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Abstract. Interaction with web services enabled marketplaces would
be greatly facilitated if users were given a high level service request lan-
guage to express their goals in complex business domains. This could
be achieved by using a planning framework which monitors the execu-
tion of planned goals against predefined standard business processes and
interacts with the user to achieve goal satisfaction.

We present a planning architecture that accepts high level requests, ex-
pressed in XSRL (Xml Service Request Language). The planning frame-
work is based on the principle of interleaving planning and execution.
This is accomplished on the basis of refinement and revision as new
service-related information is gathered from UDDI and web services in-
stances, and as execution circumstances necessitate change. The system
interacts with the user whenever confirmation or verification is needed.

1 Introduction

Service oriented computing (SOC) is rapidly becoming the prominent paradigm
for distributed computing and electronic business applications. SOC allows for
service providers and service application developers to construct value-added
services by combining existing services that are resident on the Web. To achieve
this, firstly web services must be described in terms of the standard web service
definition language WSDL [11] and subsequently must be inter-linked to express
how collections of web services work jointly to realize more complex functional-
ities typified by business processes. A new web service can be defined in terms
of compositions of existing (constituent) services on the basis of the standard
Business Process Execution Language for Web Services (BPEL4WS or BPEL
for short) [4]. BPEL models the actual behavior of a participant in a business



interaction as well as the visible message exchange behavior of each of the parties
involved in the business protocol. A BPEL process is defined “in the abstract”
by referencing and inter-linking portTypes specified in the WSDL definitions
of the web services involved in a process. A BPEL process is a reusable defi-
nition that can be deployed in different ways and in different scenarios, while
maintaining a uniform application-level behavior across all of them [4]. Service
compositions in BPEL are described in such a way (e.g., WSDL over UDDI) that
allows automated discovery and offers request matching on service descriptions.

In many situations it is desirable to empower a user to gain explicit control
over the execution of BPEL expressions and dynamically change the nature of the
web service interactions conducted with a particular business partner depending
on the state of the process. Consider for example the case of a traveler deciding to
change their hotel reservation to take advantage of an unexpectedly lowly priced
weekend offer. Users may need to change message property values in the midst
of a computation, e.g., update their holiday budget based on ticket, hotel prices
and availability, evaluate different behavioral alternatives or scenarios during a
computation and change their course of action dynamically, or revisit different
execution paths based on non-deterministic message property values that result
from the invocation of services involved in a process. This implies that BPEL
execution must be made adaptable at run-time to meet the changing needs
of users and businesses. Obviously, BPEL specifications do not allow for the
flexibility required to react swiftly to unforeseen circumstances or opportunities
as choices are predefined and statically bound in BPEL programs. To meet such
requirements serious re-coding efforts are needed every time that there is need
for even a slight deviation.

Such advanced functionality can only be supported by a service request lan-
guage and its appropriate run-time support environment to allow users to ex-
press their needs on the basis of the characteristics and functionality of standard
business processes whose services are found in UDDI registries. A service request
language provides for a formal means of describing desired service attributes and
functionality, including temporal and non-temporal constraints between services,
service scheduling preferences, alternative options and so on.

Our research work concentrates on developing a service request language
for XML-based web services that contains a set of appropriate constructs for
expressing requests and constraints over requests as well as scheduling operators.
We have named this language XSRL for XML Service Request Language [1,
9]. XSRL expresses a request against standard processes defined in a vertical
domain, e.g., e-travel, and returns a set of documents as the result of executing
the request, e.g., by sending a end-to-end holiday packages (documents). The
user requests generate a plan based on a standard business process that invokes
a series of web services and interacts with the user to satisfy her/his request.

The remainder of the paper is organized as follows. In Section 2 an example
in the traveling domain which runs throughout the paper is presented. The
architecture of the proposed framework is illustrated in Section 3, in particular,
we define the planning domain (3.1), we present an example of domain (3.2),



we introduce an enhanced syntax and semantics for XSRL (3.3) and provide
algorithms for satisfying XSRL requests (3.4). In Section 4 we exemplify the
functionality of the architecture on the running example. The paper is concluded
by a summary and brief overview of related work.

2 Organizing a trip

Suppose a user is planning a one night trip to Paris and is interested in a number
of possibilities in connection with this trip. These include making a hotel reser-
vation in Paris, avoiding to travel by train, if possible, and spending an overall
amount not greater than 300 euros for the whole package. Further, the user
prefers to spend less than 100 euros for a hotel room but, if this is not possible,
may be willing to spend no more than 200 euros for that room. The user wants
to pay under the condition that he receives a confirmation for the entire package.
Of course, the user would also need to specify dates for his trip and night stay in
Paris. This will not be considered in this example as it provides no additional ex-
planation of the ideas behind the presented system. The wishes of the user have
no much meaning unless they are matched against a standard business process
in the e-travel domain. What the user requires is a business process description
that prescribes how to interact with an e-travel marketplace infrastructure such
travel agents, hotel services and so on. It is common practice these days that
standard business descriptions and terminology descriptions be given in XML
schema, e.g., for the automotive industry, travel industry, chemical industry and
so on (http://xml.coverpages.org/xmlApplications.html) we expect that in the
near future abstract definitions of such business process will be given in BPEL
or similar service orchestration languages.

A snippet of a simple hypothetical standard business process for reserving
a trip in the e-travel domain is given in Figure 1. This process is called a busi-
ness domain and is modeled as a state transition diagram, that is, every node
represents a state in which the process can be, while labeled arcs indicate how
the process changes state. Actors involved in the process are shown at the top
of the diagram. The actors include the user, a travel agency, a hotel service, an
air service, a train service and a payment service.

The process is initiated by the user contacting a travel agency, hence, (1) is
the initial state. The state is changed to (2) by requesting a quote from an hotel
(action aq). The dashed arcs represent web service responses, in particular arc as
brings the system in the state (3). The execution continues along these lines by
traversing the paths in the state transition diagram until we reach state (14). In
this state a confirmation of an hotel and of a flight or train is given by the travel
agency and the user is prompted for acceptance of the travel package (13).

The state transition diagram is non-deterministic. This is illustrated, for
instance, in state (4). In this state the user has accepted the hotel room price
but is faced with two possible outcomes, one that a room is not available (where
the system transits back to state (1)) and the other where a room reservation is
made (state (5)).
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Fig. 1. Business domain.



The lower part of the business process models the payment of the travel
package just booked as an atomic action. This means the entire trip is payment
atomic.

3 The XSRL framework

The planning architecture proposed is based on the notion of interleaving plan-
ning and execution. The framework receives a request from the user and tries to
fulfill it against a standard business process — assuming that it is syntactically
correct. The standard business process can be specified in the abstract in BPEL
and we assume that is represented graphically by the state transition diagram
given in Figure 1. The framework returns a failure if the request cannot be sat-
isfied in the given business process under the current run-time circumstances,
e.g., ticket dates or hotel prices not available. During execution the system in-
teracts with UDDI to find suitable service providers, in a web service enabled
marketplace, and with the user to ask confirmation or request for additional
information, if necessary.

Business domain (BPEL4WS-like language)
Goal (XSRL) Request plan
MONITOR | PLANNER

Produce plan
Request execution

Update domain, goal, current state

EXECUTOR ]

User interaction

Invoke WS

Retrieve providers Collect new information

WEB SERVICES
IMPLEMENTATIONS

Fig. 2. High-level architecture.

The planning framework, shown in Figure 2 comprises four interacting com-
ponents: monitor, planner, executor, and the run-time support environment.

Figure 2 illustrates that the user issues a request to the system expressed
against a business process (domain). The monitor manages the overall process of
the interleaved planning and execution. First, it requests the planner to construct
a plan. Subsequently the planner either produces a plan or returns a failure (if
the request is not correctly specified). The executor processes the plan provided



by the planner by invoking the corresponding web services. It is also responsible
for finding a set of providers (web service implementors) for a particular service
in the UDDI registry. The executor may contact the user for confirmation if
user interaction is demanded by the business process. The executor does not
always execute an entire plan. It rather executes it in steps. It may gather new
information, e.g., hotel rates, from the environment (UDDI) and inform the
monitor, which in turn may request a new plan to be generated in the light of
the information obtained. The executor updates the monitor regarding the status
of the execution when re-planning is potentially needed or when it terminates
the execution of a plan.

3.1 Planning domain

To perform automatic planning and execution, it is necessary to formally define
the domain under which the system acts. Although such a formalization can
potentially be extracted from a BPEL definition, BPEL cannot be used directly
as, among the other things, it lacks formal semantics. Thus, we use BPEL and
extrapolate from it state-transition systems enriched with web service domain
operators and constructs.

State-transition systems are the basis of most Al planning systems and form
the core of our formalization. In particular, we use a representation able to
represent non-determinisms and the potential absence of information of the en-
vironment (incomplete information).

Definition 1 (Planning domain). A non-deterministic web services planning
domain is a tuple D =< S, Var, Act, R, P, Out, Tr, Role a;, Rolep >, where:

— & is the set of states which represent the states of the business process state-
transition system.

— Var is the variable space generated by the the Cartesian product of a number
of arbitrary domains such as the integers, the real numbers and boolean val-
ues. Further, we define the first k elements of the variable space as knowledge
variables.

— Act is the set of actions that can be performed in the transition system.

— R is a set of service roles associated with actions.

— P is a set of service providers identified by their URI.

— Out is a set of output types representing the possible response message types
from services.

—Tr : S x Act x Out — S is the transition function. The generic element
of this relation Tr(s;,a,0q) = s; Tepresents the transition from state s; to
state s; by means of action a with output type oq. An action a is called
deterministic in a state s if 3s' Yo € Out Tr(s,a,0) = s'.

— Roleget : Act — R is the role association function which relates actions to
service roles.

— Rolep : R — 2% s the role assignment function that associates every
provider to a role in the process.



To assign meaning to the elements of the transition relation we use semantic
rules. A semantic rule is an arbitrary function f : Act x Var x Out — Var.
Finally, we say that an action a € Act is knowledge gathering (or a sensing)
action if it affects at least one knowledge variable. Formally, knowledge variables
are associated with actions and output types as follows Yo € Out (Ji < k :
f(a,v,0); # v;) where f(); represents the restriction of the function 7 to the i-th
element and the first k elements of v € Var are knowledge variables.

The concept behind the presented formalization of the planning domain is
that a given business process is, at any instant, in a state from which a number of
actions can be performed to move to a new state. Roles, which represent service
interfaces, are associated to actions and implemented by service providers.

3.2 A domain instance

To provide more intuition for the planning domain just presented, we formalize
the upper half of the traveling business process in Figure 1 in accordance with
Definition 1 integrating information where necessary. In fact, Definition 1 of
planning domain has a number of additional features with respect to the figure.
In particular, in the figure the set variables, the set of service providers, the role
assignment function and the semantic rules are not represented.

There are fourteen states S = {1,2,...,14} in the upper half of the figure.
The set of variables Var is {hotel Reserved, hotel Price, location, trainBooked,
trainPrice, flight Booked, flightPrice, confirmed, money}, among which one
distinguishes the boolean variables (hotel Reserved, trainBooked, flight Booked,
con firmed), from the real variables (hotel Price, trainPrice, flight Price, money),
and a variable representing location names (location). In the set of variables
a subset is defined to be of knowledge variables. In the example, we define
hotel Price, trainPrice, flightPrice to be knowledge variables. There are also
nineteen actions that can be performed in the domain Act = {a1,...,a19}.

Four roles are involved in the process R = {hotel, air, travel-agency, train}
and the Role 4. relation associates to each of them the following actions: hotel
has {a1, a2, a4, a5} associated, travel-agency has {as, a12,a13, a1s, a1, a17}, air
has {ar7, as, ag, 14, a1s, a2}, and train has the set of actions {ag, a10, a11,a19}
associated. The set of actual service providers for this services obtained by
contacting the UDDI could be Hilton and BestWestern for the hotel role,
BritishArways, Virgin for air role, ClubM ed for the travel agency and Trenltalia
for the train role. The set of output messages is Out = {normal, NoRoomFault,
NoSeatOnFlight, NoSeatOnTrain}.

Finally, the transition function is given by the set of labeled arcs in the figure,
for example, Tr(4, a5, normal) = 5, Tr(4, a5, NoRoomFault) = 1 represent that
the action a5 with a normal output brings the system into state 5, while the
state 1 is reached with the NoRoom Fault message. Semantic rules are associated
with all actions. The rules for actions Act follow:

— ag,normal: hotel Price = result
— ag,normal: hotel Price = 0



— as,normal: money+ = hotel Price; hotel Reserved = true

— a5, NoRoomFault: hotel Price =0

— ag,normal: flightPrice = result

— a19,normal: trainPrice = result

— a12,normal: trainPrice =0

— ayz,normal: flight Price =0

— a4, normal: money+ = flightPrice; flight Booked = true
— a6, normal: confirmed = true

— ay9, normal: money+ = trainPrice; train Booked = true

— asgp, normal: money— = flightPrice; flight Booked = false

For instance, the semantic rule for action as with a normal output message
increments the value of the money variable with the price of the reserved hotel
and sets the hotel Reserved variable to true. While the same action with an
NoRoomFault output message yields the reseting of hotel price to zero.

The domain could easily be enriched with further details. For example, one
might consider reservation dates, flight numbers and so on. To take this into
account one only needs to define additional variables that store this information
and enrich the semantic rules attached to the actions in order to update these
variables during execution. This is not illustrated in this paper for space reasons.

3.3 XSRL

XSRL (Xml Service Request Language) was first introduced in [1, 9] as a request
language for compositions of web services in the context of no interleaving of
planning and execution (off-line planning). This paper provides an extension of
XSRL dealing with the interleaving of planning and execution. The improved
XSRL syntax is defined as follows:

xsrl <- ’<XSRL>’ goal ’</XSRL>’
goal <- proposition | and | then | vital |

optional | atomic | vital-maint | optional-maint
achieve-all <- ’<ACHIEVE-ALL>’ +goal ’</ACHIEVE-ALL>’

then <- ’<BEFORE>’ goal °’</BEFORE><THEN>’ goal °’</THEN>
prefer <- ’<PREFER>’ goal ’</PREFER><T0>’ goal ’</T0>’
vital <- ’<VITAL>’ proposition ’</VITAL>’

optional <- ’<0PTIONAL>’ proposition ’</0PTIONAL>’

atomic <- ’<ATOMIC>’ proposition ’</ATOMIC>’

vital-maint <- ’<VITAL-MAINT>’ proposition ’</VITAL-MAINT>’
optional-maint <- ’<OPTIONAL-MAINT>’ proposition ’</OPTIONAL-MAINT>’
proposition <- ’<CONST ATT="truel|false">’ | var |

’<AND>’ +proposition ’</AND>’ |

’<0R>’ +proposition ’</0R>’ |

’<NOT>’ proposition ’</NOT>’ |

’<GREATER>’ var ’</GREATER><THAN>’ rval ’</THAN>’

’<LESS>’ var ’</LESS><THAN>’ rval ’</THAN>’ |



’<EQUAL>’ var rval °’</EQUAL>’
var <- a..zA..Z[rvall
rval <- +a..zA..Z0..9.

Before dealing with the details of the semantics of XSRL constructs, we
provide their intuitive meaning. The atomic objects of the language are propo-
sitions, that is, boolean combination of linear inequalities and boolean propo-
sitions. These can be either true or not in any given state. Propositions are
further combined by sequencing operators to form goals. The sequencing op-
erators are: achieve-all, then, prefer. <ACHIEVE-ALL> +goal </ACHIEVE-ALL>
succeeds when all subgoals defined inside the tag <ACHIEVE-ALL> are satisfied,
it fails otherwise. <BEFORE> goall </BEFORE><THEN> goal2 </THEN> is satis-
fied, if goall is satisfied and, from the state where goall is satisfied, goal2 is
also satisfied, it fails otherwise. <PREFER> goall </PREFER><T0> goal2 </T0>
succeeds if goall is satisfiable, if not then it succeeds if goal?2 is satisfiable, it
fails if both goall and goal2 are unsatisfiable. <ACHIEVE-ALL> provides a way
of collecting goals that have all to be satisfied, the operator <THEN> is a way of
sequencing goals, while <PREFER> enables the user to express user preferences
over goals. Note that by nesting preference statements, one may give a total
order over a number of sub-goals.

A number of operators take propositions as arguments. These are used to
express ‘how’ to satisfy the propositions. <VITAL> proposition </VITAL> is
satisfied if there exists a state satisfying proposition which is reachable from
any future state, it fails otherwise. <OPTIONAL> proposition </0PTIONAL> is
always satisfied as a goal. Its meaning is that, if there exists a reachable state
satisfying proposition, then this state must be reached, otherwise the goal is
ignored. <ATOMIC> proposition </ATOMIC> means that proposition should
be reached from the current state despite non-determinism of the domain. If
there is no such path to a satisfaction state, it fails. Note the requirements of
this operator are stronger than the <VITAL> operator. The <VITAL> operator
does not guarantee satisfaction of the goal if the execution of the plan is always
non-deterministically taking the ‘wrong’ path, this means that non-deterministic
action executions always bring the system in a state different from the one in
which the final goal is achieved. <VITAL-MAINT> proposition </VITAL-MAINT>
is satisfied if for all states in the execution path proposition is true. If there
is a state in which proposition is not true, then it fails. <OPTIONAL-MAINT> is
analogous to the previous one, but as a goal it does not fail if such a path does
not exist.

To provide the formal semantics of XSRL, we adapt the definitions of plan
and of execution structure from [6]. We additionally define the notion of booleaniza-
tion. A plan is defined as a sequence of actions executed in given execution
context.

Definition 2 (Plan). A plan for a domain D is a tuple 7 = (C, co, action, ctxt)
where

— C is a set of contexts,



— ¢g 18 the initial context,
— action : S x C — Act is the action function,
— ctat : S x C xS — C is the context function

XSRL in addition to dealing with boolean variables used in typical goal
languages, such as the one proposed in [10], deals with variables that range
over domains like reals, integers, and so on. To allow for this we introduce the
notion of ‘booleanization’. The idea behind booleanization is that constraints
expressed in the goal over domains ranging over variables are treated as boolean
propositions. For example, consider the expression money < 100 with an integer
variable money. After booleanization this becomes a boolean proposition that
can be either true or false.

Definition 3 (Booleanization). The booleanization of a domain D with re-
spect to a goal g is a tuple BD = (S’, Prop, Act, R, P,Out, Tr’, Role oct, Rolep)
derived from the original domain D in the following way. The set of variables
Var is replaced by the set of boolean proposition Prop according to the following
rule:

— all boolean variables in Var are also in P,
— all linear constraints appearing in g are added as boolean propositions in P,
— all variables in Var that do not appear in g are omitted in P.

The set of states and transition function are changed to fit the above introduction
of boolean propositions.

An execution structure of a plan over a booleanized domain for a given goal,
represents the possible ways a plan can execute and is essential to determine the
reachability of a given goal from a particular state.

Definition 4 (Execution Structure). The ezecution structure of plan m in

the booleanization of domain D with respect to goal g from state sq is the structure
K = (S, R, L), where

— S = {(s,¢) : action(s,c) is defined } is the set of states of the execution
structure,

— R={((s,¢),(s,c)) :ifA(s,c) — (¢, ) and ctxt(s,c,s") = '} is the relation

— L(s,¢) ={be P},

The execution structure of a plan in a domain represents how the domain is
traversed by the plan. Before defining the notion of goal satisfaction, we need
to introduce a few elements of notation. We use the symbol o to denote finite
paths. S denotes the set of all states in the execution structure K. Given a set
X of finite paths, the set of minimal paths in X' is defined as min{X} = {0 €
Y Vo' <o = o ¢ X}. Given a goal g, Sy(s) represents the the set of finite
paths that lead to the satisfaction of goal g from state s, while F(s) represents
the set of finite paths that lead to a failure. A state s’ is said to be reachable
from the state s if there exists a path starting from s and leading to s’. A plan
is denoted by 7.



The notion of goal satisfaction K, s = ¢ is defined in terms of the set of failure
states for the goal g on the execution structure K derived from a booleanized
domain with starting state s as follows

K,sl=giff Fy(s)=10

The set of failure states F,(s) for a goal g from a state s is defined inductively
in the following way:

S(s) = {(s)}, F(s) =0, that is, p € L(s) for all proposition letters p of the
booleanized domain
otherwise
S(s) =0, F(s) = {(s)}
-p
not p
Dp1 A\ D2

p1 and py
achieve-all g;..g,

S(s)=min{c :3o1 <o o1 € Sy, (s)A...ANTo, <o 0n €S, (5)}
F(s) =min{Fy, (s)U...UF, (s)}
before g; then g,
S(s) ={o1;02: 01 € Sg,(s) Aoz € Sy, (last(o1))}
F(s) ={o1:01 € Fy,(s)} U{o1;09 : 01 € Sy, (s) Noa € Fg,(last(o1))}
prefer g; to go
S(s) ={o1:01 € 84, (s)}U{o1;02: 01 € Fy,(s) Noa € Sy, (last(o1))}
F(s) ={o1;02: 01 € Fy,(s) Noa € Fy,(last(o1))}
atomic p
if there is some infinite path p such that Vs’ € p s’ £ p then
S(s) =0, F(s) = {s}

otherwise
S(s) =min{o : first(c) = s ANlast(o) = p}, F(s)=10
vital p

S(s) = min{o : first(c) = s Alast(o) = p}
F(s) =min{o : first(c) =sAVs € o s E=pAVo' > o last(o’) = p}
optional p
— if Ir: 7, s = vital p, otherwise
— ifVa' £ w7 s £ vital p
optional-maint p
— if 3w : 7, s E vital maint p, otherwise
— if Vo' #£ 7 7', s = vital maint p
vital-maint p
if K,s' |=p holds for all states s’ reachable from s then
S(s) =0, F(s) =0
otherwise

S(s) =0, F(s) = {s}

The satisfaction of a goal has thus been defined in terms of whether a goal
can fail or not during execution.



3.4 Interleaving planning and execution

The architecture presented in Figure 2 divides the framework into three main
functional units: a monitor, a planner and an executor. In this section we provide
three algorithms for each of these models. The monitor (Algorithm 1) is responsi-

Algorithm 1 monitor(domain d, state s, goal g)

™= plan(da S, g)

if 7 = 0 then
return success
else

if © = failure then
if chooseNewProvider then
d’" = updateDomain(d)
return monitor (d’, s, g)
else
return failure
end if
end if
(d',s',g') = execute(n,d, s, g)
return monitor (d’, s, g’)
end if

ble of invoking the planner, recovering from failure and invoking the execution of
plans. It works in the following way. Starting from a domain, an initial state and
an XSRL goal, it invokes the planner to synthesize a plan for the input values.
It then analyzes the plan. An empty plan means that the goal has been reached
and the request has been successfully met. If the planner returns failure, i.e., the
inability to satisfy a goal under the current execution context, then it attempts
to change a provider. chooseNewProvider contacts the executor module which
has a list of possible providers for services and keeps track of which providers
have been considering during the execution of the plan. If a new provider can be
assigned, the execution proceeds, otherwise the monitor returns failure. Finally,
if a non-empty plan has been produced, the plan is passed on to the executor
by invoking the execute function. This function returns an updated domain,
current state and XSRL goal for which one needs to continue the monitoring.
The ezecutor (Algorithm 2) starts from a plan, a domain, an initial state and
an XSRL goal. It iterates by attempting the execution of all the actions of the
input plan. The firstAction of the plan is stored in the variable a and then
removed from the plan. If this action requires interaction with a web service,
then one needs to seek for a provider for that action. The construct role stores
the role associated with the current action. If the executor has not assigned a
provider for that role during the execution so far, then the UDDI is contacted to
ask for providers for the given role. A provider is chosen from the list of possible
providers using some heuristic function (the first provider, the one for which



Algorithm 2 execute(plan 7, domain d, state s, goal g)

repeat
a = firstAction(r)
T=T—a

if webServiceAction(a) then
role = Rolact(a)
if noProviderForRole(role) then
providersList = contactUDDI(role)
provider = chooseProvider(providersList)

else
provider = previouslyChosenProvider(role)
end if
message = invoke(a, provider)
end if

(d',s',g') = update(d, s, g, a,message)
if isKnowledgeGathering(a) then
return (d',s’,g")
end if
until 7 = ()
return (d',s’,g")

there are good references, etc.). If, on the other hand, a provider has already
been assigned to a role, then we must continue executing the following actions
assigned to the role with the same provider. Once the provider has been identi-
fied, the provider is invoked with action a and the possible return messages are
stored in the message variable. The next step is that of updating the domain,
the current state and the goal by the effects of having executed the action. This
step is necessary as the execution of the action may have brought the system in a
new state, may have changed the values of some variables and may have satisfied
subgoals of the current goal. If the action has been a knowledge gathering action,
we have acquired new information and we want to return the current status to
the monitor in order to perform re-planning, otherwise we reiterate the cycle by
looking at the following action of the plan. The planner function (Algorithm 3)

Algorithm 3 plan(domain d, state s, goal g)

domaingeo; = booleanize(d)
goalpooi= booleanize(g)
return MBPplan(domaingeor,s,g0alpeor )

is very short as it relies on an existing planner (MBP, [2,6]). MBP is a model
based planner which, given a domain description and a goal, synthesizes a plan
for the given goal of returns failure if a plan does not exist. This reduction,
called booleanization, takes all linear constraints over non boolean variables and
turns them into boolean propositions which are true, false or undefined in the



current state of the domain. The same reduction is necessary for the goal. The
planner returns a sequence of actions for ‘reaching’ the booleanized goal. We
do not give the full details of booleanization here, but simply explain the basic
concept behind it.

1. The booleanized domain is as the original one except that instead of the set
of variables we have a set of proposition letters (specified by the rules below)
and new states maybe introduced.

2. Every non boolean linear constraint in the goal is transformed into a boolean
proposition. Note that two distinct propositions such as price < 10 and
price > 5 are introduced to take into account two constraints on the same
variable.

3. The truth of the propositions is established on the domain by starting from
the current state, looking at the current values of the variables and moving
along the actions using semantic rules to establish the truth of propositions.
In case of conflicting values for a proposition in a state (e.g., the case of two
actions with different semantic rules entering in the same state), the state is
divided into two states and then the propagation proceeds independently.

4 Executing a sample XSRL request

To exemplify the concepts behind the algorithms just presented, we provide a
sample XSRL request run against the domain introduced in Section 2. In this
section, we show how the sample request of Section 2 is handled by the proposed
architecture. First, the goal g of going to Paris is expressed in XSRL as shown
in Figure 3.

To illustrate the execution of g on the domain d of Figure 1 using the al-
gorithms of Section 3.4, we rewrite the XSRL request omitting XML tags as
follows:

achieve-all
before
achieve-all
prefer vital-maint hotelPrice < 100 to vital-maint hotel Price < 200
optional-maint —trainBooked
vital confirmed A location = “Paris” A hotel Reserved
then
atomic final
vital-maint price < 300

This XSRL request will execute as follows: Algorithm 1 will be invoked on
the domain d in Section 3.2 with initial state s = 1 and the goal g in Figure 3.
The first step will be to invoke the planner of Algorithm 3 with (d, s, g). As there
exists a plan for the booleanized version of (d, s, g) the planner will return a plan
7 with initial actions aj, as, a4. Subsequently, the execute function (Algorithm 2)
will be invoked on (7, d, s, g). The first action would be a;=getHotelPrice. The
role associated with the action a; would be ‘hotel service’. Since this is the first



<XSRL>
<ACHIEVE-ALL> <OPTIONAL-MAINT>
<BEFORE> <NOT>
< - > i
ACHIEVE-ALL trainBooked <THEN>
<PREFER> </NOT>
<ATOMIC>
<VITAL-MAINT> </0PTIONAL-MAINT> final
<LESS> </BEFORE>
. </ATOMIC>
hotelPrice <VITAL> </THEN>
</LESS> <AND> <VITAL-MAINT>
<THAN>100</THAN> confirmed <LESS>
</VITAL-MAINT> <EQUAL>
f price
</PREFER> location
) </LESS>
<T0> *’Paris?? <THAN>300</THAN>
<VITAL-MAINT> </EQUAL> </VITAL-MAINT>
<LESS> hotelReserved
. </ACHIEVE-ALL>
hotelPrice </AND> </XSRL>
</LESS> </VITAL>
<THAN>200</THAN> </ACHIEVE-ALL>
</VITAL-MAINT> </BEFORE>
</T0>

Fig. 3. An XSRL request.

action UDDI will be contacted to get a list of providers associated with this role.
We assume that we get a list with two providers ‘Hilton” and ‘Best Western’and
further that the first one is chosen. Subsequently, the service is invoked. The
update of the domain moves the current state to 2. Since a; is not a knowledge
gathering action, execution of the plan continues. Following this the execution
proceeds by considering the role of ay=price which is again ‘hotel service’.
Note that this action will modify the knowledge variable price as the interaction
with the hotel provider will return a price value. Since we have already chosen
the provider ‘Hilton’ for the hotel service role, we continue with it and store in
message the price of, say, 150 euros. Next, the domain, goal and current state are
updated accordingly. In particular, the new state is 3 and the goal is unchanged.
Since the action is a knowledge gathering one, the executor returns the control
to the monitor specifying the updated domain, current state, and goal. The
monitor function invokes the planner on the new current state 3. Again a plan
exists because, even if the cost of the hotel is more than the 100 preferred value it
is still less than 200 euros. The initial sequence of actions of the new plan is now
a4, as, (a7 or ap). Interleaving of planning and execution proceeds analogously
as in the previous points by executing the action ay=reserveHotel.

The next action as in the plan is non-deterministic, i.e., both states 1 and
5 could be reached with this action. Let us assume that we have received a
confirmation message from the provider ‘Hilton’ and the current state is there-
fore 5. The following actions will ask for a flight price and reserve a seat in an
analogous manner assuming that the cheapest flight provider ‘Virgin’ will be



chosen with a ticket price of, say, 200 euros. The choice of ‘Virgin’ is achieved
if the heuristic behind the chooseProvider function in Algorithm 2 orders the
providers by offered prices. The planner will produce a new plan whose next
action is ag=getTrainPrice since the flight action will be retracted as the
vital-maint goal of spending less than 300 euros is violated. Suppose that
the price returned by a train provider is of 140 euros. The execution of the plan
will proceed smoothly until we reach state 14. The following action is that of
asking the user for confirmation before payment. If this accepted, the new state
is 15 and the goal is updated by considering the subgoal after the then state-
ment. The last subgoal of atomic final is achieved as there the final state 18 is
always reachable from the current state 15.

5 Summary

AT planning provides a sound framework for developing a web-services request
language and for synthesizing correct plans for it. Based on this premise we have
developed a framework for planning and monitoring the execution of web service
requests against standardized business processes. The requests are expressed in
the language XSRL and are dealt by a framework which interleaves planning and
execution in order to dynamically adapt to the opportunities offered by available
web services and to the desires and preferences of users. The request language
results in the generation of executable plans describing both the sequence of
plan actions to be undertaken in order to satisfy a request and the necessary
information essential to develop each planned action.

From the AI planning perspective, our work is primarily based on planning
as model checking under non-determinism for extended goals [10,6] using the
MBP planner [2]. Extensions toward interleaving planning and execution in the
above context are reported in [3]. The latter work emphasizes on state explosion
problems rather than information gathering, furthermore, it does not handle nu-
meric values. Various authors have emphasized the importance of planning for
web services [5,7,8]. In particular, Knoblock et al. [5] use a form of template
planning based on hierarchical task networks and constraint satisfaction, in [7]
regression planning is used, while in [8] the Golog planner is used to automat-
ically compose semantically described service. Our approach differs from these
recently proposed planning approaches for web services in that it is based on
non-deterministic planning whereas most of the previously cited approaches fo-
cus on gathering information, on applying deterministic planning techniques, on
using precompiled plans or on assuming rich semantic annotations of services.

We have defined the full semantics of XSRL in terms of execution structures
and we have provided algorithms that satisfy XSRL requests based on UDDI
supplied information and information gathered from web service interactions.

Preliminary experiments with the MBP planner have been conducted to il-
lustrate the feasibility of the approach. In the next phase of experiments we
plan to implement the algorithms described in this paper to test the proposed
framework.



An issue for future investigation is the interaction of the system with UDDI
registries. In particular, UDDI could be enhanced by providing better support
for provider selection, e.g., based on service quality characteristics. This has an
impact, among other things, on the chooseProvider function. From the point
of view of planning, there are several aspects that need to be addressed. For
example, the current version of the planner does not keep track of previous
computations or "remember” history and patterns of interactions.
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