

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

REQUIREMENTS ANALYSIS IN TROPOS:
A SELF REFERENCING EXAMPLE

Paolo Bresciani and Fabrizio Sannicolò

October 2002

Technical Report # DIT-02-105

.

Requirements Analysis in Tropos:
a self referencing example

Paolo Bresciani and Fabrizio Sannicolò

ITC-Irst
Via Sommarive, 18, I-38050 Trento-Povo, Italy�

bresciani,sannico � @irst.itc.it

Abstract. Tropos, a novel agent-oriented software engineering methodology, is
heavily characterized, among other features, by the fact that it pays great attention
to the activities that precede the specification of the prescriptive requirements,
such as understanding how the intended system would meet the organizational
goals. This is obtained by means of the two requirement phases: the early re-
quirements analysis and the late requirements analysis. Moreover, Tropos uses,
along these phases, a uniform notation and an homogeneous, smooth, incremen-
tal, and iterative process, based on a set of progressive transformational steps.
This paper will take into account the application of the Tropos methodology to a
self-motivating case study: the definition of a support tool for the Tropos method-
ology itself. The focus here is on the early requirements and on how to manage
the transition from them to the late requirement analysis.

1 Introduction

Tropos [19, 13, 11] is a novel agent-oriented software engineering methodology charac-
terized by three key aspects [18]. First, it pays attention to the activities that precede the
specification of the prescriptive requirements, like understanding how and why the in-
tended system would meet the organizational goals1. Second, it deals with all the phases
of system requirement analysis and all the phases of system design and implementation
in a uniform and homogeneous way, based on common mentalistic notions as those
of actors, goals, softgoals, plans, resources, and intentional dependencies. Third, the
methodology rests on the idea of building a model of the system-to-be that is incremen-
tally refined and extended from a conceptual level to executable artifacts, by means of
a sequence of transformational steps [3].

One of the main advantages of the Tropos methodology is that it allows to capture
not only the what or the how, but also the why a piece of software is developed. This, in
turn, allows for a more refined analysis of the system dependencies and, in particular,
for a much better and uniform treatment not only of the system functional requirements,
but also of its non-functional requirements. Tropos, although not exclusively, addresses
particularly well the Agent Oriented Programming [18]. In fact, the decision of using
mentalistic notions in all the analysis phases has important consequences. In particular,

1 In this, Tropos is largely inspired by Eric Yu’s framework for requirements engineering, called
i � , which offers actors, goals, and actor dependencies as primitive concepts [23, 24, 26].

agent oriented specifications and programs use the same notions and abstractions used
to describe the behavior of human agents and the processes involving them; thus, the
conceptual gap between users’ specifications (in terms of why and what) and system
realization (in terms of what and how), is reduced to a minimum.

Tropos supports five phases of software development. The early requirements
analysis is concerned with the understanding of a problem by studying an existing or-
ganizational setting. The output of this phase is an organizational model which includes
relevant actors and their respective dependencies. Actors in the organizational setting
are characterized by having goals that each single actor, in isolation, would be unable
—or not as well or as easily— to achieve. The goals are achievable in virtue of recipro-
cal means-end knowledge and dependencies. During the late requirements analysis,
the system-to-be is described within its operational environment, along with relevant
functions and qualities. This description models the system as a (relatively small) num-
ber of actors, which have a number of social dependencies with other actors in their
environment. The architectural design phase deals with the definition of the system
global architecture in terms of subsystems, that are represented as actors, and their data
dependencies, that are represented as actor dependencies. The detailed design phase
aims at specifying each architectural component in further detail (adopting a subset of
the AUML diagrams [17, 1]) in terms of inputs, outputs, control and other relevant in-
formation. Finally, during the implementation phase, the actual implementation of the
system is carried out, consistently with the detailed design. More details and motivation
about these five phases can be found in [12, 11, 13, 19].

The present paper mainly focuses on the analysis of the early requirement analysis
phase and, partially, on the late requirement analysis phase. In particular, concerning
the early requirements analysis, the task of encoding initial informal requirements into
the diagrammatic format used in the methodology, as well as the incremental transfor-
mational process that is at the basis of the construction of the complete model, will be
addressed. With respect to previous papers [3], this revision mechanism will be moti-
vated in its high level aspects and applied to a case study, rather than analyzed in its
fundamental details. Another aspect that will be addressed in this paper is the transition
process from the early to the late requirements. The example that will be used along all
the present paper to illustrate the above aspects is the definition of a support tool for the
Tropos methodology itself, called, since now on, the Tropos tool.

The rest of the paper is structured as follows. Section 2 describes the Tropos tool
problem and some background motivating some early choices. Section 3 shows how
these choices can be embodied into actor and goal diagrams. Section 4 develops a pre-
liminary actor diagram for late requirements with the only aim to provide a glance on
the transition from early to late requirements. Conclusions and directions for further
research are presented in Section 5.

2 The problem

As of today, the Tropos methodology lacks a tool which supports both the analyst during
the process of acquiring, modeling, and analyzing requirements and the designer during
the process of software engineering. Of course, the availability of a tool that supports

along the whole development process would be of great impact on the applicability of
the methodology. Although relevant efforts have already been made in order to provide
a tool for managing diagrams in i � [15], the realization of an integrated tool that supports
all the phases of Tropos (or at least the first four) in a uniform and integrate way has not
been analyzed, yet.

In order to start with the definition of the Tropos tool, some observations may be
useful. First, let us recall that early and late requirement analysis and architectural de-
sign in Tropos are aimed at producing domain and system conceptual and architec-
tural models. These conceptual models must conform to a precise Tropos modeling
language [20]. Of course, the Tropos tool shall support for syntax checking during the
conceptual model construction.

Another point to be taken under consideration is that, during the process of building
actor and dependencies models, resulting from the analysis of social and system actors,
the analyst may need to look at more diagrams from many perspectives at the same time.
For example, she may want to look back why she introduced some subgoals and how
she did it. Therefore, the Tropos tool shall allow us to analyze the conceptual model
from several points of view at the same time.

One important check that has to be performed during the analysis and before it may
be considered completed, is the closure of all the alternative or conjunctive decom-
positions (of goals, softgoals, and plans) and the evaluations of the goal and softgoal
contributions. This process may be graphically visualized by putting and propagating
ticks from the leafs up to the root (goal, softgoal, or plan) of the analysis tree, also using
weighted propagation mechanisms for the qualitative (NFR) analysis [6]. This process
will be later referred as the capability of managing ticks.

In addition, it may also be the case that the project manager wants to use a com-
mon graphical interface for viewing and analyzing documents (feasibility study, re-
quirements model, capability diagrams, and so on) generated during different phases,
such as the analysis phase and the design phase. Thus, it is desirable that the Tropos
tool adopts a common interface for different phases of the methodology, specially when
adopting similar graphical notations, which is a pervasive characteristic of Tropos.

One of the main advantages of the Tropos methodology is that the software engineer
can also capture the why a sort of analysis is carried on or has been made. This important
feature gives an extraordinary, although not yet fully explored, value to the notion of
traceability. Traditionally, traceability is the property that a methodology or a CASE
system exhibits when artifacts produced during later phases can be clearly referred back
to artifacts or requirements produced earlier. In Tropos, this feature assumes an extra
value due to two aspects. First, Tropos is aimed at uniformly covering development
activities ranging from early requirements analysis down to the actual implementation;
thus, traceability in Tropos may be thought as spanning over several phases and very
distant points in the development process. Second, the early and late requirements of
Tropos provides an intentional analysis of the problem, facing the description of the
why, together with that of the what and the how. In this context, tracing late artifacts
back to requirements —both early and late— provides a powerful method for giving
strong motivations to all the developed artifacts, virtually even to each single line of

the produced code, and justifying them with respect to the original requirements. Of
course, the Tropos tool must give full support for traceability.

Finally, as always desired, the Tropos tool has also to be friendly, understandable
and, above all, useful for all the users, like the analyst, the formal engineer, the designer,
the developer, and so on. Useful means that the user has not to waste time in order to
understand how the tool works, giving her more time for depicting and investigating the
best way to model the actors, their goals, and their strategic dependencies.

In the following section, these preliminary requirements will be detailed and further
analyzed, by means of an early requirement analysis.

3 Early Requirement Analysis

In Tropos, during the early requirement analysis, the requirement engineer models and
analyzes the intentions of the stakeholders. These are modeled as goals that, through
some form of analysis [16, 8], such as AND-OR decomposition, means-ends analysis,
and contribution analysis, eventually lead to the functional and non-functional require-
ments of the system-to-be. To this end, actor diagrams for describing the network of
social dependency relationships among actors, as well as goal diagrams for analyzing
and trying to fulfill goals, are produced.

Starting from our common understanding of the Tropos tool problem, as described
in the previous section, the following list of more detailed issues to be addressed may
be provided:

– Fundamental features of Tropos:� software engineer support for all the phases of the software development pro-
cess (at least the first four);� support for the transformational approach as in [3];� goal/plan analysis [16, 8] and non-functional analysis [6].

– System management:
� model and views storage;� multi-users management.

– Extensibility:
� integration with tools for formal analysis (e.g., NuSMV [10, 7]) and version

management (e.g., CVS [9]);� integration with debugging tools.
– User interaction:

� visualization of different possible views on the conceptual model, which may
be needed both because of the different roles played by the user, and because
of her changing design focus along the different phases;� subgraph visualization and zooming in order to manage visual complexity;� support for multiple decomposition of the same goal from the perspective of
one actor, thus allowing for more goal diagrams of the same goal;� verification that the functional and non-functional (or quality) requirements are
achieved (manage ticks).

– Help and documentation:

� user guide for the Tropos language and its concepts (ontology, metamodel for
the informal language [20], formal language [10], and so on);� automatic generation of the documentation about a particular view on the model
or a set of diagrams (i.e., static diagrams, dynamic diagrams);� export of the conceptual model or some views in several formats (e.g., Scalable
Vector Graphics (SVG) [21]).

3.1 The analysis

After the definitions of the high level requirements, the process proceeds by identifying
the most relevant stakeholders of the environment. In particular, the potential users of
the tool, their goals, and the respective dependencies are identified and then modeled
by means of a first actor diagram.

In order to proceed with a deeper analysis, it is worth to recall that an actor may be
embodied by the more specific notions of agent, role and position. An agent represents
a concrete instantial actor like a physical agent (e.g., a person, an hardware system, and
so on), or a software agent; a role corresponds to an abstract characterization of one
specific behavior of an actor within some specialized context; a position represents a
set of roles, typically played by a single agent. An agent can occupy a position, while
a position is said to cover one or more roles. Also, an agent is said to play one or more
roles. For more detailed distinctions and examples see [24, 25].

In the actor diagram depicted in Figure 1, Software Professional is depicted
as an agent who may occupy different positions: PRG Manager , Analyst, Formal
Engineer, Architecture Designer, Details Designer, and Developer.

Although in general it is assumed that each position covers several roles, in Fig-
ure 1, for lack of space, only one role is present as an example: Customer relations
keeper. The interesting aspect to be noticed here is that this role can be covered both
by the Analyst position and by the PRG Manager position, that is, each agent that oc-
cupies one of these position, or possibly both, must play the role Customer relations
keeper.

After the introduction of the actors, the dependency analysis focuses on the de-
pendencies of each single different actor. For example, Customer depends on the PRG
Manager for achieving the goal system provided. Also, the PRG Manager wants
to manage the different versions of artifacts that other actors deliver to her (manage
versions and doc.); in addition, she has the softgoal artifacts [$1...$6]
easily understandable 2.

PRG Manager delegates two goals to the Analyst: feasibility study [$1]
delivered and requirements [$2] modeled. The PRG Manager depends on
the Formal Engineer for the goal formal analysis [$3] delivered; in or-
der to fulfill formal analysis [$3] delivered the Formal Engineer relies on
the Analyst for the resource Tropos requirement model. In a resource depen-
dency, the depender depends on the dependee for the availability of a physical

2 Note that the place holders $1. . . $6 refer to objects mentioned in particular goals of
the PRG Manager, namely feasibility study [$1] delivered, requirements
[$2] modeled, formal analysis [$3] delivered, architectural design [$4]
specified, detailed design [$5] specified, and code [$6] developed.

manage
versions
and doc.

good
system
doc.

readable
code

understand
customer

req.

organization
described

Tropos
architectural

design

Analyst

Formal
Engineer

Developer

occupies
occupies

occupies
occupies

occupies

Software
Profes-
sional

understand
system
req.

Architec-
ture

Designer

choose
technology
solution

doc.
delivered

occupies

feasibility
study [$1]
delivered

requirements
[$2]

modeled

architectural
design [$4]
specified

detailed
design [$5]
specified

formal
analysis [$3]

delivered
system

provided

Details
Designer

Tropos
requirement

model

Customer

PRG
Manager

covers covers

infos on
requirements

Customer
relations
keeper

Tropos
detailed
design

code [$6]
developed

Goal Softgoal

Legend

ResourceActor Agent

Role Goal
dependency

depender dependum dependee

Position

artifacts
[$1,...,$6]

easily
understandable

Fig. 1. An actor diagram specifying the stakeholders of the Tropos tool project.

or informational entity (dependum). Along a similar path, the PRG Manager de-
pends on the Architecture Designer for achieving the architectural design
[$4] specified, and Architecture Designer depends on the Analyst for
the Tropos requirement model. Another relevant position corresponds to the
Details Designer, who has to produce a detailed design (detailed design [$5]
specified); also, she depends on the Architecture Designer for the Tropos
architectural design. Finally, PRG Manager depends on the Developer in order
to develop the source code (code [$6] developed).

The next step in the analysis is the decomposition of each goal from the point of
view of the actor who committed for its fulfillment. Goals and plans (plan represents
a set of actions which allow for the satisfaction of one or more goals) are analyzed
from the perspective of each specific actor in turn, by using three basic analysis tech-
niques: means-ends analysis, contribution analysis, and AND-OR decomposition [16,

+

+

+

learn Tropos
language

sintax
of model
checked

retrotra-
ceability
managed

evaluable
softgoal

model
documented

+

build a
requirements
Tropos model

CVS
used

DIA
used

version
managed

++

automatic
documentation

generated

model
reasonedmodel

managed

PRG
Manager

Analyst

NFR
made

multiple
views

visualized

ticks
marked

requirements
[$2] modeled

exhaustive
guide

AND decomposition

Legend

Plan

Means-Ends analysis

OR decomposition

diagrams
edited

Contribution

+/-

Fig. 2. Goal analysis from the perspective of the Analyst.

6, 20]. For goals, means-ends analysis aims at identifying goals, plans, resources and
softgoals that provide means for achieving the goal (the end). Contribution analysis al-
lows the designer to point out goals, softgoals, and plans that can contribute positively
or negatively at reaching the goal under analysis. AND-OR decomposition allows for
a combination of AND and OR decompositions of a root goal into subgoals, thereby
refining a goal structure.

As depicted in Figure 2, the goal requirements [$2] modeled delegated from the
PRG Manager to the Analyst is the “end” in a means-ends analysis; of course, the cho-
sen “mean” is the goal build a requirements Tropos model, that makes explicit
our implicit “strong” requirement of building a Tropos oriented tool. The goal build a
requirement Tropos model is then AND decomposed into the four subgoals: learn
Tropos language, model managed, model documented, and model reasoned.

The softgoal exhaustive guide contributes positively at satisfying the goal learn
Tropos language. In order to build a requirements Tropos model (model managed),
it is indispensable to create a new model, manage an exist model, add/edit/remove some

choose
pattern

choose
paradigm

evaluate
contribution

softgoal

+
+

understand
system
req.

PRG
Manager

Analyst

Architec-
ture

Designer

architectural
design [$4]
specified

NFR
evaluated Tropos

requirement
model

requirements
model

acquired

Fig. 3. A goal diagram including the Architecture Designer.

elements of the model and so on. All this corresponds to the goal diagrams edited3.
In addition, some goals concerning the most important features of Tropos, already intro-
duced in Section 3, are also depicted here, that are: retrotraceability managed, in
order to deal with backward and multiple phases traceability, ticks marked, in order
to deal with the ticks mechanism for the check of the completeness of model analysis,
and syntax of model checked, to verify the syntax of the model with respect to the
metamodel as described in [20]. Finally, also multiple views management is considered
(multiple views visualized).

For the ticks mechanism, it is useful to take into account the softgoals contribution,
represented by the softgoal evaluable softgoal. A first proposal for partially fulfill-
ing model managed relied on the use of DIA4 graphic tool (DIA used). Although this
solution could satisfy diagrams edited (note the positive contribution ���), it does
not satisfy ticks marked and syntax of model checked (note the negative contri-
bution � and ��� , respectively).

The subgoals automatic documentation generated and version managed
contribute positively to the achievement of the goal model documented. The first sub-
goal concerns with the automatic generation of the documentation about the conceptual
model and/or some views on it, while the second regards the management of different
versions for each analyst. A mean for the fulfillment of the last subgoal is to integrate
the CVS software system in the Tropos tool. Finally, the last subgoal model reasoned
can be satisfied with a Non-Functional Analysis, as proposed in [6] (NFR made).

Figure 3 shows the goal diagram from the point of view of the position
Architecture Designer. The goal delegated by PRG Manager (see Figure 1) is

3 Further decomposition of this and other goals are not provided because of space limits. See [5,
2] for further details.

4 Dia is a graphic tool that supports many language like UML, ER, and so on [14].

labeled with architectural design [$4] specified. This is AND decomposed
into three subgoals: choose pattern, choose paradigm, and requirements model
acquired. This last subgoal may be considered as depending on the resource Tropos
requirements model that, by further analysis, can be assumed as to be delegated
to the Analyst. Choose paradigm concerns with the selection among several archi-
tectural paradigms (e.g., BDI architecture). Aside the AND decomposition, the root
goal architectural design [$4] specified also receives positive contributions
from two goals: understand system requirements and evaluate contribution
softgoal. The first goal was originally foreseen as a proper goal of Architecture
Designer (see Figure 1). This fact is evidenced here, as well as in analogous situations
in other figures, by using a thicker borderline.

The second contributing goal is further enabled by NFR evaluated. Due to lack of
space, the goal diagrams of Details Design, Formal Engineer, and Developer are
not reported here, but can be found in [5, 2].

3.2 Revising the analysis

The previous section presented a first result of the activity of requirements definition
and analysis. It is obvious that the diagrams developed are not sufficiently detailed. For
this reason, iterative steps of incremental refinement of the model have to be performed.
As already mentioned in the introduction, this way of proceeding is a typical feature
of the Tropos methodology. The final setting of each Tropos phase may be reached
possibly after several refinements, in each of which not only new details may be added,
but, also, already present elements and dependencies can be revised or even deleted [3].
This iterative process not only may require intra-phase refinements, but, possibly, also
revisions of artifacts produced during earlier phases (inter-phases refinements). The
importance of retrotraceability is, here, evident.

Just as an example of the intra-phase refinement activity, the revision of the goal
diagram in Figure 2 is presented in Figure 4.

The positive contributions from build a requirements Tropos model to the
goals organization described and understand customer requirements are
the first relevant differences. The two positively contributed goals —namely,
organization described and understand customer requirements— were ini-
tially considered as original Analyst’s goal (see Figure 1), but later not further ana-
lyzed (in fact, they are not taken into account in Figure 2), until the revision depicted in
Figure 4. Thus, this revision is necessary to complete the analysis of the requirements
initially introduced in Figure 1.

Among other new elements added by the revision, let us note the subgoal design
case tests, considered necessary because the analyst has also to design the cases
to be tested in order to validate and verify the functionalities of the software sys-
tem with respect to the functional and non-functional requirements. Another source
of revision derives from the observation that the evaluation of the formal analysis
conducted by Formal Engineer can provide more hints to the Analyst; thus, Fig-
ure 4 also introduces a dependence between the Analyst and the Formal Engineer,
upon the resource result of formal analysis, motivated by the fulfillment of
design case tests. Another subgoal of build a requirements Tropos model,

+

+

+

+ +

understand
customer

req.

organization
described

learn Tropos
language

own
version
managed

record
interview

sintax
of model
checked

retrotra-
ceability
managed

evaluable
softgoal

model
documented

text
documented

+ +

+

graphic
documented

						

build a
requirements
Tropos model

CVS
used

DIA
used

model
reasoned

automatic
documentation

generated

model
managed

diagrams
edited

views on
the model
visualized

++

PRG
Manager

Analyst

Formal
Engineer

design
case tests

ticks
marked

requirements
[$2] modeled

feasibility
study [$1]
delivered

NFR
made

result of
formal

analysis

exhaustive
guide

Fig. 4. Revising Goal analysis from the point of view of the Analyst.

namely model documented, has been OR decomposed into text documented and
graphic documented. Finally, the goal feasibility study [$1] delivered (see
Figure 1), became the end in a means-ends analysis where the “mean” is the goal
record interview, which, also, contributes positively for the fulfillment of the text
documented.

4 Late requirements

During late requirement analysis the system-to-be (the Tropos tool in our case) is de-
scribed within its operating environment, along with relevant functions and qualities.
The system is represented as one actor which have a number of dependencies with the
other actors of the organization. These dependencies define all the functional and the
non-functional requirements for the system-to-be.

A very important feature of Tropos is that the type of representations adopted for the
early requirements (that are, the actor and the goal diagrams) are used in the same way
also during the late requirement analysis. The only different element is that, here, the

system-to-be is introduced in the analysis as one of the actors of the global environment.
Of course, the goal of the engineer, since now on, is to decompose and analyze in details
the system goals. To do this, a sequence of more and more precise and refined goal
diagrams for the actor Tropos tool, in our case, have to be produced, applying the
iterative refinement process already introduced in the previous section.

Of course, during the goal analysis of the system-to-be some differences with re-
spect to the early analysis may be taken into account, as, for example, the fact that the
system-to-be is characterized by a much different level of intentionality and autonomy
if compared with the social actors (it may be assumed that the system is much more
prone to fulfill the delegated goals and tasks —it is built for this— than a social actor,
and that it has no backward dependency on the social environment, unless for resources
representing I/O flow)5. Also, the analysis of the system goals should be carried on
within the scope of the system as far as possible, trying to minimize revisions of de-
cisions already taken during early requirements analysis. Finally, the system-to-be is
characterized only by delegated goals, which are, then, exclusively generated by the
early requirement analysis in this simplified setting.

Due to lack of space, and considering, apart the principled differences listed above,
that there is no technical difference in the process of late requirement analysis with re-
spect to the process of early requirement analysis, only a short description of the first
steps is introduced here. In particular, it is relevant to show the very beginning of the late
requirement analysis, and how a set of goals can be assigned to the system-to-be start-
ing from the previous analyses. In fact, as mentioned above, the system goals, softgoals
and plans have to be motivated by the unresolved goals, softgoals and plans elicited in
the early requirements. At this end, Figure 5 highlights which goals, softgoals and plans
in the social actors goal diagrams may be satisfied by means of strategic dependencies
on the Tropos tool. It is worth noticing that not necessarily an unresolved social ac-
tor goal has to be resolved through a goal dependency on the system; instead, it may
generate for example, a plan dependency, as happens for debugger integrated. The
same may apply to all the kinds of dependum.

Referring in detail at Figure 5, it can be seen that Analyst depends on the
Tropos tool for NFR supported, as well as the Architecture Designer does, al-
though for fulfilling a different internal goal (NFR evaluated instead of NFR made).
Analyst also depends on the goal text/graphic documentation supported in
order to contribute to text documented and to graphic documented, on the plan
CVS integrated in order to fulfill the plan CVS used, and, finally, on the soft-
goals good user guide and good help on line. As another example, let us con-
sider the position Formal Engineer, whose diagram had not been presented in the
previous pages due to lack of space. She depends on the Tropos tool for the
plan NuSMV integrated, with the motivations of internal state visualized and
counter-example provided. Other examples, not commented here, are shown in Fig-

5 Actually, some more dependencies could be introduced, especially if we consider the system
in relations with other systems or its subsystems. This possibility, indeed, allow us for an
interesting level of analysis for, e.g., the so called autonomous systems. In any case, the choice
of relating the system with other systems, or decompose it into subsystems, comes later in the
process, and falls out of the scope of the present paper.

Tropos
tool

NFR
supported

text/graphic
documentation
supported

CVS
integrated

good
user
guide

good help
on line

NuSmV
integrated

debugger
integrated

graphics
interface
integrated

AUML
supported

BDI
supported

+
+

+

+

CVS
used

+

Formal
Engineer

internal
state

visualized

counter-
example
provided

Formal
Engineer’s

guide

text
documented

graphic
documented
						

NFR
made

Analyst

exhaustive
guide

+

choose
paradigm

NFR
evaluated

Architec-
ture

Designer

build
solution

Details
Designer

graphics
interface

used

+

debugger
test

+

Developer

+

Fig. 5. Actor diagram: focus on the system actor Tropos tool.

ure 5, which, of course, has the only aim of exemplifying the process, and has not to be
considered exhaustive.

5 Conclusion

In the present paper the definition process of a Tropos tool, which is currently in phase
of analysis and design at IRST, has been used as a case study for presenting some
features of the Tropos methodology itself.

First, a stronger emphasis with respect to previous papers [11, 12, 18, 19, 4] has been
put on the process that lead from the very informal elicitations of requirements to their
descriptions in terms of actor and goal diagrams. Also, the process of goals definition,
analysis, and revision has been presented, pointing out, in particular, how the goal dia-
gram construction has to be considered as an incremental process, based on a sequence
of revision steps.

Finally, the last figure shown in the paper is aimed at giving an introductive hint on
how the transition from the early requirement analysis to the late requirement analysis
can be seen as part of a smooth and natural process.

The management of traceability has been raised as a crucial point for correctly deal-
ing with the revision (specially the inter-phase revision) process. In future works, we
aim at further developing this issue with other specifically focused case studies and
examples. Nevertheless, we believe that clearly showing the connecting items (depen-
dums) between early and late requirements, as done in Figure 5, already provides for a
first step towards the solution. Of course, the best support can be reached only through
the development of an appropriate tool: the Tropos tool.

Acknowledgments

Our acknowledgments are addressed to all the IRST people working at the Tropos tool
project. A special thanks is due to Eric Yu, who provided precious suggestions and
comments during very preliminary discussions on the idea. We would also like to thank
Angelo Susi and Paolo Busetta for comments on drafts of this paper.

References

1. B. Bauer, J. P. Müller, and J. Odell. Agent UML: A formalism for specifying multiagent
software system. In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Software
Engineering – Proceedings of the First International Workshop (AOSE2000), volume 1957,
pages 91–103, Limerick, Ireland, June 2000. Springer-Verlag Lecture Notes in Computer
Science.

2. D. Bertolini, P. Bresciani, A. Daprà, A. Perini, and F. Sannicolò. Requirement Specification
of a CASE tool supporting the Tropos methodology. Technical Report 0203-01, ITC-irst, via
Sommarive, Povo, Trento, January 2002.

3. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Modelling early
requirements in Tropos: a transformation based approach. In Wooldridge et al. [22], pages
151–168.

4. P. Bresciani and F. Sannicolò. Applying Tropos Requirements Analysis for defining a Tro-
pos tool. In P. Giorgini, Y. Lespérance, G. Wagner, and E. Yu, editors, Agent-Oriented Infor-
mation System. Proceedings of AOIS-2002: Fourth International Bi-Conference Workshop,
pages 135–138, Toronto, Canada, May 2002.

5. P. Bresciani and F. Sannicolò. Applying Tropos to requirement analysis for a Tropos tool.
Technical Report 0204-01, ITC-irst, via Sommarive, Povo, Trento, April 2002.

6. L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in
Software Engineering. Kluwer Publishing, 2000.

7. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic model
checker. International Journal on Software Tools for Technology Transfer (STTT), 2(4):410–
425, March 2000.

8. A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements acquisition.
Science of Computer Programming, 20(1–2):3–50, 1993.

9. P. Cederqvist et al. Version Management with CVS. http://www.cvshome.org/docs/manual/.
10. A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. Model Checking Early Require-

ments Specifications in Tropos. In Proceedings Fifth IEEE International Symposium on
Requirements Engineering (RE01), pages 174–181, Toronto, Canada, August 2001.

11. P. Giorgini, A. Perini, J. Mylopoulos, F. Giunchiglia, and P. Bresciani. Agent-oriented soft-
ware development: A case study. In Proceedings of the Thirteenth International Conference
on Software Engineering - Knowledge Engineering (SEKE01), pages 283–290, Buenos Aires
- ARGENTINA, June 2001.

12. F. Giunchiglia, A. Perini, and J. Mylopoulus. The Tropos Software Development Method-
ology: Processes, Models and Diagrams. In C. Castelfranchi and W.L. Johnson, editors,
Proceedings of the first international joint conference on autonomous agents and multiagent
systems, pages 63–74, palazzo Re Enzo, Bologna, Italy, July 2002. ACM press. Featur-
ing: 6th International Conference on Autonomous Agents, 5th International Conference on
MultiAgents System, and 9th International Workshop on Agent Theory, Architectures, and
Languages.

13. F. Giunchiglia, A. Perini, and F. Sannicolò. Knowledge level software engineering. In J.-J.C.
Meyer and M. Tambe, editors, Intelligent Agents VIII, LNCS 2333, pages 6–20, Seattle, WA,
USA, August 2001. Springer-Verlag.

14. Gnome. Dia Tutorial. http://www.lysator.liu.se/ � alla/dia/diatut/all/all.html.
15. Knowledge Management Lab at the University of Toronto. OME3 Documentation.

http://www.cs.toronto.edu/km/ome/docs/manual/manual.html.
16. J. Mylopoulos, L. Chung, S. Liao, H. Wang, and E. Yu. Exploring Alternatives during Re-

quirements Analysis. IEEE Software, 18(1):92–96, February 2001.
17. J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for Agents. In G. Wagner,

Y. Lesperance, and E. Yu, editors, Proc. of Agent-Oriented Information System Workshop at
the 17th National conference on Artificial Intelligence, pages 3–17, Austin, TX, 2000.

18. A. Perini, P. Bresciani, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Towards an Agent
Oriented approach to Software Engineering. In A. Omicini and M. Viroli, editors, WOA
2001 – Dagli oggetti agli agenti: tendenze evolutive dei sistemi software, Modena, Italy, 4–5
September 2001. Pitagora Editrice Bologna.

19. A. Perini, P. Bresciani, F. Giunchiglia, P. Giorgini, and J. Mylopoulos. A Knowledge Level
Software Engineering Methodology for Agent Oriented Programming. In J. P. Müller, E. An-
dre, S. Sen, and C. Frasson, editors, Proceedings of the Fifth International Conference on
Autonomous Agents, pages 648–655, Montreal CA, May 2001.

20. F. Sannicolò, A. Perini, and F. Giunchiglia. The Tropos modeling language. A User Guide.
Technical Report 0204-13, ITC-irst, January 2002.

21. A. H. Watt. Designing SVG web graphics. D. Dwyer, 2002.

22. M.J. Wooldridge, G. Weiß, and P. Ciancarini, editors. Agent-Oriented Software Engineer-
ing II. LNCS 2222. Springer-Verlag, Montreal, Canada, Second International Workshop,
AOSE2001 edition, May 2001.

23. E. Yu. Modeling Organizations for Information Systems Requirements Engineering. In
Proceedings First IEEE International Symposium on Requirements Engineering, pages 34–
41, San Jose, January 1993.

24. E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis, University
of Toronto, Department of Computer Science, University of Toronto, 1995.

25. E. Yu. Software Versus the World. In Wooldridge et al. [22], pages 206–225.
26. E. Yu and J. Mylopoulos. Understanding ‘why’ in software process modeling, analysis and

design. In Proceedings Sixteenth International Conference on Software Engineering, pages
159–168, Sorrento, Italy, May 1994.

