service component, or
its domain vocabulary. In its simplest form, these information types can be considered
as type definitions of operations’ parameters, as well as types related to them.

Provided

Required

Pre-condition Post-condition Coordination condition

Name Purpose Scope

Invariant

Identifier

Information

0..*0..*

+constrained by

Non-functional parameters

Context-aware parameters
+affects

Service Component

+identified by

0..*0..*

+adapted by
+uses

0..*0..*

+specified by

Emitted

Received

Condition

Behavior

+affects

+exposes Operation

0..*

+constrained by

0..*

1..*

+coordination of

1..*

Event
0..*0..*

+causes

+triggers

Fig. 3. The metamodel of Service Component Contract

Context-Aware Configuration Parameters – A service component is often depend-
ent on the context of its existence. In order to be used in different contexts or to be
adaptable to the changes in its context, the set of configuration parameters should be
defined. The example of these parameters could be: required Quality-of-Service
(QoS) in a general sense, different profiles of service consumers, and locations in
time and space of both service provider and consumer. These parameters can be sent
inside the service operation invocation or discovered in another way by the service
component in order to adapt its behavior to the changed context situation. Configura-
tion parameters are directly related to the realization of service operations by custom-
izing and adapting it accordingly. The concept of configuration context-aware pa-
rameters is an important step towards intelligent, self-adaptable services.

Non-functional (Quality) Parameters - A service component can define a set of so-
called non-functional parameters that characterizes the “quality” of its behavior in the
context. These parameters can be important decision elements for the service con-
sumer to decide whether to use this service or find another one with the same or simi-
lar contract. Non-functional parameters are for example Performance, Reliability,
Fault Tolerance, Cost, Priority, and Security.

The Table 1 presents how the contract elements can be expressed using available
UML constructs as well as how they can be mapped to the WSDL elements.

Table 1. Mapping between Service Component Contract Elements, UML constructs and
WSDL elements

Contract elements UML artifacts WSDL elements
Service Component Stereotype of a Subsystem

or a Class
Service

Name Name - textual The Name tag in the
definitions element

Purpose, Goal UML Notes Documentation element
Operations - provided
and required

Interface with signatures
of operations

Operations, messages,
Port types elements

Events – published and
recieved

Not supported Not supported

Pre-conditions, post-
conditions

Object Constraint Lan-
guage (OCL) grammar
attached to operations

Not supported

Coordination conditions
(Choreography of opera-
tions and events)

Activity diagrams; or
sequence diagram en-
riched with action seman-
tics

Not supported (WSCI
can support this)

Information types Stereotyped classes Types element
Information dynamics,
the changes of data in-
stances through time

State-charts Not supported

Invariants and con-
straints on information
types

OCL grammar Not supported

Context-aware configu-
ration parameters

Properties of a Subsystem
or a Class that represent a
Service Component

Not supported

Non-functional parame-
ters

Properties of a Subsystem
or a Class that represent a
Service Component

Not supported

Technical details (proto-
cols, network addresses,
data encoding styles)

Specified in the MDA’s
PSM

Binding element

Contract elements defined above specify conceptual, technology-independent as-

pects of a service component according to the MDA’s PIM. In the sequel of the de-
velopment process, contracts will be extended with the specification about concrete
service bindings, such as data encoding styles, transport protocols and service net-
work addresses to provide a basis for service realization. It can be concluded that the
WSDL as the language for service description must be extended to support an impor-
tant elements of the service component contract defined above. At the same time
various elements of the UML stereotyped and combined properly can serve the pur-

pose of representing given service component concepts in the diagrammatic form at
the level above of the XML-based grammar.

4 Service-Oriented Modeling

One of the important modeling and design issues in building SOA solutions is to
determine the type, scope, and granularity of service components necessary for repre-
senting the main architectural abstractions. Moreover, these different types of service
components must be put in the wider context of a development process to provide
that traceable business requirements are mapped to software artifacts supporting
them.

4.1 Component Types

Although different types of service components having different scope and granular-
ity can exist in the complex SOA, two basic service component types - Business Ser-
vice Component (BSC) and Application Service Component (ASC) can be defined as
shown in Fig. 4.

Enterprise Service Component

Business Service Component
1..*1..*

1..*1..*

Class/Object

Application Service Component
1..*1..*

1..*1..*

1..*1..*

Fig. 4. Component types

A BSC provides services and operations that have meaningful, perceivable and
measurable value in the business context; it realizes specific part(s) of the business
process and in collaboration and coordination with other BSCs fulfills an overall
business goal. On the other hand, an ASC provides finer-grained operations that do
not offer a real business value; it collaborates and coordinates with other ASCs to
provide a business behavior represented by a BSC that encapsulates them. A BSC can
represent a collaboration of other BSCs and ASCs. An ASC can represent a collabo-
ration of other ASCs and lower-level elements such as objects/classes.

On the opposite side of the spectrum, a coarse-grained BSC that exists autono-
mously in the enterprise, provides a complete marketable value and communicates

with other elements of the enterprise (people or automated systems) is called enter-
prise service component. Functionality offered by a BSC can be used as both inter-
and intra-enterprise Web service in a SOA. On the other hand, an ASC can be mainly
used as a Web service in intra-enterprise settings.

By focusing on these basic service component stereotypes we can define two lev-
els of a service-oriented Platform Independent Model. The first level of the PIM de-
fines how a business process involving different partners across the Web is supported
through contractual collaboration and coordination of business service components
that realize the particular steps of the process. The second PIM level “opens” black-
box BSCs and defines how their internal design is realized through collaboration and
coordination of finer-grained ASCs mainly inside an enterprise.

4.2 Requirements-Architecture-Code Traceability

This section puts service component types in the context of an architectural modeling
approach, which should provide that the designed SOA is based on traceable business
requirements and can be straightforwardly mapped to software artifacts. The best way
to design SOA is the combination of a top-down and bottom-up approach with small
increments both back and forward. However, initial identification of BSCs must be
made in a top-down fashion, since BSCs have to capture real business issues, goals,
activities and rules. The requirements-to-code traceability is further provided by de-
composing BSCs into finer-grained components and services, while at the same time
taking into account already existing software assets.

For the purpose of BSC identification, first domain object analysis as well as use
case analysis should be performed. Domain object analysis defines a domain vocabu-
lary of the system being developed, i.e. information about business concepts in the
problem area that should be handled by the system together with their attributes and
relationships. Use case analysis is an effective mechanism for defining cohesive sets
of features and services on the system boundary since they capture the intended be-
havior of the system without having to specify how that behavior is implemented
[12]. The use cases of the proper granularity correspond to user business goals and
activities, i.e. Elementary Business Processes (EBPs) as suggested in [6]. So-called
change cases as potential changing requirements on the system in the future can be
included as well to provide higher adaptability of the system solution in the future.

Use cases can be specified in details according to the use case template that in-
cludes name, description, involved actors, goal in the context, scope, level, pre-
conditions, post-conditions, triggers, main success scenario, extensions, sub-
scenarios, priority, frequency, performance, etc. [2,6]. This use case specification can
be extended with the information about the role of the use case in a wider context of a
business processes given system should participate in. Therefore for each use case,
the use cases that precede it, follow it, perform in parallel with it or are synchronized
in other way with it should be defined. Furthermore, for each use case, its superordi-
nate and subordinate use cases should be defined providing a composite hierarchy of
use cases, i.e. corresponding business goals. This can be illustrated using an activity
diagram with use cases represented as action states of the diagram, or using a se-

quence diagram enriched to express the action semantics (sequence, selection, loop,
fork/join, etc.) with the use cases on the horizontal axis of the diagram. Finally, do-
main information types resulted from domain analysis are cross-referenced with the
use cases. In this way for each use case what information types are needed for its
performance are defined. Finally, the first-cut BSCs are defined as providing opera-
tions that support the realization of one or several cohesive business goal–level use
cases, Figure 5.

Business Service ComponentBusiness-Goal Use Case Service Operation

1..*1..*

+support

1..*1..*

+provide

Domain Object

1..*

1..*

1..*

+cross-reference
1..*

1..*1..*

+use as parameters

Fig. 5. Relation between the concepts of use cases, domain objects, service operations and

business service components

In order to decide what use cases are under the responsibility of a particular BSC,
and how to group use cases into distinct BSCs, a number of business and technical
criteria must be taken into account:

Use cases that handle the same domain information objects by creating, updating
or deleting them should be under the responsibility of a single BSC.

♦

♦

♦

♦

♦

♦

Use cases that are expected to change in the same rhythm and under the same
circumstances should be under the responsibility of a single BSC.
Use cases already supported by an existing solution (legacy, COTS or web ser-
vice) used in the project should ‘belong’ to a single BSC that models the given
solution.
Use cases that belong to physically distributed parts of the system cannot ‘belong’
to the same BSC that basically represents a unit of collocated services.
Use cases that belong to the same business transaction or correlated transactions
required or performed together should be under the responsibility of the single
BSC.
Use cases that coherently represent a known marketable and attractive unit of
business functionality and therefore can be successfully exposed as a Web service
product, should ‘belong’ to a single BSC.

The main criticism of the use case analysis is that it can lead to the functional de-
composition of the system [2]. By limiting our scope to business goal-level use cases
we ensure that our BSCs offer real business functionality, not low-level technical
functionality. Moreover, by coupling use cases based on information objects they
handle (the first item of the list above) we provide a balance between process-based
and entity-based decomposition of the system. The specification of a BSC is now
done (along the elements defined in the section 3) based on the specification of use
case(s) the BSC supports, and domain information types these use case(s) handle. All
the necessary elements for this specification can be derived from the use case tem-

plate specification with coordination extensions as mentioned above together with the
specification of information types, their attributes, relationships and constraints. In
creating an activity diagram based on identified use cases, it must be ensured that the
pre-conditions of a use case should match the post-conditions of the use that precedes
it. In this way the whole business process can be constructed in the form of an activity
diagram representing the flow of activities and objects between use cases.

Now when we have defined BSCs, a service developer would like to design their
interior. The contract of a business component is realized in terms of collaboration
and coordination of finer-grained ASCs. Since BSCs are defined across the logical
tiers of the network, the following types of ASCs can be defined according their roles
in supporting the BSC contract realization:

♦

♦

♦

Consumer Interface ASC – provides services necessary for communication with
the consumer of the BSC in terms of transforming consumer’s input into the form
understandable by the service logic, and the service output into the form under-
standable by the consumer. This ASC makes the service logic available to differ-
ent types of consumers. If a consumer is a human user, corresponding presenta-
tion logic is added to the ASC.
Data Access ASC – provides services for accessing data stored in a permanent
storage. The role of this ASC is to protect the BSC logic from peculiarities and
possible changes of the underlying database structure. Depending on characteris-
tics of the data storage, this ASC can be enriched with proper access methods
(indexing structures) that speed up information retrieval, as well as with mecha-
nisms for data mining.
Business Logic ASC – provides the services that determine the logic of the BSC.
These ASCs can be further divided into two basic types based on the type of ser-
vices they provide (query or update):
- ASCs that mainly provide information about particular business entities, i.e.

represent the so-called contact point for that information and
- ASCs that encapsulate computation logic, control logic or data transformation

logic that are not parts of any business entity object and can possibly handle
several business entity objects. Since a BSC is defined as a realization support
for one or several cohesive use cases, the ASCs that realize included and/or
extended use cases of those business-level use cases, can be identified as well.

One of the essential elements of each BSC is a Coordination Manager service
component. The main role of this component is to manage and control how the ASCs
interact to produce a higher-level business goal specified by the contract of the BSC
that encapsulates them. A Coordination Manager can be realized using the combina-
tion of the Mediator and Façade design patterns as defined in [9]. In this way, chore-
ography aspects and flows of controls and activities between ASCs inside the given
BSC is encapsulated and managed by a single software unit. This mechanism hides
the complexity of internal choreography of the BSC and at the same time provides
better flexibility of the solutions and replaceability of particular ASCs.

Fully specified business and application service components, as well as their inter-
actions and choreography represent a service-oriented platform-independent model.
The model of the service components that should be built in-house can be first trans-

formed into platform-specific model using the corresponding UML profile and finally
implemented in the target technology platform. This model-to-code mapping can be
provided by today’s advanced tools in the form of code generation and round-trip
engineering. Provisional mapping of different aspects of service components pre-
sented here and Enterprise Java Beans constructs is shown in Table 2. Further details
are out of scope of this paper.

Table 2. Mapping logical architecture concepts to implementation constructs

Service Components EJB constructs
Consumer Interface ASCs Servlets, Message-Driven Beans, Java plug-ins
Data Access ASCs Database APIs, JDBC
Computation logic ASCs Session Beans, Message-Driven Beans
Information provider ASCc Entity Beans
Data types Java classes
Coordination Manager Session Beans

5 Conclusion

Although there has been a huge interest in Web services paradigm for truly interoper-
able inter- and intra-enterprise application development and integration during the
last several years, little attention has been paid to the approaches for modeling and
architecting this complex computing model. Current achievements in this respect are
much behind the technology ones where new standards and languages for interopera-
bility are constantly emerging.

In order to gain the full benefit from practicing Service-Oriented Architecture
(SOA), further efforts must be made in defining corresponding modeling and design
approaches focused on the concept of service. SOA modeling is a challengeable task
since the service concept further raises the level of abstraction and actually aims at
finally closing the gap between business and software. Therefore, for the purpose of
SOA modeling, the best practices from object-orientation and component-based de-
sign, but also workflow and business process modeling must be taken into account
and properly integrated. Although there is established CBD methodology practice that
covers certain aspects of the modeling and architectural design of component-based
solutions, the SOA modeling poses certain requirements on top of it. Therefore,
straightforward applying of existing UML and CBD concepts for the purpose of mod-
eling the SOA, although a good starting point, is not a feasible approach. The UML
component concept as a natural basis for SOA modeling is still mainly implementa-
tion-related, while popular CBD methods are mainly focused on finer-grained entity-
driven components.

The aim of the paper is to propose a way to model services, components that real-
ize them and their choreography, as the main building blocks in a SOA. The paper
introduces the concept of service components that represent a paradigm shift from
components as objects to components as service managers that fits well to SOA mod-
eling. The interface specification of the service components is extended to provide the

comprehensive contract between service provider and consumer. The service compo-
nent contract is defined using the UML constructs, which is at the level of abstraction
above XML-based languages such as WSDL. The contract expressed in the UML
provides better understanding and communication among the project stakeholders,
and at the same time can be easily mapped to the WSDL constructs and furthermore
to corresponding software code. The two basic types of service components are de-
fined, namely Business Service Components and Application Service Components.
These components are the basic elements of two-level MDA’s PIM that provides the
effective bi-directional mapping between business requirements, logical service-
oriented system architecture and software assets. Further steps include the definition
of a precise UML Profile for service-oriented modeling, as well as the mapping rules
for transforming platform-independent models into platform-specific models accord-
ing to the target development platforms and technology standards.

References

1. Apperly, H. et al.: Service- and Component-Based Development: Using the Select Perspec-
tive and UML. Addison-Wesley (2003)

2. Armour, F. and Miller, G.: Advanced Use Case Modeling. Addison-Wesley (2001)
3. Atkinson, C., et al.: Component-Based Product Line Engineering with UML. Addison-

Wesley Publishing (2001)
4. BPEL4WS – Business Process Execution Language for Web Services, information avail-

able at ftp://www6.software.ibm.com/software/developer/library/ws-bpel11.pdf
5. Cheesman, J. and Daniels, J.: UML Components: A Simple Process for Specifying Com-

ponent-Based Software. Addison-Wesley (2000)
6. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley (2001)
7. D’Souza, D.F. and Wills, A.C.: Objects, Components, and Frameworks with UML: the

Catalysis Approach. Addison-Wesley (1999)
8. Dumas, M., ter Hofstede, A.H.M.: UML Activity Diagrams as a Workflow Specification

Language, UML 2001, LNCS 2185, pp. 76–90, 2001.
9. Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley (1995.)
10. gSOAP: C/C++ Web Services and Clients, Information available at

http://www.cs.fsu.edu/~engelen/soap.html
11. Herzum, P. and Sims, O.: Business Component Factory: a comprehensive overview of

business component development for the enterprise. John Wiley & Sons (2000)
12. Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G.: Object-Oriented Software

Engineering: A Use Case Driven Approach. Reading, MA: Addison-Wesley (1992)
13. MDA- Model Driven Architecture, OMG (Object Management Group), Information avail-

able at http://www.omg.org/mda/
14. UML- Unified Modeling Langauge, OMG (Object Management Group), Information avail-

able at http://www.omg.org/uml/
15. Warmer, J.B. and Kleppe, A.G., “The Object Constraint Language (OCL): Precise Model-

ing with UML”, Reading, Mass., USA: Addison-Wesley, 1999.
16. W3C. World-Wide-Web Consortium: XML, SOAP, WSDL. Information available at:

http://www.w3c.org/
17. WSCI – Web Service Choreography Interface – Available at http://www.w3.org/TR/wsci/
18. WSDL –Web Services Description Language, Available at: http://www.w3.org/TR/wsdl12/

Polyarchical Middleware for On-Demand and Multi-
Standard Services’ Composition for

Ubiquitous Computing

M. Yu, A. Taleb-Bendiab, D. Reilly, E.Grishikashvili, Wail Omar

School of Computing and Mathematical Science
Liverpool John Moores University

{cmsmyu; a.talebbendiab; d.reilly; cmsegris; cmpwomar}livjm.ac.uk

Abstract. Whilst the vision of on-demand computing is very seductive it
engenders its own technical challenges including; design, development and
deployment of ubiquitous utility services, and low-cost, low-skills and low-
latency services re-assembly for lifetime management runtime due to complex
and unpredicted service discovery, interoperation and adaptation. In this paper
we argue for the need of a new model for on-demand ubiquitous services’
activation through a polyarchical middleware, which enables on-demand
composition of software applications regardless of service standards and
middleware used. This paper will present early results of a research study into
the development of a framework for ubiquitous service invocation/activation,
which provides an abstract model for on-demand ubiquitous service
composition and execution. This proposed polyarchical middleware could be
used for on-demand wireless application service composition, which include
ad-hoc service discovery, assembly using virtual containers, invocation and
adaptation. The paper will finish with a critical review of our model and
concluding remarks followed by an indication of further work

1. Introduction

Static distributed service composition has gradually presented limitations under a
dynamically changeable network environment. The critical runtime usage requires
distributed systems to be capable of automatically adapting and/or evolving their
behaviours in response to any unpredicted changes such as: network faults,
requirements changes and/or failed services. We feel that runtime services’
composition can be more flexible than the traditional static approach. In order to best-
fit end-users’ needs, services can be composed/constructed at runtime from a set of
available network and software services.

However, such dynamic composition must address many technical issues
including: seamless integration/interoperation, failure-detection and robust self-
healing abilities. In order to respond to such runtime requests, distributed middleware
solution has been designed to bridge the gap between the distributed components and
on-demand service application. Through a higher-level programming abstract model,

2 M. Yu, A. Taleb-Bendiab, D. Reilly, E.Grishikashvili, Wail Omar

middleware architectures such as DCOM [1], CORBA [2] , Jini [3], Web services [4],
UPnP [5] provide different programming models for service composition and
adaptation at both design and runtime.

However, such middleware technologies require that components must implement
a single programming standard (e.g. Java Remote Method Invocation technology [6])
or adhere to a certain definition (i.e. CORBA Interface Definition Language [7]). If
service composition occurs within the same standard, these distributed middlewares
can still flexibly respond to runtime on-demand requests. But considering the critical
reality, service components may have been developed and deployed using different
standards and even different operating systems. The current distribution middleware
models are in general unsuitable for service composition and adaptation between
different component standards. In short, such multi-standard service composition and
activation would require a tremendous amount of manual configuration and
adaptation. Ideally, if services of one system could be automatically discovered by
another system and utilized, it would dramatically enhance system on-demand service
composition and adaptation abilities at runtime. Without redesigning the system to
accommodate the unpredicted changes, or even with less intervention from users, the
distributed system can reconfigure/update the services without disrupting the system
at runtime.

The next generation of distributed architectures--Ubiquitous/Grid computing [8, 9]
have been promoted to offer end-users a large scale virtual robust computing
infrastructure. Within such a higher service composition model, components from
different organizations and locations can seamlessly work together to solve a specific
problem/request as mentioned in Open Grid Services Architecture (OGSA) [9]. In this
paper, we describe a polyarchical middleware, which extends core middleware
service models (of both Object-Oriented and Message-Oriented middleware) to
provide on-demand multi-standard services’ composition and adaptation across
ubiquitous computing playforms.
Our model is based on the service-oriented architecture, in which service location
transparency is addressed by services that can be dynamically discovered and
invoked. Such invocations may come from any other user application, components
and/or software services whilst, the technical details of service composition and
adaptation will be hidden away from end-users.
We address the challenge of runtime invocation adaptation to support service
composition and self-healing strategies. Accompanied with a well-defined Assembly
Service Description Language, dynamic configuration and self-adaptation can be
exactly executed after precisely knowing about the environmental circumstances of
service components. In our Assembly Services Description Language, we offer more
information about the Services/Service providers, which are needed by a Service
Composition Manager to locate the “best-fit” service components at runtime.
We concentrate on enabling automatic service discovery and invocation, in which
case data and service information are dynamically incorporated into the invocation
code. Human intervention is only essential to set up on-demand service requests and
possibly to handle major changes in the environment or unexpected exceptions.
The reminder of the paper is organized into six sections: Section 2 describes several
ongoing related research and development themes; Section 3, describes our dynamic
service composition solution, used to assemble on-demand service applications.

Polyarchical Middleware for On-Demand and Multi-Standard Services’ Composition for
Ubiquitous Computing 3

Section 4, outlines our proposed service adaptation strategy, used to compose service
components and enable self-healing across varieties of standards/architectures;
Section 5, considers the development of the Polyarchical Middleware architecture,
which mediates the on-demand service requests and hides the technical details.
Section 6 describes a recent case study, used for on-demand wireless application
service composition. Finally, Section 7 draws overall conclusion and mentions
directions for future work.

2. Related Work

The component-based software engineering community has widely used the
connector and proxy model to model and abstract inter component interaction and
invocation [10].

Web Service Invocation Framework (WSIF) [11], is designed to supply users with
simple APIs to invoke Web services through abstract representations of the services,
rather than the usual Web Services programming model of working directly with the
SOAP APIs. So far, WSIF provides a degree of protocol-independence, but however
it currently assumes Simple Object Access Protocol (SOAP) as the underlying
protocol. It allows developers/users to adopt own programming models without
worrying about the service implementation regardless of SOAP packages used
behind. However, our protocol-independence is designed to cross multiple service
standards rather than just SOAP.

Open Grid Services Architecture (OGSA), still in the early stage, has been
introduced by IBM to integrate Grid-enabled Web services across the Internet. The
transport protocol SOAP is used to connect data and application on Grid service
discovery, sharing and composition in a dynamic distributed environment. The
standard interface of Grid service, described by Web Service Description Language
(WSDL) [12], includes multiple bindings and implementations. Such Grid services
can be deployed on different hosting environments-even different operating systems.
As one of the invocation proxies, the existing WSIF has been used to dynamically
detect the SOAP binding protocols and construct the appropriate invocation code.
Whilst, rather than only trying to deal with the Grid-enabled Web services, we have
deliberately concentrated on ubiquitous services deployed under different service
standards and core service middleware models (Object-Oriented and Message-
Oriented middleware).

OpenWings [13] was first set up to meet the military use to discover replacement
services in a critical and volatile environment. OpenWings uses a component-
connector model to represent the inter-communication between two different
standards. By creating a protocol abstract layer, both sides need to implement special
APIs to translate method calls to and back from that layer, where all the data and
information will be transmitted. Our work has a similar overall goal but has focused
on runtime service adaptation code, which requires the generation of extra files. Both
sides can still retain their original design without having to implement any special
APIs or sender and receiver proxies.

4 M. Yu, A. Taleb-Bendiab, D. Reilly, E.Grishikashvili, Wail Omar

Our own approach has several similarities to the research work described above,
but it concentrates specially on the use of the middleware service model to provide
the assembly of applications in an ad-hoc manner [14, 15]. This ad-hoc assembly is
based on the users’ requirements across ubiquitous computing platforms. In
particular, our Assembly Services Description Language approach offers additional
information about the services/service providers to that normally provided in UDDI
and WSDL strategies. This additional information is used by the service composition
manager to lookup and determine the “best-fit” matching services at runtime. Our
dynamic configuration and self-adaptation strategy across multi-standard services
actively contributes towards maintaining the service workflow process at runtime. It
does so by dealing with any dynamic changes at runtime, such as service failure,
upgrades, replacement and/or evolution. Through this strategy our middleware model
also enables the full utilization of the existing multi-standard service resources,
without forcing both client and server sides to implement special APIs. Even when
new service component standards are introduced in the future, our middleware is
capable of quickly adapting to utilize the new standards with minimum
reconfiguration.

3. Dynamic Service Composition

Unlike the traditional predictable and repetitive processes, end-users can
compose/assemble their own on-demand services at runtime from a range of services
providers over the network. However, these services are likely to be developed and
deployed using varieties of standards and middleware technologies.

In this paper, we introduce a dynamic service composition approach, which uses
service virtual containers and well-defined Assembly Services Description Language
to achieve runtime dynamic service composition and/or self-healing.

3.1 Service Virtual Container

A Service Virtual Container is a virtual environment in which services are assembled
ready for composition into an on-demand application/service. Normally, each
Container may contain one or more services as shown in Figure 1. A Service is a
logical concept, which could be devices or software applications distributed over the
network. These Services reside in varieties of existing physical containers (e.g. Java
Virtual machines, Web server containers). The Service Composition Manager
middleware service is responsible for the actual dynamic service composition. Any
runtime service discovery, invocations and failure exceptions will be detected and
handed over to other managers for them to cope with in the proposed framework.

 A Service Provider is a set of all necessary class files to enable service
publication and service invocation over the network via a certain protocol such as
Java RMI, SOAP/RPC and/or SOAP/messages. Service providers enable services to
be discovered and accessed dynamically by software applications or other service
providers through a specific service protocol.

Polyarchical Middleware for On-Demand and Multi-Standard Services’ Composition for
Ubiquitous Computing 5

Fig. 1. Service composition manager

In Figure 1, Provider 1 offers Service 1 by registering it on a specific registry
server (such as a Java RMI registry server, a Jini lookup server or a Web service
UDDI server) or our local Registry Server using its Assembly Services Description
Language (ASDL). The latter1 is an XML-based document containing information
about the service, which is needed by software applications or other service providers
to access or invoke the service. On the first invocation of a service method, the
service comes to life within the Virtual Service Container. Later, more matched
services may be added into the virtual container to meet the demands of end-users.

3.2 Assembly Services Description Language

We feel that most types of existing service registry servers, such as Java RMI’s
registry server, Jini’s Lookup server and CORBA’s Naming server, are insufficient to
support service description functionality for their registered service components. Even
the current Universal Description, Discovery and Integration (UDDI) register server,
associated with WSDL, is still not enough to describe the services using types and
version of web services description language, methods, input and output parameters,
dependencies, etc. Through our own Assembly Services Description language, we
have tried to provide more information about the services, which are needed by
software applications or other service providers to decided which one of the available
services is more suitable and how to access or invoke it. The Assembly Services
Description Language (ASDL) describes all the Meta-information that is related to
services. This Meta information will be used for the deployment and discovery of the
services as well as the invocation of their methods. Figure 2 shows a diagram of
ASDL, follow by illustrative example using XML format shown in figure 3.

1 The difference between ASDL and WSDL associated with UDDI will be discussed in the

next section.

6 M. Yu, A. Taleb-Bendiab, D. Reilly, E.Grishikashvili, Wail Omar

Fig. 2. A Diagram of ASDL

Fig. 3. Assembly Service Description Language excerpt: (a) Main Service Description, (b)
WSDL Service Description

Polyarchical Middleware for On-Demand and Multi-Standard Services’ Composition for
Ubiquitous Computing 7

Assembly Service description language: we consider runtime dynamic service
composition as a challenging issue, especially within such crucial time limits. As we
have found, it is hard to precisely predict the exact environmental circumstances of
service execution, and whether the process will be successful at composition time
rather than design time. We also noticed that in practice not every discovered service
could be used as a service composition component. Often, the required on-demand
service composition is significantly different from available service components.
With these point in mind, we feel that it is important to have a well-defined service
description for each component, which describes functionality as well as execution
environment. The service description can greatly enhance the runtime service
discovery process and assist in finding the best-fit components for service
composition. Meanwhile, it can also reduce the system response time, since less
intervention is required from end-users. Figure 3 shows an example of an XML-based
Service Description Language file, which is used herein to support runtime service
discovery and composition.

Unlike the WSDL, associated with traditional UDDI, an ASDL includes not only
component information, such as service method name or message parameters, but also
the infrastructure, which provide the operational containers for software components.

8

The ASDL uses a tag ServiceDescription (Fig. 3) to refer to an external service
description document, which can be encoded in WSDL or any other available
description language technology. The RequiredInfrastructure tag describes the
infrastructure (Fig. 4), which provides the execution environment for the service
component.

Fig. 4. Infrastructure description excerpt

The details of service components for both software and infrastructure provided in
ASDL can greatly assist in the discovery/lookup of the right service components for
composition at runtime.

4. Service Adaptation

A successful service composition requires seamless service interoperation and well
self-healing to recover from unexpected failures/changes. Both these strategies
require robust service adaptation to provide backend support between different
service standards. In this section, we describe a service adaptation mechanism based
on runtime code generation, which renders our approach different to those considered
previously in the related works.

4.1 Service Adaptation Mechanism

We begin by considering a scenario, in which two applications, based on different
programming models (e.g. client-server/peer-to-peer) need to communicate over a
network. For such communication, our approach makes use of runtime auto-generated
service adapters. The adapters can dynamically provide the necessary code adaptation

Polyarchical Middleware for On-Demand and Multi-Standard Services’ Composition for
Ubiquitous Computing 9

to handle service interoperation and integration among different standards. The
adapters make use of a template file, in which the invocation code for each individual
standard has already been specified. These adapters alleviate the need to implement
any special APIs or proxies or classes on both sides. The adapters also set our work
aside from that conducted by Openwings and WSIF. The use of service adapter means
that developers and end-users can ignore the details of the service adaptation and
simply stick to their original implementation mechanisms. The following diagram in
Figure 4 shows the anatomy of service interoperation sequence.

The protocol 1 method call can be reset to the normal protocol 2 call mechanism
after code adaptation. Application 2 can still be invoked by the protocol 2 method call
using the normal data encoding (i.e. serialization/deserialization in Java RMI or
marshalling/unmarshalling in SOAP-RPC of parameters and results). In contrast to
our own work, other researchers, including OpenWings, intend to translate method
calls into a standardized protocol transmission.

Fig. 5. Service interoperation sequences

Invocation information is retrieved by parsing a service WSDL document and any
extra files such as stub and/or proxy classes (i.e. Java RMI Interface) is also auto-
generated at runtime.

4.2 Adaptation Scenario

Here we consider two scenarios to demonstrate service adaptation behaviours. The
first scenario represents default behaviour in that it attempts alternative invocations,
regardless of service standard/protocol, without the need for end-user/system
intervention. The second scenario considers how the user/system may specify
particular preferences relating to service standards or middleware types to be used in
invocations.

10

Default behaviour: Assumes end-users/systems have no particular preferences
relating to the type of middleware technology or service standard used by the
alternative service components. When a service is found (via lookup) in the registry
server2, the Polyarchical Middleware initializes the invocation adapter template file to
access/invoke any matched services as possible alternatives with the adaptation
details hidden from end-users / systems. If a service invocation should fail, an
exception will be caught and the next alternative component and associated connector
will be sought and tried automatically, without end-user/system intervention.
Particular Preferences: allows the user/system to select specific service
standard(s)/middleware technology(s), as options, which may serve as special runtime
requirements. End-users/systems may still take advantage of the polyarchical
middleware when it comes to the access/invocation of their own services. To do so,
they first register their specific service and then allow the polyarchical middleware to
take care of any adaptation of the invocation mechanism used to access/invoke their
service.

5. Framework Structure

The SunTM Open Network Environment (Sun ONE [16]) first used the term
Polyarchical to describe features of the next generation distributed architecture.
Polyarchical middleware intends to provide smarter and better communication
facilities to allow end-users to set up distributed applications using a higher–level
model. Our own polyarchical middleware was implemented in Java language. Java
was selected due to its dynamic features and support for web-based applications. Java
also has the advantage of platform independence and provides utilities for parsing and
interpretation of description languages. However, we would like to think that ideas
underlying our polyarchical middleware are not wholly dependent on Java and they
may be implemented using other languages or even language combinations.

Fig. 6 illustrates the architecture of the polyarchical middleware, based on a service-
oriented architecture, which sits above the existing service middleware architectures.
It can assist end-users with the assembly/composition of their on-demand services at
runtime, without being tied to a particular service standard and/or provider. Instead,
they can discover and adapt to a given service of choice from any available resource.
This framework was designed to provide support for service composition and
adaptation through runtime code generation, thus abstracting service discovery and
invocation details and thereby simplifying the service interoperation and integration
process. Through this framework, end-users may concentrate specifically on their
applications without having to worry about inconsistencies or mismatches between
component standards.

Service Call Dispatcher: provides access to this framework via Internet/Intranet.
So far, a Java Tomcat HTTP server has been used to provide HTTP (TCP/IP)
access to the polyarchical middleware framework. A Java Servlet container hosted
by a Tomcat server is used to retrieve synchronous service invocation request

2 Universal Description, Discovery and Integration (UDDI) is used in this case.

Polyarchical Middleware for On-Demand and Multi-Standard Services’ Composition for
Ubiquitous Computing 11

through URL’s from end-users. In our future work, a message-based asynchronous
container will also be designed to receive requests from systems that may operate
in a peer-to-peer fashion.

Fig. 6. Polyarchical framework structure

Service Composition Manager: as mentioned before, is mainly responsible for
runtime service composition after retrieving requests from service call dispatcher.
It will initialize the virtual container for further runtime service composition.
Requests of service components involved in the composition will be redirected to
Service Lookup Manager for discovery/lookup appropriate components for
execution. If a request arises from adaptation between two heterogeneous
components, implemented using different standards, it will pass this service
adaptation request to Service Adaptation Manager. In addition, any failure will
also be detected and handled by the composition manager.
Service Lookup Manager: is used to discover/lookup appropriate components for
service composition execution. It uses keywords, such as service name, to search
inside the local Registry Server and returns an array of matched service.
Registry Server: is designed to support the runtime service components’
discovery/lookup process. There are two types of descriptions, which may be
registered/published within this Registry Server (as shown in Figure 7): These two
types are: 1) Existing Service Registry Servers: like Java’s RMI registry server,
Jini’s Lookup server or Web Service’s registry server (usually in format of UDDI).
These registry servers may be accessed/connected with the Polyarchical
Middleware Registry Server through Internet/Intranet. 2) Individual Ubiquitous
Services - descriptions about the service components individually in an ASDL
format. The reason for using ASDL rather than normal WSDL has already been
mentioned in Section 3.1. In Section 3.1, we considered how our ASDL can offer
more information about the services to support the discovery process undertaken
by the service composition manager for finding the best-fit service components. At

12

runtime, the service discovery/lookup process will first be executed within that
local polyarchical middleware Registry Server with which the service components
of interest may have registered. If no service match is found, then the service
requests will be delivered to those specific registry servers individually for further
discovery (i.e. the RMI, CORBA and Web Service servers). We strongly
recommend that services implemented using Java RMI, or CORBA, should be
manually registered within our local Registry Server in ASDL format, because the
RMI and CORBA registry servers are incapable of fully supporting the service
description functionality required by the ASDL. Even within the more mature Jini
Lookup server [3], end-users are still required to use templates to register/lookup
services.

Fig. 7. Polyarchical Middleware Registry Server

Service Adaptation Manager: is designed to handle any service invocation
adaptation requests that occurred during the composition process. At runtime, the
service adaptation manager can initialize the right adapter template file to switch
invocation calls from one standard to another. The adapter template file contains
an invocation mechanism, which has been specified in the ASDL of each
individual service component. Service invocation information for each individual
component is parsed from the corresponding WSDL files referenced inside the
ASDL with ServiceDescription tag as shown in Figure 3. At runtime, they are
appended to the adapter templates files for invoking the service. At this stage, the
relevant extra files, which are used to assist the service invocation, are also
automatically generated. For example, the service interface may be required by a
Java RMI-based service connector. In this case, the service adaptation manager
will generate, at runtime, the associated RMI Interface by parsing the service
description encoding using the WSDL specifications. Any failure due to changes in
service components will also be detected by the polyarchical middleware at this
stage and alternate components and connectors will then be sought.

Polyarchical Middleware for On-Demand and Multi-Standard Services’ Composition for
Ubiquitous Computing 13

Extended Adapter: To make the polyarchical middleware more extensible, with
respect to service interoperation and integration, we intend to introduce a Template
Markup Language (TML) into the framework design. The TML will be used to
add/describe more adapters as and when new service component standards are
introduced in the future.
Existing Middleware Standards and Service Providers: refer to the middleware
technologies that provide normal middleware discovery/lookup and invocation
protocols. Through the polyarchical middleware, service providers’ components,
developed using these middleware standards, may be integrated and interoperated
by end-users.

6. Illustrative Example

In order to demonstrate the idea, an example of wireless service applications
composition is used in this paper. We argue that current wireless devices can’t fully
utilize the network resources due to their own limitations such as CPU performance
and low memory. As a result, the proposed polyarchical middleware could be used to
take over the runtime more heavier duties (e.g. ad-hoc service discovery, assembly
using virtual containers, invocation and adaptation) from wireless devices (i.e. PDA
or mobile sets). In order to illustrate the ideas above, we describe the following
scenario:

“A wireless device end-user is on his way back from work. Before he arrives at
home, he wants to several of his home applications/devices to be set up ahead such
as: set up the timer, turn on the lamp, switch on the Kettle and turn the heating to a
certain temperature. We assume that these networked home applications/devices have
been purchased from a variety of different vendors, with different standards/drivers to
make them work. Fortunately, the proposed polyarchical middleware comes to the
rescue by receiving on-demand requests from the end-user, composing the different
devices and making them work together. All the details of service composition,
discovery and adaptation will be hidden away from the end-user.”

In this case, we assume all the home application devices are driven by the software
to be networked. The software could be developed using different protocols such as:
Java RMI, SOAP-RPC, and CORBA. Before utilizing these services, they are
required to register on the local UDDI encoding in ASDL through an interface (Fig.
9).

In order to precisely describe the on-demand service components, the end-user
sends an XML-based service assembly message (Fig. 8) to inform the polyarchical
middleware. After retrieving this message, the service composition manager will
initialize a service virtual container for subsequent composition. The service lookup
manager is responsible for discovering all the required services (i.e. clock, lamp,
kettle and heating) over home private network. Finally, the matched service
components are added into the virtual container for composition in the sequence
defined in that service assembly message.

14

Fig. 8. Wireless assembly applications

Fig. 9. Service Registry Interface

The service composition manager is also in charge of monitoring the service
composition process and detecting any service failures. For instance, the Clock
component is used to trigger the Lamp to switch on and the Clock and Lamp have
been developed using two different standards such as Java RMI and SOAP-RPC. To
allow the process to proceed, at runtime, the service adaptation manager can provide a
SOAP-RPC invocation adapter (shown in following programming code excerpt) for
smoothly switching the Java RMI call to a normal SOAP-RPC call. At runtime, a
‘ParseWSDL.java’ file is initialized by setting the parameter WSDLURL for the
parser of the SOAP-RPC rpcrouter URL and serviceName(). As a result, the

Polyarchical Middleware for On-Demand and Multi-Standard Services’ Composition for
Ubiquitous Computing 15

polyarchical middleware maintains the service composition process without having to
halt for the redesign of the component’s invocation mechanism.

public class SoapAdapter {

public void soapConnect(String wsdlURL) throws
Exception

 {

 // Normal variable declartion

 // Runtime information filled in

 ParseWSDL parseWSDL= new ParseWSDL(wsdlURL);

 url=new URL(parseWSDL.soapURL());

 Call call=new Call();

 call.setTargetObjectURI("urn:Hello");

 call.setMethodName(parseWSDL.serviceName());

 call.setEncodingStyleURI
 (Constants.NS_URI_SOAP_ENC);

 // invoke SOAP object

 }

}

7. Conclusions and Future Work

In this paper we have described an approach to dynamic service composition based on
polyarchical middleware that enables end-users to discover, assemble and invoke on-
demand service at runtime and accomplish critical service interoperation and
adaptation tasks regardless of the component standards.

Development is still underway to extend the proposed polyarchical middleware’s
runtime service composition abilities for interoperation and adaptation. We also

16

intend to extend its security mechanism and trust relationships between end-users and
the proposed polyarchical middleware.

8. References

1. Corporation, M., DCOM Technical Overview, accessed date: Oct 2003,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndcom/html/msdn_dcomtec.asp,

2. Newmarch, J., CORBA and Jini, accessed date: April 2003,
http://jan.netcomp.monash.edu.au/java/jini/tutorial/Corba.xml,

3. Newmarch, J., Jan Newmarch's Guide to JINI Technologies, Version 3.02, accessed date:
Oct 2003, http://jan.netcomp.monash.edu.au/java/jini/tutorial/,

4. J.Newmarch, Web services, accessed date: Oct 2003,
http://jan.netcomp.monash.edu.au/webservices/tutorial.html,

5. E.Grishikashvili, N.B., D.Reilly,M.Allen,M. Yu and A. Taleb-Bendiab;School of
Computing and Mathematical Sciences Liverpool John Moores University. Automatic
Computing: A Service-Oriented Framework to Support the Developement and Management
of Distributed Applications. in PGNET. 2002. Liverpool John Moores University UK:
School of Computing and Mathematical Sciences Liverpool John Moores University.

6. Edwards, W.K., Core Jini (2nd Edition). December 28, 2000.
7. Introduction to CORBA, accessed date: May 2003,

http://developer.java.sun.com/developer/onlineTraining/corba/,
8. Weiser Computer Sciences Laboratory, X.P., Ubiquitous Computing, accessed date: Oct

2003, http://www.ubiq.com/hypertext/weiser/UbiHome.html,
9. Liang-Jie Zhang, J.-Y.C., Researcher, IBM T.J. Watson Research Centre, Developing Grid

Computing Application, Part1,Introduction of a Grid architecture and toolkit for building
Grid solutions, accessed date: April 2003, http://www-
106.ibm.com/developerworks/webservices/library/ws-grid1/,

10. M.YU, A.T.-B., D.Reilly and Wail Omar. Multi-Standard Service Interoperation Protocol
Through Polyarchical Middleware. in PGNET 2003. June 2003. Liverpool John Moores
University, Liverpool UK: The School of Computing and Mathematical Sciences, Liverpool
John Moores University.

11. Matthew J. Duflter, N.K.M., Aleksander Slominski and Sanjiva Weerawarana;IBM T.J.
Watson Research Center, Web Service Invocation Framework (WSIF), accessed date: July
2003, http://www.research.ibm.com/people/b/bth/OOWS2001/duftler.pdf,

12. Erik christensen, M.F.C., IBM Research; Greg Meredith, Microsoft;Sanjiva weerawarana,
IBM Research, Web Services Description Language (WSDL) 1.1, accessed date: Oct 2003,
http://www.w3.org/TR/wsdl,

13. Wade Wassenberg, S.E., Motorola ISD, Protocol Independent Programming Using
Openwings Connector Services, accessed date: Oct 2003,
http://www.openwings.org/download/specs/OpenwingsConnectorWhitepaper.pdf,

14. M.Mochizuki, A Middleware Architecture for the Improvised Assembly of Component-
Based Applications. 2000. p. Keio University.

15. M.Mochizuki and H.TokuDa, Improvised Assembly Mechanism for Component-Based
Mobile Applications. IEICE TRANS.COMMUN., 2001. Vol.E84-B.

16. Shin, S., Sun One: Now and Future, accessed date: Sep 2003,
http://www.plurb.com/webservices/SunONENowAndFuture_V4.pdf,

� ������ ��	
���	����� ��������� ��

��������� ��� ��	�����

�����������	
 ���������	
 ���������������	
 ������������

������� �� ���	
��� ������� ��������� �� ���������� ���������
	� ���� ��
������������ �
��!������ ������������������"#������
$

%&�'
� ����������� (������� ������������ ������ ���������
	� ���� �)�
*+�� �� ��
�����������#��'
�����

��������� &�����,����� �� � ���� ������� �� ��, �������� ���� ��� -.
����� �/��� �		���
����� �� 	������� �� �������� ,
��� ,� ���	����
���� �
� �� �0����� ���� ������� ���	������ 	���� �
�,�� �� ����.
������ & ���	����� ������� �� ,� ���� ���	��0 � ���
��
��� �������
��� ���	���� �� ����.1�� ��	������� ,����� ����� ������
��
��������� 2������� ������
�� ������� �	������� �
�� ,� �����
��� ��
�
 ���	����� ����� ��	�������� ���	��� ��� 	����,����� �� ��������
	�������� �� �����$ ����
���� ��� ���������
�� �
�� ,� �����,��� 	��.
����� � ������������ ���������� �� ������� �0��
��� ������ ��� ,����
� � ���������� �����
���3 ���� �� 	�����
����� ��	����� ��� �������� �	�.
�� ��/���� ������������ ����� ������� � ���������� ����������
��
�� ,� ��	��������� ���� 	�	�� 	������ ��� ����� �� ��	���������
��)��4 � ���$1�� �������� ������ ��� �����,
���)������ ��
���	����� ��������� & ���� ����
�� ��)�� �� ��� ��	������ ,�����
�	���5����� �� ������� ���	������ �� ��� �������� &)�� �������
�	���5����� �� ,� ��	����� ������ ��� ���������� �� ������������ ����.
������� ��	����
	� ����.������������ ��6
�������� & 	������	�
��	��������� ��)�� ��� ,�� 	��������
��� �%)) �����������
��� 	�	�� ������,�� ���)�� ���$ ����� ��� �	������� ������� ���	�.
����� �� ��� ���������� �������� ���� ���� ,�� ��	������� � �%))
��� ���������� ������� �0��
����

� ���������	��

�� �� �������� ����������� ������ ��� � ��� ������� �� ���� ��� �� ��� ���
����� �!���� �� ��!����� �������������� �� ���� ���� �� ����� �������������
������� � "#��$����� ��� ��������" %#��&� '���� �� ���� �������� �������� ��
�����$��� ���� ��� ���� ��� #� �������� ��� ����������
 �������� �������
�$���(������ �������� ��� ��� ���� ������������ ��� ������������ ��� �)���
���� �� %��������� ��& ����������� ��������� '��� $�$�� $������� ��� ������ ���
��$���������� �� �*#�+ � ,���-�, ���������� ������ ��� ����������� *�
������� �� #��$����� ��������� '���� ��� ������ �������� �*#� ���� ���� ��
���� ��� �������� ���� �)������ ,���-�, ���������� ������� ��� ��� �������
����������

	� �������� ����	�
����
 ,���-�, ���������� ������� ��� ��� ������� ��
������� �$����� ��� ���$������� �� � #� �� � �������� $������� ���� � �$��
�(������ ����� �� ��.������ ��������
 ���������� ,��� �$���(� ������ ��
���������� �$�������� ��� ��������� �� ��� �������� $������ �� � ��������
�$������� ,���� ��/����� ������� ����������� ���� �� �������� ��$������ ��
������������� ������� 0�� �)��$�
 ��� ������������� ������� �� � #� ���
���� � $��� �� $��� �������� ����������$
 �� ,���� ����
 � ������������ ��
������� ����� � ������ ������
 ,��� ���� ������������ ���$������ ��� ���
$��� �� ��� $������� ������� �� � ���������� ����������$
 � ���������� �����
���� ��� ,� �� ������ ���� �$$��$������ �*#� ��$$���� ��� ��$�������
���,��� ��� �$���(������ �� ������� ���$������� ��� ��� ���������
 �������
��� ������������� ��$����� ��� ������� �� ������ ��, ���� ,��� �� ������
���� ��
 ������ ���� ��� �������� �� ��� �������� $�������
�*#� $������� ��� �$���� �� ���� ���������� ������������ �� ���,� �� 0��
��� 	 ��� ������������ ������������
 �� ���,� �� 0����� �� ����� ��� ��
���������� �� ��� ������� �� �$���� ������ ����$� ������� �� �� 0����� � �
������ ��� �� ���� �������� �� $�������� �� ���� �����
 ���� ������ �����
��� ����������� �� ��� ����������� ,�� �������� ��� ��� $��� �� ��� #�
 ���
������������ ��� � ������������ $������ ,��� ��� $���� �� ����������� ���
����� �)�������� ����� � ������������ ������ ��� �� ����
 �� �� $������ ��
���� ��� #�� ,���� ���� ������ ,�� ������������ �� ������� ������� '�� ����
�� ����� �� �� $��$��������� �� ��� ������ �� #�� ����� ����������� ��� ���
���$�)��� �� ����� #���

DECS

W
S

 I
n

v
o

c
a

ti
o

n
s

W
S

 In
vo

ca
tio

n
s

WEB
SERVICES

Client

W
S Invoc at ions

CS Invocations

WEB
SERVICES

WEB
SERVICES

�	
� �� ���������� ���������� �� � ���	����� �������

�� ������� ��� ����
��������
 �� �� �)$����� ���� ��� �)������� �� � #� ����
���� � ��� ���� �� ���$���
 �� ��� ����� �� ���� �� ,����
 ��� ��� �������
��� $������ �� ���������� ����� ��� �� ��� ����������� �$$�������� ��/������

DECS

W
S

 I
n

v
o

c
a

ti
o

n
s

DECS

W
S

 I
n

v
o

c
a

ti
o

n
s

WEB
SERVICES

Client

Coordination ProtocolDECS Coordination Protocol

W
S

 I
n

v
o

c
a

ti
o

n
s

Coordination Protocol

C
S

 I
n

v
o

c
a

ti
o

n
s

WEB
SERVICES

WEB
SERVICES

�	
� �� ����������� ���������� �� � ���	����� �������

���� ��$���� �� ����� �� $������ ��������� �� �����(���� � #� ���������
�������
 ��� �)��$�
 �������� ��� �� �����
 �������� ��� ��� �� �����
��/��������� ��� ������� �*#� $������� ����� ������ ��$$��� ��� �����
(�������� %��� ������� ��&�

1� ������� ��� ��������
� ����
������
�� ����
��� 2 ������� ��������� �� ���
�������� ������������ �� ���� �� ������ ������������� �� ��������� ,����
����������� ��������� ���� �� ����� ������������ �������� $������ �� ���
����
 �� ��� �� ��$���� ���� ���� ���� ������������ ����������� ��� $����
,���� ���� ��� ���$������ ��� ��� ,���� ��� �$�� ����� ������� ����� *���
������������ �� �,��� �� ��� ���� ������� �� ����� ����� ,���� �� �� ������
������
 ��� ��� ������� $����� �� ���� ,���� ���� ���� ��/������ ���� ���
����� ��������������

'�� ��������� �� ���� $�$�� �� ���������� �� ���,�+ ������� � ����� �� �������,
�� ��� ������3 ������� 1 ��������� ��� ���� ���� �� �*#�3 �� ������� 4 ,�
�������� ��� ������ ������������ ��� ��� ��$����������3 ������� 5 ,� �������
$������� ��� ������������ ������������3 ������� 6 ��������� ������ ,���
 (���
������� 7 �������� ��� $�$���

 ����� �����	��

�� ������� ��, ��� ������ ��� ���� �������� �� ���� ��� �$$������� ��/����
����� ��$��� �����
 �����+ ���������
 ��$���������
 ������$��������
 ��

����� �����(�������� ��� -�)��� ���� ���$�������� '�� ������ �� ��� ������
��� ���� ��-������ �� ��� ������ ,��� �� ��� 8�*9-�, ����������� ,���-�,
���������� ������ :	
�;�

� ���������+ 8��� � ���$����� ������� �� ��$����
 ����� �� �� ������� ��
��� ���������� ������� ,���� ���� ���� ���������� '�� �����$��� �� ���
�������� $������ ��(������ ���� ��� ��$������ ���� ��������� ��� �� ��
$������ �� �����(���� ��� �������� $������ �� ��� ���� �� ���� ��������� ���
�������

� 0�)��� '��� #��$�������+ '�� ������ ��$$���� � ���$� ��� $�,���� ����
���� %��� ������� 1&� '��� ��,� ��� ���$������� �� ���$�) �������� ����
���$� �������� ������ ���� �� ��� ��� ������� ��� ������ ,�� ���������
2 ���� ��� $������ �$$������� �$���(� ��$�� �������� %���� ������ ��$��
���� ��� �� ������ �������& ��� ��������� �� ��� �� ������ ���������

� ��$���������+ ��$��������� �� ��$������� �� �,� ���� �� �*#�+ �$$�
������ ��� ��� ������ ���� ��� �� ��� -�)��� ���� ���$������� ����
��������� ����� �� �� $������ �� �$����� ��!����� ����� ��� $�������� ��
����� � ������� �� �)��$����� �������������
 ��� ��������
 ���$��������
�����
 ���������� ����� ���� 2� ��� ������ ���
 �*#� ����� ��� �� ��� ��
������� $������� �� ������ ���$����� �����,��� %��**& �� ������ ���� �
����������� ������� �� ��� ���$����� �������+ ��� ���������
 ���� ��� �����
��� $���������� 2 ������������ ���,��� ��!����� ������ �� �*#� ���� ���
�� ������������ �� ������ ���� ��� ���� ������� ���������� ��� ����� �� ���
��������� ,��� ���� ������ �� � ������������ ���� ���� ��� $������
 �� �� $��
���� �� �������� ��� ����� �� ��� #� ��� �������� $��������� ���� ,���� ���
������ ��������� '��� �� ��������� ������� �� ������� 4�6�

� ������$��������+ '�� ������ ��� ���� �������� �� ��� �� ��� ��** ���$�
��� �$$������� ������
 ������� ��$$������ ������ ��� ������$��������� 2�
�*#� ��� ������ ,�� �������� ,��� ��������� ����������
 �$$������� ���
������$�������� �� $��������

� ������� �����(��������+ '�� ���� ���� �������� �� ������ �� �)$�������
������ �� ��$������ ��$��������� %����-�, ��� ����(������& ���,��� ������
'�� �)������� ����������� �)$���� �, ��� �$�������� ��� ������ �������
�� ��� ��������� �� ��� #� �� ������� ��� ����� ��� ��� ��$��������� ���,���
����� �� ��� �������� ,������ �� ������ ���� ������� �����(��������
��$$��� ������������ �� ������ ���� ������� ��� ������� ��� �� � ����������
������ ���$��� ���������� �����(��������� ��� ������� �������� '��� ,���
�� ����� ���� ���� ��� ���� �� ��� ������ ��$���������� :�;�

� ��� �����

�*#� ����� ��� �� � -�)��� ���� ���� �� �������� ��� ��������� �� #��$�����
��������� '�� ������ ��� ���� � ���� ���� ���� �� �)$������� ������ �� ��,
��������� #�� �� �� ��(���� 8�� ������ �� ��(��� �� ����� �� �����
 ���$���
��$��������� ��� ���� ��$���������� 2 ���� ��$������� �� �$$������� �$���(�

���� �� ,��� ���� ��/����� �$���(�� ��$�� ���� ��� $������� �$���(�� ���$�� ����
��� ������$���� �� �� ���������� �� � ,�� �������� 2 ���� �������� �� ������
�� ��������� ��� ��$�� �������
 ��� ������� ����$� ���$�� ��������� '�� ,��
������� ������� �� ������� �� � ���� ��) ,��� ��� ��$�� ��� ���$�� ���� �$���(��
�� ��� ���< �������� ���������� ,��� ��� ������� :1;�

2 ���$��� ��$������� ��$������� ��� ��������� ,���� � ��,� ������ ����
������ ����� ���� �� �$ ������ ���� ��� ���������� �� � $�������� ������ 0��
�)��$�
 � ����� ���$���� ���� ����� ��� �� ������� ���� � $������ ��$����
���� ��� ���$���� ����������� 2 ���� ��$������� ��������� ���� � ��,� ������
���� ��/����� ��$�� ���� ���� ��� �$ ������ ����� *��� ���� ��$������� ��$��
��� ��� � ���$��� ��$������� ���������� ,��� ��� 0�� �)��$�
 � ���$���� ����
��/����� ���$$��� ������� ,���� �� $��� �� ��� ���$�� ���� ����� ����� ��$�����
���� �� ��� ������� ���� ��� ����� ���� ��� ���$���� :	;�

���� �� ��� ������ $����� �� ��� ���� ���� ,���� ��� -�)��� ���$�������
�� #�� ��� $�������� ���,+

� 2��������� ��$�� �������+ 2�� $��� �� ��� ��$�� ���� ��� �� ��/����� ����
���� ���� ��� ������� '��� ������ ��� ������������ �� ��������� ����
������� $�������� �$$������� ��� ���� ��������� '�� ��$�� ���� ��� � ����
�� ��������� �� ��� ���������� ��� �� ,��+$���� ��$$��� ��� (��� ����������
���� ���� ,��+$��� �� ��������� �� ������� 7�

� 2��������� ���$���+ 2 ���� ��� ��������� �� ��� �� ������ ������ $��������
�������� ��������� �� ����� �� ���<
 ��� �� ����� ������ ,� ������$��� ��
�� "���$��" ��� � ������ �� � "����"� '��� ��,� ��!����� ��,� ������
����� �� �� �)������ ��$������ �� ��� ������� �� �� �$ ������ ����� 0��
�)��$�
 ���$�������� �� ��� ����� �� � �����

� #��$���� '����+ 2 ���� ��� �� ���$���� ���� ����� ������ '�� ���$����
����� ��������� ��� �� ���$� ����� �� ���$���� ������ '��� �� ��� $�����$�
,�� �� $�������� ������������

� =������ �����+ 2 ������� ���� ��$������� � $�������� ��� � ���� ���������
��� �� ���� ��� �� ������ �������������� '��� ��,� ��� ������ �� ���
����������� ��� $���� �� � ���$�) ���� ,���� ��� ���������
 ��� ��� ��,�
�)������� �� ��$������� ������

*��� ��$�� ��� ���$�� ������� ��� ������� ������ $����
 ���� ��$��������� �
$���� �� ���� ,���� ��� �� ��/������ �� ����� ������ '��� �� �� 0����� 1 ���
��� ��$�� ������� ���������� �,� $����
 ����� �	 ��� ��� '���� ��� �,� ���$��
�������� ��� ���� ��
 8	 ��� 8�
 ���� ���������� ��� $���
 �	 ��� �� ���$��������
2 ���� ������ ��� ��� �� ��� ,��� �����
 �,������ ��� ��$�� ���� �� �� ���$����
���� ��� ��$�� ������� �� ���$��� %����
 � ��� ���� ��$������� ��� ���$���
��$��������� ��� �����(��& ��� ���� ������ ��� ����� ������ �� ���������� ��$���
������ ������� ������������ ��� ��� ,��� ��� ������� $������� �� ����� 9���
���� ��� ������ �� �� ��$�� $��� ��� �� ���� �� ���$�� ������� %���� �	&
 �� ��
��$�� ������� %���� ��&
 ��� ����� ��$������� ��� ���� ,��� �� ��$�� �� ��������
�� ���� ���� ��� ����� '��$��� ��$��������� ��� ��$����� �� � ������ ���
 ���
�)��$� �	 ��� ���� ��$��������� ��� ���,� �� ���� ����� 2 ���$���� ����

���� �� �	 ��� ������� ����$� ���$�� ��������
 ,��� ���� $��� ������ ������
$������ �������� '�� ���� ,� ��������� ,��� ��� ���$�� ������� �� ���$����
�� ����$� ���$�� �������� ������ ������� ������������
 ��� ��� ,��� ���
������� $������� ,� �� ������� �� ������� 6 �� ������ ,���
 ,� ���$��� ���
���� ���� ,��� ��� ������ $��$��� ��� ��� ������� ���������
 >�*< :4;�

t
1

t
5

t
4

t
3

t
2I

1 O
1

i1

i2
O

2

o1

o2

I
2

i3

d
1

n
1d

2

�	
� � & ���	�
� !������

� ����� ��	�� ��� �����������	��

'�� �*#� ������ ��� ���� �������� ��� ��$������� ����� ��** �����,����
'�� ������� ������� ��� ���� ������ �� ��� ,����� ��� �>��� �$$������� ������
:5;�

��� �����		
�������

'�� ��������� �� ��� ������ �� ���,� �� 0����� 4� '�� (���� �� �������� �� ���,
��, � ������ ��/���� �� �)����� #� ������ ��� ������� ���������3 �� �������� ��
��� $������ ��(������ �� ����� ���� ��� ������� ��(������ ?�$������� %��?&
��� ����� �� ��� ������� �������� ?�$������� %��?&� '�� ����������� ���� ����
���� ���� �� ������ ��� ,�� �������� ,���� ���$��� ��� #� ��� ������ �����
������������ ������� �� ���� �� ,���� ���� ���� ���������� �� ��������� *����
����� ��/���� ������������ � ��, ��� ���/�� $������ ��(������ ��������� '��
��** ����������� ���� �� ��$����� ��� ��!����� ������ ��� ���,� �� 0�����
5 ,���� ������� ��� ��������� �� 0����� 4�

@���� ��� ��** ����������� ��,� �*#� �� ���� ��� �� ��� ���� ��� ��
������������ ,���� ��** �$$������� ������� $������� 0�� �)��$�
 ������� ��
���� �� $��������� �������
 -�)��� ����������� ������
 � ���(�� �������� �����
�*#� ������� ��� *����� >����
 ������� >���� ��� ������� ������ >���� ����
��� ��** ������������� 2� *����� >��� ��$������� � �������� ��A��� ���� �)����
�� ��� �����$���� �$$�������� '�� �$$������� ������ ������� ������ �� *�����
>����
 ������������ ���������
 �����������
 �������� ��� ���������� 2 �������
>��� $������� ��� �������� ���� ��� � ��** �$$�������� #����� �� ������� ��
��� ������� >��� �� �������� ,��� ��� �$$�������� ������� ������ >���� $��
���� ������������ ��������� �� ������ �� ������� �������� ��� ��� ���� �������
������� %���&� ��� ���������� ��� �)������ �� �������� ����� ����,��� �$$���
����� ���� � ���,���� '�� $������$� �� �*#� �� ������$����� �� ���� �� ,� ���
�� ��� ��** �$$������� ������ �� �� $��$������� �)�������� ���� ���� �)$������

Process
Definition

Repository

Process
Instance

Repository

Process
Initiator

Coordinator

Invocations

WEB SERVICES

Requests

Process
Definition

Repository

Process
Instance

Repository

Process
Initiator

Coordinator

Invoker Invocat ions

WEB SERVICES

Invoker

N
o

tifica
tio

n
s

ScriptsAdmin

Client

Server 1

Server 2

�	
� �� ������ &��������
��

��� ����

 ���������

'�� $������ ��������� �� ��� �� ��������� ��$�� ,�� ������� ���$����� ,����
��� �� ���� �� � ����� �� ������ ��� ,�� ������� ,���� ������$���� �� � $�������
���� � ���$����� ������� �� ��$���� �� ��� ������
 �� ���$���� �� ���������
,���� ��,� � ����� �� ������ ��� '��� ������ �� �� ������� �����$������ ����
��� �����B� $���$������
 ,������ ��� ����� ��� �� ���,��� ���� ���� ��� ��
������ � ,�� ������� ,���� �� ��$������� �� � $������� '��� ���� ��!��� ����
���� ������������ ������� ,���� �)$��� ��� ��������� �� ������ ���� $���������
0�� �)��$�
 ,�� ������� ������ �� ��� #2?98' ,���-�, ������ ���� ���� �
������� �� ��� ������-�,��������������" ���$���� $������ ��� ���� �� ���

Entity Beans

Session Beans

WEB
SERVICES

SOAP

SOAP

Entity Beans

Session Beans
WEB

SERVICES

S
O

A
P

 / R
M

I

SOAP

Message
Driven
Beans

J
M
S

Message
Driven
Beans

J
M
S

XMLAdmin

Client

Server 1

Server 2

�	
� �� ������ �����������

$������ �� ������ ��� � �����)�� 8�� �� ��� $������ ,��� ���� ���� �� �������
���� �� ���� ����� �� �� �������� ,�� �� ������� ��� ��/����� �������� ���������
,���� ��� �� ������� ����� ��� ������� ��������� ��� �� ���������� ����� ���
������� ����������� ������
 ���� @��� :6;�

���� ��������� � #�
 ��� ������ �� ���������� �� ��� ���� �������� ��� ����
#�� '��� �� ����� ��� ������ ,���� ,� ���������� ��� (��� ���� �� ��� #� ���
���� �� ��� � ��/��������� '�� ���� �������� �� ��� ��� ������ �� ,���� ��� ���
���� ��������� ��$��� �� ���$����� ���� � #� �� ������� �� � �����
 �� ��������
�� ��� $������ ��(������ �� ������� �� ��� ��? ����� �� ��� $������ ��(������
������ �� ��� ��?� '��� �������� � ��� ���� ��������� �� ��� ��� #�
 ����
�� ��� ����� ������� ��� ��� ����� ���� ��$��������� ,���� ���� �� �����(���
'�� ���� �������� ��� ����� � ������� �� ��� ����� ������� ������������ ���
�)������� ��/������� ���� ���� ������ �� �������� �� ��� �������� �� ��� $������
��(������ ���� ���� ��� ���$������ ���� '��� �� ��������� ������� �� ������� 5�
'�� ������ ����� �������� �� ��� ����� ��/���� ��� ���� ����� �� ��� "����"
���� �� ��� ��$������� ��� ����� ����� ,���� ��$�� ��$��������� ��� �����(�� ���
��������

��� ����

 ��������� ����
����� �����

'�� ������� ��(������ ?�$������� ������ $������ ��(������� ��� $������� �
������ ��� ������������� �� �������� �� � $������� �*#� $������� ��� ��$$���
������ �� C�< ����� $������ ��(������ ����$� �� ��� ��?� '��� ��� ������ �� �
���$��� $������ ��(������ ��� ���������� ������������ �� � $����� ��(������ ��
������������ ������������ �� ��/������ '�� ��? �� ��$������� �� � ��������
�� ���� *����� >���� ��$���� �� ��� ��** �$$������� �������

2 $������ ��(������ �� ��$�������� �� � ������ ,���� ������� ��� ���� ����
��������� �� ��� $������� �������
 �� ����� �� ����� ��� ��$���������� �� ����

���� ��� �� ��� �����$�� �� � ����$���� ������� �����$�� ��� � $������� ���
�������� ,���-�, ������ ��� ���$��� �� �� ���� ,�� �������� ���� ������������
'�� ����$���� ������� ,�� �������� �� �)$���� ���$����� ������� ���$�������
��� ����� ���� ��$��������� �� ���� ������� ����������� �$$�������� ,���� �)
�������� ���� �$�� ��������� ���� ��������� :7;�

��� ����

 ��
���� ����
����� �����

'�� ������ ,� ����������� � $������ �������� ����� �� � $������ ��(������ ���
���� ��/���� ���� � ������ '�� ���� ������ �� ���� $������ �������� �� ������ ��
��� ��? ,���� �� ��� ��$������� �� � �������� �� *����� >���� '�� ����� ��
��� $������ �������� �� $��������� ��� ���� ������ �� ���� $���������
 ���� �����
���� ������������ �� $������ ��������� ��� �� ��������� ����� ������� �������

#������� � $������ �������� ���� � $������ ��(������ ������� ����� ���$�+

� #����� ��� ��� ��������� �� ��� $������ �������� �� ��� ��? ��������� ��
��� ��(������ ������ �� ��� ��?�

� ����������� ��� ��������� �� ��� ������ ,���� ������ �� ������ ������ '���
�� ��������� ������� �� ������� 6�

� ������ ��� ������ ����� ���� ��� $������ �������� ���� ��� ����� ��/�����

��� �����������

'�� ����������� �� �*#� ������������ ��� �)������� �� ��� #� ������ ����$�
������ '��� ������� �������� ��� ��$�� ����������
 ����������� ����� �� ���
���� ��� $��$������� ��� ������ ���� ���� ��� �������� '�� $������$� ����
������� >���� �� ��$����� ��� �������� ���� ���������� ,��� �������������

���� � $������ ��(������ �� ������������ � ��� ����� ��� �� ��� ,��� ������
2� ��$�� ���� �� ����� �� ��� ����� ���� ��� ������� �� ��� �� ����� ��$�� �������
�� ���$���� 8��� ��� ��$�� ������� �� ���$��� ��� ���� ����� �� � ����� �����
��� �� $�� �� � $��������� ��� /���� �� �������� ���� ��� ���� �� ��������� 2�
���� �����
 ��� ����������� ������ �� ��� �� ����� ��� ��� ��$�� ��$��������� ��
����(������� �� ��� ����B� ��$�� �������� �� ��� ��$��������� %������ ���� ��
���$���& �)���
 ��� ���� �� $��$������ ���� �� ����� ������ �� � ��$�������
�� ������
 ���� ��������� � ����(������ �� ��� ���� �� ��� ������ ������������
'���� ��� ���,� �� 0����� D%���& �� �	 ��� �	 ���$�������� ���� $��$�������
���� �� ��� ������ �����������
 ������ �82� �� ���� ?�� ��� �� ����� �82�
�� �������� �� �� ���� �� ��� $������ ������������� ������ ��� ���� ?�� ���
�� ���� �� �$������ ��� �������������� �� ���� ������������ ��� ������ �� ���
���� ���,���� �� ���� �����
 ��� ��� ����������� ���� ����������� ,��� ���
������ ����������� ��� �� ?�# ���� ��� '�� $��������� �� ��� ����(������
������ ��� ���/�� ������(�� �� ��� $������ �������� ,���� �� ��� ������ �� ���
���� ��� ��� ���� ����� '�� ������ �� ��������� ��� ���� $��� �� ��� ������
���� ��� ��� ���� �!��� �� �������� ��� ���� �� ��� �� �� ��� �� �)������� '��
��������� �� ������ ��� ����
 ��� �� ������
 �� � ���� ������ �� ��� ���� �����
�)������ �� ���� �� ��� ��$�� ������� �� �������� ���� ��� ���$�� ������� ��

��� ���� ���� �� ���$���
 ��� ������� ��������� ,� ������ � �82� ���$���� ���
���� �� ���� �� ��� ������

��� ���� ��

'�� ������� �� ���$������ ��� �������� ��� ,�� �������� ,���� ���$���� ���
���$����� �������� '�� ������� �� ��$������� �� ������� ������ >���� �� ���
�$$������� ������� '��� ��,� �� ���� ��� ������������ ��������� ���� ��
��/����� �� ������ ��� ����������� ,�� �������� ,��� ����� ��$��������� ����
���� ��(���

'� ��$� ,��� ��� �����/������ �� ����������� ������
 ��� �������� �� ���
������� �� �������� ��� �� �$����� ��� �� �,� ������� �� �� ����� �� ������� ���
���� ���� ,���� ,�� �)������� ,��� ��� ������ ��������� '���� ������$��� ��
,������ ���� ,��� ��� ����������� ,�� �������� �� �� ������� �� ���� ���� ��
�� ���� ����� �� ��� �������� �$���(�� ���� ,��� �� ��� �� ���� ���� ���������

������������ ��� ��� ���� �� ��� �������� '�� ������� �� ��� �,��� ���� �� ��������
�� ���� ������� ,�� �)������� ,��� �� �����
 �� �� ���� ��� �����$� �� �� ������ ���
,�� ������� ��/����� �� �� ���� ���� ��������� ��� ��/�����
 ���������� $��������
�� ��� ������� �� ,����� ��� ������������ '��� ������� ��������� ��� ��$�� ����
��� ��� ,�� �������
 �������� ���� �������
 ��������� ��� ������ ��� ������ ����
�� ��� ��?� �� ��� ������� ���� �� ��� $���� ,����� ���� �����������
 �� ,� ��
���� ���� �� �������� '��� ������ �� ��� ,�� ������� ����� ������� ,��� ��� ����
��$�� ���� �����
 ���� ��� ������ ��� ���������� �� �� ��� �� ��� �����������
$������ ,��� �������
 �� ,��� �� $������ �� ������� �)���� ���� �)�������
��������� ��� ��� ����������� ,�� �������� �� ��� $������� '��� �� ������� ���
������ �� ��� ����������� ,��� �� $��$������ �� ��� ����������� ,�� ��������
,���� ���� ������ ����� �)������� ���� 8� �������
 ��� ������� ,��� ���� ���
�82� ��/���� ����� ��� �������� � ��������� �)������� ,��� ������

� �	��	���	�� �������

�� �� ��� ���$��������� �� ��� �������� �� ��� ������� �� �$����� ��, ���� ,��� ��
���������� ��� ������������ �� ��� �������� ���$� #�� ��� �� ����������� ���
����
 �� ���,� �� 0����� 6� '��� �� ��� ���$��� ��������
 ,���� � ������ ����
$������� � ��� ����������� �� ��� �������� ��������� �� ���$��� ��� #�� ����
���$�) ��������� ��� �� ����
 ,���� ��� ������������ �� ��� #� �� ������� ��
�,��� ����$� ����� ,���� ��� �*#�� 8�� �)��$� �� ����� �� 0����� 7 ,����
��� ������� �� ������� ���,��� �,� ������ E�, �� ������ ��� ������� �� �� �$$�
������ �$���(� ��������� �� ,� �������� ��� ������ �� � F����� *����$���� ,���� �
��� �� ���$����� ,��� �� ��������� �� $������ � �������
 ��� �������� �� ������
������ ���� �� ���� ������������� ����������� '��� ��,� ���� ������������
�� ���������� ����� �,� $��� �� ��� �������
 ��� $������ ������ ����� $������ ���
������ 0�� �)��$�
 ���$��� � ,����� �� �� � $������ ��� ��� ���$��� � ��
������ ��� $������� '�� ���$����� ������� ���� �� ������� ���� ���� ����� ��
� ���������� ��� �������� �� ��� $������ ��� $������ ��� ���� ��� ����� �� �

���������� ��������� �� ��� ������� �� ��� $������� 2 �������� ���� �� ���� ���
���� ����������+ (����
 � ��� ��������� ��� ����� ,��� ����� �,� $����������
$������ ��,��� �� �������� �� ����� �� ��������� ��� � ��� ��������� ,��� �����
$������ ������� ��������� ��������3 �������
 ���� �������� �� ������ �� ��� ���
������� ������ �� ���� �� $����� ������ ���� ��� ������������ �� ��� ����� ��
��, ��� #� �� �������� ��� �)��������

Task Web Service

Engine

Client

�	
� �� ���������� ����������

'�� ������ ���� �� ���� ���� ���� ��� ������� ����������� ��������� ��
���������� ��� �)������� �� ���� $��� �� ��� #�� *��� ���� ��� ������ ��� ����
����� ��� ����� ,���� �� �� ������������
 ��� ������� ��$��������� ,���� ����
�� �����(�� ��� ��� �)����� ����(������� ,���� ���� �� ���� ��� ��������� '��
���� �� ��� �,��� �� ,��� ��� ����� ����� ��� �����
 �� ,��� ����� ���� ���
������������� '��� �� �������� �� $������ ��������3 �� ����� �� ���������� ��
���������� ���� �� ��� ,��� �� ������� � �� ����� �������� ��� �� ,��� ��
��������� ����� �������� $�������� ,��� � ������� $�������

0����� D ���,� �� �)��$� �� ��, � ���� ���$����� #�
 2 ���� �� �������
�� ��� ���� ����� �������
 C
 G ��� H� 0����� D%�& ���,� ��� ����� #� ,���
(����� D%��& �� D%��& ���,��� ��� ����� ������� ���,� �� ��� �������� ������ C
�� �������� �� ��� �������� �� ��� #� �� �� �� ���� ������ ,���� �)$���� ��
���$���� ��,��� ��� ������� �� �� �������� ���� � ����� ��/���� �� �������� ��
C ��� ������� 2
 ��� (��� ���� �� �� �)������ ,� �� >� ���� > ���$����
 �����
��� �� ��$������ ����� �� ������ C
 ��� ����� �� � ����(������ ��/���� ��� ���
������ �� �� ���� �� G� ���� G �������� ��� ������ �� > ��� � ����(������
 ����
�� �)������ %�� G& ��� �� ���$����� ��� ������ ���� ��� � ����(������ �� H�
2� ����� �� ��� � ��$������� ��� ���� * �� G
 ��� ���� �� $��$������ ���� ��
���� *� ��$�� �������� 2� ��� ��$�� ������� ��� ���� * �� ��� ��� ���$���
 ���
���� �� ��� �������� 2� ������ H
 ���� �B� ��$�� ������� �� ���$��� �� ���������

Task Web Service

Client

Invocation Notification

Engine 1 Engine 2

�	
� �� ����������� ����������

��� ����(������ ���� G �� ���� � �� �)������� 2 ����(������ �� ���� ���� H ��
G �� ���$����� �� � ,���� ������ ��� ��$�� ������� �� ���� * �� �� ���$���
��� ���� ���� * (���� #��$����� �� ���� * ������ � ����(������ �� �� ���� ��
C ,��� ��� ������ ,���� ��� ���� �� ��$�� ��� ���� 0� 8� ���$����� �� ���� 0

��� ���$�� ������� ��� ��� ���$���� ���� 2 �� ���$���
 �� ��� ����� �� ����
�� ��� ������

 !������ "���

'���� ��� ������ �������� �� �!���� ����� �� �����$��� %����� ���$�����I&
��������� ��� �$��������
 ���$����� ��� ������������ ��� �)������� �� #��� '��
�$���(������� ��� ��� ������� ��� ����� � ��(��� :D;� �� ���$��� ��� ����
���� ,��� � ������� $��$���� ��� ������� �)������� ������� ��������� '��
��� �� >������� ������� *)������� <������� ��� ��� �������� %>�*<& :4; ��
�� $������ � �������� ��� �$�������� �������� $������ ��������� ��� ��������
$������ ������������
 ��� �$$�������� ���$���� ���� ��� ��������� �� ��� �����
�� ����� �� � ���$������ �� ��� �$$����� ����� �� >�*< ��� �$�������� ��������
$������ ��������� ��� ���� ����� �� �*#��

<��� �*#� ��� >�*< $������ ���� ��,� �������� $������� �������� �������
$��� ��� �������������
 ����� ���� ����������� ��� ������������ ���������
'���� ������������� ��� ������� ��� ���,��� ��� $������� ����� �$���(�� ���� ��
��� ��������� >�*< ��� ���� �������� �� ��, ��� ������������ �� �����������
,�� �������� �� � ���������� ������� '�� ������������ ����� ,�� ��� ��������
�� �� ������������ '�� ������������ ���� �� ������� ��,���� ��$�����������
���� ���� � ���������� ����� �$�� ,���� � ���� ��� �� ���������� ��� ���� '��
����� �� ���� $�������� � ������������ ��������� ������ �� ��.��� ��$����� ��

tA

tB tF

y y

y

tD

y

tC tE

xx zz

tE

tD

tC

x

y

z

ytB (i) Overall CS

(ii) CS at server X

(iii) CS at server Y

(iv) CS at server Z

tA

tF

x

x

tF

n1

d1

�	
� �� ������ �� � ��

��� ��������� �� �� ��$�� ��� ,���-�, �� � ,��� ���� ���,���� �� ���$������

��� �*#� ���� ���� ,�� �������� ���� ���� ���� ���� ���� � ��� ������ ��
����� ��� ����� �� � ������ ��� �� �������� ,���� ��� ��� �� ��� �� ���� ������
'��� ������ �� � ���� ,���� �� ������ �� ���������� �� ���� ���� ����$������
��� �,� ����� ��� �� �� ������ �� ������� ���� ������������ �� ������� �����

>�*< ����� �� �$�������� � ���� ��� �� �)$���� ������ -�, ���������� ����
�� �������
 A������ ��� ������������ #��������
 ������ -�, �� �*#� �� ��$����
��� �$���(�� ������� ��$���������� '���� ���������� ���� ���� ����� �� ��
��.����� �� �$����� ���$�) $��������� 2������ �����/����� �� >�*< ������
���� �� �)������� ��� �� �������� ,���� ��� �� �������� �� �$����� � $������
�� ���� ��� �������� $������ ������ �� ����� ����J�� �� ������ ���� $��$������
�� ������� ������������ '�� �*#� ���� �� ���� ���$�� ��� ������� ��
�������
 ��,��� ���� ���$��� ��� ����������� $��$������ �� �� ������� :K;�

'���� ��� � ������ �� ������� ������� ,���� ���������� ��� �������������
�� ���$����� �������� $������� ���� �� ��� �������� ��������� ��� �� ���������
���� �� ����� ��� ��������� ���, ��� ����-� ���$���� ��� ���������� �� �*#��

#��)� :	L; �� ,� ���,� $������ ���� ��� ����� ���$����� �������� �$���(��
�� >�*<� �� �� � ���������� ������������ ������3 ���� �� ���������
 ����� ���
������������ �� >�*< ������ 2� ����
 �� ������ �!�� ��� ���� ��� �� -�)������
�� ��$������ ���������
 ��$��������� ��� ��������� ���� �*#� ������� ��
$�������

>��� �0�, :		; ��� >��8$��� :	�; �)$��� ��� ���������� ���$������� ��
�������� ��� ����������� �� � ���������� ������������� ����� ��������� �!����
���� ���� ���� �� �0�, �� ��, ������� ����������� �� �������� ������� ����
�� ���$�(�� ��� �� � ������
 ���� ���, ����� ��������

�*#� ��� ���� �������� �� ��� �� � ��** ����������� �� ��, $���������
��� ���� �� ����������� ���� �)������ �����$���� �$$��������� ���#� :	1; �!���
���� ������ �������� �� �*#�
 ���� �� ������������ ������������ ��� $����
����� ��� ��� ���� ��������� �� ��� ���� ���+ �� �� ��� �������� �� ��� ��
�������� �����,��� ���� �� ��**� #��������
 #2?98' :	4; �!��� $���������
������� � ��** ��$����������
 ��� ���� ��� ��$$��� ����������� �������������
�� ���$����� ���������

2������ �$$����� ,���� ��� ���� �)$���� �� ���� �� �*<0 �*?F :	5;
 �����
�� � ���������� ����� ����� �������� �������� �� ��� ������� � $��� �� $���
������������ ���� ��� $������� ��$$��� ��� �/������� �������� ������� ��� ���
�� ������� ������������ �� ����� ������ �� �*#� �� ����� �� ������ ���� ���
�������������

# $������	�� !�����

�� ���� $�������� ��� ������ ��� ��$���������� �� �*#�+ � ,���-�, ������
���� ������ ��� ����������� *�������� �� #��$����� ��������� 2 ���� �������
�� �*#� �� ��� ��$������� ���,��� �$���(������ �� ������� ���$������� ��� ���
���������� 2 �*#� ������� �$���(������ ��� �� ��$���� ������ ��� ���������� ��
������������ ������������
 ��$������ �$�� ����� ������������� ��/���������� 2
$������$� ��$���������� �� �*#� ��� ���� $�������� ����� ��** �����,����

2 ����� �� ������ �������� �� ����� �����$�� �� $��� �� ��� �*#�� ����
�������� ������+

� @��� ��$�� �������+ �� �� ���� ���� ���� #�� ,� ��/���� ��$�� ���� ����� ��
��!����� $���� �� ��� �)�������� 0�� ���� ������ ,� ��� �����$��� � ������
����� ���� ��������� ,���� ,� ��, ����� �� ��$�� $��������� �� �� ���� ��
��� �)�������� '�� ���� ������� ��� �� ���� �� ��������� ��� �����/����
-�, �� �)������� �� �� $������ �������� ����� ���������

� ���� ��� ?������ ��������+ �� ����� �� ��, ������������ ��������������
�������� ,� �� �����$�� ,���� ,� ���� �� ������� � �������� '���� ,����
������ ����� �������� ��� �� ����� �� ��� #�
 ���� $�������� $�������� �
��� ������������ #�� �� �������� ���� ,�� �������� �������� �������
,���� ��/���� ������� ����� �������������� ������ ���� ��� ?�# ����
�������� ,���� ��� ������ �� $������� ���� �������� �)������ ,�� ���
����� ��� ���� �������� ��� ��, ������ ����������� �� �������� $���������
E�,����
 ,��� ��� ������������ �� ���� ���� �� ����������� $������ ��� ��
�������� ���� �� ������� ���������� ��� ���$��� ������� '���� ,� ��
������������ ��������

� 2������������� ��������+ �������� ,� �� $������� ,���� ��, � ���� %,���
�$$��$����� $����������& �� ��$��
 ������ ��� ��������� �����(���� $��

���� ��(�������� #��� ���� �� ����� ,��� ����������� � ������� ,���� �� ���
�������� ������ ����$� ����� �� ������ ���� ������� �� $��������� '���
���� ����� �� ����� ,���� ����� ��� ������� �$�� ,���� � ������ ���� ��
�,������ � ����(������� '�� ������� ,� $������ ���������� �� ������ ����
���� ��������� ���� ��� ������

� '������������� �� ���$�) ��$��+ 2� $������
 ��� ������ �� ��� �� ����$�
��� ��� -�, �� ���� �� ��� ���������� �� ���< $����� E�,����
 �� � ���$�)
��$� �� ��(��� �� ���< ��� ������ ������ ���� �� � ���� ��) ��� ������
������� ������� (���� �� ��� ���� �� � ��(������ �� ��� ������ �� ��� �� $��
���� � ������� ,���� �� ��� �� ��������� ���$�) ��$�� �� ���� ���� �������
�� ������� ������� '��� �� ���� �� �� ���� ����� C�<'
 ,��� ��� ��������
�� ��� #� $�������� � ���� ����� ���������� ��� �������������� ��/������ 2�
�)��$� ,���� ���� ,��� �� ����� ,��� �� �)�������� ��� ������� ������
���� �� ������� ��$� ���� ,�� �������� ���� ��� ����� ������� ��� ��� �� ��
��� ��$�� �� ������� ��������

%��������������

����������� ,��� =������ 2���� ����(�� ��� ������ '��� ,��� �� $��� ������
�� ��� @� *��?# ����� ����� =?M915K51ML	+ ����������� #� ����������
��� ������� �� F����� *�����������3 �� ��� *���$��� @���� ����� ���A���
��' �LL	 17	�6+ 2�2�' %�����,��� '���������� ��� 2��$���� ��� #��$��
��� ����������� #��$������3 ��� �� ��� @� �'� � ������� $�������� �����
$��A��� N=�������+ �����,��� �������� ��� '��� ��� �������� ?������� ����
��� �� F����� 8������������O� '��� ,��� ,� �� ��������� �� ��� *��?# ������
$��A��� =?M�61	KK+ N'������ #����������� �� ������� F����� 8������������O�

!�&������

:	; �� �� �������
 �� �� ����������� ��� 0� ?���� 2 #8?>2 #��$���� '����
������� ����-�, ������ ��� �������� 2$$��������
 ����� 8� �0�� ���� #�����
���� �� ����������� ������� �������� ��� 8$�� ����������� ����������
 ���
��,��� KD
 %9� ������
 �� ?������
 �� ����J
 ����&
 �$������ F����
 <�����

	KKD
 ��>9 	 D5�11 LDD L
 $$� 1 	D�
:�; �� �� E�����
 �� �� ����������� ��� �� �� �������
 0�)��� ����-�, ���
������� �� ��� 8�*9-�, ������
 ����� �� 5�� �***M8�= ������������ *�
���$���� ����������� 8�A��� #��$����� #��������� %*�8# �LL	&
 ��$������
�LL	
 ������
 $$� D� K��
:1; ��� �������� ������$���� <������� %���<& 	�	����$+MM,,,�,1����M'?M,������
�� ���,�� ��� �LL1
:4; >������� ������� *)������� <������� ��� ��� �������� %>�*<4��& ���
���� 	�	� ���$+MM,,,�,1����M'?M�LL�M98'* ,��	L �LL�L1	4M �� ���,�� ���
�LL1
:5; �>��� �$$������� ������+ ,,,�A��������
:6; @��� �$���(������
 82��� ���$+MM��������M

:7; ?����
 0�
 �����������
 ����
 ��� �������
 ����
 2 <������� ��� �$��������
��� #��$������� �� ?����� ����������� 2$$��������
 	D�� �*** ���� #���� ��
����������� #��$����� �������
 �#�#�KD
 2��������
 ��� 	KKD
 $$� 514 541�
:D; ������ ��� ��� 2���
 ���� �� ,��� ��� -�,+ ��� �������� ���$�������
��������� �)$����
 �*** ��������� �������
 ���M0�� �LL1�
:K; #� ����������
 �� =�������$����
 �� ����� ��� ���� �������
 ����
#������� �� ����-�, �������
 ����� �� 4�� �***M8�= ������������ *����
$���� ����������� 8�A��� #��$����� #��������� %*�8# �LLL&
 ��$������ �LLL

��������
 ��$���
:	L; #��)�+ >�*< 8������������ *������ ���$+MM,,,����)����� �� ���,��
��� �LL1
:		; #�����
 0�
 ������
 ��
 ���
 <�
 ����
 ��
 2� 8$��
 0�)���
 ��� #��(������
������ ��� * ������� #��$�������
 ������ ������������ �������$ �� 2������
������ �� * #������� ��� ��� >���� ����������� �������� �LLL� ��$����
 #�
��������
:	�; >�����
 ��
 ��������
 #�
 �����$$�
 ?�
 ��� 2����
 =
 >��8$���+ #�����
�,��� #��$������
 4�� �*** ������������ #��������� �� #����� #��$������
#������
 @�2�
:	1; ��������
 =�
 0���������
 2�
 ������
 ��<�
 ������� 8������� ����-�,�+
'�� ���#8 0����,���
 ����������� �� *�������� #���������
 2�����
 '�����

�LL1
:	4; #2?98' ����-�, *������ ���$+MM,,,����������M��M �� ���,�� ��� �LL1
:	5; >�������
 >�
 �����
 P�H�
 ��� �����
 ��
 '�� ��� ���� *����������
��� ��� �������� #��$�������
 �*** �������� #��$�����
 �LL1� 7%	&+ $� 4L 4D�

Service Oriented Computing in the context of
Mathematical Software

Yannis Chicha and Marc Gaëtano
chicha@essi.fr, gaetano@essi.fr

I3S/Université de Nice-Sophia Antipolis
ESSI, 930 route des Colles, BP 145

06903 Sophia Antipolis Cedex, France
tel. : +33 (0)492 965 157

fax.: +33 (0)492 965 055

Abstract. This paper explores the possible migration of mathematical
packages to autonomous, platform-independent web services. Mathemat-
ical computing has been a major branch of computer science since the
early ages. Both numerical and symbolic computation brought up many
highly specialized and efficient pieces of software.
Such software can be used to solve a broad variety of mathematical prob-
lems whose applications cover various domains. Unfortunately, most of
these mathematical packages remain unknown from a significant part of
their potential users: too difficult to use for non-specialists, not available
on the user’s platform or environment, or simply not advertised enough,
mathematical packages rarely evolve beyond the stage of prototypes. A
natural way to improve the accessibility of these packages is to turn them
into mathematical web services.
After discussing the problem-oriented nature of mathematical packages,
we present some results in mathematical service discovery. We introduce
examples of ontologies and taxonomies dedicated to mathematical prob-
lem description. Finally, we show the importance of Service Brokering
and Planning in this context and envision how mathematical services
could be exploited in the context of web-based e-business.

1 Introduction

Mathematical computing has been a major branch of computer science since
the early ages. Both numerical and symbolic computation brought up many
highly specialized and efficient pieces of software. This paper explores the possi-
ble migration of conventional mathematical packages to autonomous, platform-
independent mathematical web services, enabling users to access agile mathe-
matical processes that can adapt and respond to high level queries.

Mathematical software can be used to solve a broad variety of problems
whose applications cover various domains such as engineering, medicine, finance,
management, education or even art. Unfortunately, most of these mathematical
packages remain unknown from a significant part of their potential users: too

difficult to use for non-specialists, not available on the user’s platform or envi-
ronment, or simply not advertised enough, mathematical packages rarely evolve
beyond the stage of prototypes. A natural way to improve the accessibility of
these packages is to turn them into mathematical web services, providing:

– automated service discovery based on semantics.
– uniform access to routines.
– composition of services to solve complex problems.

After discussing the problem-oriented nature of mathematical packages and
how this relates to a classical service-oriented design, we present some of the
current results and practices in mathematical service discovery. We also intro-
duce examples of ontologies and taxonomies dedicated to mathematical problem
description. Service brokering and composition planning in the context of math-
ematics are crucial because it is often the case that the same mathematical
problem can be solved by many different packages in many different ways. We
discuss these challenging issues and how to use mathematical problem solving
planners. We then envision how mathematical services could be exploited in the
context of web-based e-business. Finally, before a few concluding remarks, we
present a case study carried out within a European Union funded project called
MONET [1], which aims at demonstrating the application of the latest ideas and
technologies for creating a semantic web applied to the world of mathematical
software.

2 Service-oriented and Problem-oriented computing

The primary application for web services in the world of mathematical software
is to simplify point-to-point integration between systems, thereby allowing the
use of one package from within another. Typical examples include the use of
a highly specialized package from a general purpose computer algebra system
like Maple [2] or Mathematica [3]. For example, [4] describes the use of Bern-
ina functions from Maple. This application, however, only scratches the surface
of the true potential of mathematical web services. Service oriented computing
can enable users to access agile mathematical processes that can adapt and re-
spond to high level queries, through the use of loosely coupled, standards-based
mathematical services. Unlike general web services, mathematical services can be
organized according to the problem they are able to solve. These problems them-
selves can be organized as a tree structure reflecting the natural inheritance be-
tween mathematical problems. For example, Figure 1 shows a sub-classification
for equation solving problems.

Using suitable taxonomies and ontologies, problems solved by mathematical
packages can be unambiguously described and can act as the search keys for
finding mathematical services. Currently, there are only few examples of such
taxonomies (e.g. GAMS [5]) and these have to be developed. In a problem-
oriented environment, the entry point for a computation is the problem to solve
and not the package used to solve it.

Real Coefficients Complex Coefficients

Polynomial Equation Non Polynomial Equation

Single Equation System of Equations

Non Linear EquationsLinear Equations

Solution of Equations

Fig. 1. Problems hierarchy

Figure 2 shows two problems (“solving a differential equation” and “comput-
ing a groebner basis”) possibly solved by a few different packages (using dsolve
and groebner functions). The discovery of a package solving a particular prob-
lem can be done using a special service, which takes as input the description of
a problem and returns a list of matching packages. For example, “computing a
groebner basis” can be done by invoking the “groebner” function of the Maple,
Singular, or Gb packages.

dsolve

Bernina

groebner

Singular

dsolve

groebner

Maple

groebner

Gb

Singular

Gb

Bernina

Maple

dsolve

groebner

Fig. 2. Problem-oriented vs Service-oriented

3 Semantics and Service discovery

Many mathematical applications require precise information on the problem to
solve and data provided. Semantics is useful in this context and essential for
service discovery. Fine details, such as the degree of polynomials involved in a
computation, may make the difference when choosing what service to invoke.

The web services community provides a way to register services to a central
entity to help clients locate appropriate services when needed. The UDDI [6]
standard allows one to describe a service and to provide enough information for
a client to connect to this service. However, a recent study [7] argues that UDDI
– in the context of mathematical web services – does not provide enough support
for precise semantics, and thus can not be used to locate mathematical services.
A “Mathematical Service Matcher” (MSM) should locate services according to
the precise descriptions of the problems they solve. Also, it should be possible
for a MSM to advise clients about services when no exact match is found. Math-
ematical problems are not independent from one another and relationships exist.
One problem A may generalize to another problem B. In this case, if a service
advertises B but not A, the MSM should be able to tell the client that no exact
match was found but the service doing B could be suitable.

Support for these sophisticated search functions are typically provided by
specialized taxonomies, necessary to allow semantic matching for service dis-
covery. This is what OpenMath [8] and Content MathML [9] strive to provide.
OpenMath is a standard for representing mathematical objects with their se-
mantics, allowing them to be exchanged between computer programs, stored in
databases, or published on the worldwide web. MathML is a language, based
on XML and accepted as a W3C recommendation, to represent and manipulate
mathematical objects on the worldwide web just as HTML did for simple text.
MathML Presentation defines a language for presentation in a browser while
Content MathML defines a language for semantics of presented mathematical
objects. Unfortunately, these languages do not describe actions, only objects.
To our knowledge, the Guide to Available Mathematical Services (GAMS) pro-
vides the only existing classification to describe such actions. GAMS is accessible
through a web front-end and allows users to search for mathematical software
that can solve various problems. GAMS is not a web service but illustrates the
needs of the community in terms of distributed computing support for contacting
software that can solve mathematical problems. For any given problem, GAMS
proposes a way to find the solution (e.g. “run Maple and enter the following
commands”). GAMS can be viewed as a simple MSM.

The MONET project creates a framework for describing problems solved by
given services. This framework is flexible enough to accept classifications such as
GAMS, but also provides a way to precisely specify what problem is solved by a
given service (with information such as constraints and relations to other prob-
lems). The Mathematical Problem Description Library (MPDL) is a repository
for mathematical problems. Each problem is a document including well-defined
delimiters (typically XML tags) and supporting various formalisms for describ-
ing manipulated objects (for example, OpenMath). The Mathematical Service

Description Language (MSDL) [10] provides support for describing mathemat-
ical services available in a given environment (usually on the Web). This lan-
guage is used to create a document to link low-level considerations described
by a WSDL [11] document to semantic information expressed by a GAMS or
an MPDL entry. Using such classifications, it is possible to provide a service
matcher with sufficient information for selecting services. In this situation, there
is not only a question of discovering a service that can solve the problem, but
also selecting the most appropriate service. Semantic data helps with this selec-
tion. When the client submits a problem instance to the service matcher, this
problem is expressed using references to entries in databases and repositories
both for the problem itself and its inputs. The service matcher can then query
its base of registered services and list entries that best fit the request.

We now present an example of a problem-oriented description of a mathe-
matical web service using the MONET language. A first step is to define the
problem itself using one type of classification. We choose to provide an entry of
a problem description library as defined in the MONET project. The problem
we describe here is factorInteger, which factors an integer and returns the list
of its primes:

<definitions
xmlns="http://monet.nag.co.uk/monet/ns"
xmlns:om="http://www.openmath.org/OpenMath">

<problem name=factorInteger>
<documentation>
factors an integer and returns the list of its primes.
</documentation>
<header/>
<body>

<input name=n> Integer Type </input>
<output name=p> List of Primes </output>

</body>
</problem>

</definitions>

The documentation provides informal semantics of the problem. The type
of input and output values is expressed using the OpenMath formalism (not
shown here and replaced by type names like Integer Type). At this point, this
problem description does not have any relation with a web service. It is merely
the description of a problem, that could be replaced by an RDF description or
a reference to a GAMS entry.

The next step is the MSDL document. At this point, it is important to note
that this language is very flexible and allows many ways to describe a service.
We provide here a limited but practical view of what appears in a document
written using such a language.

<definitions
xmlns="http://monet.nag.co.uk/monet/ns"
xmlns:om="http://www.openmath.org/OpenMath">

<service name="factorInt">
<classifications>
<problem-reference>
http://monet.nag.co.uk/pdl/factorization.pdl

</problem-reference>
</classifications>

<implementation>
<software>
http://www.medicis.polytechnique.fr/Software/PARI
</software>
<algorithm>
http://monet.nag.co.uk/algorithms/intfact.adl#Shanks

</algorithm>
</implementation>

<service-interface-description
sid-ref="http://www.medicis.polytechnique.fr/PARI/pari.wsdl"/>

<service-binding>
<map operation="factorint" problem-ref="factorInteger" />
<message-construction

io-ref="n"
message-name="factorintRequest"
message-part="in0" />

<message-construction
io-ref="p"
message-name="factorintResponse"
message-part="factorintReturn" />

</service-binding>
</service>
</definitions>

In this document, the service is described by relating a semantic description of
the problem to an implementation (the PARI [12] software) solving (instances of)
this problem. The implementation is usually represented by a WSDL document
(pari.wsdl in the example), while the semantic description is a reference to the
PDL entry. The mapping between both elements is done in the service-binding
section.

4 Mathematical service brokering
and composition planning

The Mathematical Service Matcher can be viewed as a regular service that im-
plements a special functionality in the context of web services. It is a service
that gathers information on other services and makes deductions about them.
The usefulness of this service could be further extended by integrating mod-
ules to control services’ life-cycles and to increase the reasoning power through
communication with specialized services. The resulting service is called a broker
(as defined by the MathBroker [13] or the MONET projects) and may contain
several components: a service matcher, but also an execution manager as well as
a planning manager. These last two elements are described in this section.

4.1 Planning and composition of services

Finding an appropriate service for a given query is the job of the Service Matcher
that would lookup the Registry and return information on a service solving the
submitted problem. Unfortunately, a match is never guaranteed to be found, this
may happen for two main reasons:

– no service solving this problem has been registered yet.
– there exists no service solving this problem.

The issue is similar in the context of interactive mathematical systems and with
libraries. There exists a number of routines available, but users almost never
make just one call of such routines. They rather use a language provided by
the systems to combine the calls of such routines in more complete algorithms
suited to their needs. Mathematical web services only offer interfaces to invoke
one routine or another. We propose to get back the flexibility and usability
of known interactive systems by using the planning environment. A planning
language would allow end-users to build programs combining routine calls. Such
programs would be analyzed for optimization by the Planning Manager and
executed by the Execution Manager.

Plans can be obtained from two sources: human and program. We notice
that, even in a specific area of mathematics, being able to automatically analyze
a problem and produce a plan ”on-the-fly” is very difficult. Obviously, we can
not expect the planning manager to solve any general problem. Most of the
time, it cannot even decide by simply looking at a problem what domain is
involved in a given query. This will depend on the classification chosen by the
client to describe this problem. We can expect, however, that, with sufficient
information, a program may be able to make deductions and produce a plan to
combine solutions to sub-problems in order to produce the expected result for the
submitted problem. We foresee that a more common scenario would be to use
a human-made plans. People manually produce plans using a ”mathematical
plan language” and submit them to the Planning Manager. Also, note that
automatically-generated plans may be submitted to the clients for approval.

Human-made plans are most likely to be widespread because they will cover any
type of operation and may contain “tricks” that can not be inferred by a program.
For convenience and reusability, human-made or automatically-generated plans
can be gathered into repositories that the planning manager can query.

Broker

Services

Manager
Service

"failure"
or list of URIs

Query

List of plans Result

Plan

service discovery
Request for

Query
or plans

Plan
or result

Planners

Plan repositories

Planning
Manager

Client

Execution
Manager

Fig. 3. MONET Architecture in the context of Planning

Figure 3 illustrates the architecture of the planning activity as organized
in the MONET project. Clients send queries to the broker that uses a service
matcher to locate appropriate services. If this does not succeed, the planning
manager contacts planners to obtain mathematical plans to solve the problem
and then creates plans of execution that match the constraints of the query. As
a result of a successful planning activity, one or several execution plans are sent
back to the client and, probably, proposed to the end user. The end user may
then approve one of the plans or even carry out the plan himself/herself.

4.2 Examples of composition

Sequence of services invocations A specific type of simple analysis is to try
and find a reasonable sequence of services invocations. These invocations are
connected together through inputs and outputs. The output of a service would
be used as input for the next one in the sequence. A typical example of such
plan creation is a translation of mathematical object format: the client wants to
convert an object from the OpenMath format into the Maple format. Unfortu-
nately, the service matcher can only find two translation services: “OpenMath
to MathML” and “MathML to Maple”. In this case, deeper analysis would ad-
vise the client an execution plan that first invokes the OpenMath to MathML
service on the original parameter and then the MathML to Maple service on the
intermediate result.

Finding the real poles of a fraction We provide here an example of planning
to solve a mathematical problem that would not typically be available as one
operation exported by a package:

problem: “Find the real poles of”
input: F (X) = X2−X−2

X4+X3−X2+X−2

No package usually provides such operation, so the broker would not find any
service returning the real poles of a fraction. However, it is likely that a plan
exists to solve this problem. Here is an example of such a plan:

problem: “Find the real poles of a rational fraction F (X) = N(X)
D(X)”

steps:
1. extract D(X) the denominator of F (X)
2. compute S = {X1, X2, ..., Xn}, the set of solutions of the equation

D(X) = 0
3. extract the subset R = {Xα1 , Xα2 , ..., Xαk

} of the real values of S

Plans can thus be considered as an orchestration of various mathematical
routines to create “on-the-fly” an otherwise unavailable service. In our example,
an instantiation of the steps would be:

1. extract the denominator: D(X) = X4 + X3 − X2 + X − 2
2. compute the solutions of D(X) = 0: S = {i,−i, 1,−2}
3. extract the subset R of the real values of S

This would lead to the result: R = {1,−2}.

4.3 Composition languages

Plans in the MONET framework are algorithms solving a problem. Queries sent
by the client are typically instances of a problem and algorithms variables have to
be mapped to actual values. Rather than choosing a language such as BPEL [14]
for creating composition, we believe a higher level view is required to express
strategies of computation. In particular, it is important in the context of bro-
kering to be able to abstract plans and allow users to express algorithms rather
than WSCI [15] documents linked to WSDL resources for example. Of course,
an implementation of this system may use a known language, but we would to
make it clear that this model is independent from the language. Therefore, we
classify plans as follows:

– Abstract plans can be considered as “templates” (see [16]). Such templates
contain two types of variables or unknowns: values manipulated by the pro-
cess and methods/services using those values. In the context of mathematical
computation, an abstract plan is really a parameterized algorithm, with no
notion of web services. However, one exception would be fine-grained “config-
uration” of the process. It is reasonable to assume that a plan could specify
certain constraints for a given step (e.g. “should be solved by the fastest
service available”). In this case, a notion of computation by services could
be introduced.

– Resolved plans are documents that can be directly translated into process
documents for execution. For example, a resolved plan could be readily trans-
formed into a BPEL document for execution into a BPEL engine. A resolved
plan does not have any unknown variables (except for variables supposed to
hold intermediate results) and each computing step is associated with a sin-
gle service to invoke. Resolved plans are typically not stored, but are rather
used for execution.

– Unresolved plans correspond to possible intermediate states between abstract
and resolved. A valid unresolved plan contains bindings for certain parame-
ters (variables or operations) but not all of them. Such a state may be useful
for client to store plans in a repository with certain values already provided
(in this case, we could compare such a technique to currifying techniques
in functional programming). Also, certain steps of a plan may require the
invocation of a specific well-known service, which would avoid invoking the
service matcher for this step.

The actual planning language chosen for creating plans is not fixed. It would
be perfectly acceptable to use the language from the Maple system for example.
As long as the various entities of the system agree on using the same language,
the architecture described by the MONET project is valid.

4.4 Executing services

Another task handled by the broker in the MONET framework is the execution
of plans. The output of the Planning Manager is a list of possible plans. Each
plan is annotated at each step by a list of available services to carry out that
step. Execution plans can be handled by a client or by an “Execution Manager”
when the client chooses to delegate this work. The Execution Manager is part
of the broker and is responsible for executing plans. At an implementation level,
there are two possibilities: either the Execution Manager directly executes a
“resolved plan” handling concerns such as transactions, security, and so on, or
or it relies on a third-party composition language such as BPEL into which the
resolved plan is transformed. In both cases, for each step of the resolved plan, the
Execution Manager may be responsible for selecting the service to invoke among
the listed services shown in the annotation of each step of the plan. However,
this task is typically done by the client. The list of services associated with each
step of the plan would thus be used either by the client to select a preferred
service based on criteria such as cost or location, or by the execution manager
to choose a service hosted on a system with acceptable load for example.

We remark that, because the composition language is not fixed, BPEL could
be replaced by the Maple language for example. This would require the Maple
environment to support web services, but it is likely to be the case in the near
future. Obviously, even abstract plans can be expressed using Maple, however
we would like to discuss here the advantage of using a Maple system as an or-
chestration engine. Let us look again at the “Real poles” example in Section 4.2.
There are three steps: extract denominator, solve equation, extract real values.

Two of these steps (extraction of denominator and real values) are very simple
and it would be a waste of resources to invoke operations to perform these steps
(if a service even decides to export such operations). This is a real problem,
because, without those operations, the plan can not be carried out. In this case,
a local computation engine such as Maple could help and perform these steps
locally. The operation “solve equation” can then be done by any given service.

Local computation for trivial operations appears as a very useful feature of
mathematical web services. Whenever an operation can be done locally (what
these operations are can be decided at implementation, deployment or even run-
time), a local computation system can be invoked by the execution engine. The
advantage is also to reduce the number of lookups done by the Service Matcher
(in our example, only a “solve equation” operation has to be searched for).
Using Maple makes local computation very simple to setup, although we believe
it should be possible to link computation engines to the execution manager or
even a BPEL engine through a system of plug-ins.

5 Commercial exploitation

A natural exploitation plan for a company providing several mathematical pack-
ages or libraries would be to offer various types of access to a number of packages.
We can easily imagine ranking mathematical routines from “free” to “expensive”
depending on their quality, efficiency, use of top-of-the-line machine support,
and so on. Certain brokers could go beyond semantic matching and planning by
providing services similar to the ones provided by real-life insurance brokers: a
broker could negotiate access to several services at a low price due to the number
of clients accessing such services. Two types of businesses appear: brokering and
servicing. Both can use the same framework (e.g. MONET), but implementors
are free to offer whatever features they wish.

In the context of commercial exploitation, protocols are required to proceed
with the payment for accessing a service. Payment could be done in a pay-per-
use manner or with a sort of membership. It is rare that a user needs one day
to solve, say, an ordinary differential equation without requiring further similar
computation regularly. That is why we believe that the “membership” model will
be the favorite one when using mathematical services. Note that the use of a
broker and membership business model are entirely compatible. It is reasonable
to assume that users having a membership with a company will want to use
services of this company. However, such a company might also have a broker
that provides access to many services. We believe that membership would cover
the use of at least a group of services rather than a single specific one. In this
case, a query sent with a membership code would handled by the broker and
answers can be provided. Of course, this raises the question of security, which
could be ensured via tools such as WS-security [17]. We remark, though, that as
for orchestration of web services, security has not yet be standardized and it is
likely that any solution could be chosen at this point.

As far as commercial exploitation is concerned, web services provide a new
and more flexible way for institutions to market products. Let us take the case
of a research center or a university. Many products of these environments are
far beyond simple “alpha” version, and could very well be sold to the public.
Sometimes this is not done simply because the cost and difficulty to market and
distribute a piece of software is prohibitive. In the case of web services, and in
the world of mathematics in particular, offering computation routines on a com-
mercial basis would be possible. We can imagine that a research group provides
access to its broker and all services for a fee covering the cost of maintaining
quality access to such services. This allows individual services to become much
more visible than they could have been as “stand-alone” applications. This sit-
uation is obviously not specific to mathematics, but is clearly one important
aspect of dissemination of mathematical knowledge in today’s industry. For ex-
ample, analysis engine are difficult to construct and a possible business model
would be to provide such an engine in the form of a MONET planner that can
be contacted – for a fee – by the planning manager to obtain a plan of execution
of quality.

6 From software to services

Because mathematics are so fundamental, numerous packages have been devel-
oped for both numerical and symbolic computation. Although created in an
academic context, most of them are fully documented and regularly updated
and some became well-known, commercial products, like Maple and Mathemat-
ica for symbolic computation, and the NAG libraries for numerical computation.
On hot topics, one can find many different packages solving the same problem.
For example, Gb [18], Singular [19], and Macaulay [20] offer very efficient rou-
tines to compute Groebner bases.

In the context of the MONET project, we are experimenting with a few sym-
bolic mathematical packages, including Bernina, an interactive interface to the
Sum^it [21] library. This library provides some efficient computations revolving
around differential operators in Q[x, d/dx] or Q(x)[d/dx]. A detailed presenta-
tion of this experiment can be found at [22].

Certain functions of Bernina would better benefit to the community if ex-
posed as web services. Such functions – efficiently implementing non-trivial al-
gorithms related to differential operators – solve very specific problems. Simple
access to them (i.e. in a standard way and without installing the software) will
increase the visibility and reachability of Bernina.

As for many existing applications, one obstacle for providing web service
access to Bernina’s functions is that they are implemented using Aldor [23] that
does not provide web services functionalities like Java or a .NET language do.
Consequently, they should be considered as closed source (i.e. a black box) and
adding a web service capability to Bernina is difficult. Also, the formats (Maple
or Lisp) of the manipulated objects are known but not standard. That can make
using these functions more complicated within non-Maple-compliant software.

In our current experiments, our solution is to use MONET languages to
expose Bernina’s functions as mathematical web services. OpenMath has been
selected to represent objects, because this is a standard language for this purpose.
Finally, there is no need to modify the code of Bernina (even re-compilation is
not necessary), because we are wrapping its functionalities into a Java program.
The Java front-end allows us to “import” Bernina into the world of web services.
In the OpenMath terminology, such a wrapper is called a phrasebook.

7 Conclusion

Most mathematical packages are mainly designed for interactive use. Linking
these programs into a separate environment, or calling them from another pack-
age is difficult or sometimes impossible. Mathematical web services would solve
this problem by potentially unifying all kinds of mathematical software, tools
and services in a common framework where all components would be able to com-
municate with one another in an appropriate way. The main problem remains
to create suitable taxonomies to describe unambiguously the various mathemat-
ical problems a mathematical software can solve. Another important issue is to
provide tools to help users to complex problems using a combination of services.

Service-oriented computing applied to mathematics will have positive bene-
fits on anybody using mathematical computation. This includes much of science
and engineering, and indeed many other areas such as finance or health. Instead
of developing self-contained systems needing large amount of infrastructure like
user interface, help system or graphical output facilities, mathematical software
manufacturers could concentrate on and produce small, highly-specialized appli-
cations which could be accessed through a variety of systems ranging from large
problem solving environment to spreadsheet program. Service-oriented comput-
ing could allow the many small, specialized packages developed by the academic
research community to be brought to market in a profitable way.

Acknowledgment

This work is partially supported by the European Monet project (IST-2001-
34145).

References

1. The MONET Consortium, MONET Home page: Mathematics on the Net,
http://monet.nag.co.uk

2. Maplesoft, http://www.maplesoft.com
3. Wolfram Research, http://www.wolfram.com/products/mathematica
4. Manuel Bronstein, The BERNINA User Guide,

http://www-sop.inria.fr/cafe/Manuel.Bronstein/sumit/berninadoc

5. National Institute of Standards and Technology, GAMS: Guide to Available Math-
ematical Software, http://gams.nist.gov

6. OASIS, Universal Description, Discovery and Integration of Web Services,
http://www.uddi.org/.

7. Mike Dewar, David Carlisle, Olga Caprotti, Description Schemes For Mathematical
Web Services, Electronic Workshops in Computing, Oxford, 2002.

8. John Abbott , Angel Diaz , Robert S. Sutor, A report on OpenMath: a protocol for
the exchange of mathematical information, In ACM SIGSAM Bulletin, volume 30,
number 1, pages 21-24, 1996.

9. W3C, W3C Math Home, http://www.w3.org/Math
10. Stephen Buswell, Olga Caprotti, Mike Dewar, Mathematical Service Description

Language: Final Version, The MONET Consortium, Deliverable D14. Available
from http://monet.nag.co.uk

11. W3C, Web Services Description Language (WSDL) 1.1,
http://www.w3.org/TR/wsdl.html.

12. Henri Cohen & al, PARI/GP, http://www.math.u-psud.fr/~belabas/pari.
13. Olga Caprotti, Wolfgang Schreiner, MathBroker overview, Project Report, RISC-

Linz, Johannes Kepler University, Linz, Austria, November 2002.
14. BEA Systems, IBM, Microsoft, SAP AG, Siebel Systems,

Business Process Execution Language for Web Services version 1.1, Available from
http://www-106.ibm.com/developerworks/library/ws-bpel

15. BEA Systems, Intalio, SAP AG, Sun Microsystems,
Web Service Choreography Interface (WSCI) 1.0 Specification, Available from
http://wwws.sun.com/software/xml/developers/wsci

16. Biplav Srivastava, Jana Koehfler,
Web Service Composition – Current Solutions and Open Problems,
Workshop on Planning for Web Services, Trento, 2003, available at
http://www.isi.edu/info-agents/workshops/icaps2003-p4ws/program.html).

17. IBM, Microsoft, Verisign,
Specification: Web Services Security (WS-Security) Version 1.0, Available from
http://www-106.ibm.com/developerworks/library/ws-secure

18. Jean-Charles Faugère, Gb, http://www-calfor.lip6.fr/~jcf/Software/Gb
19. G.-M. Greuel, G. Pfister, and H. Schönemann,

Singular 2.0. A Computer Algebra System for Polynomial Computa-
tions. Centre for Computer Algebra, University of Kaiserslautern (2001).
http://www.singular.uni-kl.de.

20. David Eisenbud, Daniel R. Grayson, Michael E. Stillman, Bernd Sturmfels,
Computations in algebraic geometry with Macaulay 2, Springer-Verlag, September,
2001, n.8 in ”Algorithms and Computations in Mathematics”, ISBN 3-540-42230-7.

21. Manuel Bronstein, SUM-IT: A strongly-typed embeddable computer algebra library,
in Proceedings of DISCO’96, Springer LNCS 1128, 22-33.

22. Yannis Chicha, Marc Gaëtano, Putting Bernina on the Web, Mathematics on the
Semantic Web Workshop, Eindhoven, 2003.

23. Aldor.org, http://www.aldor.org, 2001-2003.

An ontology-based method for classifying and

searching e-Services ?

D. Bianchini, V. De Antonellis and M. Melchiori

Università di Brescia
Dip. Elettronica per l’Automazione

Via Branze, 38
25123 Brescia - Italy

bianchin|deantone|melchior@ing.unibs.it

Abstract. While the Service Oriented Architecture paradigm is beco-
ming mature and e-Services are being made available on the Web, there is
the need for organizing them according to semantic aspects for discovery
purposes. In this paper, we propose an ontology-based method to classify
e-Services into three different layers according to semantic relationships
that can be semi-automatically derived from the e-Service descriptions.
The resulting ontology architecture can be exploited to allow the search
and discovery of services on the basis of the defined semantic relation-
ships.

1 Introduction

The Web is rapidly evolving its functionality from document to service oriented.
E-Services offered on the Web are independently published by different providers
and, according to the Service Oriented Architecture (SOA [8]), users can request
and access a wide variety of e-Services with desired capabilities. E-Services sati-
sfying user preferences and constraints are selected, possibly by means of brokers,
looking for them in a Service Registry. To facilitate service discovery two main
research issues have to be addressed: (i) services organization and classification
according to semantic properties at different levels of abstraction; (ii) service
semantic search on the basis of their essential features.

In this framework, the availability of an e-Service conceptual model and the
construction of e-Service ontologies are particularly relevant.

DAML-S [2] has been proposed in the Semantic Web community for semantic
description of e-Services whose content is expressed in terms of domain concepts
contained in a domain ontology. DAML-S has been adopted in several proposals
in the literature [12–14]. A series of DAML-S weak points due to the imprecise
underlying conceptual model are discussed in [15].

In the Italian MAIS (Multichannel Adaptive Information Systems) project [10]
we have defined a comprehensive modeling approach for supporting dynamic and

? This work has been partially supported by the Italian VISPO (Virtual district
Internet-based Service PlatfOrm [16]) and MAIS (Multichannel Adaptive Informa-
tion Systems [10]) projects.

flexible composition of e-Services in a multichannel environment. The proposed
conceptual model [1, 5] covers: (i) functional aspects, in terms of operations, I/O
parameters, pre- and post-conditions; (ii) non-functional aspects, in terms of
quality dimensions; (iii) specific contextual aspects, in terms of user preferences,
location, devices and channels.

In this paper, for service classification we focus on functional and behavioral
aspects and abstract them into I/O descriptors and pre-/post-conditions [3].
Our aim is to provide a semi-automated method to build e-Service ontologies in
a domain, where similarity, equivalence and generalization relationships among
services are established. Given the ontology, service semantic search can be per-
formed by exploiting the defined semantic relationships.

This paper is organized as follows. Section 2 proposes a conceptual model for
e-Services. Section 3 introduces a reference example to show an application of our
approach. In Sections 4 and 5 our approach to organize and classify e-Services in
a Service Ontology is presented. Section 6 explains how service semantic search
is performed by exploiting the Service Ontology. Finally, conclusions and future
work are discussed.

2 E-Service Model

For classification and discovery purposes, the description of the e-Service ca-
pabilities needs to express functional aspects (“what the e-Service does”, in
terms of operations, input and output properties, pre-/post-conditions) and non-
functional aspects (for instance, features describing the quality of service). The
e-Service description has to be understandable by humans as well as by ma-
chines, providing such descriptions both at syntactic and at semantic level. A
part of the MAIS e-Service model, here limited to the functional description, is
shown in Figure 1.

An e-Service is described by means of a name that identifies it, a short textual
description that helps human reader to understand what the service does and
a service category (e.g., Financial and Insurance service or Travel service),
according to the classification proposed by UNSPSC [7]. An e-Service is also
characterized by a FunctionalDescription, composed by:

– a set of Operations, with a name and a short textual description to help
the human reader to understand “what the operation does”;

– each operation requires one or more Inputs and gives back one or more
Outputs; input and output parameters are described by means of a name

and a range of admitted values;
– each operation is associated with a set of Pre-conditions, which must be

verified before the execution of the operation, and a set of Post-conditions,
which must be satisfied after the execution; each Pre- and Post-condition

is characterized by a boolean expression representing the statement that
must be verified; pre- and post-conditions can be assigned also to the whole
e-Service;

−name
−description
−category

EService

FunctionalDescription

−name
−description

Operation

1..n

−name
−value

I nput
−name
−value

Output

1..n 1..n

hasI nputs hasOutputs

−expression
Pre−condition

−expression
Post−condition

1..n

1..n

1..n

1..n

−name
−type

Event

1..n

1..n

Compatibil ityClass

1..n

1..n

−name
−description
−category

AbstractEService

hasAssociated

0..1

0..n

0..n

I s−a

equivalent−to

similar−to

Fig. 1. E-Service conceptual model

– external Events are used to model actions that are asynchronous with re-
spect to the normal flow of the e-Service; each event has a name that identifies
it and a type such as temporal or data event (an example of temporal event
is a timeout that occurs during the execution of an operation).

Three types of semantic relationships between e-Services (is-a, similar-to,
equivalent-to) are established through evaluation of similarity coefficients as ex-
plained in Sections 4 and 5. Furthermore, e-Services are grouped into Compa-

tibilityClasses for substitutability purposes. In fact, a compatibility class
is associated with an AbstractEService, that is used to specify the required
features of a service in a process-based composition [3].

3 Reference example

In this section, a reference example is introduced to illustrate the main aspects
of our approach to the classification and search of services. We consider four
e-Services in the domain of the weather that allow the users to ask for weather
forecasts and other related services. According to the functional model intro-
duced in the previous section, for each service we describe the operations that the
service provides, its input and output entities and its pre- and post-conditions,
as it is shown in Table 1.

In particular, the first service (called Simple Weather Forecast service) re-
quires that a valid account is specified through the userAuthentication operation
and provides the description of the weather forecast and the temperature range
for a given city in a given country (through the execution of the weatherFore-
cast operation). The service pre-condition, described by means of a propositional
logical formalism, requires that the account given as input is valid and that the
given city belongs to the specified country. The post-condition describes the ef-
fects of service execution: that is, the output parameters describe the weather
forecast, the high temperature, the low temperature in the given city for the
following day.

The second service (Weather Forecast service), besides the weather forecasts
and the high and the low temperatures, provides also weather maps. The pre-
condition requires that the input specified city is in the given country. The post-
condition describes the output: forecastDescription, minTemp and maxTemp are
respectively the wheater forecast, the high temperature and the low temperature
for the following day for the specified city. The map parameter is the weather
map for the specified input country.

The third service (Worldwide Weather service) has a single operation 48Hours-
Forecast that takes as input a city name (or, as an alternative, a ZIP code) and
a country name, and returns a weather forecast, valid for the next 48 hours, and
the expected low and high temperatures. The post-condition describe the results
as in the previous services, while the pre-condition requires that either the city
or the ZIP code are related to the country.

Finally, the Weather Photo&Map Archive service allows users to access to
a repository of satellite weather photos and weather maps (for every day since

01/01/1998 to the current date). In particular, the getSatellitePhoto operation
takes as input a region and a date and returns the photo of the region in the given
date. Analogously, the getWeatherMap operation returns the weather map of the
specified region in the required date. Pre-condition states that input parameters
are to be valid, while post-condition describes that the output maps or photos
are correctly related to the input region and date.

Simple Weather Forecast service

Operation I/O entities Pre- and Post Conditions

userAuthentication I=user,password PreC≡ belongs(city,country) and validAccount(user, password);
O=answer PostC≡ forecastDescription = tomorrowWeather(city, country)

weatherForecast I=city,country and highTemperature = tomorrowHighTemperature(city, country)
O=forecastDescription, and lowTemperature = tomorrowLowTemperature(city, country);
highTemperature,
lowTemperature

Weather Forecast service

Operation I/O entities Pre- and Post Conditions

weatherForecast I=city,country PreC≡ belongs(city,country);
O=forecastDescription, PostC≡ forecastDescription = tomorrowWeather(city, country)
map, minTemp, and map = subject(country) and isWeatherMap(map)
maxTemp and minTemp = tomorrowHighTemperature(city, country)

and maxTemp = tomorrowLowTemperature(city, country);

Worldwide Weather service

Operation I/O entities Pre- and Post Conditions

48HoursForecast I=city,ZIP,country PreC≡ (belongs(city,country) or belongs(ZIP,country));
O=description, high, PostC≡ ((description=
low 48HoursForecast(city, country)) and

(high = 48HoursHighTemperature(city, country)) and
(low = 48HoursLowTemperature(city, country))) or
((description=48HoursForecast(ZIP, country)) and
(high = 48HoursHighTemperature(ZIP, country)) and
(low = 48HoursLowTemperature(ZIP, country)));

Weather Photo&Map Archive service

Operation I/O entities Pre- and Post Conditions

getSatellitePhoto I=region, date PreC≡ validRegion(region) and ValidDate(date)
O=photo and (01/01/1998≤ date ≤ currentDate());

PostC≡ ((map = subjectRegion(region))
and (date = MapDate(map)) or

getWeatherMap I=region, date ((photo = subjectRegion(region))
O=map and (date = PhotoDate(photo)));

Table 1. Functional descriptions for the example services

4 E-Service semantic similarities

In this section, we present an approach to analyze e-Services and establish se-
mantic relationships among them for the service ontology construction. To this
purpose, we define criteria and techniques for e-Service semantic analysis. This
analysis is performed on properly defined Descriptors providing information on
essential e-Service features.

Specification of the e-Service interface with I/O Descriptors. A service I/O de-
scriptor provides a summary, structured representation of the features of an
e-Service that are relevant for similarity assessment.
A descriptor is formally described as a service name and a set of triplets:

〈operation (OP), input entities (IN), output entities (OUT)〉

Example 1. The descriptor for the Simple Weather Forecast service obtained
from its functional description is the following:

SERVICE Simple Weather Forecast

OPERATION userAuthentication

INPUT user

INPUT password

OUTPUT answer

OPERATION weatherForecast

INPUT city

INPUT country

OUTPUT forecastDescription

OUTPUT highTemperature

OUTPUT lowTemperature

Specification of the e-Service behavior with Pre- and Post-condition Descriptors.
The behavior of an e-Service is described by pre-condition and post-condition
descriptors that give a characterization of the e-Service semantics and in parti-
cular provide complementary information with respect to the I/O descriptors.
In general, pre- and post-conditions can be associated to the whole service but
also to the single operations of the service. For classification and searching pur-
poses, in this paper we consider pre- and post-conditions associated to the whole
service. For composition and substitutability purposes, pre- and post-conditions
at single operation level are considered in [3].

4.1 Interface similarity analysis

Given the descriptors of two services, we establish their similarity according to
the ratio of (i) similar input/output entities and (ii) similar operations. For this
purpose, we compare e-Services on the basis of the analysis of their descriptors
and therefore of their interfaces. E-Services are matched and clustered with
respect to similarity coefficients computed by the artemis tool environment [3,
4] and presented in the following. A more extended discussion on the feasibility of
the similarity analysis and relevant experimentation have been presented in [6].

– Entity-based similarity coefficient. The Entity-based similarity coefficient of
two e-Services Si and Sj , denoted by ESim(Si, Sj), is evaluated by comparing
the input/output information entities in their corresponding descriptors.

In particular, names of input and output entities are compared to evalu-
ate their degree of affinity A() (with A() ∈ [0, 1]). The affinity A() between
names is computed exploiting a thesaurus of weighted terminological rela-
tionships (e.g., synonymy, hyperonymy). To cover the terminology used in
the descriptors two different alternatives are possible in artemis: to use a
pre-existing, domain independent basic ontology, such as WordNet, or to use
an hybrid ontology that is a thesaurus containing both terminological rela-
tionships extracted from WordNet and terminological relationships supplied
by the domain expert.

Two names n and n′ of entities have affinity if there exists at least one path
of terminological relationships in the thesaurus between n and n′ and the
strength of path is greater or equal to a given threshold.

The higher the number of pairs of entities, one from the first service and
one from the second, with affinity, the higher the value of ESim for the
considered e-Services.

– Functionality-based similarity coefficient. The Functionality-based similarity
coefficient of two e-Services Si and Sj , denoted by FSim(Si, Sj), is evaluated
by comparing the operations in their corresponding descriptors. Also in this
case, the comparison is based on the affinity A() function.

Two operations are similar if their names, their input information entities
and output information entities have affinity in the thesaurus. The similarity
value of two operations is obtained by summing up the affinity values of their
corresponding elements in the descriptors.

The value of FSim coefficient is such that the higher the number of pairs of
operations, one from the first service and one from the second, with simila-
rity, the higher its value for the considered e-Services.

Finally, a global similarity coefficient GSim for each pair of services Si and
Sj is evaluated by taking a weighed sum of ESim(Si, Sj) and FSim(Si, Sj),
that is a measure of their level of overall similarity.

Example 2. Table 2 presents the results of the interface similarity analysis, evalu-
ated, with the support of artemis, on the services of our example. In particular,
the e-Services Simple Weather Forecast service, Weather Forecast service and
Worldwide Weather Service show an high similarity because of the relevant ratio
of input entities with affinity, output entities with affinity and the similarity of
their operation (names and parameters). On the contrary, the e-Service Weather
Photo&Map Archive service has low similarity with the other ones, since it has
few pairs of Input/Output entities that have affinity with Input/Output entities
of the other services and no similar operation.

4.2 Behavior similarity analysis

The behavior-based analysis complements the interface similarity analysis taking
into account also the information on the behavior of the whole service in terms

e-Service1 e-Service2 GSIM

Simple Weather Forecast service Weather Forecast service 0.7

Simple Weather Forecast service Worldwide Weather Service 0.6

Simple Weather Forecast service Weather Photo&Map Archive service 0.1

Weather Forecast service Worldwide Weather Service 0.7

Weather Forecast service Weather Photo&Map Archive service 0.2

Worldwide Weather Service Weather Photo&Map Archive service 0.1

Table 2. Global similarity coefficients for the example services

of pre- and post-conditions. The analysis relies on the ideas of [17] for the spe-
cification and matching of software components, adapted to establish similarity
relationships among e-Services on the basis of service behavior analysis.

A service Si has exact-behavior-similarity with Sj (Si E-BSIM Sj) if: (i) they
are similar according to the interface similarity analysis; (ii) the pre-conditions of
Si are logically equivalent to the pre-conditions of Sj ; (iii) the post-conditions of
Si are logically equivalent to the post-conditions of Sj . The rationale is that the
services match if their descriptors are similar and the pre- and post-conditions
are equivalent, that is, we could use Si in place of Sj and viceversa. However,
the exact-behavior-similarity is a strict requirement, so a weaker relation is in-
troduced.

A service Si has partial-behavior-similarity with Sj (Si P-BSIM Sj) if: (i) they
are similar according to the interface similarity analysis; (ii) the pre-conditions
of Si logically imply the pre-conditions of Sj ; (iii) the post-conditions of Sj

logically imply the post-conditions of Si.

The rationale is that Si partially matches Sj if their descriptors are similar
and the execution of Sj can substitute the execution of Si. In fact, if the pre-
conditions of Si are satisfied before its execution then also Sj pre-conditions are
satified, and the execution of Sj has effects that make true the Sj post-conditions
and therefore satisfy also the Si post-conditions.

Example 3. In our reference example no exact-behavior-similarities are establi-
shed since there is no couple of services with logically equivalent pre- and post-
conditions. Instead, a partial match is present: Simple Weather Forecast ser-
vice has partial-behavior-similarity with Weather Forecast service since the fol-
lowing conditions are valid: (i) Weather Forecast is similar to Simple Weather
Forecast according to the interface similarity analysis; (ii) pre-condition of Sim-
ple Weather Forecast logically implies the pre-condition of the Weather Fore-
cast service; (iii) post-condition of Weather Forecast logically implies the post-
condition of the Simple Weather Forecast service. The intuitive meaning is that
the Weather Forecast output includes the output of Simple Weather Forecast and
the input of Simple Weather Forecast is suitable to run correctly the Weather
Forecast; that is, Weather Forecast can replace Simple Weather Forecast.

5 Ontology-based e-Service semantic classification

According to similarity analysis, we are able to introduce semantic relationships
among e-Services and classify e-Services on the basis of their descriptions.

The result of this classification is a domain service ontology that organizes
e-Service specifications in different layers (see Figure 2).

Interface similarity layer. In the interface similarity layer, we find sets (clu-
sters) of semantically related e-Services on the basis of measured similarity of
their interfaces. E-Services are matched and clustered with respect to the global
similarity coefficients that are computed by the artemis tool environment [4].

In artemis a hierarchical clustering algorithm [9] is used to determine clu-
sters based on the strength of global similarity established among e-Services.
In particular, similarity thresholds can be properly set and experimented in
the artemis tool environment to provide different levels of compatibility under
different perspectives. Between each pair of services Si and Sj occurring in the
same cluster, a Si similar-to Sj relationship is added in this layer.

Behavior similarity layer. In the behavior similarity layer, we organize e-Services
according to behavior-similarity relationships. Association links are maintained
between e-Services in this layer and corresponding clusters in the interface si-
milarity layer. The behavior similarity layer is constituted by e-Services and
semantic relationships among them, according to the following rules:

– if (Si E-BSIM Sj) holds, then a Si equivalent-to Sj relationship is added
in this layer;

– if (Si P-BSIM Sj) holds and there is no E-BSIM between Si and Sj , then a
Sj is-a Si relationship is added in this layer.

Category layer. In the category layer, service categories provide topic-based
views of the e-Services considered in the ontology and are useful to guide the
e-Service searching. We adopt the UNSPSC taxonomy as the hierarchy of ser-
vice categories to classify the e-Services in our ontology. The UNSPSC taxono-
my is structured as four hierarchical levels of categories. Association links are
mainteined between a leaf category and the e-Services belonging to it in the
underlying layers. In particular, if we consider a group of e-Services in the be-
havior similarity layer, that are all connected by a path of relationships (is-a,
equivalent-to), we choose the more general e-Service (if one) or one of the more
general e-Services and associate it to the corresponding category. If an e-Service
is not represented in the behavior similarity layer, an association link connects
its occurrence in the interface similarity layer to the corresponding category in
the category layer.

Example 4. To illustrate an example of service classification into the domain
service ontology, we refer to our reference example. The resulting portion of
ontology, concerning to the four weather forecast services, is shown in Figure 2.

Weather Forecast

Category
Layer

Behavior
Similarity
Layer

Interface
Similarity
Layer

Engineering and Research and
Technology Based Services

Simple Weather Forecast

Management and Business
Professionals and Administrative
Services

Public Util ities and Public
Sector Related Services

IS−A

ASSOCIATED−TO

EQUIVALENT−TO
UNSPSC category

Serv ice

Cluster

SIMILAR−TO

Earth Science Services

Meteorology

Meteorological Services

Weather Forecast Wordlwide WeatherSimple Weather Forecast Weather Photo & Map Archive

Fig. 2. Example of domain service ontology.

The clusters of services obtained by means of the clustering functionality of
artemis (posing the threshold to select clusters equal to 0.6) and reported in
the Interface Similarity Layer are { Simple Weather Forecast, Weather Forecast,
WorldWide Weather} and {Weather Photo & Map Archive }. The composition
of the first cluster indicates that Simple Weather Forecast service, Weather Fore-
cast service and Worldwide Weather service are very similar. At the behavior
similarity layer a Weather Forecast is-a Simple Weather Forecast relationship
is added since Weather Forecast service has a partial-behavior-similarity with
Simple Weather Forecast service. The Category Layer is illustrated by showing
a portion of the UNSPSC taxonomy with the category to which the weather
e-Services belong.

6 Ontology-based e-Service semantic search

The e-Service semantic search is performed by matchmaking a user service re-
quest against e-Services descriptions in the e-Service Ontology. In literature,
the problem of searching services through matchmaking between service re-
quirements and advertisement has been addressed in several approaches (see
for example [11] and [14], where both functional and non-functional features are
considered). In [13] requirements and suggestions about e-Service matchmaking
process are provided. In this section, we present our approach based on the use

of the different semantic relationships in the Service Ontology. In the Service
Ontology an e-Service is described by a frame as illustrated in Table 3.

Feature Description

Name The name of the e-Service
Category The list of categories in which the e-Service is

classified
Operations A set of 5-uples 〈operation name, inputs,

outputs, pre-conditions, post-conditions〉, one for each
e-Service operation

Pre-conditions The set of pre-conditions applied to the whole e-Service
Post-conditions The set of post-conditions applied to the whole e-Service
Is-a The names of e-Services with which

the current one has an is-a relationship
(that generalize the current one)

Equivalent-to The names of e-Services with which
the current one has an equivalent-to relationship

Similar-to The names of e-Services with which
the current one has a similar-to relationship

Web-link The URL of the e-Service

Table 3. E-Service frame structure.

Each e-Service is characterized by means of a set of features that are ex-
ploited during the matchmaking process: the name of the e-Service, one or more
categories in which the e-Service is classified (according to UNSPSC taxono-
my), the description of its operations (with name, inputs, outputs, pre- and
post-conditions), the sets of pre- and post-conditions associated to the whole
e-Service and the name of other e-Services with which it has a is-a, equivalent-to
or similar-to relationship.

Example 5. The Simple Weather Forecast service in Table 1 could be represented
through the following frame structure:

Name: Simple Weather Forecast
Categories: {Meteorological services}
Operations: {〈weatherForecast, {city, country}, {forecastDescription,

highTemperature, lowTemperature}, { }, { }〉,
〈userAuthentication, {user, password}, {answer}, { }, { }〉 }

Pre-conditions: {belongs(city,country) and validAccount(user, password)}
Post-conditions: {forecastDescription = tomorrowWeather(city, country)

and highTemperature = tomorrowHighTemperature(city, country)
and lowTemperature = tomorrowLowTemperature(city, country)}

Is-a: {}
Equivalent-to {}
Similar-to {WorldWide Weather, Weather Forecast}
Web-link {http://www.nws.noaa.gov/}

Looking for a certain e-Service, the e-Service Ontology can be used with
different modalities by exploiting the relationships between e-Services.

Category-driven search. The user can browse the service categories in the
UNSPSC taxonomy and find e-Services classified in such categories.

Keyword-driven search. Users can specify one or more keywords to locate
e-Services concerned with such topics. The submitted keywords are matched
against the e-Service names, the names of their operations and their input
and output entities with the help of artemis basic ontology of terminological
relationships (synonyms, hypernyms and hyponyms). The user can formulate
a query with one or more keywords to specify what e-Services he’s looking
for. The Domain Knowledge Ontology is exploited to find terms used to
describe the e-Services and such terms are then matched with names of e-
Services, operations, input and output parameters in the Service Ontology
to find those the user is searching.

Similarity-driven search. One of the advantages in using an ontology for
searching purposes is the possibility to go beyond the syntactic description
of a service by considering also semantic aspects. Exploiting the semantic
relationships (is-a, equivalent-to, similar-to) it is possible to find a set of
semantically related e-Services from a functional point of view. Semantic
relationships express different levels of interface and behavior similarity and
provide users with the capability of selecting within this set the e-Service
best fitting other non functional requirements. For example, among several
functionally similar e-Services, an user can select that are provided on a
desired channel (e.g., Web) with desired quality levels.

Example 6. Suppose that the user browses the UNSPSC taxonomy and navi-
gates using a category-driven search

Engineering and Research and Technology Based services

Earth Science services

Meteorology

Meteorological services

The Meteorological services category is chosen and the e-Services shown
in Table 1 are presented to the user.

Example 7. Now suppose that the user specifies the following keywords

weather + forecast + temperature

In the basic Ontology the following terminological relationships are defined:

forecast BT weatherForecast

temperature BT highTemperature

temperature BT lowTemperature

forecast SYN forecastDescription

weather RT weatherForecast

where: BT = BroaderThan, SYN = Synonymous, RT = RelatedTo. A query

weather + forecast + temperature + weatherForecast +

highTemperature + lowTemperature + forecastDescription

is then formulated on the Service Ontology and it is matched with e-Service
names, names of operations, input and output parameters. Suppose that the e-
Services that better match this query are the Simple Weather Forecast and the
Weather Forecast service. The user can start from these results and visit other
e-Services through semantic relationships, as explained above.

7 Conclusion and future work

In this paper we have presented an ontology-based method for classifying and
searching e-Services by means of semantic relationships of equivalence, similarity
and generalization established in a semi-automated way. Exploiting these rela-
tionships, semantic search can be performed. Given an user request, it is possible
to locate groups of e-Services satisfying it from the functional point of view. The
choice of the best one can then be done on the basis of non-functional aspects.
Specifically, one of the major issues to be considered in future work is related
to the possibility of classifying e-Services according to selected non functional
aspects, for example on the basis of categories of quality parameters and user
profiles.

References

1. M. Adorni, S. Bandini, L. Baresi, D. Bianchini, V. De Antonellis,
D. Micucci, B. Pernici, P. Plebani, C. Simone, G. Vizzarri, F. Ti-
sato. Model Requirements: Architectural Model, Functional Model, Con-
text Model, Metamodel. MAIS Technical Report R1.3.1, May 2003.
http://black.elet.polimi.it/mais/documenti/pdf/reportWP1 32.pdf.

2. The DAML Services Coalition (A. Ankolenkar, M. Burstein, J. R. Hobbs, O. Las-
sila, D. L. Martin, D. McDermott, S. A. McIlraith, S. Narayanan, M. Paolucci,
T. R. Payne, K. Sycara). DAML-S: Web Service Description for the Semantic
Web. In Proc. of the First Int. Semantic Web Conference, ISWC2002, Sardinia,
Italy, 2002.

3. V. De Antonellis, M. Melchiori, P. Plebani. An Approach to Web Service compa-
tibility in cooperative processes. In Proc. IEEE SAINT2003 of Int. Workshop on

Services Oriented Computing: Models, Architectures and Application, SOC2003,
Orlando, Florida, USA, 2003.

4. The ARTEMIS Project Home Page.
http://www.ing.unibs.it/∼deantone/interdata tema3/Artemis/artemis.html.

5. L. Baresi, D. Bianchini, V. De Antonellis, M.G. Fugini, B. Pernici, P. Plebani.
Context-aware Composition of E-Services. In Proc. of Fourth VLDB Workshop on

Technologies for E-Services, TES2003, Humboldt-University zu Berlin (Germany),
September 7-8, 2003.

6. S. Castano, V. De Antonellis, M. Melchiori. A Methodology and Tool Environ-
ment for Process Analysis and Reengineering. Data and Knowledge Engineering,
31(3):253–278, November 1999.

7. ECCMA. UNiversal Standard Products and Services Classification (UNSPSC).
http://www.eccma.org/unspsc/browse/.

8. HP. Web Services concepts - A technical overview.
http://www.bluestone.com/downloads/pdf/web services tech overview.pdf.

9. A.K. Jain, R.C. Dubes. Algorithms for Clustering Data. Prentice-Hall, 1988.
10. The MAIS (Multichannel Adaptive Information Systems) Project Home Page.

http://black.elet.polimi.it/mais/index.php.
11. E. Michael Maximilien, Munindar P. Singh. Agent-based Architecture for Au-

tonomic Web Service Selection. In Proc. of the Workshop on Web Services and

Agent-based Engineering, AAMAS2003, Melbourne, Australia, July 2003.
12. Sheila A. McIlraith, Tran Cao Son, Honglei Zeng. Mobilizing the Semantic Web

with DAML-Enabled Web Services. In Proc. of The Second International Work-

shop on the Semantic Web, SemWeb2001, Hong Kong, China, May 2001.
13. Thomi Pilioura, Aphrodite Tsalgatidou, Alexandros Batsakis. Using WSDL/UDDI

and DAML-S in Web Service Discovery. In Proc. of WWW 2003 Workshop on E-

Services and the Semantic Web, ESSW2003, Budapest, Hungary, May 2003.
14. José M. Puyal, Eduardo Mena, Arantza Illarramendi. REMOTE: A Multiagent

System to Select and Execute Remote Software Services in a Wireless Environ-
ment. In Proc. of WWW 2003 Workshop on E-Services and the Semantic Web,

ESSW2003, Budapest, Hungary, May 2003.
15. Marta Sabou, Debbie Richards, Sander van Splunter. An experience report on

using DAML-S. In Proc. of WWW 2003 Workshop on E-Services and the Semantic

Web, ESSW2003, Budapest, Hungary, May 2003.
16. The VISPO Project Home Page.

http://cube-si.elet.polimi.it/vispo/index.htm.
17. A. M. Zaremski, J.M. Wing. Specification matching of software components. In

Proc. the 3rd Int. ACM Symposium on Foundations of Software Engineering, SIG-

SOFT, pages 6–17, Washington DC, USA, 1995.

A Service-Domain Based Approach
to Computing Ambient Services

Thin Thin Naing, Seng Wai Loke, Shonali Krishnaswamy
School of Computer Science and Software Engineering
Monash University, Caulfield East, VIC 3145, Australia

{christine_naing@email.com, swloke,shonali@csse.monash.edu.au}

Abstract. Ambient services are related to the surrounding physical
environment of the user, are locally useful and can be considered a form of
location-based service. Ubiquitous short -range wireless networks provide a
natural infrastructure for such services. Such services, by definition, have
geographical boundaries or areas of relevance and usefulness. We call these
areas service-domains. We discuss the stereotypical case of a user being in
multiple service-domains at the same time, and how the set of suitable ambient
services for the user can be computed using service-domains. We also describe
our proof-of-concept prototype and its evaluation.

1 Introduction

An emerging view of applications is as services. Ideally, these services should be
appropriate to the user’s current environment. By ambient services, we have in view
services that are related to the surrounding physical environment of the user, are
locally useful (i.e., might not be relevant or useful beyond the bo undaries of an area
containing the user) and can be considered a form of location-based services. The
emerging short -range wireless networking technologies [1,7,10] also tend to impose a
natural geographical range restriction on services.

This paper discusses a concept to structure ambient services, and to compute, for a
given user, what ambient services should be enabled for the user when in a given area,
and in a given environment. This concept is the service-domain, which, associated
with a given set of services, is the geographical area in which the set of services are
available to users. We also describe a prototype system we have built to compute
ambient services based on their service-domains.

We elaborate on service-domains in Section 2. A user might be within multiple
service-domains at the same time (when the service-domains overlap), and so can
utilize some combination of the services associated with each of the service-domains
containing the user. Section 3 outlines our prototype system. Section 4 discusses
related and future work, and concludes the paper.

2 Service -Domains

By definition, ambient services have service-domains. Ambient services are
distinguished from other kinds of location-based services in that, for an ambient
service, there is a geographical area (which we call the service’s service-domain)
outside of which the ambient service is judged not useful or relevant. This judgement
is made by the developers of the ambient services and specified in tables which we
show later.

The service-domains we consider in this paper will be of relatively fine granularity
such as an office room, a lecture theatre or a building floor. A set of services is
associated with each service-domain (e.g., specific library services while within a
library, information services on specific museum exhibits of a museum hall, accessing
particular printers when in some part of an office). When an individual is within a
service-domain, the services associated with the service-domain can be invoked by
the user. While an ambient service is being invoked and executed, if the user moves
out of its service-domain, the system cannot guarantee successful completion of the
service.

A user can be in several service-domains at the same time, and as the user enters
one or more service-domains, his/her ambient services should be automatically
discovered and enabled. Furthermore, as the user moves from one service-domain to
another, these services should be changed or updated. An important issue to address
in implementing such location based ambient services is how to decide what
combination of services should be enabled for a user at a given time. This
combination of services might take a number of different forms. For example, similar
or same services from different service-domains might be combined, or services in
one service-domain have precedence over similar services in another service-domain.
Here, these combinations of available services are composed in an expression using
operators to describe what it means for a service t o match against the composition.

More precisely, the service-domain D of a set of services for a user U is the
geographical area in which the services S' for the user U is available such that

SS ⊆' , where S is all the services available in D. So, for example, in our model, let

iD and jD be two service-domains where ji ≠ and let aS and bS be two sets of

services where ba ≠ . If aS and bS are the sets of services associated with service-

domains iD and jD respectively, and if the user is within iD and jD at this time,

then a simple case is that the ambient services available to the user is
jDD SS U

1
(set

union of aS and bS). So, in this example, for a given user U and a service-domain

iD and
jD , a set of services ba SS U are all the ambient services of the user U

(assuming
iD and

jD are mutually exclusive). But this might not be the case, for

example, we might have a case where the user is within iD and
jD , but he/she is only

allowed to use services of jD . This might be due to the constraints imposed by the

service-provider of the service-domain or the user himself/herself has his/her own

preference of what services he/she wants to be enabled at a particular area. Thus, the
services available to a user at a particular area are not all the services associated with
the service-domains containing that area but, in some cases, only the combination of
some of the services associated with the service-domains.

The combinations of sets of services which can be invoked by a user U at a given
location are represented using expressions. When the user is in that location, he/she
can make a request against the composition of sets of services. These composition
expressions are formed using the operators presented in [8]. The operators describe
the rules for a service to match against a composition.

3 Prototype Implementation

We first present key concepts used in the implementation in Section 3.1. Then, we
describe the scenario we implemented in Section 3.2. Thereafter, Section 3.3
describes the architecture of the prototype.

3.1 Key Concepts

We discuss the concepts of logical area, user types, mapping tables, and service
matching mechanisms.

Logical Area. In [8], a user U can be any individual in a certain geographical area
and every user in that area can access the same set of services. The geographical area
which a user is located in can be defined as a logical area. A logical area can be a
small grain area such as a few square feet or an infinite area such as outside the square
feet’s area, a granularity dependent on the accuracy of the positioning technology. We
assume for simplicity here, that given any service-domain D, a logical area L is either
completely contained in D or completely outside D, and not partially inside (or
outside) D. The location of the user can be represented using a coordinate system or
symbolically. In this paper, the location of the user is represented symbolically by the
area that the person is in, which we call the user’s logical area. Using this logical area,
we can determine what service-domains the user is in. If a service-domain D contains
the logical area L of the user, then the user must be within D. If a service-domain D is
contained in L, then the user is assumed to be not in D, since we cannot ascertain that
the user is in D (i.e. the user might be in L but still outside D).

User Type. When implementing applications, users in the same logical area may not
have the same privileges to ambient services. Users who have the same privilege to
use the services are categorized into user types (e.g. type A). Thus, ambient services
for users may vary from one user type to another, and in such case there is not only
the user’s location but also the user’s type that has an impact on what services would
be available for that user: a user’s user type determines what services will be available
for the user in a given-service domain. Two types of impacts are possible which are:

(1) the impact of user type on services in a service-domain, and (2) the impact of user
type on the composition of service-domains in each geographical area.
The first impact occurs when a servi ce-provider of the service-domain offers different
sets of services to each user type. For example, two users, X and Y are in the same
service-domain and suppose the set of services associated with this service-domain is

S, then services for X is 'S S⊆ and for Y is ''S S⊆ , where it is possible that
' ''S S≠ since X and Y are of different user types. In a Library Service Domain, the

administrator can add and delete books but the student can only access the book
details. The second impact occurs when the service-provider of a given geographical
area provides different combinations (composition) of services to each user type,
allowing users to have more relevant and tailored sets of services. For example, if a
lecturer is in his/her office which is within the campus service-domain, the printing
service in his/her office is set to override other printing services in the campus
service-domain, but if a student is in the office, the printing service in the campus
service-domain is still the only accessible printing service.

Mapping Tables. To explicitly model such impacts, the mapping tables are designed
to define: (1) the set of services available in each service-domain for each user type,
(2) the service-domains containing the logical area for each logical area considered,
and (3) how the sets of services from the containing service-domains are composed
for each logical area.
A positioning technology can work out which logical area the user is currently in (call
this L), and using (2), the system can work out which service-domain(s) contain L,
and so work out which service-domains the user is currently in. If the service-domains
are say D1, D2 and D3, and their associated service sets are S1, S2 and S3, then the

services available for this user from each service-domain will be 11 ' SS ⊆ ,

22 ' SS ⊆ and 33 ' SS ⊆ . '1S , '2S and '3S are determined by looking up table (1).

The actual services available for the user will be some combination of '1S , '2S and

'3S (e.g.)')''((321 SSS <U). The system can determine what combination by

looking up table (3). The mapping tables for (1) and (3) are explained in detail later.
Details of (2) are embedded in (3) and do not correspond to an explicit table.

Semantics for Service Matching. Let D be a service-domain and let iS be its

services where i = 1…n. Let iN be the service name of iS and let iT be the type of

service iS . For example, when an individual is within a service domain D, a set of

services available to the user in service -domain D is to the user in service-domain D

is () (){ }mmm TNSTNS ,,...,, 111 , for some m less then n.

When describing the operators, we have assumed that the same matching
mechanism is used for every operator. In this section, different matching mechanisms
are applied to different operations and are described as follows.

Service Matching for Union (denoted by “U ”). A service iS matches against jS , if

and only if, iS ’s name matches against jS ’s name and iS ’s type matches against the

service type of jS . Thus, ())(, , jjjiii TNSTNS = if ji NN = and ji TT =
where ji ≠ . In forming a union, duplicates are eliminated and since two services are
considered duplicated only when their names and types match, this definition tends to
lead to larger unions. If we had matched only on type, more services will be
considered duplicated, and the unions will tend to be smaller.

Service Matching for Intersection (denoted by “n”). A service iS matches

against jS , if and only if, the type of iS matches against the type of jS . Thus,

())(, , jjjiii TNSTNS = if ji TT = where .ji ≠

Service Matching for Restriction (denoted by “|”). A service r matches against a

composition iS | jS if and only if, r matches the services in iS , but does not match

against services in jS . In the Intersection operation, a service iS matches against

another service jS , if and only if, the type of iS matches against the type of iS . Thus,

similar to intersection, in restriction, we have ())(, , jjjiii TNSTNS = if ji TT =

where .ji ≠

Service Matching for Overriding (denoted by “< ”). Overriding is defined using the
other operators as shown. Thus, the same service matching mechanisms for
Restriction and Union can be used to match services for the overriding operations.

The service matching mechanisms allows the calculation of services with attributes
(in our case, assumed embedded in the service names) more sensibly. For exa mple, a

service with name “Print to printer A, B, C and D” in service-domain iD of type

“Print ing Service” can be overridden by a service with name “Print to printer O” of

type “Printing Service” in service-domain jD by using the above service matching

mechanisms since these two services are of the same type (though different nam es).
Union matches using names and types so that in a union, services of the same type, as
long as they have different names, can co -exist. But we give full force to restrictions
and intersections for their constraining function, by relaxing the matching, i.e. using
only types so as to eliminate services of the same type (even if they have different
names).

The service matching mechanisms allows the calculation of services with attributes
(in our case, assumed embedded in the service names) more sensibly. For example, a

service with name “Print to printer A, B, C and D” in service-domain iD of type

“Printing Service” can be overridden by a service with name “Print to printer O” of

type “Printing Service” in service-domain jD by using the above service matching

mechanisms since these two services are of the same type (though different names).
Union matches using names and types so that in a union, services of the same type, as
long as they have different names, can co -exist. But we give full force to restrictions
and intersections for their constraining function, by relaxing the matching, i.e. using
only types so as to eliminate services of the same type (even if they have different
names).

3.2 Overview of Illustrative Scenario

We consider a scenario where there is a location-based system for a floor area of a
university campus which provides location-based services to users. The services are
enabled or disabled only within a particular area and relate to the immediate physical
surroundings of the user and users’ type. Once a user enters the area (typically a floor
within a building), he/she is enabled with locally relevant services and these services
will be updated as he/she moves to another area. Three service-domain(s) are
considered:

• Office Service-domain (DO)
• Printing Service-domain (DP)
• Library Service-domain (DL)

Each service-domain has a set of services associated with it. The Office service-
domain has schedule-services, Printing service-domain has printing services and
Library service-domain has library services associated with it. In addition, three
logical areas are defined in the floor of the building to describe the location of the
users: Office Logical Area, External Logical Area, and Library Logical Area.

The Office Logical Area is a region within the polygon with non-dotted line shown
in Figure 1. The External Logical Area is the region within the polygon with big
dotted line. The Library Logical Area is the region within the polygon with small
dotted line. The sets of services in DO are enabled within Office Logical Area, i.e.
DO corresponds to Office Logical Area. The sets of services in DP are enabled within
External Logical Area and DL in Library Logical Area respectively, i.e. DP
corresponds to the External Logical Area and DL with the Library Logical Area. As
shown in Figure 1, the logical areas are contained in each other. Thus, for example,
when the user is in the Office Logical Area, he/she is also in the Office Logical Area,
External Logical Area and Library Logical Area at the same time and thus, will be in
the service-domains DO, DP, and DL, i.e., all the services associated with DO, DP
and DL will be (potentially) enabled for the user. In this scenario, logical areas
correspond to service-domains but it need not be generally so in our model.

Fig. 1. Floor of a building in the University Campus

However, not all the services in the service-domain are actually available to the
user due the constraints imposed by the service-provider. The assumption was made
in our system that the service provider is responsible for managing the services for
users instead of users having the control over what services they can use. Two types
of constraints are imposed by the service-provider: (1) the number of services
available to each user for each service-domain is limited based on their user types,
and (2) only the compositions of sets of services from service-domains of each logical
area are enabled for each user type. For example, similar or same services in different
service-domains are unioned, and one service-domain has precedence over similar
services in another service-domain.

Mapping Tables for Each User Type. This subsection presents how mapping tables
are used to provide the locally relevant and tailored services to users with different
privileges to use the services. In our system scenario, three types of users are defined:
lecturer, student and administrator. Each user has different sets of services available
in each service-domain and is shown in the User Type Matching Tables. In Table 1,
the sets of services associated with each service-domain are defined for a Lecturer and
Administrator (both have the same privileges).

Office Logical Area
External Logical Area
Library Logical Area

Table 1. A Mapping Table for sets of services available for Lecturer and Administrator

Lecturer/Administrator
Service-Domain Set of Services

DO {View personal schedule,
Add schedules,
Delete Schedules,
Update Schedules,
Print to printer O}

DL {Basic/Advance Search,
Renew Loans,
View Personal, Informat ion}

DP {Print to printer A,
Print to printer B,
Print to printer C,
Print to printer D}

The students are allowed to use all the services in DL and DP but none in DO. Sets of
services available to students are as shown in Table 2.

Table 2. A Mapping Table for sets of services available for Student

Student
Service-Domain Set of Services

DO { }
DL {Basic/Advance Search,

Renew Loans,
View Personal Information}

DP {Print to printer A,
Print to printer B,
Print to printer C,
Print to printer D}

Mapping Tables for Each Logical Area. The set of services available for a user in a
particular logical area will result from evaluating against the composition retrieved
from the mapping table. The sets of services available in the Office Logical Area are
some of the services available in service-domains DL, DP and DO (since they all
contain the Office Logical Area) and the compositions of sets of services for each
user type are shown in Table 3. The services associated with DL, DP and DO are
denoted by S(DL), S(DP) and S(DO), respectively.

Table 3. Mapping Table for Office Logical Area

Office Logical Area

User Composition of Sets of Services

Lecturer S(DL) U (S(DP) < S(DO))
Administrator S(DL) U (S(DP) U S(DO))
Student S(DL) U S(DP)

The service-domains containing (or exactly corresponding to) the External Logical
Area are DL and DP. The compositions of services available for each user in the
External Logical Area are shown in Table 4.

Table 4. Mapping Table for External Logical A rea

External Logical Area

User Composition of Sets of Services

Lecturer S(DL) U S(DP)
Administrator S(DL) U S(DP)
Student S(DL) U S(DP)

The service-domain containing (or exactly corresponding to) the Library Logical
Area is DL. The compositions of services available for each user in Library Area are
shown in Table 5.

Table 5. Mapping Table for Library Logical Area

Library Logical Area

User Composition of Sets of Services

Lecturer S(DL)
Administrator S(DL)
Student S(DL)

3.3 Architecture Overview

This section explains the architecture of the system for proactive discovery and
update of ambient services. The architecture consists of four major components: the

Ekahau Positioning Engine (EPE) [4], the Service Calculation Engine (SCE), Mobile
Client Application and Web Services.
Ekahau Positioning Engine 2.0 (EPE) is the positioning server which keeps track of
mobile users in a wireless LAN. It detects the mobile users who enter a particular
geographical location of each user. The user’s cu rrent location information is then
sent to the Service Calculation Engine periodically to calculate which service
domain(s) the user is currently in and the composition of services available for each
user. The system requires that there is a constant connection between the Ekahau
Positioning Engine and the Service Calculation Engine.

The Server Module consists of two main components: Service Calculation Engine
and Service Database. Service Calculation Engine (SCE) plays the most important
role in discovering and updating of ambient services. Its main task is to calculate the
service domains in which the user is currently in and a composition of the sets of
services available to the user based on the location information received from EPE.
Every time the user moves to a different logical area, a new set of services is
calculated and enabled for the user.

The SCE also acts as a server to the client devices which enter a particular service
domain. In order to send updated sets of services to the user, it listens to the client
device connections continuously. When a user enters the service domain and connects
to the server, it establishes a connection with the client device and sends updated sets
of services to the client device. As the user moves from one service domain to
another, the composition of services avai lable to the user would change and the new
set of services are calculated and sent to the client device.

Service Database is a database repository which stores the details of the mapping
tables described earlier. It includes: services, service-domains, and service
compositions. The service database is on the same host as the Service Calculation
Engine. SCE retrieves the services from the service database to calculate the locally
relevant services at a given geographical area.

The Mobile Client Application is an application installed in the mobile device of
the user. This device is tracked by the EPE. The basic function of the client
application is to receive the sets of services from the server and display it to the user.
When the user invokes the service, the client makes a request to the web service. The
current implementation is specifically aimed for the Pocket PC and is developed using
the Microsoft .NET Compact Framework (CF). When the user enters a particular area,
they are required to log in with User name, User type and Password, in order to check
the user type of the mobile user since different user types have different privileges in
the system.

After logging in, once the user clicks the “Connect” button, the mobile device will
connect to SCE which is waiting for client connections on the server machine. It then
receives the services which are calculated and transmitted by SCE. A new set of
services is sent to the mobile client application every time the user moves from one
logical area to another (as detected by processing data from Ekahau). Thus, the
services displayed to the user are updated every time it receives the new sets of
services.

Fig. 2. Services available in Area 1 (External Logical Area) displayed on a user’s mobile
device

For example, when the user moves from Area 2 (Office Logical Area) to Area 1
(External Logical Area), a new set of services will be enabled for the user. The
services available in Area 1 are displayed for the user in his or her mobile device as
shown in Figure 2.

4 Conclusion and Future Work

We have investigated a type of location-based service which we called ambient
services. Such services, by definition, have geographical boundaries or areas of
relevance and usefulness. We called these areas service-domains as they are
associated with a set of services. We have also discussed the case of a user being in
multiple service-domains at the same time, and how the set of suitable ambient
services for the user can be computed. The system utilizes mapping tables and
operators to select services from the containing service-domains, in order to assemble
a list of services for the user. The prototype is a proof-of-concept, and its evaluation
demonstrates the feasibility of ambient services. Our prototype generates the list of
services for the user. Beyond this, for the actual invocation of the services, other
architectures can be used such as in [9].

Further work will involve improvements to the performance of the prototype,
exploring integrative location technologies (e.g., integrate with GPS outdoor
positioning technologies for larger service-domains and larger-scale services as noted

in [3,6,12]), and investigating the run-time handling of services (e.g. what to do if a
user walks out of the service-domain of an executing service). Other applications can
be considered such as location-based messaging [2], reminder services, and device
control. Hodes and Katz [5] discussed mechanisms to control devices in the
environment from the mobile device. They use base station beacons instead of a
location server, do not use Web service standards, and do not organize services based
on service-domains. Ambient services can be constructed for their purpose. Our work
is similar in spirit to that in [11] where spontaneous interaction with resources occurs
by virtue of proximity to resources, but we do not employ predictive schemes.
Predictive schemes can be used in our work to improve performance.

References

1. Ahlund, C., Zaslavsky, A. and Matskin, M. Supporting Mobile Business Applications in Hot
Spot Areas with Pervasive Infrastructure. In Proceedings of the 1st International Conference
on Mobile Business, Greece, July 2002.

2. Chang, E. L. Hanging Messages: Using Context-Enabled Messages for Just -In Time
Communication. Masters Thesis. Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, 2001.

3. Cheverst, K., Davies, N., Mitchell, K. and Friday, A. (2000). Experiences of Developing and
Deploying a Context-Aware Tourist Guide: The GUIDE Project. In Proceedings of
Internatinal Conference on Moble Communication (MOBICOM), Boston, MA, USA, 2000.
ACM.

4. Ekahau (2002). http://www.ekahau.com.
5. Hodes, T. D. and Katz, R. H. Composable Ad hoc Location-based Services for

Heterogeneous Mobile Clients. Wireless Networks, vol 5, pp. 411-427, 1999.
6. Jagoe, A. Mobile Location Services: The Definitive Guide , 2003, Prentice Hall.
7. Leeper, D. G. (2001). A Long-Term View of Short-Range Wireless Networking. IEEE

Computer, 34(6): 39-44.
8. Loke, S.W.. Modelling Service-Providing Location-Based E-Communities and the Impact of

User Mobility. In Proceedings of the 4th International Conference on Distributed
Communities on the Web (DCW 2002), (eds) J. Plaice, P.G. Kropf, P. Schulthess, J. Slonim.
Sydney, Australia, April 3-5, 2002, pages 266 - 277, Springer-Verlag, LNCS 2468.

9. Pilioura, A., Tsalgatidou, S., and Hadjiefthymiades. Scenarios of Using Web Services in M-
commerce. ACM SigEcom Exchanges, Vol. 3, No. 4, January 2003, pp 28-36.

 10. Priyantha, N. B., Chakraborty, A. and Balakrishnan, A. The Cricket Location-Support
System. In Proceedings of MOBICOM 2000, Boston, MA, 2000, ACM Press.

11. Troel, A., Banatre, M., Couderc, P., AND Weis, F. Predictive Scheme for Approximate
Interactions. In Proceedings of the International Workshop on Smart Appliances and
Wearable Computing (IWSAWC’01), pp. 235 – 239, 2001.

12. Varshney, U., and Vetter, R. Mobile Commerce: Framework, Applications and Networking
Support. Mobile Networks and Applications 7, 185-198, 2002.

Information Gathering for Dynamic Selection of Web
Services

Amir Padovitz, Shonali Krishnaswamy, Seng Wai Loke

School of Computer Science and Software Engineering, Monash University,
Caulfield East, VIC 3145, Australia

 {amirp, shonali, swloke}@csse.monash.edu.au

Abstract. Gathering status and QoS information from web services at run time
can lead to a more dynamic interaction between clients and web service provid-
ers. Such a model provides better reliability for client applications that are de-
pendent on web services for critical data/information. This paper presents three
different models based on traditional RPC and mobile agents for gathering in-
formation regarding the status and QoS parameters of web services at run time.

1 Introduction

Distributed computing is evolving to a service-oriented model and is leading to
the emergence of web services, which aims to change the way we perform communica-
tion between disparate and remote applications [1]. The concept of web services offers
a flexible and open model, targeting to solve various restrictions and problems of tradi-
tional distributed architectures. Interaction between applications in heterogeneous
platforms, independent of language and vendor specific middleware will become feas i-
ble by using communication mechanisms that adhere to common open standards,
which are the basis of web services. By building on existing technologies and con-
forming to those well-known standards, web services aim to offer a powerful model
that can be used to describe, discover and execute remote services by client applic a-
tions that use these services.

Despite the support of different frameworks for the standards that make up web
services, the current model of web services still needs to address many challenges of
incorporating web services into more dynamic environments [2, 1] and addressing
issues such as reliability for applications that use external web services based on the
availability and quality of service of web services.

To ensure features such as reliability of client applic ations, it is imperative for the
client to be aware of changing conditions at the service providers at runtime. These
features may influence the viability of a web service for the application.

Characteristics such as response time of web services (i.e. time to complete the
service for a client request), availability of service providers, prices of web services
and quality of service provided can change at runtime, making a specific web service

either more or less suitable for the client. Monitoring these parameters and introducing
this information to the client application can improve the overall performance of the
application and help create a more robust and reliable application. By introducing
runtime information concerning external web services, client applications that use web
services will be able to dynamically alter their behaviour at runtime. The client abilities
to cope with changing factors in the environment and as a result optimise its execution
both from the software engineering aspect (e.g. response time and availability) and the
bus iness aspect (e.g. price) will become feasible.

The paper is organized as follows. In Section 2 we present architectural models to
support the dynamic selection of web services. Section 3 presents the design of a
prototype implementation. We conclude and discuss future work in section 4.

2 Architectural Models for Runtime Information Gathering

We propose an infrastructure, shared by consumers and service providers that
will perform collection of information, related to availability and QoS parameters of the
appropriate web services at runtime. The type of information to be collected is dy-
namic and can only be discovered during the application execution (e.g. estimated
response time of a web service, price, etc.). Such information can affect the clients’
decision on web service invocations and ensure the reliability of the client’s applic a-
tion by activating only available and more reliable (a QoS parameter) web services. The
information gathered can also improve the overall client application performance by
choosing to activate web services with fast completion times as well as improve other
business oriented aspects of the application, such as selecting web services in spe-
cific price range or with specific quality of service.

Figures 1 illustrate client activation decisions based on information gathered at
runtime from the service providers according to the client constraints. In figure 1, the
client is concerned with availability and response times of a web service. After retrie v-
ing related information from the service providers, the client activates the fastest avail-
able web service. This behaviour contributes to the robustness of the client applica-
tion, by avoiding activation of unavailable web service and selecting the fastest avail-
able.

Fig. 1. Web services activation according to response times and availability

total response
time = 14 sec

Client

SP1 -
high quality

SP2 -
low quality

data

data

activation

total response
time = 5 sec

total response
time = 8 sec

Client

SP1 -
high quality

SP2 -
low quality

data

data

activation

total response
time = 5 sec

We propose three different models for gathering information for dynamic selection of
web services. Each of these models has strengths and limitations and is best suited for
particular situations. We aim to integrate all three approaches and create a model that
caters for different situations.

2.1 RPC Based Model

In traditional wide network scenarios (e.g. the Internet) the most straightforward
approach for gathering information for web services activation would be to use RPC
(remote procedure calls) for communicating information between hosts in the network.
For platform independence, web services themselves can be the means by which
communication between two hosts is performed. Information could then be easily and
generically sent and received between all the participants in the network. This kind of
implementation is generally beneficial in wire d networks, as multiple connections need
to be handled, which may become difficult in wireless environments where connec-
tions are less reliable. In this model a component-oriented approach is taken, in which
a client/service provider is treated as a black box. When a service provider receives a
request, it may become a client and actively request information from other service
providers. This approach simplifies the programming complexity of an environment
consisting of many service providers.

In this architecture, decisions regarding the ways to query deeper nodes in the
network or decisions on which nodes to query and when, are all delegated to the ser-
vice provider, which then becomes a client of the system. In this component-oriented
scheme, the initial client delegates future decisions and implementation details to sub-
contractors in the form of the service providers.

In the RPC model, once an RPC request is launched to a certain service provider,
parameters contained in that request cannot be changed. The service provider may
retrieve information from other service providers according to the initial parameters
specified by the client. The initial client no longer has control over the operation and
cannot change parameters or conditions for that search of information. Another pro b-
lem is the high number of messages sent between client and service providers. This
limits the reliability of such a system in a wireless environment where connections are
less reliable. Furthermore, the higher the number of participants, the more messaging is
involved, resulting in more traffic congestion.

2.2 Mobile Agents Based Model

To address the issue of wireless connectivity and client control we propose a
second model based on mobile agents. We examine two approaches that differ in the
type of behaviour agents perform. In the first model, agents are launched by the client,
arrive at the service providers, query information, and if needed, continue to look for
dependent services for required information. Agents contain client restrictions such as
timeouts and maximum number of hops as well as other data that pertain only to the
specific client. Following this approach, two agents of different clients may act differ-

ently under similar circumstances given different client directions for behaviour. Figure
2 shows a possible strategy performed by agents a and b that are launched by the
client. Upon arriving at a service of type A they are redirected to retrieve information
from service providers B1 and B2. Then they are redirected again to gather information
pertaining to services C1, C2 and C3. After arriving at B2 agent b clones itself into 2
agents, each travelling on a different path to accomplish its task.

Fig. 2. – First mobile agent model

In this approach we gain client control of the agent behaviour in deeper node le v-
els, after the initial encounter with the first service provider. In addition, we also gain
better reliability in wireless environments, as the amount of connections is highly
reduced compared with the RPC model. In this model the client (a wireless device) only
maintains connections as per the number of agents it initially launches. A mobile agent
should also be embedded with the ability to change its migration path if it encounters
disconnected or unresponsive nodes. Despite the higher level of abstraction for pro-
gramming mobile agents, implementing agents to work in a large network of depend-
able service providers could pose complexity. Instead of treating the service providers
as black boxes as in the first model, the agents need to be programmed to move around
the network autonomously and respond to possible changes in the environment.

The main disadvantage of this approach however is that it is less realistic from a
business perspective. It is unlikely that a client agent would be permitted to be redi-
rected and interact with nodes that the service provider is concerned with. Service
providers may have for example private agreements with other service providers and
would not want to send an agent that represents the initial client. It may also be
against the best interest of the client, since sometimes a direct request for a service
from the client would result in a higher price than if the service provider had handled it.

The second approach assumes interaction of the client agent only with the re-
quired first level service providers. This approach is similar to the RPC one, where
service providers are treated as “black boxes”. Although client control is lost, this
model still maintains better performance in wireless environments, compared with the
RPC model.

A1

B2

client

A2

C2

C3

B1

C1☺a

☺b

☺b1

☺b2

Figure 3 shows this approach; agents operate on behalf of their clients and are re-

stricted to interact only with the required first level service providers.
Fig. 3. – Second mobile agent model

The differe nces between the RPC and Mobile Agents models in terms of the num-
ber of wireless connections are shown in figure 4.

Fig. 4. – Differences in number of wireless connections between the models

In the RPC model the client manages at least five connections to all five service-
providers, while in the Mobile Agents model only one connection is established and
used to send a single mobile agent that clones itself and which arrives at all the service
providers autonomously.

2.3 Circulating Mobile Agents Based Model

The two previous models are suitable to work with web services that are expen-
sive to purchase and/or consume an overall long proces sing time. In such cases cli-
ents may be willing to wait for results if it would translate into significant reduction in
money that is spent or if the additional time spent on the selection of the most appro-
priate web service is not significant, compared with the activation of the web services

A1

B3

client

A2

C2

C3

B2

C1

☺client

B1

☺A1

☺A2

☺B3

☺B1

☺B2

1'

1''client

1'''

1

1''''

Wireless

1'

1''client

1'''

1

1''''

☺a

☺a1

☺a2

Wireless

RPC Mobile Agents

themselves. Since the task of collecting information is time consuming, it is le ss likely
these approaches will be utilized when it is imperative to perform fast activation of
short processing time and inexpensive web services. For such scenarios, a third model,
the Circulating Mobile Agents, shown in figure 5, is proposed that can provide service
providers related information “on demand”. The idea behind this model is having mo-
bile agents periodically circulate the path of the service providers and retrieve informa-
tion. The information is given to the client, who then performs web service activation
based on the latest information that is available. In this scenario, information that ar-
rives is more up to date and is available sooner.

Fig. 5. – Circulating mobile agents

The limitations of this model may also suffer from redundancy. Depending on the
client application, agents may circulate the network, retrieving information without any
current need to do so. To minimize this redundancy, the ability to control the amount
of circulating agents and the duration of their life cycle need to be introduced.

Table 1 and table 2 summarize client considerations as to which model would be ad-
vantageous under different circumstances.

Table 1. – Activation considerations according to service characteristics

Service Characteristics RPC MA Circulating MA

Expensive, long processing time X X
Fast response is important X

Table 2. – Activation considerations according to network characteristics

Network Characteristics RPC MA Circulating MA
Wired X
Wireless X X (depends on number of agents)

It can be seen that the Circulating Mobile Agents model is most appropriate when
clients need fast results of information gathered. The RPC model is more suitable to be

1

1'

1''

1'''

client

☺a

☺b

☺c

activated in a wired network, whereas the Mobile Agent and Circulating mobile
Agents models may be more appropriate to use in wireless environments.

3 Implementation of Prototype

We now present the implementation of a prototype that enables us to perform ex-
perimental evaluation of the three models.

The main functionality is implemented in the WSAdvisor components; client appli-
cations interact with this functio nality either directly - when requesting web service
activation recommendations, or indirectly – when updating information on new possi-
ble web services in the repository. WSAdvisor components query that repository to
obtain information on web services and create itinerary for communicating with the
service providers.

Fig. 6. – High-level overview of the system prototype

An agent server is used to launch new agents with itineraries to service provid-
ers’ destinations. A communication utility object – VMSBridge is used to facilitate
decoupled communication between the main WSAdvisor components and other third
party applications. VMSBridge also serve as a link between different platforms. Since
many current usage and implementations of web services are developed and run on
Microsoft .NET and most mobile agent toolkits, and in particular IBM’s Aglets (which
is used in the current implementation) operate in a Java virtual machine, the system
needs to be able to work with both environments at the same time. Figure 6 draws a
high level overview of the system, figure 7 shows GUI screen of a client application
using the WSAdvisor system to select a suitable web service.

WSRepository
WSAdvisor

Agent serverVMSBridge

Clients

Fig. 7. – Client GUI using the WSAdvisor system

4 Conclusion

We have investigated an architecture that promotes performance and robustness
of web service consumer applications by obtaining availability, quality of service and
other business related parameters on web services, which are controlled by or acces-
s ible to service providers, at runtime. The collection of such information is performed
according to a set of constraints, provided by the client’s application, and the most
suitable web service at the moment in time is chosen according to the client require-
ments. Using such architecture may reduce some of the problems associated with web
services, such as the need to ensure the reliability and availability of external web
services, the need to obtain information of service providers’ business information
and reduce the overall activation time of web services by consumers. As a result, cli-
ents’ applications can become more robust and improve their overall performance.
Clients would also gain more control over external resources (e.g. web services) and
would improve business related decision-making and performance. Three models for
runtime gathering information were proposed implemented with a prototype impleme n-
tation.

References

1. Hailpern B., Tarr P., Software Engineering for Web Services: A Focus on Separation of Con-
cerns, IBM Thomas J. Watson Research Center. http://citeseer.nj.nec.com/477241.html

2. Glass G., The Web services (r)evolution, IBM developerWorks, November 2000.
http://www-106.ibm.com/developerworks/webservices/library/ws-peer1.html?dwzone=ws
3. Glass G., The Evolution of Web Services , Prentice Hall, June 21, 2002.
http://www-106.ibm.com/developerworks/library/ws-
peer1.html?dwzone=components#N40003F

.

A Taxonomy of Information Technology Services: Web
Services as IT Services

Andrea Stern, Joseph Davis

School of Information Technologies,
University of Sydney, NSW 2006 AUSTRALIA

Tel. +61 2 9036 9108

Abstract. This paper examines the web services model in the context of models of a
broader set of information technology (IT) services. It compares and contrasts the
web services model with these models and proposes an approach to describing and
classifying IT services on the basis of the complexity (as reflected in the structure
and uncertainty) of the wider range of services. It also explores some critical
implications of such a taxonomy, including a discussion of issues relating to
managing and contracting for IT services which need to be comprehensively
addressed in the service- oriented computing paradigm.

1 Introduction

Web services increasingly attract both popular and research interest. They are novel in
their techniques of automated discovery and orchestration and in their dynamic integration
of standardised application modules. Their XM L-standard based communication
techniques and underlying service oriented architecture (SOA) give organisations the
potential to increase flexibility and agility and represent a radical departure from
traditional monolithic custom-developed applications and specialised client interfaces.
The standardisation embodied in the web services model structures the environment in
which they operate, and is a key to their interoperability.

A challenge for the development of web services however, is whether the model can be
extended to encompass more complex areas of IT service provision in less structured

environments. For such services, conditions of service are negotiated and customised,
outcomes are difficult to control or predict, services may be linked in hierarchies of
related services and complex service management and maintenance issues may arise.

An approach to this challenge is to see Web services as a specific category of what
could be broadly referred to as IT services. This broader class of IT service, like web
services, is characterised by a service view of IT in contrast to the application, activity, or
product view. Such a view shifts the focus from managing ownership of IT infrastructure
and applications to managing negotiation and delivery of effective IT services. By
contextualising web services in this way and examining the relevance to web services of
the different models of IT services that emerge, it may be possible to inform and enhance
the development of the web services model to tackle other areas of more complex
endeavours in IT services.

This paper reviews IT service models to be found in the literature on application
service provision, network services management and IT service management and
examines their characteristics. It then compares and contrasts web services with the
broader range of services, on the basis of differences in degree of structure and
uncertainty. It argues that degree of structure and uncertainty indicates the complexity of
the models represented by the services. On the basis of those comparisons, it argues that
IT service models can be classified by complexity and that the resulting taxonomy can be
useful in identifying issues relevant to web services. Some implications of this for web
services and service oriented computing (SOC) are explored, including the relevance of
techniques for negotiation and managing IT services.

2 Web services

Web services are internet-based interoperable IT services proscribed by a formal model
which support business functions within the SOC paradigm. Because they are
standardised, self describing and XML based, they can be discovered and invoked
automatically, are dynamically bound at the time of use and are interoperable in multiple
environments. According to a report by the Stencil Group [1], the modularisation of
applications fundamental to web services, allows a flexibility and agility whereby
organisations can add new offerings or reorient existing functions. Through modularising
applications and making the modules interoperable through standard protocols on a fee-
for service basis, web services reduce the need for customisation and up-front investment,
lower the transaction cost of commonly needed IT services, and offer organisations
flexibility and agility in it integrating and enhancing their IT-based functions.
“Fundamental to web services, then, is the notion that everything is a service, publishing
an API for use by other services on the network and encapsulating implementation
details” [2, p2.].

Taxonomies too play an important role in the flexibility and versatility of web services.
They provide searchers of the Universal Description and Discovery (UDDI) layer ever
greater precision in specifying business-relevant criteria through the availability of
multiple taxonomies and identifier systems [3].

Three important foundations underpin the flexibility of web services. Firstly, the
layered architecture of SOC provides a standard framework for the dynamic integration of
web services. Secondly, just as standardisation and modularisation of processes has
improved efficiency and versatility in the manufacturing sector, so the modularisation and
standardisation of services and processes in SOA contributes to the efficiency and
flexibility of web services. Lastly, the use of XML as the standard language for message
passing, frees web services from depending on conformity to a single operating system or
other proprietary software for integration. XML contributes significantly to the flexibility
and extendibility of web services, allowing for example, web service publishers and
searchers to specify business-relevant criteria with an increasing range and precision
through the ability of the UDDI layer to operate with multiple taxonomies.

But while XML and the web services protocol stack underpin the flexibility inherent in
web services, the services operate with constraints in the three important areas:
negotiating variable conditions of service, managing relationships among services in a
hierarchy of services and providing support for a service over time.

The very standardisation which contributes to the flexibility of web services also
restricts services to those for which the conditions do not need to be negotiated, or where
the negotiations have taken place outside the domain of the web service and are implied in
the service. For example the UDDI enables technical interoperability but does not allow
for the description of the policies or business rules governing the interaction. Cerami [4]
comments that there are no mechanisms for automating business relationships pertaining
to e.g. pricing or delivery schedules, for negotiating conditions of service, for monitoring
reliability and availability, for the legal ramifications if the service delivery is not made,
and that neither can assumptions be made that a service is bug-free and available at
guaranteed times.

The web services model, while technically advanced and highly standardised, is limited
to services which can be contracted and used automatically as standardised commodities,
with relatively simple transactions. The precisely defined structure of the service does not
appear to allow for the complexity of negotiations of conditions of service, or for changes
over time. Nor does it provide for a hierarchy of sub-services in a chain of services. For
example, the modularity and integrative ability of web services gives them a versatility
which lends them ideally to support the process-oriented view of an organisational value
chain. However, while SOC enables end-to-end processes and services to be automated
and integrated as a series of entities, the issue of managing relationships among entities

does not appear to be addressed at other than the technical level. The automation of a
series of simple processes such as order entry via web services is a different task to the
automation of the comp lex composite processes of an order-to-fulfilment supply chain.

Services not only need to be negotiated and delivered but supported over time in
alignment with contracted conditions of service. Processes for managing and evaluating
the ongoing service such as availability, capacity, problem management and contingency
might be seen as an integral part of a service. Some possible future developments in web
services in this direction are suggested by Arsanjani, Hailpern, Martin, & Tarr [5]. They
suggest, for example, that future developments in object oriented web services
technology, in the direction of e-utilities, will increase the sophistication of operation of
web services and permit control over performance, reliability, metering and level of
service. This could effectively enable services to be dynamically controlled by service
level agreements (SLAs) with conformance automatically verified. In this view, SLAs are
treated as a component in the building and deployment of services. Similarly, Dan et al.
[6], see the formal specification of SLA s as an integral part of the Web stack for the
differentiation of services. In other work, XML-based SLA languages are proposed for
dynamic electronic services which could enable the automated management, monitoring
and enforcement of quality of service guarantees by service providers [7, 8].

3 Other IT service models

A closer examination of other models of IT services in relation to web services might
indicate a direction for further developments of web services. The following section views
the development of other IT service models, analyses their characteristics and compares
and classifies these services. The areas chosen for analysis represent the main areas of IT
in which concepts of IT services are discussed in the literature, namely, application
service provision, IT service management and network management.

3.1 An emergent view of IT as a service

A service view of IT sees IT-related activities as a set of processes which are carried out
by a provider to deliver a service to a consumer, using IT and related resource
components , in accordance with a negotiated agreement and maintained and managed
over time taking into account failure and change1. It emerges in the literature on

1 Our paper takes the view that IT systems provided from within an organisation can be
described as services in the same way as IT systems sourced from outside the
organisation, i.e., from the market. This concept is based on the economist, Oliver

application service provision, network service provision and IT service management
discussed in the following sections.

Discussion in these domains expose an end-to-end view of a service, i.e. they take an
integrated perspective of all the components of a service (processes and infrastructure), in
their relationship to each other. For example, Park, Baek, & Honk [10] suggest that rather
than looking at network management or systems management in isolation, this view looks
at a service from the perspective of the client. This gives a holistic view of resource usage,
so that, for example, the availability of a single component is only relevant within the
context of the availability of all the other components in the supply chain which delivers
the service. Similarly, Koch [11] suggests that the uptime of a network router is of no
interest to the business user of the IT service in isolation. Rather, the availability of the
entire service is, as are the cost of the service and the definition of the service in business
terms. An end-to-end service may also consist of a hierarchy of services supplied from
one domain of control to another but the series of related services may be viewed as a
single service for contractual and other administrative purposes. Treatment of the related
services as a single service is dependent on there being techniques and processes for
managing the relationships among the components of the services in the chain.
Methodologies for managing network and other IT services also focus on the roles of the
provider and consumer, the service level agreement and the support processes for the
service lifecycle.

3.2 Application service providers

The idea of delivering a service as opposed to a product is fundamental to the operation of
application service providers (Salesforce.com, for example) In providing applications for
the use of clients via the internet on the basis of a fee for usage, clearly what is being
delivered is not a product but a service. According to Patnayakuni & Seth [12], the ASP
model essentially converts a software product into a software delivery service and is a
paradigm shift in application delivery. ASPs are responsible for the functionality,
availability and reliability of a hierarchy of underpinning components and sub-services
(software, hardware, expertise, telecom providers and hardware suppliers). Just as the
ASP negotiates and articulates the conditions of its service provision with its clients, so
too, it must negotiate conditions with its own underpinning service providers and the ASP

Williamson’s, description of the parallels between contracting goods and services in the
market and producing them within the firm, in that they are “alternative instruments for
completing a related set of transactions” 9. Williamson, O.E., Markets and hierarchies,
analysis and antitrust implications : a study in the economics of internal organization .
1975, New York: Free Press. xvii, 286.

itself becomes a service provider in a chain or network of service providers. The ASP
itself can also be an underpinning service to a business process outsourcer (BPO), which
contracts with customers to carry out the actual business processes on behalf of the
customer.

Related to ASPs also, is the introduction of software delivery as a service. Greschler
and Mangan [13] describe Software as a Service (SaaS), as a concept promoted by
Microsoft, Oracle, Sun and others as a central seamless way to deliver and administer
software, based on user subscription and payment per use, rather in the manner of a utility
service, such as water and electricity. In this paradigm, rather than software being
acquired and installed locally as a product, the software application is remotely hosted and
streamed on demand to the receiving computer where it is executed without installation.

ASPs and SaaS implicitly represent a model of services, which incorporate a provider,
a consumer and agreements about the service and hierarchies of services, although a
specific model is not discussed in this selection of the literature.

3.3 IT service management

The field of IT service management (ITSM) has a model of services which includes
standardised service management processes, such as SLA negotiation. The model is
driven by a customer focused end-to-end view of IT services and is not limited to any
particular type of service or environment. It encompasses IT services from traditional in -
house IT development and operations to e-services. While standards have been described
for the model at high level it has not been standardised at a detailed implementation level.

ITSM methodologies are concerned with managing the provision of IT services from
one organisation or division to another. The provision of services includes both the on-
going delivery of the service and the support of it. The methodologies take a customer-
focused, high level business perspective, viewing the information systems delivered by
the IS/IT division as IT services defined by, and driven by, business goals i.e. “a set of
related functions provided from the IT infrastructure in support of one or more business
areas perceived by the customers as a coherent and self contained entity” [14: p. 6]. Lewis
and Ray [15] use as an example of a service, an investment firm deploying Web servers,
network infrastructure and application software to allow customers to trade stocks with
their Web browsers. This business function then might be labelled Web-based stock
trading and the IT service supporting this might be called the stock trading support
service.

There are a number of methodologies widely used for managing such IT services. They
are based on a concept of ITSM as “a set of processes that cooperate to ensure the quality
of live IT services, according to the levels of service agreed with the customer” [16: p iv].

ITSM inter-related processes are designed to deliver and support IT services. They aim to
ensure that agreements represent a shared understanding of both customer and provider in
supporting business needs throughout the lifecycle of the service as circumstances and
requirements change. The processes include cost, change, and problem management, as
well as availability, contingency and capacity management. A service level management
process negotiates with its customers with regards to the services to be delivered and the
conditions under which they are to be delivered, and a configuration management process
controls the resource components (including sub-services), on which the delivery and
support of the service depends.

ITSM methodologies include ITIL, (the Information Technology Infrastructure
Library), a public domain framework for ITSM which is the foundation of most
subsequent ITSM models; IBM’s ITPM (Information Technology Process Model);
Microsoft’s MOF (Microsoft Operating Framework); and ISM (Integrated Service
Model). The coverage of the methodologies varies. ITIL limits the definition of IT
services to the operational or deployment stage of the system lifecycle including the
operation, management, maintenance and enhancement of applications and infrastructure.
Other, related, methodologies put IT services in a broader context, and include the
development and procurement of applications and infrastructure. The ISPL (Information
Services Procurement Library), described by Dekker and Hendriks [17], for example, is a
set of practices codified as procedures for managing the processes of procuring IT
services, whether they be software development services (projects), or operational
services,. The methodologies also include specifications for managing information about
all the resource components in the IT infrastructure (e.g. hardware, software, SLAs,
contracts and sub-services, licences, skills) which are used in the delivery of the service.
Mapping these components to services in which they are deployed, however is not a core
part of the methodologies although there are instances where it is implemented.

In this model, services are described in a standardised way, i.e. by service purpose and
function, scope, cost, service levels (availability, capacity, contingency), support
provisions, evaluation methods and underpinning services (sub-services). The model
encompasses IT services in general, regardless of scale or complexity, but it has not
generated standardised implementation methodologies or automated management
processes.

3.4 Network service management

A model of end-to-end services can also be found in literature on the provision and
management of network services. It arises in discussions of instruments proposed for
automatically evaluating the compliance of services supplied with agreed service
parameters. For example, Park and Baek [10] propose a utility model for capturing the
management and control aspects of SLAs for multimedia Internet services. Managing and

charging for end-to-end services requires the infrastructure components involved in the
delivery of the service to be mapped to that service, even though the components may be
controlled in multiple domains. Bhoj, Singhal, & Chutani [18], describe models of
compliance evaluation agents which operate across multiple domains in this way. More
recent work proposes a generic model of services for the network services environment,
to help meet the need for user- and quality-oriented service management [19].

Reflecting a user-centric rather than a device-centric approach to service management
in the network services field, is the service model which Garschhammer et al. [20]
describe as being designed to support service planning, provisioning and operations as
well as service management at the customer interface, The model is intended to “help to
analyse, identify and structure the necessary actors and the corresponding inter- and intra-
organisational associations between these actors ” [20: p.1]. It also accounts for hierarchies
of services and maps to that service all the resources required for it , as well as any
variables which may impact its quality.

The model is a conceptual meta-model, which can be operationalised to provide both a
customer view of the service as well as the provider’s view of the realization of the
service and uses a case-driven methodology for applying the model. The methodology
also accounts for dependency relationships between a service and the resources required
to realise the service including knowledge, staff, software and hardware and sub-services,
thus enabling the modelling of provider chains. The model is further enhanced by a
specification for mapping device-oriented quality of service parameters to user-oriented
services. It includes too, the specification of a language for the description of the
calculation metric and allows for the inclusion of aggregation of metrics from both
devices and sub-services on which the service is dependent [19]. In this way, it addresses
what is recognised as a crucial problem in service level management, which is the
mapping of low level performance information to high level service parameters [21].

The model is similar to the ITSM mo del both in that it is customer centric and in the
view it takes of the infrastructure resources on which a service depends – i.e. knowledge,
staff, software and hardware. Unlike the ITSM model, however, its scope of focus has
been the particular domain of network services, not IT services in general. It has been
operationalised to provide implementation methodologies to identify, aggregate, manage
and monitor the resources on which a network service depends, but does not incorporate
the inter-related set of organisational processes for managing the delivery and support of a
service through its lifecycle of the ITSM methodologies.

4 Comparison of aspects of service models

The models of IT services discussed above can be summaris ed and compared in a number
of ways, highlighting significant similarities and differences among them.

For example, each model refers, either implicitly or explicitly, to essential elements
which define a service in that model. The following table summarises these core elements
across the range of models. Reflecting also the recent work in the automation of
techniques in service delivery and management, the summary indicates for each model
which elements are subject to automated techniques.

Table 1. Summary of core service elements by model

ASP ITS M Network
services

Web
services

Service
element

Pres. Auto. Pres. Auto. Pres. Auto. Pres. Auto.

Service
content
description

x - x - x - x x

Provider x - x - x - x x

Consumer x - x - x - x x

Customised
SLA for
conditions of
service

x - x - x - - -

Resource
mapping

- - x - x x - -

Service
hierarchies

- - x - x x - -

Lifecycle
support
(Failure
/change)

- - x - x - - -

From this summary, it appears that the models are differentiated in two obvious ways.
Firstly in the range of elements they encompass and secondly in the degree of automation
employed in the model. The summary also shows that the least automated service model

encompasses the widest range of core elements while the most automated model
contained the fewest core elements.

To explore these differences further, we summarised the models by characteristics,
other than the core elements, revealed in their descriptions. Those characteristics are:
domain of services addressed by the model, degree of structure of those services and level
of uncertainty of their operational environment. We chose those characteristics because
the description of the services in the literature revealed differences in them sufficient to
warrant further investigation into the implications for understanding relationships among
the models.

“Degree of structure” refers to the inherent structure in the task being undertaken by
the service. This includes the degree to which the specifications being met by the service
are clear, the degree to which the impact of the service is clear, and the degree to which
the processes being automated by the service are able to be repeated, routinised and
standardised. For example , the degree of structure of a service model could be considered
high when the level of standardisation in a service enables those standards to be expressed
and manipulated computationally, as in web services. This reflects the relationship drawn
by H.A. Simon in the field of decision support systems, “between problem solving-
strategies and the nature of the task” [22, p.67], in that a standardised and automated
problem solving strategy can be applied to a task for which the rules are clear or
structured. An unstructured task does not allow routinisation or automation. It follows
then that the degree of structure required for computational expression might restrict the
applicability of a model such as the web services model to highly structured
environments.

“Level of uncertainty” refers to the extent of predictability of contingencies over time.
The contingencies might relate to IT components, organisational components, providers
or consumers. For example, customisable services with individual SLAs reflecting
complex human and organisational issues, or complex technology, which impact the
delivery over t ime, would have a high level of uncertainty because the conditions of the
service are not controllable or predictable by the provider. Services which are not
negotiable and are strictly controlled by the provider would have a much lower degree of
uncertainty.

The table below (table 2), summarises these characteristics of the service models and
enables us to compare them on the basis of the service domain, the degree of structure
and the level of uncertainty.

Table 2. Summary of service characteristics by model

ASP ITS M Network
services

Web Services

Service
domain

Implicit
service model
of common
but
customisable
services.

High level model
of customisable
generic IT
services.

Specific to
network services.

Restricted to
services
describable and
discoverable
electronically.

Degree of
structure

Moderate
degree of
structure:
limited by
delivery mode
and need for
economies of
scale.

Low degree of
structure: deals
with a wide range
of organisational
and human factors
in the negotiation,
customisation and
management of
services through
standardised
operational
processes

High degree of
structure:
standardised and
automated
processes.

High degree of
structure:
standardised,
automated
processes,
procedures and
language, including
taxonomies.

Level of
uncertainty

Moderate
level of
uncertainty:
provider
controls some
environmental
factors.

High level of
uncertainty:
individual services
defined by
negotiated SLAs
and impacted by
org. factors over
time.

Moderate level of
uncertainty: model
is specific to one
kind of service
environment.

Low level of
uncertainty: the
service and
conditions are
controlled by the
provider.

The summary suggests that it may be useful to classify IT service models on the basis
of the degree of uncertainty and structure of the IT services they represent.

5 Classification of service models by complexity

If we express complexity as a function of degree of structure and level of uncertainty, then
we could say that IT services with a high degree of complexity are those which operate in
an environment of a high degree of uncertainty and a low degree of structure. Conversely,
IT services of a low degree of complexity are those which operate with low uncertainty
and high structure. We can then classify services according to this taxonomy.

In classifying service models in this way, the web services model could be considered
to have a low degree of complexity because it is structured, standardised and has
relatively knowable and manageable contingencies. The ITSM model would have a high
degree of complexity because by embracing customisable agreements on conditions of
service it accommodates the possibility of unknowable contingencies and a relatively low
degree of structure. The network services model would be of moderate complexity as it
could operate on a large scale but in an environment where requirements and
contingencies are relatively knowable and stable. The diagram below (figure 1), shows a
classification of the service models on this basis.

Figure 1. IT service models classified by complexity of service.

By taking a service-oriented view of IT-related activities and products then, it becomes
possible both to describe them in a uniform way, as IT services, and to propose a
classification of IT service models on the basis of their complexity. In this way we might

DEGREE OF UNCERTAINTY

Requirements
known

D
E

G
R

E
E

 O
F

 S
T

R
U

C
T

U
R

E

high

low

low high

Requirements
unclear/
changeable

UnpredictabilityPredictability

ASP

IT
services

network
services

web
services

have a single taxonomic framework for describing, comparing, evaluating and managing
IT services. Some implications of this are discussed below.

6 Some implications of an IT service framework and a taxonomy of
IT services.

Clearly no single model of IT services encompasses the range of complexity of all types
of IT services while providing automated management techniques. The mo del which
provides the most extensive automated management techniques, the web services model,
falls in the low complexity quadrant. Conversely, the model which does attempt to
address a wide range of services (ITSM) does not attempt to automate techniques. If we
look at the relationship between degree of complexity and degree of automation, it seems
that there is a systematic variation in the degree of automation in relation to the degree of
structure.

This classification of IT services demonstrates the need for techniques to be expanded
to account for IT services of greater human, organisational, technical and environmental
complexity, involving greater customisation. In this way, the benefits to be gained from
such techniques can be more widely applied.

That said, one of the striking characteristics of web services is the direction of
developments. The work currently being undertaken in SLA languages, referred to in
earlier discussion here for example, extends the possible application of the web services
model into areas of greater complexity. This trend could continue for a number of reasons,
discussed below, and a contextual framework might aid our understanding of this as the
web services model moves through categories in the taxonomy.

6.1 Extension of the web services model into areas of greater complexity

The possibly exists for the web services mo del to remain structured enough so that
standards can be implemented and computational systems developed for them but become
robust enough to deal with, for example, greater uncertainty over time. One way in which
this might happen is that services might be broken down in to their component elements
and distinctions made among those components on the basis of their complexity. Areas
subject to negotiation and uncertainty may be isolated from others which could then be
treated more like web services. In this way, services which are exposed to uncertain risks
of failure and change, or to political and economic vagaries either directly or in their

dependencies, may be able to benefit from standardisation of at least some components of
the service.

6.2 Improve d understanding of complex services

As Keen and Scott Morton [22] comment, a task which appears unstructured may not be
inherently so but may appear so due to lack of knowledge. It is possible then that services
which currently appear to be complex may appear less so as our understanding of services
increases through the filter of a service framework. Thus they may become more
amenable to automation and standardisation. Increased knowledge of services may also
come through techniques such as automated information gathering and analysis as a
function of service management (eg runtime moderation of service levels) and of the
embedding of service management data at the device level.

6.3 Increased sophistication of the web services model

As the underlying processes of service management become better understood, they tend
to become refined, standardised and automated. For example, the developments in SLA
management in web services represent such a process refinement.

6.4 Cross application of techniques among models

Just as SOA provides a framework for services to be decomposed and integrated flexibly,
a framework for service models may assist the decomposition of elements and techniques
of service models and their recombination in other forms.

A single framework enables us to view services in relation to each other; to see what
techniques used in one quadrant might be developed in another. As automated processes
such as SLA management become more sophisticated (capturing the semantics of a
service for example), these techniques may be applied to more complex services. For
example an ASP service such as Salesforce.com might eventually become a web service.
A further examination of such issues may well make for a richer taxonomy with well
defined boundaries.

Extensions of techniques and their benefits from one model to another might also
include, for example, the expansion of the capability of the UDDI to encompass business
rules to increase the sophistication of negotiation relating to web services and allow for
the kind of customised conditions of service of the ITSM model. The lifecycle support
processes of the ITSM model might also be addressed by the web services model, as
might the resource mapping of the network services model. In the contracting of services,

or hierarchies of services, the implementation of automated methodologies in the ITSM
model could contribute to the efficiency of IT service management

6.5 Locating services within a single framework

A single framework might also enable us to make distinctions between both significant
similarities and significant differences among services. This might help, for example, in
the choice of appropriate strategies for developing, managing or selecting different types
of services. Or, it might distinguish issues that are similar across services, regardless of
the degree of complexity, such as SLAs and service management processes.

6.6 Role of SLAs

In a service view, the SLA is a central component of the service. It references all the other
elements and components of the service. A cross-model view of SLAs within a service
framework may yield findings and techniques of significance to service management, the
measurement of compliance with SLAs and the evaluation of service levels.

6.7 Managing IT services

In managing IT services and the contracting of services, a common, integrated framework
encompassing the range of IT service, enabling services to be categorised, might serve to
reduce ambiguity and assumption about our understanding of commonly used terms as
well as to inform the evaluation and negotiation of contracted services and assist in the
process of risk assessment.

6.8 Standardisation

Standardisation of terminology, processes, technique and practice relating to IT services,
as with any standardisation, will likely produce economies of effort and increase
flexibility of the application of resources, both human and technical. Standardisation of
models across categories could bring benefits in terms of increased agility, better
economy and improved risk management in services.

6.9 Redesign of business processes

The impact of the web services model, and a single services framework on organisational
design may be significant in structuring business problems in a way that makes them more
amenable to a service view and web service-type applications. Just as the models
embodied in customer relationship applications, enterprise resource planning and supply
chain management have changed and to some degree standardised the way organisations
are structured, so might these new service models influence the refinement of the
structures when seen from service viewpoint. As organisations become more structured
and less complex, they are able to take advantage of the kinds of standardisation and
automation to be found in the models discussed here.

Conclusion

The discourse of web services has appeared to be dominated by a technical discourse at
the expense of some of the complex organisation issues addressed by other models.
However, when viewed in the broader context of the diversity of IT service models, the
future path of web services clearly has many possibilities to offer the broader range of IT
services.

References

1. The Stencil Group, I., UDDI.org White Paper: The evolution of UDDI . 2002.
2. Gottschalk, K., Web Services architecture overview. 2000, IBM.
3. UDDI.org, UDDI Models: Classification Schemes, Taxonomies, Identifier

systems and Relationships. 2003.
4. Cerami, E., Web services essentials. 2002, Beijing ; Cambridge, MA: O'Reilly.

xiii, 288.
5. Arsanjani, A., et al., Web Services: Promises and Compromises. Queue ACM

Press, 2003. 1(1): p. 48--58.
6. Dan, A., H. Ludwig, and G. Pacifici, Web service differentation with service

level agreements. 2003, IBM developerWorks.
7. Ludwig, H., et al., A Service Level Agreement Language for Dynamic Electronic

Services. Electronic Commerce Research, 2003. 3: p. 43-59.
8. Lamanna, D.D., J. Skenne, and W. Emmerich. SLAng: A Language for Defining

Service level Agreements. in Proceedings of the IEEE Computer Society
Workshop on Future Trends of Distributed Computing Systems. 2003: IEEE.

9. Williamson, O.E., Markets and hierarchies, analysis and antitrust implications :
a study in the economics of internal organization. 1975, New York: Free Press.
xvii, 286.

10. Park, J.T., J.W. Baek, and J.W.K. Honk, Management of service level
agreements for multimedia Internet service using a utility model. IEEE
Communications Magazine, 2001. 39(5): p. 100-106.

11. Koch, C., Put IT in Writing: Service Level Agreements, in CIO Magazine. 1998.
12. Patnayakuni, R. and N. Seth. Why License When you Can Rent? Risks and

Rewards of the Application Service Provider Model . in Special Interest Group on
Computer Personnel Research Annual Conference. 2001. San Diego CA USA:
ACM.

13. Greschler, D. and T. Mangan, Networking lessons in delivering 'Software as a
Service'- Part 1. International Journal of Network Management, 2002. 12 : p.
317-321.

14. CCTA, An introduction to ITIL and the IT Infrastructure Library. 2001, London:
Her Majesty's Stationary Office Books.

15. Lewis, L. and P. Ray. Service level management definition, architecture, and
research challenges. in Global Telecommunications Conference, 1999.
GLOBECOM '99. 1999: General or Review.

16. van Bon, J., The Guide to IT Service Management. Vol. 1. 2002, London:
Addison -Wesley.

17. Dekker, J. and L. Hendriks, Best practice in acquisition and procurement
management: the Information Services Procurement Library, in The guide to IT
service management, J. van Bon, Editor. 2002, Addison -Wesley: London. p.
277-296.

18. Bhoj, P., S. Singhal, and S. Chutani, SLA management in federated
environments. Computer Networks-the International Journal of Computer and
Telecommunications Networking, 2001. 35(1): p. 5-24.

19. Rodosek, G.D. Quality Aspects in IT Service Management. in DSOM 2002 LNCS
2506. 2002: Springer-Verlag.

20. Garschhammer, M., et al. A case-driven methodology for applying the MNM
service model. in Network Operations and Management Symposium, 2002.
IEEE/IFIP. 2002.

21. Lewis, L. and P. Ray, On the migration from enterprise management to
integrated service level management, in 2001 Enterprise Networking,
Applications and Services Conference Proceedings - Entnet(at)Supercomm2001.
2001. p. 17-24.

22. Keen, P., G. and M.S. Scott Morton, Decision support systems : an
organizational perspective. Addison-Wesley series on decision support. 1978,
Reading, Mass.: Addison-Wesley Pub. Co. xv, 264.

.

Extending Web Service Technology towards an
Earth Observation Integration Framework

Marcello Mariucci1,2,* and Bernhard Mitschang2

1 European Space Research Institute, European Space Agency,
00040 Frascati (RM), Italy

2 Institute of Parallel and Distributed Systems, University of Stuttgart,
70569 Stuttgart, Germany

{mariucci, mitsch}@informatik.uni-stuttgart.de

Abstract. In this paper we describe the implementation of a service-based ap-
plication integration solution for the complex domain of Earth Observation
(EO) application systems. The presented approach is based on an EO integra-
tion framework. It supports the concatenation of disparate software applica-
tions to flexible EO process chains. Resulting EO services are provided to end
users by means of Web Service technology. We demonstrate that current stan-
dard technology is not sufficient to dynamically publish and interactively in-
voke EO services over the Web. We describe necessary extensions and adapta-
tions.

1 Introduction

An Earth Observation (EO) integration framework is a service-based application
integration approach for the interdisciplinary domain of EO application systems [1].
It facilitates the development and execution of EO services by supporting the integra-
tion of disparate applications to EO process chains. EO services are based on the
intensive use of large data sets from space. They process raw EO data sets into in-
creasingly specialized products until a certain level of quality is achieved. This proc-
essing requires the tight cooperation of several distributed experts, and intensive
computation across a coordinated sequence of both, interactive and automatic proc-
essing steps. Appropriate examples for such EO services are the generation of
weather forecasts, forest fire detection, and oil slick monitoring. Fig. 1 illustrates a
simplified process flow of a representative EO service. It depicts the generation and
use of forest fire observation products.

Radar images and meteorological vectors are regularly sensed and acquired by re-
lated acquisition stations �. Data Providers monitor the creation of these EO data
sets, and ensure their correct ingestion into the Central Server �. The Central Server
pre-processes the received data for fire detection purposes, and forwards them to an

1 Work was done while the author was visiting the European Space Agency (ESA/ESRIN).

appropriate EO imagery expert. This so-called Value Adder analyzes, filters, maps,
and merges the processed data, and eventually extracts fire observation parameters
like burned area contour and perimeter �. Analysis results are then sent back to the
Central Server where they are packaged into thematic products. Generated thematic
products are sent to Operational Users �, who assess and validate them by using
locally available information �. Based on these results, they can initiate and coordi-
nate operative actions, such as fire-fighting and rescue operations�.

The example scenario shows that the seamless processing of EO services requires
the integration of heterogeneous tools and management systems. That is, transitions
between processing steps have to be automated and coordinated. Furthermore, data
set representations have to be based on a common model. The European Space
Agency has approached with mainly two research directions the implementation of
such an integration solution. In the following Section 2 we briefly outline and ana-
lyze these initiatives. In Section 3 we present our solution of an EO integration
framework. We introduce the service-based application integration approach, and
highlight the related integration model. In Section 4 we describe the realization of
our integration framework. We emphasize the use of Web service technology, and
present necessary extensions and adaptations to dynamically publish and interac-
tively invoke EO services over the Web. Section 5 summarizes and concludes the
paper with an outlook to further work.

2 Related Work

The European Space Agency (ESA) has approached with mainly two activity direc-
tions the development of an EO integration framework. On the one side it has pur-
sued a top-down approach, which has analyzed the extension of an existing EO
application infrastructure towards a generic, multi-application platform. On the other
side, it has investigated a bottom-up approach, which has developed an interoperable

Fig. 1. Oversimplified EO Service for Forest Fire Detection

Central Server
Value Adder

Data Provider

1

2

3

Operational
User

4

5

Thematic Product

Acquisition
Stations

Central Server
Value Adder

Data Provider

11

22

33

Operational
User

44

55

Thematic Product

Acquisition
Stations

protocol environment for coupling interdisciplinary EO facilities to integrated solu-
tions.

ESA's top-down initiative is introduced and analyzed in [1]. The basic idea of this
approach is to reuse generic functions of an already implemented EO application
systems, and to build up a common framework for EO application systems. The
architecture is based on a modular, object-oriented CORBA design, and deploys
function modules on geographically distributed computing machines. EO services
are created by combining appropriate modules to thematic process chains. Missing
modules are added to the framework on demand. Corresponding process descriptions
are hard-coded within so-called server modules, and provided as EO services via
CORBA protocols. Analyses of this approach turned out that the infrastructure is
extremely inflexible and not particularly suitable to form an EO integration frame-
work. The creation of EO services represents a huge overhead, leading to twisted and
hardly manageable software systems. Furthermore, appropriate process control and
metadata management facilities are missing [1].

ESA's bottom-up approach is related to the development of a Multiple Application
Support Service (MASS) protocol environment [2]. It defines an interoperable infra-
structure that aims at coupling clients, tools, and management systems. Basically,
MASS protocols extend the functionality of CORBA protocols and services for the
purpose of EO application systems. Analyses concerning the suitability of this ap-
proach to form an EO integration framework revealed performance and flexibility
problems. Furthermore, they emphasized that the MASS infrastructure is lacking of
an information base and development environment for managing system resources
and structures. The infrastructure does not provide a comprehensive overview of
software elements available in the system. MASS information bases are restricted to
interface specifications. Further information like architectural design of the system
or deployment information of software elements are either hard-coded in the single
software products or written in some documents. This makes it difficult for EO ser-
vice developers to choose the right components during EO service creation and ex-
tension.

Based on experiences gained in assessing ESA's approaches, we designed and im-
plemented an alternative solution for an EO integration framework. The following
section briefly introduces our service-based integration approach.

3 Service-based Application Integration Approach

Our EO integration framework provides an open software infrastructure for support-
ing the inherent complexity of EO application systems. It facilitates the coordinated
integration of disparate tools and management systems along EO process chains. In
addition, it exposes related EO services over the Web by applying Web service tech-
nology. As depicted in Fig. 2, EO services are published and registered in a UDDI
service directory �. End users can discover EO services they are interested in by
enquiring the UDDI �. The information they retrieve from the directory suffices to
localize and use the EO service �. For each EO service a related process flow de-

scription is available. It is used by a process management system to execute the re-
quest EO service, and to coordinate related processing steps�.

Our service-based application integration approach is divided into three phases,
i.e. design time, development time, and run time (see Fig. 3). The core element of
the integration process is a shared integration model. It structures metadata about
any resource, activity, and process of the framework, and represents the source from
which documentation and code generation can be directly derived. The model is
based on UML, and intended for process-oriented application integration purposes
within EO integration frameworks. The main value of the model-driven EO integra-
tion framework is its flexibility and technological independency. By truly decoupling
software specifications from implementation details, heterogeneous realizations of
singe software products are abstracted. Thus, software products are integrated into
flexible EO process chains, which can be dynamically reconfigured and customized
as the environment changes.

At design time the focus is on the creation of the integration model. It is designed
by integration architects once at the beginning of the integration process. The model
specifies the structure of integration artifacts for the persistent storage of related
instantiations. Development begins after the integration model is made available.
Integration developers use client tools to collaboratively instantiate the integration
model. Applications are thus registered, linked to their respective implementations,
and assembled to combined EO services. The integration model is then used to gen-
erate appropriate code for EO service publication and execution. At run time, end
users employ browser tools and proprietary clients to discover, locate, and invoke EO
services. Requests are forwarded to the execution engine, which orchestrates the
corresponding EO service processing.

4 Prototype Implementation

Based on the presented service-based integration approach, we implemented an EO
integration framework as part of the ARSENAL project [3]. The project aimed at the

Fig. 2. Service-based EO Integration Framework

UDDIWeb Portal

Process Management
System

Application Application Application

Discover
EO Service

Localize
EO Service

Publish
EO Service

End User

1

23

4

UDDIWeb Portal

Process Management
System

Application Application Application

Discover
EO Service

Localize
EO Service

Publish
EO Service

End User

11

2233

44

design and implementation of a framework infrastructure for the flexible integration
of applications within the EO domain. The main requirements were the dynamic
reuse of application functions, the life cycle management of EO service structures,
and the ubiquitous access to and controlled execution of EO service instances. Fur-
thermore, the infrastructure had to be built upon commercial products, in order to
guarantee best possible system stability, reliability, and low development costs. In
this section, we evaluate middleware technologies regarding their use within our
framework prototype. Then, we describe each integration phase in detail, and evalu-
ate commercial middleware technologies regarding their use within our framework
prototype. We emphasize selected implementation issues required for the seamless
combination of those middleware products.

4.1 Middleware Technology Analysis

Metadata created during the integration process needs to be consistently stored and
managed during the entire software life cycle. Its right treatment seriously enhances
the integration process in terms of dynamics, flexibility, and adaptability to the con-
stantly changing business environment. Repository is a technology that deals with
the whole spectrum of metadata management. It provides a centralized, persistent
storage, helps in reducing redundancies and inconsistencies, and improves reuse.
Besides basic database management functions, the repository provides functions for
the seamless management of metadata throughout the entire software life cycle (e.g.
versioning, configurations). Furthermore, it offers indispensable functions for the
collaborative management of system metadata (e.g. workspaces, contexts). The main
value of the repository technology, and its functions are summarized in [4].

EO services describe process flows between applications within the EO domain.
Different forms of middleware have been introduced by the computing community to
enable integration and automation of processes. In general, a Process Management
System (PMS) provides a central point of control for defining process flows and or-
chestrating their execution. It records the execution state of the process, and routes
requests to applications to execute tasks [5]. In order to unify the access to applica-
tions and EO services standard interface definitions are required. Finally, Web Ser-

Fig. 3. Application Integration Process

Integration Model

Integration Developers
collaboratively instantiate the

Integration Model

Design TimeDesign Time Development TimeDevelopment Time Run TimeRun Time

Integration Architects
create the

Integration Model

End Users
discover, localize, and invoke

EO services

Integration Model

Integration Developers
collaboratively instantiate the

Integration Model

Design TimeDesign Time Development TimeDevelopment Time Run TimeRun Time

Integration Architects
create the

Integration Model

End Users
discover, localize, and invoke

EO services

vices define techniques for describing, discovering, and locating software compo-
nents on a global network. These techniques are programming language- and proto-
col-neutral, and provide ubiquitous and transparent access to system resources [6].

The introduced middleware technologies basically meet the requirements on our
EO integration framework infrastructure. In the following sections we discuss the
use of related commercial technology products in the EO integration framework. We
emphasize additional 'glue' components required for coupling these tools to seam-
lessly support EO application systems. Fig. 4 illustrates the ARSENAL implementa-
tion architecture. White boxes identify Commercial Off-The-Shelf (COTS) tools,
whereas grey boxes identify 'glue' components. The figure represents the big picture
for the remainder of this chapter.

4.2 Design Time Support

Our EO framework prototype is based on the object-oriented repository of Microsoft's
SQL Server 2000 Meta Data Services (see Fig. 4). The repository provides a power-
ful API for the information model definition and management during the entire
software life cycle. In addition, it supplies a Model Installer, and a Model Develop-
ment Kit (MDK) for the Rational Rose Modeling Tool. Both tools facilitate the in-
stallation of UML models into the repository. By means of these features, integration
architects initially define the integration model by using UML, export it as a Reposi-
tory Distributable Model (RDM) file, and install it in the integration repository. This
procedure is done once at the beginning of the integration process.

4.3 Development Time Support

At development time, integration developers are supported to collaboratively instan-
tiate the integration model. The Application Integrator tool (see Fig. 4) supports

Fig. 4. ARSENAL Implementation Architecture

UML
Modeling Tool

(Rational Rose)
Application Integrator

Web Browser
(Microsoft Internet

Explorer)

Client
Application

Repository
Installer

(Microsoft Model
Installer & MDK)

WSDL+ Parser
Web Portal

(Apache HTTP Server &
Jakarta Tomcat)

RDM

API/ODBC

WSDL+ FDL HTML SOAP
envelope

XML

JDBC JDBC

Design TimeDesign Time Development TimeDevelopment Time Run TimeRun Time

JDBC

Workflow Engine
(IBM MQSeries

Workflow)

Integration Repository
(Microsoft SQL Server 2000 Metadata Services)

UDDI v3+ Directory

UML
Modeling Tool

(Rational Rose)
Application Integrator

Web Browser
(Microsoft Internet

Explorer)

Client
Application

Repository
Installer

(Microsoft Model
Installer & MDK)

WSDL+ Parser
Web Portal

(Apache HTTP Server &
Jakarta Tomcat)

RDM

API/ODBC

WSDL+ FDL HTML SOAP
envelope

XML

JDBC JDBC

Design TimeDesign Time Development TimeDevelopment Time Run TimeRun Time

JDBC

Workflow Engine
(IBM MQSeries

Workflow)

Integration Repository
(Microsoft SQL Server 2000 Metadata Services)

UDDI v3+ Directory

integration developers to collaboratively create EO services. It provides a user-
friendly GUI, and uses the repository API to create, navigate, and manipulate the
integration model content, basically by inserting, deleting, and updating object in-
stances. In addition, it enables asynchronous collaborative work by employing Mi-
crosoft's repository features, such as version, configuration, and workspace manage-
ment. The Application Integrator tool also supports the generation of appropriate,
technology-specific code for publishing and executing EO services. For EO service
execution purposes, it creates a Flow Definition Language (FDL) file, and exports it
to the workflow engine. For EO service publishing purposes, it generates an ex-
tended Web Service Definition Language (WSDL+) file. This WSDL+ file is then
parsed and imported into the UDDI v3+ registry. Extensions regarding the WSDL
and the UDDI specifications are required for the interactive Web service invocation,
and for the automatic registration of EO services into the UDDI registry. They are
described in detail in the following subsections.

UDDI Extensions for Interactive Web Service Invocation. EO services interfaces
are described as Web services and published in a private UDDI registry. This UDDI
registry is a database infrastructure that enables end users and their client
applications to quickly and easily find EO services [7]. It links each EO service
description to its corresponding WSDL interface definition file, which abstractly
describes related access structures. By means of this file, end users can integrate the
EO service within their application code, and locate and invoke it through remote
procedure calls.

Besides this standard form of invoking EO services, the ARSENAL prototype fa-
cilitates the interactive invocation of EO services from within a Web browser tool.
That is, end users are not forced to retrieve the corresponding WSDL interface defi-
nition file to access the EO service, but are enabled to directly and interactively in-
voke the EO service from within their standard Web browsers.

businessEntity

businessService

Contact

categoryBag tModel

tModelInstanceInfobindingTemplate

businessServiceParameter

businessServiceDataStructure businessServiceDataField

1

0..*

1 1

1 0..*

1

1..*

1

0..*

1

0..*

1
0..*

1

0..*

0..*

1..*

1 0..*

0..*1
Composition

Uni-directional Association

Bi-directional Association

Aggregation

Fig. 5. UDDI v3+ Data Model

Two approaches were analyzed to implement this feature within the ARSENAL
prototype. The first approach was related to the enhancement of the Web portal to
process WSDL interface definition files. As soon as an end user requests an EO
service invocation, the Web portal parses the corresponding WSDL file, and dynami-
cally generates a Web page requesting the EO service input parameters. It then sends
the request together with its parameters to the corresponding port to automatically
launch the EO service execution. However, this solution resulted to be too time-
consuming, since the WSDL file is processed and parsed at run time. Consequently,
the second approach regarded the extension of the UDDI registry to additionally
manage WSDL interface definitions. That is, the UDDI registry is enhanced to en-
able the storage and retrieval of EO service access structures. In this way, WSDL
files can be parsed at development time, and EO service interface definitions directly
used to dynamically generate a Web page requesting the EO service input parame-
ters. Although this approach extends the UDDI standard in a proprietary fashion, the
performance and response time of the Web portal is enormously enhanced.

The ARSENAL prototype implements the second approach, and, therefore, ex-
tends the UDDI registry with EO service access structures. Fig. 5 illustrates the en-
hanced UDDI data model. It refers to the UDDI v3 standard and extends it by three
entities, namely:
• businessServiceParameter for the specification of the EO service parameters,
• businessServiceDataStructure for the specification of EO service parameter data

types, and
• businessServiceDataField for the specification of complex data types.

These three additional entities are highlighted in Fig. 5. The resulting UDDI reg-
istry is called UDDI v3+ registry.

Automatic Registration of EO Services into UDDI v3+. Our prototype
implementation provides the feature to automatically generate both, WSDL interface
and WSDL implementation files for EO services. Based on EO service descriptions
stored in the repository, appropriate WSDL files are generated, parsed, and
registered into the UDDI v3+ registry. Usually, the registration of Web services in a
UDDI registry is performed in interactive mode, i.e. the service provider connects to
the UDDI registry via a Web browser, registers its business entity, and describes all
provided Web services. Since our repository includes all required information, we
additionally support automatic registration of EO services in the UDDI v3+ registry.
For this purpose, we had to appropriately extend the WSDL implementation file by
'business entity' and 'category bag' specifications. Fig. 6 lists a fragment of an
exemplary WSDL+ implementation file. Extensions are highlighted.

The WSDL+ implementation file is sent to the WSDL+ parser. The WSDL+
parser is based on Apache's Xerces DOM parser, and verifies the syntactical correct-
ness of the WSDL+ file. In addition, it inserts related entries into the UDDI v3+
registry.

Generation of a Business Process Definition File. The Application Integrator tool
is capable of exporting workflow specifications of EO services to a FDL file. This file
includes instructions for the workflow engine to properly execute EO services at run
time. To prepare EO service executions, such a file is generated and imported into
the respective BPMS. FDL is a proprietary workflow specification format of IBM.
However, the Application Integrator tool is open and flexible enough to adapt its
code generation procedure to other workflow description formats, such as the
emerging BPEL [8] format.

4.4 Run Time Support

At run time, end users discover, locate, and invoke EO services by applying Web
service technology. By means of a Web browser, end users query the UDDI v3+
registry to retrieve information about available EO services and their access loca-
tions. More specifically, the Web browser connects to the Web portal and requests an
appropriate Java Server Page (JSP). The request is forwarded to the Servlet engine
which executes corresponding processing steps, queries the UDDI v3+ registry, and
sends related information back to the end user via the Web portal. The UDDI v3+
registry provides descriptive information about EO service interfaces and access
points. End users use this data to locate EO services, and to invoke them by specify-
ing related parameters.

EO services are offered through the SOAP (Simple Object Access Protocol) [9].
SOAP messages for the invocation of EO services are either created by client appli-
cations, or automatically generated by the Web portal for interactive EO service
invocations. They are then sent to the corresponding access point by using the HTTP
post protocol. Through this access point the message is forwarded to the SOAP
adapter, which processes it, and sends corresponding execution instructions to the

Fig. 6. WSDL+ Implementation File

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...>
<documentation> ... </documentation>
<import ... />
<businessEntity>

<name>Space Data Technology, Inc.</name>
<description>Satellite Data Provider</description>
<contacts>
<contact useType="Organization Manager">

<personName>Marcello Mariucci</personName>
<details>mariucci@spacedatatech.com</details>

</contact>
</contacts>
<categoryBag>
<keyedReference tModelKey="UUDI:C1AD242-9343-2321" keyName="Earth Science" keyValue="Data"/>
<keyedReference tModelKey="UUDI:D4EG343-3534-2316" keyName="Data" keyValue="Provider"/>

</categoryBag>
</businessEntity>
<service ...>

<documentation> ... </documentation>
<categoryBag>
<keyedReference tModelKey="UUDI:D3ER342-2345-6545" keyName="Data" keyValue="Ingestion"/>

</categoryBag>
<port ... > ... </port>

</service>
</definitions>

workflow engine. Execution instructions are coded in the Extensible Markup Lan-
guage (XML) format [10]. The workflow engine provides a reliable and robust infra-
structure for the orchestration of EO services related process chain. Results are sent
back to the Web portal, which either forwards them to the client application, or sends
them via email to the end user. In the reminder of this section, we briefly describe
the dynamic invocation of EO services via SOAP messages.

Dynamic SOAP Adapter for a Workflow Management System. As described
above, end users can send SOAP request messages to an access point in order to
initialize EO service executions. For that purpose, the Web portal integrates a
dynamic SOAP adapter, which is able to parse SOAP messages and to forward
related execution instructions to the workflow engine. Our SOAP adapter is based on
Apache SOAP, which per se provides a SOAP handler to parse SOAP messages and
to map requests to static Java classes. Unfortunately, this implementation approach
does not meet our demands, as in our integration infrastructure Web services are
dynamically created, and, thus, Web service related Java classes do not exist in
advance. A new dynamic SOAP handler, which additionally adapts to a workflow
management system, was implemented. Fig. 7 depicts a UML sequence diagram
regarding the invocation of EO services via SOAP in our EO integration framework.

The end user sends a SOAP message to the HTTP Server �, which forwards the
requests via Servlet engine � to the SOAP adapter �. The SOAP adapter verifies
the request. In order to check whether the service parameters are correct and whether
the client is authorized to execute the EO service, the adapter interacts with the inte-
gration repository �. This connection is also used to get service execution instruc-
tions. The SOAP adapter generates XML statements about these execution instruc-

Fig. 7. UML Sequence Diagram for EO Service Invocation Handling

: End User HTTP-Server Servlet Engine SOAP Adapter Integ ration
Repository

Workflow
Engine

Appli cat ion A Application B

Invoke EO Service

Forward SOAP Request
Verifyauthorization

Generate XML message

Put XML message on XML queue

Execute application function

Execute application function

Put XML message on XML queue

Read XML message

Send SOAP Responce

1

2
3

4

5

6

7

8

9

: End User HTTP-Server Servlet Engine SOAP Adapter Integ ration
Repository

Workflow
Engine

Appli cat ion A Application B

Invoke EO Service

Forward SOAP Request
Verifyauthorization

Generate XML message

Put XML message on XML queue

Execute application function

Execute application function

Put XML message on XML queue

Read XML message

Send SOAP Responce

11

22
33

44

55

66

77

88

99

tions along with the service parameters �, and sends them via XML queues to the
workflow engine �. The workflow engine starts the EO service among the involved
applications �. At the end, it sends a status report back to the SOAP adapter �,
which forwards it to the end user via SOAP	.

5 Conclusions and Future Work

In this paper we presented a flexible EO integration framework for supporting the
inherent complexity of EO application systems. We focused on a service-based appli-
cation integration approach and its realization. We emphasized our prototype im-
plementation, which integrates and adapts COTS tools for workflow management,
repository, and Web services technology. The prototype infrastructure has been suc-
cessfully applied in real EO environments, which proves that flexible application
integration could be achieved by the right composition and adaptation of existing
technology. Up to now, the EO integration framework infrastructure is limited on a
few scientific applications and a selective user community. However, visions concern
the use of such frameworks to foster commercial EO applications, and to build up a
market for EO data and application providers.

In our approach, Web service technology is not used to link applications inside the
EO integration framework. Since Web service technology products are still in an
experimental fashion, we preferred to use more expensive, but proven and reliable,
products. Future work regards the employment of Web service technology for inte-
grating internal key systems. Further future work is concerned to emerging Grid
technologies [11]. As of now, Grid technology is perceived as an orthogonal issue.
Coupling Grid with our EO integration framework offers the possibility of transpar-
ently executing application functions on best possible resource allocation configura-
tions. Furthermore, security solutions of local applications could be maintained, and
intensive computation applications executed on dynamic high performance re-
sources. The employment of Grid would greatly simplify the sharing and dissemina-
tion of applications, and enhance the quality, effectiveness and efficiency of our
application integration approach.

References

1. Mariucci, M., Mitschang, B.: On Making RAMSES an Earth Observation Application
Framework. In: Smari, W.W., Melab, N., Chen, S.-C. (eds.): The 2nd International Confer-
ence on Information Systems and Engineering. The Society for Modeling and Simulation
International, Vol. 34, Nr. 2. San Diego (2002) 67–72.

2. Doherty, C., Usländer, T., Landgraf. G.: Multiple Application Support Services. An ESA
Protocol for EO Application Clients. In: Earth Observation & Geo-Spatial Web and Inter-
net Workshop. Committee on Earth Observation Satellites. London (2000).
http://webtech.jrc.it.

3. European Space Agency, University of Stuttgart: ARSENAL Project. Official Homepage.
http://www.informatik.uni-stuttgart.de/ipvs/as/projekte/arsenal/index_engl.html.

4. Bernstein, P.A., Dayal, U.: An Overview of Repository Technology. In: Bocca, J.B., Jarke,
M., Zaniolo, C. (eds.): 20th International Conference on Very Large Data Bases. Santiago
(1994) 705-713.

5. Dayal, U., Hsu, M., Ladin, R.: Business Process Coordination: State of the Art, Trends,
and Open Issues. In: Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao,
K., Snodgrass, R. (eds.): 27th International Conference on Very Large Data Bases. Rome
(2001) 3-13.

6. Leymann, F.: Web Services: Distributed Applications without Limits – An Outline. In:
Weikum, G., Schöning, H., Rahm, E. (eds.): 10th BTW 2003 Datenbanksysteme für Busi-
ness, Technologie und Web. Leipzig (2003) 2-23.

7. Belwood, T., et al.: UDDI 3.0. UDDI Spec Technical Committee Specification.
http://www.uddi.org.

8. Leymann, F., Roller, D.: Business processes in a Web service world. A quick overview of
BPEL4WS. IBM report. http://www-106.ibm.com.

9. World Wide Web consortium (W3C): Simple Object Access Protocol (SOAP) 1.1. W3C
Note 08 May 2000. http://www.w3.org/TR/SOAP

10.World Wide Web consortium (W3C): Extensible Markup Language (XML).
http://www.w3c.org/XML/.

11.Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Mor-
gan Kaufmann (1999).

DoJa: Service oriented application platform for

mobile phones using Java

Masayuki Tsuda†, Atsuki Tomioka‡,
Takefumi Naganuma‡ and Shoji Kurakake‡

†Customer Equipment Development Department, NTT DoCoMo, Inc.
‡Multimedia Laboratories, NTT DoCoMo, Inc.

3-9-11 Hikari-no-oka, Yokosuka, Kanagawa, Japan
tsuda@cet.yrp.nttdocomo.co.jp

{tomioka, naganuma, kurakake}@mml.yrp.nttdocomo.co.jp

Abstract. DoJa is a major application platform that is designed for mo-
bile e-services that will run on DoCoMo’s mobile phones and its wireless
network. It ensures that our users can easily receive advanced services
on their palm. Since DoJa services started in 2001, the number of users
has exceeded 17 million, service-oriented functions have been added to
DoJa, and the number of DoJa applications now exceeds 7000. This pa-
per mainly describes the two key features of DoJa that are specific to
mobile phones and wireless networks. One is a framework for applica-
tions that will be held on a mobile phone and that behave like an agent.
The other is a new object that protects the user’s privacy. We elucidate
the problems and mechanism needed to realize these features in a mobile
phone. Their usefulness is confirmed by experiments.

1 Introduction

The mobile phone is changing its role from voice-only communication to mobile e-
services. In Japan, users began accessing the Internet via mobile phones in 1999.
Since that time, mobile e-services such as banking, ordering books and reserving
tickets have been flourishing and are now major components of e-business. In
Europe, similar mobile e-services were started in 2002 and the number of the
users has increased rapidly. This movement is spreading over the rest of the
world.

One of the key technologies for realizing mobile e-services is Java[1][2]. A
small Java program on a mobile phone can, when executed, collaborate with ap-
plications in distributed servers over a wireless network and the Internet. Services
are dynamically composed to realize various mobile e-services in the user’s palm.
Java for mobile phones is a minimum subset of Java for personal computers, Java
2 Platform Standard Edition, and is designed for kilo-byte environments. That is,
application size, memory size and so on are of the order of kilo-bytes because the
CPU power and memory of mobile phones are much less than those of personal
computers or workstations[3]. Java for a mobile phone is termed Java 2 Platform

Ubiquitous services

IrRemocon

M-commerce

Mobile e-services
using the internet

Stock

Game The latest DoJa enabled phones

Fig. 1. These are the latest DoJa enabled mobile phones. The applications realized
range from mobile e-services to ubiquitous services.

Micro Edition (J2ME) and consists of a configuration and a profile. The con-
figuration is called Connected, Limited Device Configuration (CLDC)[4], which
consists of a virtual machine (VM) and a minimum subset of basic Java class
libraries. The profile consists of device-oriented Java class libraries such as user
interface, service-oriented Java class libraries for mobile e-business, and an appli-
cation management function. Accordingly, to realize attractive mobile e-services
using J2ME, it is necessary to develop profiles, especially the service-oriented
Java class libraries, from a service-oriented viewpoint.

DoJa[5] has a service-oriented profile from which many successful mobile
e-services have been developed. It was designed based on analyses of concrete
business requirements and case studies. Its design also allows for the full utiliza-
tion of the features of our mobile phones and our wireless network. Since the
first release of DoJa in 2001, the number of its applications such as e-commerce,
games, information delivery, and karaoke has reached 7000, and the number of
users now exceeds 17 million. As a result, DoJa has become a major application
platform in our mobile e-services(Figure 1).

This paper describes the two key functions of DoJa: a framework for stand-
by applications and XObject. A stand-by application, we call them ”machiuke”
applications, is an application that runs constantly like an agent or a Unix
daemon. To realize this kind of application, two problems have to be solved.
One is power consumption. The other is switching key inputs to the appropriate
application or phone function. The former is serious because Java consumes
battery power very quickly. The worst mobile phone’s power consumption leaps
about 20 times when a Java program is run constantly. Thus some power saving
mechanism is needed to run Java constantly. The latter is closely associated
with usability. When Java doesn’t run, users can make a phone call or email
by pressing keys smoothly. But, when Java runs, all key inputs are delivered to
Java and they must first terminate it to make a phone call or send an email.
This degrades usability. To solve these problems we introduce three states to the

JAM

OS

DoJa API
 - UI, Multimedia,
 - Network,IrDA,
 - Phone, Game, 3D

Scratch Pad

CLDC

Virtual Machine

DoJa

Fig. 2. A structure of DoJa

application life-cycle. Making the application switch among these three states
yields power savings and key input switching. XObject was developed to protect
the user’s private data from leaking from the mobile phone. If the user’s private
data in an address book is treated as an ordinary Java object, it is easily leaked
by sending the object to a server. Thus, it is necessary to implement some
mechanism that prevents object release. Our solution is the new Java object
called XObject.

In the following sections, we first overview DoJa. We then detail the frame-
work of machiuke applications and XObjet. Experiments conducted to evaluate
the usefulness of our proposal are then described. Finally we have provide some
concluding remarks and discuss feature work.

2 An overview of DoJa

2.1 Composition of DoJa

As shown in Figure 2, DoJa consists of three main parts. Most J2ME related
technologies have been developed as part of Java standardization activities, but
all components in Figure 2 except for CLDC and VM were developed by DoCoMo
to realize our mobile e-services. DoJa components are as follows.

• Java Application Manager (JAM)
JAM manages downloading, updating, removing, invoking and terminating
applications. Because there is no Windows command prompt nor Unix shell
in a mobile phone, JAM actually provides the equivalent functionality. Only
one application can be invoked in DoJa at the same time because of the
memory limits; this restriction is also managed by JAM. Moreover, it man-
ages security during application runtime. For example, DoJa prevents the
application from communicating with any other server than the one it was
downloaded from. This prevents the all-too frequent DoS attack. To do this,
JAM memorizes the server’s URL from which it was downloaded and always

compares the URL being accessed against the memorized URL. If the URLs
are different, JAM asks the VM to issue a SecurityException to prevent the
communication.

• DoJa APIs
DoJa APIs consist of a user interface, network functions such as HTTP/HTTPS
and IrDA Obex, multimedia functions, phone specific functions and other
application-oriented functions like 3D graphics and gaming. We have pro-
vided the APIs with application life-cycle and API behaviors. These APIs
were developed by analyzing actual service requests and concrete case stud-
ies provided by our business team. Service developers actually develop their
DoJa application using these APIs. In developing these APIs, we took sev-
eral points into consideration. They included signatures of DoJa APIs and
the user interface. Regarding signatures, we made them similar to those of
existing Java API equivalents. This makes it easy for the developers, who
are familiar with Java, to discern the functionalities or behaviors of the DoJa
APIs. Regarding the user interface, it was designed to be broadly mimic that
of the browser implemented prior to DoJa. Since the users were familiar with
this interface they experience no confusion. When an application is invoked,
it is dynamically linked to these APIs and CLDC in the mobile phone and
is executed on a VM.

• Scratch Pad
Scratch Pad is a data storage object implemented in the internal memory of
the mobile phone, one pad is assigned to each application. The application
can access only its assigned Scratch Pad. This restriction is managed by
JAM; JAM memorizes the pairs of applications and Scratch Pads. When an
application is invoked, JAM cleans the memory, loads only the application’s
Scratch Pad into memory and gives access rights to the application. This
access control allows copyrighted material like game characters or ringing
melodies to be safely stored in phone; other applications can’t access or use
them.

By combining these three parts with CLDC and VM in a mobile phone, DoJa
applications can be executed with safety. The key advances in DoJa are JAM and
the DoJa APIs. These two technologies allow new functions specific to mobile
phones or mobile e-services to be realized easily.

2.2 Sequence of downloading DoJa application

DoJa applications can be downloaded from servers of application providers in
the Internet over the air. That is, a user of a DoJa enabling mobile phone can
download and execute the applications at any time and anywhere. A server from
which the applications are downloaded is not limited to DoCoMo’s sites only and
everybody can develop and provide DoJa applications. The applications can be
found using a compact HTML browser.

Web Browser

JAM

Compact
HTML File

ADF

DoJa
Application

DoJa

Storage

KVM

<Over the air><Mobile phone> <Server>
Step 1

Step 2

Step 3

Fig. 3. Download sequence of DoJa application

Figure 3 shows the sequence of downloading DoJa applications from a server
in the Internet to a a DoJa enabling mobile phone. The download squence are
the following three steps.

Step 1. A user download a compact HTML file to the mobile phone and accesses
the URL written in that file using the compact HTML browser.

Step 2. By accessing the URL, an application descriptor file (ADF) is down-
loaded and is automatically handed to the JAM. The ADF contains the
information of the DoJa applicationl, that the user want to download, such
as the applcation size, the scratchpad size, the version of the application and
the main class. Before downloading of the DoJa application, JAM checks the
ADF and investigates whether the DoJa application can be executed in the
mobile phone or not.

Step 3. When the DoJa application turns out to be able to run in the mobile
phone, the JAM automatically downloads and executes it.

Downloading the application over the air is charged. If the downloaded DoJa
application does not run well, the unnecessary money is charged for the user. To
prevent this matter, the JAM checks the ADF in the Step 2 before downloading
the DoJa application.

The next section provides details of how JAM and APIs can realize a machiuke
application and XObject.

3 Service oriented functions in DoJa

3.1 A ”Machiuke” application

3.1.1 What is a machiuke application?
“Machiuke”1, refers to the state in which a user can make a call or catch a
call at any time. After a mobile phone is turned on, most of the time it is in

1 Standby is the common translation of machiuke. For example, standby is used in
English catalogs like “the standby time of this phone is 180 hours”.

Non-active state

Sleeping stateActive state

invoking
 sleep() invoking

deactive()
events
 occure

 Pushing
 specific
button

Pushing
specific button

*Key inputs are
 delivered to
 native functions.

*key inputs are
 delivered to
 native functions.

*Key inputs are
 delivered to
 the application.

Fig. 4. New states and transitions for a machiuke application

the machiuke state. To utilize the machiuke state for mobile e-services, we have
developed a mechanism for executing machiuke applications and developed the
necessary APIs. A machiuke application is a general name that refers to an
application that can constantly run in the machiuke state. What we have devel-
oped is a framework for developing machiuke applications. The actual machiuke
applications are to be created by service developers using the APIs.

A typical example of a machiuke application is an news agent. It constantly
runs to automatically gather the latest information like news and stock prices
by periodically accessing a server, and showing the information on the phone’s
display. By using the agent, users can get these latest information whenever they
look at the display. If the agent targets location data, it also can provide the user
with location-based information such as advertisements of surrounding shops.

3.1.2 Three states and transitions of a machiuke application

When realizing a machiuke application, the most important thing is that
the user must be able to make or receive calls at any time, even while the
machiuke application is active. As mentioned in Section 1, the key requirements
in developing any machiuke application are minimal power consumption and
switching key inputs. These problems are unique to mobile phones because they
have small batteries and only a single window system. To achieve these goals, as
shown in Figure 4, we have defined the following three states in an application’s
life-cycle and have developed a mechanism of transitions among the three states
while the machiuke application is active. Details of the states are as follows.

• Active state
In this state, the machiuke application runs an ordinary Java application.
All key inputs are delivered to the application’s VM and handled by the
application.

• Non-active state
In this state, all key inputs are delivered to the basic phone functions. As
soon as the user pushes a key,the application’s window that is replaced by

a window for the basic phone functions like phones call or email. The user
can use these native phone functions without bothering to terminate the
application.

• Sleep state
The sleep state is tended to minimize the power consumption. In this state,
not only the machiuke application itself but also its VM is suspended, so Java
consumes no power at all. This sleep state realizes significant power savings.
As an example, the application can be in the sleep state for 59 seconds and
active for 1 second.

The transitions among these states each other are done by an application itself
using APIs or event handling. The ways of doing transitions are as follows.

• Active state ⇔ non-active state
machiuke applications basically run in the non-active state. The transition
from the active state to the non-active state is triggered by the application’s
logic; the application invokes the method deactivate(). The transition to
the active state is triggered by the user pressing a specific key, the activation
key.

• Non-Active state ⇔ sleep state
The transition to the sleep state is triggered by the application invoking the
method sleep(). This is done because the practicality of power saving in an
application strongly depends on the service. The transition to the non-active
state is automatically triggered by one of several events. These events happen
when a mobile phone is unfolded or the wakeup timer set in advance expires
and so on. The reason for this is that the VM itself is suspended so only
solution is to use events. These events can be received by the application
using event handler method processSystemEvent()when the state enters
the non-active state.

• Sleep state ⇒ Active state
The transition to the active state is triggered when the user presses the
activation key in the same way as the transition from the non-active state to
the active state. The application can never transit from the active state to
the sleep state. If an application could invoke sleep() from the active state,
errors such as infinite looping between the sleep state and the active state
would become possible. In the non-active state, all key inputs are delivered
to the native phone functions so the user can terminate any infinite looping.
In the active state, however, the application receives all key inputs and there
is no way to stop it. Thus, only the transition from sleep state to the active
state is permitted.

State management and these transitions are controlled by JAM. To do so, the
VM notifies JAM of the invocation of sleep() and deactivate(); JAM is also
notified of events such as unfolding of the mobile phone, expiration of the wakeup
timer, or activation key press. According to the methods or the events, JAM sus-
pends or resumes the thread on which the VM runs, or switches the delivery of
all key inputs.

import com.nttdocomo.ui.*;

public class Main extends MApplication implements SoftKeyListener { // Main class
 Panle mainPanel;
 public void start() { // starting this program from this method
 mainPanel = new Panel(); // making a Panel object
 mainPanel.setSoftKeyListener(this); // setting the SoftKeyListener in the Panel object
 Display.setCurrent(mainPanel); // showing the Panel object on the display
 }
 public void softKeyReleased(int softKey){ // defining the concrete method in the SoftKeyListener
 if (softKey==Frame.SOFT_KEY_1) { // if SOFT_KEY_1 is released, the state is changed
 deactivate(); // to the non-active state invoking deactive()
 }
 }
 pubilc void processSystemEvent(int type, int param){ // defining the concrete method in the processSystemEevent
 if (type == MApplication.FOLD_CHANGED_EVENT){ // if a mobile phone is folded, the WakeUpTimer is set and
 if (param == 0) { // the state is changed to the sleeping state invoking sleep()
 setWakeUpTimer(3000);
 sleep();
 }
 }else if (type == MApplication.WAKEUP_TIMER_EVENT){ // if the WAKEUP_EVENT happens,
 if (param == 0) {
 doSomethingInActiveMode(); // the state is automatically changed to the active mode and
 : // doSomethingInActiveMode() is executed

Fig. 5. Sample code of a machiuke application

3.1.3 API of a machiuke application
We developed the MApplcation class to provide the APIs needed to program
machiuke applications. This class is an abstract class of Java and provides the
framework of machiuke applications. Sevice developers make their own machiuke
applications by inheriting the MApplcation class and programming concrete be-
haviors of the methods in the MApplcation.

Figure 5 shows the sample source code of a machiuke application. As shown,
the machiuke application starts by invoking start(). To change its state, it can
handle the following four events from JAM using processSystemEvent():

– MODE CHANGED EVENT is generated when a state is changed and is used to
manage application state,

– WAKEUP TIMER EVENT is generated when the time set by using
the setWakeupTimer(int time) method expires,

– CLOCK TICK EVENT is generated every minute by using the setClockTick(

boolean true or false) method, and
– FOLD CHANGED EVENT is generated when the mobile phone is folded or un-

folded.

The sample source code provides SoftKeyListener which is another key event
handling interface. Through it, an application receives the specific key event
which is assigned in advance and also changes its state to the non-active state
by invoking deactivate().

When the mobile phone is unfolded, the application receives FOLD CHANGED EVENT,
invokes sleep() and enters the sleep state. Before invoking sleep(), the wakeup
time is set using setWakeUptimer(). The application is woken up upon and en-
ters the active state receiving WAKEUP TIMER EVENT from processSystemEvent().

java.lang::Object

com.nttdocomo.lang::XObject
{abstract}

com.nttdocomo.lang::XString

+ equals(obj : Object): boolean
+ hashCode():int
+ toString():String

+length(): long

Fig. 6. Structure of XObject and its subclasses

3.2 XObject
XObject was developed to prevent the leakage of the user’s private data via Java.
The problem is that Java provides no way of preventing data leakage. For an
example, when a Java application reads the data in an address book, the data
are ordinarily instantiated as String objects in Java and these String objects
can be sent to a server using a HTTP connection without the user being aware
of the transfer. This is true for all types of objects in Java so private data is at
serious risk. Thus it is necessary to develop a new type of an object that ensures
that user data is handled only within the mobile phone.

To meet this requirement, we developed the main features of XObject as
follows:(1) it can not be moved outside the mobile phone, and (2) its contents
cannot be discovered by other methods. In short, the only activity permitted
to an XObject is to display its contents on the mobile phone. What kinds of
data are instantiated as XObject depends on DoJa’s security policy and our
service policy. For an example, the data of an address book in a mobile phone is
user’s privaicy and should be protected as an XObject. Although the password
to access a service in a server may be a private data in one sense, it should be
sent to the server and it can not be treated as an XObject. In DoJa, we provide
the other way to protect it like SSL.

To realize these features, we have severely restricted the operation of XObject.
The first restriction is that an XObject cannot be read out as byte data not can
it be transferred via a stream connection in the java.io package. This restric-
tion realizes the first feature. The second restriction is that an XObject can
not be directly created using its constructor. It is only allowed to be created as
the return objects of some specific methods such as the method of accessing an
address book. The third restriction is that the methods used to compare the con-
tent of an XObject to those of other objects or casting from an XObject to other
objects or searching XObject from a content always return false. For an ex-
ample, XObject#equals(java.lang.Object object) checks only whether the
instances are identical or not and XObject#hashCode() calculates the object’s
hash value without using the contents of the object. The fourth restriction is
the restriction of the screen on which instances of XObject can be placed. An

XObject can be drawn on the screen in the same way as an ordinary Java ob-
ject, but the methods that can acquire information from the screen on which
an XObject is drawn, such as reading the pixels on the screen or saving the
screen as a JPEG data, are prohibited. When these methods are invoked for the
screen, a security violation is called and the application is forced to terminate.
This restriction is also true for all screens on which the image object that has
any XObject is drawn and for all graphics objects that include any XObject.
These restrictions realize the second feature. All restrictions are implemented
in XObject and related APIs. For an example, the checking methods needed to
realize the fourth restriction are created with API implementation. The forced
termination of an application is done by JAM. When a security violation is
triggered, it is passed to JAM which forces the application to terminate.

Figure 6 shows the class structure of XObject. The class of XObject consists
of a base and abstract class and inheritance is set for the subclasses so the ob-
jects are defined according to data type. For example, XString is a String-type
XObject that handles string data as XObject and its class is a concrete final
subclass of an XObject class. In a program, a String-type XObject is directly
instantiated from XString. The current version of DoJa offers only XString be-
cause only string data is treated in the actual case studies of our services. How-
ever, Image-type object for protecting digital management rights and Number-
type objects such as Integer, Long, Float and Double can be realized in future
extensions of DoJa in the same way as XString.

4 Experiments and evaluations

4.1 Experiments on state transition

To evaluate the states and their transitions, we conducted two experiments. One
compared the power consumption of an application in the active state and that
of the same application that was repeatedly switched between sleep state and
non-active state. The other examined user perception of phone usability when
an application in the active state was switched to the non-active state. In the
experiments, we used two mobile phones: SO504i made by Sony Ericsson, Inc.
and F504i made by Fujitsu, Inc.

In the first experiment, the application drew sixteen triangles at random on
the display. In the active-state, it drew them every four minutes. When run-
ning as a machiuke application, it slept for four minutes, entered the non-active
state, drew the triangles, and went back to sleep. The time until a full charge was
completely depleted was measured and the results are shown in Table 1. In the
table, the standby time means that Java didn’t run and it is the time until all
full power was consumed. As shown in Table 1, the machiuke application ran for
about 10 or 20 times longer than the active state equivalent application. Thus,
introducing the sleep state is useful in minimizing the power consumption. In
the experiment, the application didn’t use any network calls so the actual usage
times would be shorter than those shown in Table 1. In the second experiment,

(1) The application
starts.

(2) The data in the
phonebook is read
and shown.

(3) The application is
terminated because
the data was tried to
be stolen.

(4) The termination is
recorded in a security
error log.

Fig. 7. The application is compelled to be terminated when the method is invoked to
steal the contents of the XObject.

the subjects were 10 people who had not previously used a machiuke applica-
tion. They were asked to make a phone call while executing an application. The
application ran in the active state and in the non-active state. Eight subjects
noted that the non-active state was definitely useful because they had to ter-
minate the active state before making a phone call and they felt the step of
termination was troublesome. The remaining two subjects were less bothered by
the termination step. Although the number of subjects is rather small, we think
that the usefulness of introducing the non-active state has been confirmed.

Table 1. Comparison of power consumption

Phone Running in Running as Standby time
only active state a machiuke application

SO504i about 12 hours about 130 hours about 320 hours
F504i about 6 hours about 112 hours about 525 hours

4.2 Experiments of XObject

We made several applications to check the XObject restrictions mentioned in
Section 3, and ran them on a mobile phone. The results confirmed that all
restrictions worked well. In particular, we confirmed we could not extract the
XObject contents nor could we steal the contents via the screen or as graphics
objects; all attempts lead to security violations which triggered application ter-
minated as shown in Figure 7. We also confirmed that we could not compare the
contents of the XObject and those of other objects. The results confirmed the
usefulness of XObject.

5 Conclusions and future work

This paper has focused on the two key features of DoJa: a framework for
machiuke applications and XObject. To realize a machiuke application in a mo-
bile phone, we have solved the problems of power consumption and key input

controls by developing three states and switching between them during the appli-
cation’s life-cycle. The experiments described here show the usefulness of these
states and the transitions. To realize a mechanism that protects the user’s private
data, we have developed Xobject, which prevents the extraction of data from a
mobile phone; the only operation possible is to display the object’s contents on
the phone’s screen. These two features have already been implemented in our
commercial mobile phones and are now in use in actual mobile e-services.

In general, there are two directions for future mobile e-services. One is web
services and the other is ubiquitous services. The main target of both is e-
commerce. To realize these services in DoJa, future work on developing DoJa
includes handling XML, SOAP, Bluetooth and non-contact chips.

References

1. Helal, S.: Pervasive Java, Part II. IEEE Pervasive Computing, Vol. 1, Issue 2, (2002)
85–89

2. Lawton, G.: Moving Java into Mobile Phones. IEEE Computer, Vol. 35, No. 6,
(2002) 17–20

3. Riggs, R., Taivalsaari, T., and Vandenbrink, M.: Programming Wireless Devices
with the JavaTM2 Platform (Micro Edition), Addision-Wesley, (2001)

4. CLDC:http://java.sun.com/products/cldc
5. DoJa: http://www.nttdocomo.co.jp/english/p s/imode/index.html

	FORUM-015.pdf
	3.2 Elements of the Service Component Contract

	page6: 1
	page7: 2
	page8: 3
	page9: 4
	page10: 5
	page11: 6
	page12: 7
	page13: 8
	page14: 9
	page15: 10
	page16: 11
	page17: 12
	page18: 13
	page19: 14
	page20: 15
	page21: 16
	page22: 17
	page23: 18
	page24: 19
	page25: 20
	page26: 21
	page27: 22
	page28: 23
	page29: 24
	page30: 25
	page31: 26
	page32: 27
	page33: 28
	page34: 29
	page35: 30
	page36: 31
	page37: 32
	page38: 33
	page39: 34
	page40: 35
	page41: 36
	page42: 37
	page43: 38
	page44: 39
	page45: 40
	page46: 41
	page47: 42
	page48: 43
	page49: 44
	page50: 45
	page51: 46
	page52: 47
	page53: 48
	page54: 49
	page55: 50
	page56: 51
	page57: 52
	page58: 53
	page59: 54
	page60: 55
	page61: 56
	page62: 57
	page63: 58
	page64: 59
	page65: 60
	page66: 61
	page67: 62
	page68: 63
	page69: 64
	page70: 65
	page71: 66
	page72: 67
	page73: 68
	page74: 69
	page75: 70
	page76: 71
	page77: 72
	page78: 73
	page79: 74
	page80: 75
	page81: 76
	page82: 77
	page83: 78
	page84: 79
	page85: 80
	page86: 81
	page87: 82
	page88: 83
	page89: 84
	page90: 85
	page91: 86
	page92: 87
	page93: 88
	page94: 89
	page95: 90
	page96: 91
	page97: 92
	page98: 93
	page99: 94
	page100: 95
	page101: 96
	page102: 97
	page103: 98
	page104: 99
	page105: 100
	page106: 101
	page107: 102
	page108: 103
	page109: 104
	page110: 105
	page111: 106
	page112: 107
	page113: 108
	page114: 109
	page115: 110
	page116: 111
	page117: 112
	page118: 113
	page119: 114
	page120: 115
	page121: 116
	page122: 117
	page123: 118
	page124: 119
	page125: 120
	page126: 121
	page127: 122
	page128: 123
	page129: 124
	page130: 125
	page131: 126
	page132: 127
	page133: 128
	page134: 129
	page135: 130
	page136: 131
	page137: 132
	page138: 133
	page139: 134
	page140: 135
	page141: 136
	page142: 137
	page143: 138
	page144: 139
	page145: 140

