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Introduction

In their famous paper [11], E. S. Golod and I. R. Shafarevich proved that,
given any field £, if P is a presentation of an associative k-algebra with d
generators and at most (d — 1)?/4 relations, the algebra presented by P must
be infinite-dimensional. Later Vinberg, [22], proved that (d — 1)?/4 can be
replaced by d?/4 in the Golod-Shafarevich theorem.

In 1977 H. Koch, [15], showed that the same kind of result can be stated
in the Lie algebras context; in particular, he proved that, if L is a finite-
dimensional nilpotent Lie k-algebra with generation rank d, where d > 2, and
relation rank r, then r > d*/4.

Let us note that the concepts of generation rank and relation rank for finite-
dimensional nilpotent Lie algebras are defined by using the usual procedures.
Indeed, a generating system E of a finite-dimensional Lie algebra L is called
minimal if there is no proper subset of E which is a generating system of L.
The generation rank of L, d(L), is the cardinality of a minimal generating
system. Note that, if L has generation rank d, then L is a factor algebra of
the free Lie algebra on d generators Fj relative to an ideal I. If R is a subset
of I that generates I as an ideal of Fj;, we call R a minimal relation system of
L when I is not generated by any proper subset of R. The relation rank of L,
r(L), is the cardinality of a minimal relation system.

A problem which arises quite naturally in this context is the construction
of examples of finite-dimensional nilpotent Lie algebras with “few” relations,
in the sense that the quotient r/d? is the smallest possible. In his paper Koch
describes a class £ of Lie algebras with the property that, for each L € £, with
generation rank d and relation rank r, there exists a series of finite-dimensional

nilpotent Lie algebras L, with Ly := L and d(L) = d°, r(L,) = dQT_ - —1).
Thus, given a Lie algebra L with small value of r(L)/d(L)? there is provided
a whole series of Lie algebras L; where
r(Ls)/d(Ls)? < r/(d? —1).

Starting from this result, J. Wisliceny, who intensively worked on the topic
during the last twenty years, was able to build a series of finite-dimensional

L
nilpotent Lie k-algebras, {L(n)}en, such that lim, . % = 1/4 holds,




thus obtaining the asymptotical exactness of the bound (see [23] as a reference).
Later, in [25], Wisliceny was able to prove the same result in the associative
algebras context.

Golod-Shafarevich theorem for both associative and Lie algebras has been
restated in different terms by using the concept of entropy of an algebra in a
paper by M. F. Newman, C. Schneider and A. Shalev, [16].

Let A = @,5,An be a graded k-algebra, we define the entropy of A by
H(A) = limsup,,_,,, V/dim;A,.

There is a connection between the entropy of a graded algebra A and the
Hilbert series associated to it A(t) = Y .o ,(dimgA,)t": in fact H(A) = 1/R,
where R is the radius of convergence of the formal power series A(t). The
Hilbert series associated to an algebra have been widely studied in commu-
tative algebra and for graded associative algebras, it should be regarded as
a “generalised dimension” and it carries all the information on asymptotic
behaviour of an algebra, see [21] as a reference.

In their paper the authors study the entropy of associative algebras and
Lie algebras, in particular they consider the entropy of free algebras and how
it is related to the entropy of their quotients and their subalgebras. One of the
key observations, which relies on a paper by A. E. Bereznyi, [4], is that, given
a graded Lie algebra L, then its universal enveloping algebra U(L) admits
a natural grading induced from L and H(L) = H(U(L)). As a consequence
they can extend the results they prove in the associative algebras context to Lie
algebras. Let us state the result they obtain and that is related to the Golod-
Shafarevich theorem: let P be an associative or a Lie algebra presentation
containing d generators and r homogeneous relations of degree at least 2 with
r < d?/4. If A denotes the algebra presented by P then H(A) > 1.

Let us observe that a graded k-algebra has entropy zero if and only if it
is finite-dimensional. Indeed, if a graded k-algebra A := @, A, is finite-
dimensional, then the sequence {dimy (A, ) }nen is definitely zero. Thus H(A) =
lim,,_, {/dimg(A,) = 0. On the other hand, if H(A) = 0, then for a suffi-
ciently large N € N we get dim,(A4;) < 1, for all j > N, thus A = @, A,.
Furthermore, by using the same argument, we obtain that infinite-dimensional
k-algebras have entropy grater or equal to one. In their paper the authors
highlight two examples of graded k-algebras with entropy one. In particular,
finitely generated graded associative commutative algebras have clearly en-
tropy one and this also holds for PI-algebras over a field of characteristic zero,
[3]. Examples of graded Lie algebras of entropy one are thin Lie algebras, Lie
algebras of maximal class and loop algebras of finite-dimensional simple Lie
algebras.

Since loop Lie algebras are widely mentioned in this thesis, we take the
chance here to remind how they are defined (see [9] as a reference). Let
S denote a finite-dimensional simple Lie algebra over a field k, let k[t, ']
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(with ¢ an indeterminate) denote the ring of polynomials in ¢ and ¢~! with
coefficients in k. We call S := k[t,t7!] ®; S, with a Lie bracket defined as
follows: [u® z,v ® y] := uv ® [z,y] where u, v € k[t,t7!] and z, y € S, the
loop algebra of S. Note that S is infinite-dimensional and we can consider the
following graduation on it: S = @Drez S ® kt". As we will mainly work on
finitely presented Lie algebras which have a natural graduation on N, we will
call loop Lie algebras also those which are obtained as a tensor product of a
simple Lie algebra with the ring of polynomials £[t]. In this case we obtain an
infinite-dimensional Lie algebra with a natural grading on N,

S = @;’;N S ® kt™, and we can calculate its entropy:

H(S’) = limsup {/dim;S = 1.

n—o0

As we observed above, it is natural to search among k-algebras with entropy
one those which are finitely presented with “few” relations. Using the theorem
stated above, we can conclude that at least d?/4 relations are required to
present a k-algebra on d generators with entropy one. Moreover, as the authors
observe, going through the proof of that theorem one obtains that if d > 2,
then more than d?/4 relations are needed.

The first problem we face in this thesis is the construction of examples
of presentations of periodic Lie algebras with “few” relations (we call a Lie
algebra L = @, L, periodic if the function f(n) := dimy(L,) defined on
the positive integers is ultimately periodic, i.e. there exist N, h € N, such that
fr(n+ h) = fr(n) for all n > N). Let us remark that periodic Lie algebras
have entropy one. More precisely, we are looking for periodic Lie algebras
presented by d generators and d?/4 + 1 relations. Roughly speaking we are
investigating a class of Lie algebras with entropy one which are close to be
finite-dimensional. In order to tackle this problem, we get some hints from the
classes of presentations Wisliceny investigated in his papers. In fact, in [24], he
considered sets of relations he called Erhohungsysteme and he showed that, if
L =@, L, is a free Lie k-algebra freely generated by d generators and R is a
Erhdhungsystem then the factor algebra L/I(R) is nilpotent, being I(R) the
ideal of L generated by R. In a later paper, [25], he obtained the same result in
the associative algebras context defining the Erhohungsysteme of associative
algebras in a similar way. In this paper, which deals with associative algebras,
he introduced sets of relations, called Quasierhbhungsysteme, employing a set
of defining rules similar to the defining rules of the previous case but weaker,
in some sense. As he observed, these sets of relations do not always lead to
nilpotent associative algebras. This second class of relations, translated in the
Lie algebras context, seemed a good starting point for our investigations.

Let us call C(d), where d > 2, the class of presentations on d generators
we are considering, see chapter 2 for a detailed description of this class. As



we would like to automatically generate presentations of C(d) through an ad
hoc designed software we should investigate this class in order to reduce the
number of presentations which present isomorphic Lie algebras and thus easing
the computational burden.

Given a presentation P = (X|R) in C(d), with X := {z1,...,24} as set
of generators and R the set of relations, we have, by definition, that R is
a disjoint union of two subsets R, and Ry,. The first result we prove is
that the cardinalities of these two subsets of R depend only on d, namely
|Rpm,| = |d/2] + 2 and Ry, = |d?/4]| — |d/2] — 1.

Note that if S is the set of relations of another presentation P’ € C(d) on
the same set of generators X, such that

[Ti, 2] € Spm, <= [2i, 7] € Rpmy, or [T, 2] € Ry,

then the Lie algebras presented by P and P’ are isomorphic. This simple
observation led us to consider the idea of associating a presentation (X|R) €
C(d) with a graph G(d, R), being X its vertex set and

E(G(d,R)) := {{zi, z;} : [xi,2;] € Ramy, or [z, 2] € Ram, }

its edges set.

The analysis of the graphs associated with the presentations in C(d) is the
topic of the second chapter of this thesis. Actually, given a graph isomorphism
¢ between two graphs G(d, R) and G(d, S) associated with two presentations
P and P’, such that the canonical extension to a Lie algebra homomorphism ¢,
gives @(Ry,) = Su,, we are able to prove that the Lie algebras presented by P
and P’ are isomorphic as Lie algebras. This theorem allows us to restrict our
attention to presentations of C(d) associated with a graph which belongs to the
set A of all non-isomorphic graphs with d vertices and |d/2| + 2 edges. This
is the setting where we can prove some useful results about the connections
between the properties of a presentation P with the entropy of the Lie algebra
presented by P. The key theorem of this section gives two as a lower bound
to the entropy of the Lie algebra presented by P, if the subset Ry, of the set
of relations satisfies a certain property. This result has two corollaries which
allow us to see connections between some properties of the graph associated
to a presentation P with the entropy of the Lie algebra presented by P.

In the last section of the second chapter we use the results of the previous
section to solve our problem for d = 3 and d = 4. In fact we show that
every presentation in C(3) gives a 3-dimensional abelian Lie algebra which has
entropy zero. For d = 4 we get that there are only two isomorphism classes
of Lie algebras which can be presented by a presentation P in C(4). Here P
can be the presentation of either a 5-dimensional metabelian Lie algebra or
a central extension of a free Lie algebra of rank 2; thus neither of them with
entropy one.



In addition, we prove that there are at most 16 isomorphism classes of Lie
algebras with a presentation in C(5). There is computational evidence that
one of these Lie algebras which have a presentation in C(5), say L, is periodic.
The second chapter of this thesis is devoted to prove this fact when k£ = C, in
particular we are able to show that £ is a loop Lie algebra of sl3(C).

In order to prove that L is a periodic Lie algebra we had to develop a non-
standard approach to the problem. More precisely, we have a presentation
P, € C(5) of a Lie algebra £, which has a natural graduation £ = @, .y Ln,
with dimcL; = 5 and dimcLs = 3. There is computational evidence of the
fact that the homogeneous components of even degree are 3-dimensional C-
modules and those of odd degree are 5-dimensional C-modules. By using
computational devices and software as GAP and Anu-p-quotient, we can work
on finite-dimensional nilpotent quotients of £, say L(h) = L/ D, _,,, Ln, and
we gain computational evidence of the fact that £ is isomorphic to a loop
algebra of sl3(C). At this stage, proving that these two Lie algebras are iso-
morphic appeared to be a difficult task. In fact, similar theorems concerning
finitely presented thin Lie algebras or Lie algebras of maximal class are proved
by induction on the degrees of the homogeneous components and considering
the consequences of the relations given in the presentation. Even if this kind
of approach would probably work in our context, it would certainly require
a large amount of calculations, this is the reason why we decided to look for
a different way to deal with this problem. Going through papers on finitely
presented Lie algebras we realise that there are two kinds of results. There are
papers dealing with the implementation of algorithms that allow to find basis
of finitely presented finite-dimensional Lie algebras (see for example [13], [20],
[10], [7])- The results we are interested in are those on the structure of finitely
presented Lie algebras but they are useless in our context as they deal with
finitely presented Lie algebras with some additional hypothesis on their struc-
ture. We find, for example, results on solvable finitely presented Lie algebras
in [2], or on finitely presented Lie algebras which are finite-dimensional-by-
abelian in [6].

We have been luckier when, looking for papers dealing with loop Lie alge-
bras, we have found a series of papers by J. M. Osborn and K. Zhao where they
work on the Kirillov’s problem for Lie algebras, that is to say, the analysis of
the structure of doubly Z-graded Lie algebras on a field of characteristic zero,
such that each graded component has dimension zero or one. In [17] they

~ (2
find a characterisation of a loop Lie algebra sl( )(3) graded on the integers
such that the homogeneous components of even degree are 3-dimensional and

those of odd degree are 5-dimensional. The subalgebra of s (3) we obtain
by considering the homogeneous components of positive degree can be seen as
a loop algebra of sl3(C), and it is exactly the algebra we are looking for.

Let us go into more details, in their paper Osborn and Zhao prove the



following theorem: if A = €p; jez Aij 18 @ Z X Z-graded Lie k-algebra over
a field of characteristic zero, with dimA;; < 1, for each 7 and j, such that
the following conditions (I), (II) and (III) are satisfied, then A is isomorphic
to a loop Lie algebra of sly(k), called sl(2), or to a loop Lie algebra of sls(k),

indicated as 51 (3). The conditions considered in the statement are as follows,
let w; ; be chosen such that A;; = kw;, ; for all (i.j) € Z x Z, for any r € Z we
define A, = @, ., Air and A} = P, ., Ars,

1EZL

(I) dimkAil,() = dimkAo,ﬂ = 1, and A is generated by W+1,0, Wo,+1;
(I1)  Aj ~ sl(k);

(III)  [w_1,0,w1] = 0 and ad(wy1) act faithfully on A;.

Going through the proof of this theorem we find out that if dimy A} = 3, then

A ~ s1(2) whereas, if dimy A} = 5, then A ~ §l(2)(3). In their paper the authors
consider a Zy-graduation of sl3(k), so that it can be seen as a direct sum of an
irreducible 3-dimensional sly(k)-module, V4, and an irreducible 5-dimensional

slo(k)-module, say V;, thus giving s (3) in the following way:

51(2)(3) = Pk @ Vo) ® k[t @ W1)).

1EZL

Let us remark that, with respect to this graduation, §l(2)(3) has 5-dimensional
irreducible sly(k)-modules as homogeneous components of odd degree, and 3-
dimensional irreducible sly(k)-modules as homogeneous components of even
degree. This graduation reminds us of the Lie algebra £ we are trying to
describe.

This characterisation suggests us to give a sly(k)-module structure to L.
Let us recall that £ is a finitely presented Lie algebra with a presentation
that belongs to C(5), we can use £ = (X|R) as a notation to indicate the
presentation we are considering, where X is the set of generators and R the
set of relations. Let V be the free k-module freely generated by X, L(V)
the free Lie algebra generated by V, and S the ideal of L(V') generated by
R, then by definition we have that £ = L(V)/S. We are able to find a new
free generating set of V, say Y, where |Y| = |X| = 5, such that, defining
an irreducible sly-action on the basis Y of V' in the canonical way, we obtain
a sly-module structure on L(V') and with respect to this action S becomes a
sly-submodule of L(V). Let us mention that if &k is a field of characteristic
zero, then for each n € N there exists exactly one irreducible n-dimensional

6



sly(k)-module, up to isomorphism. Thus we obtain a sly(k)-module structure

on L and we can explicitly build a sly(k)-epimorphism of £ onto s (3) which
is also a epimorphism of Lie algebras. In fact this sly(k)-epimorphism, say @,
is a sly(k)-isomorphism of Lie algebras. This sly(k)-module structure on L is
a key fact in proving that ¢ is a bijection.






Chapter 1

Basic concepts

1.1 Lie algebras

We use [14] as a reference for general background on Lie algebras.
A Lie algebra L is a k-module, where £ is a field, with an operation L x L —
L, denoted (z,y) — [z,y], called Lie bracket, satisfying the following axioms:

1. The bracket operation is bilinear.
2. [z,x2] =0 for all z in L.
3. [z, y], 2] + [ly, 2], 2] + [[2, 2], y] = 0 for all z, y, z € L.

Axiom (3) is called the Jacoby identity. Note that axiom (2) implies antisym-
metry, i.e. [z,y] + [y,z] = 0.
We will use a simpler notation for iterated commutators:

[T1, ..., 2] = [[71, 22], 23], . - ., 2]

Using the Jacoby identity it can be proved the following formula:

A

A
y 2y 2,0 = —1’+1<,>v,z,...,z, s 2y 5 2,
bl =20 () ha

i=0 i A—i

called the generalised Jacoby identity.

Subalgebras of Lie algebras and homomorphisms between Lie algebras are
defined as usual.

It is worth noting that, given an associative k-algebra A, it acquires a
structure of Lie algebra by defining the Lie bracket of two elements z, y € A
as [z,y] = zy — yx. We will use A~ to indicate that we are considering A as
a Lie algebra.



In particular, let V' be a k-module, we can define gl(V) := Endy(V)~,
where Endg (V') denotes the algebra of k-endomorphisms of V. Subalgebras
of gl(V) are called linear Lie algebras. In addition, if V' is a n-dimensional
k-module, then we can consider the matrix representation of the elements of
Endy (V') obtaining the k-algebra M (n, k). Then gl(n, k) :== M(n, k)™ is a Lie
algebra.

Since, for all z, y € M(n, k),

Tr(zy) = Tr(yz),
Tr(z+y)=Tr(z)+Tr(y),

we get that the subset of gl(n, k) of matrices with trace zero, is a Lie sub-
algebra of gl(n, k). This subalgebra is denoted as sl(n, k) and it is called
special linear algebra, in analogy with the special linear group SL(n, k) of
endomorphisms with determinant one.

Any homomorphism between a Lie k-algebra L and gl(V), say

p:L—gl(V)

is called a representation of L.

The notion of representation is equivalent to that of L-module. Indeed,
given a k-module V| we say that V' is an L-module if there exists a k-bilinear
map

- LxV =V

satisfying the following axiom:
[z,y]-v=x-(y-v)—y- (x-v),.5cmfor allz, y € L and for all v € V.

Moreover, if V' is an L-module, we may define a mapping p : L — gl(V)
by setting p(z)(v) := z - v, where x € L, v € V. On the other hand, if
a: L — gl(M) is a representation of L then the k-module M becomes an
L-module if we put z - v := a(z)(v), forallz € L, v € M.

Submodules, quotient modules and homomorphisms between modules are
defined as usual.

We can go a bit further in showing the connection between Lie algebras
and associative algebras. Let L be a Lie algebra and consider a Lie algebra
homomorphism between L and an associative algebra A, with its natural Lie
algebra structure. Among all these associative algebras there exists one, U(L),
called the universal enveloping algebra of L which has a universal property,
stated in the next result.

Proposition 1.1.1 Let L be a Lie k-algebra. There exists an associative k-
algebra U(L) and a Lie algebra homomorphism ¢ : L — U(L)™ with the

10



following property: for any associative algebra A and any Lie algebra homo-
morphism ¢ : L — A~, there is a unique associative algebra homomorphism
f:U(L) = A making the following diagram commutative:

We will not give a detailed proof of this proposition but we find it useful
to show the construction of the universal enveloping algebra U(L).
Let us consider the tensor algebra of L over k, T'(L) = €D, v, L®", where
L® :=Fkand L®" := L ®...® L for n > 0. It has a structure of associative
—_——

algebra with unit with respect to the following associative product, defined on
homogeneous generators of T'(L):

($1®---®l‘k)(y1®---®ym) 5=I1®...®$k®y1®...®ym€L®(k+m)'

Let I be the ideal of T'(L) generated by the elements @y —y®x — [z, y] where
xz, y € L,then U(L) =T(L)/I. Let ¢ = poi, where 7 is the canonical injection
i: L = @,5,L%" and p the canonical surjective algebra homomorphism
p: T(L) — T(L)/I. Tt is easy to show that ¢([z,y]) = [¢(z), #(y)], thus ¢
is a Lie algebra homomorphism. In addition we get that ¢ is injective, thus
L can be considered as a Lie subalgebra of U(L)~. This last fact is a direct
consequence of the Poincaré-Birkhoff-Witt theorem:

Theorem 1.1.2 (Poincaré-Birkhoff-Witt) Let L be a Lie k-algebra with
ordered basis (z;)jes. Suppose that (U(L), ¢) is a universal enveloping algebra
of L. Then {¢(zj,)...¢(z;,) : n€N, j1 <jo <...<j, € J} is a basis of
U(L) over k.

It follows from the universal property stated above that the universal en-
veloping algebra of a Lie algebra is unique up to isomorphism.

We find it useful to highlight the equivalence of representation theory of
L and U(L). It is obvious that any U(L)-module is naturally an L-module.
Let us consider an L-module M, thus we have a representation of L in M, say
p: L — gl(M). Then, according to the universal property of the universal en-
veloping algebra, there exists a unique homomorphism v : U(L) — Endy(M)
extending p.

In what follows we shall recall some basic facts and definitions concerning
different classes of Lie algebras such as graded Lie algebras, free Lie algebras,
finitely presented Lie algebras and loop Lie algebras. We shall use [1] and [18]
as references.

11



Graded algebras. Let R be a k-algebra and G a commutative semigroup
(written additively). A collection of k-submodules of R, {R,|g € G}, is called
a G-grading of R if

R=@DR, and RyR;, C Ryyp forall g, h €G.

geaqG

We will call R, the homogeneous component of degree g of R.
In this thesis the role of G will be usually played by N with ordinary
addition, but we will also have Z-gradings, Z x Z-gradings and Z,-gradings.
An additive subgroup S of a graded algebra R with index semigroup G is

called homogeneous if
S=EP(SNRy).

geaG

Note that if S is a homogeneous ideal of R then by putting S, := SN R, for
each g € G, we may write:

R/S =D R,/ P S, =~ P (R,/S,)-

geG geG geG

Thus the quotient algebra R/S is endowed with a structure of G-graded alge-
bra, its homogeneous component (R/S), being the image of R, under natural
epimorphism is isomorphic to R,/S, as k-modules.

Free Lie algebras. Let L be a Lie algebra over £ generated by a set X. We
say L free on X if, for any Lie algebra M and any mapping o : X — M,
there exists a unique homomorphism of Lie algebras 8 : L — M extending «.

The uniqueness (up to isomorphism) of such an algebra L is an immediate
consequence of the definition. It is useful to recall how to construct the free
Lie algebra with a set X of generators, indicated as L(X). Let us consider the
k-module freely generated by X, say V, and let T(V') be the tensor algebra on
V,thus T(V) = @,,cnTn(V), where To(V) =k and T,,(V) =V ®...® V for

—_———

each n > 0. Let us observe that T(V) is a N-graded associative algebra. Let L
be the Lie subalgebra of T'(V)~ generated by X. Given any map o : X — M,
let o be extended first to a linear map @: V — M C U(M) then canonically
to an associative algebra homomorphism & : T(V) — U(M), or a Lie algebra
homomorphism & : T(V)~ — U(M)~ whose restriction to L is the desired
B, since & maps X into M. Thus L(X) inherits a structure of N-graded Lie
algebra in the following way:



where L;(X) is the free k—module freely generated by the set X (we shall
write (X ) in the sequel) and L, = [Ly(X), L,(X)], for all n > 1.

Let us note that, given a free k-module V' with basis X, if Y is another
basis of V then L(Y) = L(X) and L,(Y) = L,(X), for all n > 1, thus we may
write L(V') instead of L(X).

Finitely presented Lie algebras. Let X be a nonempty set, L(X) a free
Lie k-algebra freely generated by X, and R a subset in L(X) (possibly empty).
By (X|R) we denote the quotient Lie algebra G := L(X)/S where S is the
least ideal of L(X) containing R. A Lie algebra G is called finitely generated
(resp., finitely related or finitely presented) if G has a presentation (X |R) in
which | X| < oo (resp., |R| < oo, or | X|, |R| < o0). If X := {z1,...,24} and
R :={ry,...,r} we may replace (X|R) by (z1,...,x4/r1 = 0,...,7 = 0).
An obvious consequence of the defining property of a free Lie algebra and the
definitions given above is the following.

Lemma 1.1.3 Let G = (X|R) and H be a Lie algebra over a field k. We
consider a map ¢ : X — H such that for each r = r(x1,...,xq) in R we have
r(d(x1),---,0(xq)) = 0. Then the map

5: G — H
w(zy,...,zq)+S = w(d(z1),...,d(xq))

is a correctly defined unique homomorphism from G to H such that ¢(z+S) =
o(z), for all z € X.

Moreover, if R is a set of homogeneous elements of degree h, then S is a
graded ideal of L(X) and G = (X|R) is a graded Lie algebra, in particular we

have the following:
S:= P S,
n=1

where S,, = (0), Vn < h and Sy, := (R)x, Spi1:= [L1(X), Sn], YR > h;

Loop Lie algebras. We use [9] as a reference for this paragraph. Let M be
a simple Lie algebra over a field k of characteristic zero. Let k[t,¢™!] (with ¢ an
indeterminate) denote the ring of polynomials in ¢ and ¢!, with coefficients
in k. We let

M = k[t t7] @ M,
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and we define a Lie bracket on M by
[u®z,v®y]:=uv® [z,y], where u, v € k[t,t"] and z, y € M.

Thus M is an infinite-dimensional Lie algebra with a natural Z-grading defined
by requiring that elements t* ® z are homogeneous of degree n. We call M
the loop algebra of M.

The same kind of construction can be done by using k[t] instead of k[t, ']
and obtaining in this way an infinite-dimensional Lie algebra with a natural
N-grading and we shall use the same name, loop algebras, to indicate these
algebras.

Hilbert series and the Golod-Shafarevich theorem. We will use [21]
as a reference for this paragraph.

Let A = @,-,An be a graded algebra over a field k. Recall that the
homogeneous components A, are k-submodules of A such that A;4; < A; ;.
Throughout this section we will assume that graded algebras are connected
that is to say the zero-component is one-dimensional and is generated by the
unity of k.

We define the Hilbert series associated with A by

A(t) = i(dimkAn)t".

n=0

The Hilbert series of a graded algebra A carries information on the asymp-
totic behaviour of A. In particular, the Golod-Shafarevich theorem has been
proved with the aid of the Hilbert series. We find it interesting to show how
these series are used in this proof.

Observe that the Hilbert series of a graded algebra A is, in particular, the
generating function for A. Let us recall that, given a graded k-vector space
V =@, Va, the formal power series

o

Hy(t) =) (dim;V;,)t",

n=0

is called the generating function for V.
Note that if U = @, U, and V = @, | V,, are graded k-modules, then
we may introduce natural gradings on the spaces U@ V and U ® V:

n

UeV)a=Up®Vo;  UV)a=) (Ui® Vo)

1=0

As a consequence we get that

Hygv(t) = Hy(t) + Hy (t)
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and
Hygv(t) = Hy(t)Hy (1)

Let us recall that a k-submodule of a graded algebra A is homogeneous if
V., =V N A, gives a N-grading on V.
Thus, if U and V' are homogeneous k-submodules of an algebra A we get

Hy,vy(t) < Hy(t) + Hy (1)

and
Hyy (t) < Hy(t)Hy ().

The inequalities become equalities if the representations (either as the sum or
a linear combination of the products respectively) is unique.

We need to extend the concept of generating function as follows, if M is a
set of homogeneous elements, then the formal series

Hy(t) =Y dnt",

where d,, is the numbers of elements in M of degree n, is called the generating
function of the set M.

Let us remark that if M is the k-module generated by M, then Hy,(t) <
Hy(t), and the equality holds if the elements of M are linearly independent.

We are now ready to show some computations of Hilbert series in the
associative algebras context.

Let X = {z1,...,24} be a set and let A(X) the free associative algebra
generated by X. If V is the free k-module freely generated by X, then we may
consider the canonical N-grading on A(X) = @.°, An(X), where A;(X) :=V
and A, 1(X) = A,(X)A;(X) for all n > 1. Moreover, let us recall that
A(X) >~ T(V) being T(V) the tensor algebra on V, and A, (X) ~ T, (V) for
all n > 0. Thus we get that dimy(A, (X)) = d" and

Hyex(t) = (1—dt) ™

Let I be a homogeneous ideal in A(X), thus there exists a graded k-
submodule of A(X), say M, such that A(X) = M & I and A(X)/I is iso-
morphic to M as graded k-modules. Thus

Hagxy(t) = Hy(1).

Let us assume that the ideal [ is generated by a finite set R of homogeneous
relations and let r,, be the number of relations in RN A, (X). Let us remark
that A(X) = A(X)X @ k, thus HA(X)(t) = HA(X)(t)HX(t) + 1. Then I =
A(X)RA(X) = A(X)RA(X)X + A(X)R, hence I C IX + MR and we get

Hy(t) < Hy(t) Hx () + Hy () Hp(t).
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thus
Huaxy(t) — Hagxyr(t) < Hax)(t) =1 = Hagxyr () Hx (t) + Hagxyr(t) He(t)-
As a consequence we get that
Haw(t)(1 — Hx(t) + Hg(t)) > 1.

Let us observe that if X is a finite set with |X | = d and R is a homogeneous
subset of @, 5, An(X) such that [RN A, (X)| =r, and r,, < (d —1)?/4 for all
n > 2, then the associative algebra presented by (X |R) is infinite-dimensional.
Indeed, in this case we get Hx(t) = dt and Hg(t) = ), o, nt", hence P(t) =
(1—dt+3,597at") . It can be shown that the terms of the series P(t) are
positive. Since Hxg)(t) > P(t), we get that (X|R) is an infinite-dimensional
associative algebra. Thus we proved the Golod-Shafarevich theorem in the
associative algebras context.

The entropy of graded algebras. We will use [16] as a reference for this
paragraph since the entropy of graded algebras has been introduced in this
paper.

Let A=@D,., A, be a graded algebra over a field k.

We define the entropy of A by

H(A) :=limsup {/dim; A,,.

n—0Q

It should be noted that H(A) = 1/R being R the radius of convergence of
the Hilbert series A(t) associated with A.

It is clear that a free associative algebra of rank d has entropy d. Indeed,
if A is a free associative algebra of rank d, then it has a canonical N-grading
A=, A, with dimy(4,) = d".

As it has been said in the introduction, in [4] it has been shown that given
a Lie algebra L we get H(L) = H(U(L)), being U(L) the universal enveloping
algebra of L. Thus, if L is a free Lie algebra of rank d with d > 1, then U(L)
is a free associative algebra of rank d, as a consequence we get H(L) = d.

We find it useful to recall some properties of the entropy function that has
been studied in [16].

Theorem 1.1.4 Let I be a nonzero ideal in a free associative algebra A of
finite rank. Then H(A/I) < H(A).

This result can be extended to the Lie algebras context by noting that if
J is a nonzero ideal in a free Lie algebra of rank d, then U(L/J) ~ A/Jo,
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being A the free associative algebra of rank d and o : L — A the canonical
embedding. Thus

H(L/J)=H(U(L/J)) = H(A/Jo) < H(A) = H(L),
and we may state this result as a corollary.

Corollary 1.1.5 Let J be a nonzero ideal in a free Lie algebra L of finite
rank. Then H(L/J) < H(L).

Moreover, when dealing with finitely presented algebras we may say some-
thing more on the entropy of the factor algebra, in particular we may obtain
a version of the Golod-Shafarevich theorem in terms of entropy for both asso-
ciative algebras and Lie algebras.

Theorem 1.1.6 Let P be an associalive or a Lie presentation containing d

generators and r homogeneous relations of degree at least 2 with r < d*/4. If
A denotes the algebra presented by P, then H(A) > 1.
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1.2 Graphs

We use [5] and [12] as a reference for a general background on graph theory.

A graph G is an ordered pair of disjoint sets (V, E) such that E is a subset
of the set V® of unordered pairs of V. We consider only finite graphs, that
is, V and E are always finite sets. The set V is the set of vertices and E is
the set of edges. If G is a graph, then V = V(G) is the vertex set of G and
E(Q) is the edge set of G.

An edge {u, v} is said to join the vertices u and v. If {u,v} € E(G), then
u and v are adjacent vertices of G. The order of GG is the number of vertices
and the size of G is the number of edges in G. We will call (n, m)-graph an
arbitrary graph with order n and size m.

We say that G' = (V',E') is a subgraph of G = (V,E) if V! C V and
E' C E.

We say that a mapping ¢ : V' — V' is a graph homomorphism between G
and G’ if for any {u,v} € E, we get that {¢(u),p(v)} € E'. Two graphs are
1somorphic if there exists a bijective homomorphism between them.

The size of a graph of order n is at least zero and at most (g) A graph of
order n and size (';) is called a complete n-graph and is denoted by K.

The set of vertices adjacent to a vertex u € V(G), the neighbourhood
of u, is denoted by I'(u) and d(u) := |T'(u)| is the degree of u. If V(G) =
{u1,... ,u,} then d(G) = (d(u1),...,d(uy,)) is the score of G and we can
easily prove the following:

Zd(ua = 2|E(G)|.

It is easy to note that two isomorphic graphs have the same score, up to
reordering.

As we said in the introduction, we are interested in considering all non-
isomorphic graphs on d vertices and |d/2] + 2 edges for 2 < d < 6. We shall
recall a result, namely a theorem by Pdlya, that allows people to enumerate
non-isomorphic graphs with fixed order and size.

Pélya’s Theorem We begin this paragraph with showing how to count
non-isomorphic graphs with n vertices.

Let us remark that a graph G on a set V of n vertices is completely deter-
mined by its edge set E(G). Furthermore, let Y := V() the set of graphs on V/
may be identified with the set of functions from Y to {0,1}, say {0,1}", where
¢ € {0, 1}Y corresponds to the graph whose set of edges consists of the elements
of Y which ¢ maps onto one. The symmetric group I' = Sym(V') actson Y in a
natural way, hence it acts on {0, 1}Y as follows: for all ¢ € {0, 1}Y re€Yael
we get ¢%(z) := ¢(z* ). We may write I'® when we want to emphasise that
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we are considering the action of I' on V). Thus two graphs with a common
vertex set are isomorphic precisely when the corresponding functions lie in the
same orbit of I'. As a consequence enumerating non-isomorphic graphs with
vertex set V is equivalent to enumerate the orbits of ' acting on {0,1}". This
problem can be solved by using the well known Cauchy-Frobenius lemma:

Lemma 1.2.1 (Cauchy-Frobenius Lemma) Let T" be a finite group acting
on a finite set ). Then I' has m orbits on €2 where

mlT| =) |Fiz(g)],

gel
where Fiz(g) = {w € QwI = w}.

Let us observe that if V = {1,...,n}, then I' = Sym(n) and each element
g € I' is an essentially unique product of disjoint cycles (cyclic permutation),
let us write g = & ...&; such product, including cycles of length one. Let us
remark that if ¢ € Fiiz(g) then ¢ is constant on the cycles of g, thus |Fiz(g)| =
|{0,1}|°. As a consequence, by using the Cauchy-Frobenius lemma, we obtain
that the number of non-isomorphic graphs on n vertices is 1/n!>_ geT 2¢()
where ¢(z) is the number of disjoint cycles in the decomposition of x.

We shall proceed in a similar way to enumerate the non-isomorphic (n, m)-
graphs.

For each ¢ € {0, l}Y we may define the weight of ¢ as the number of
edges of the graph associated to ¢. Let us observe that for all g € I we get
w(p) = w(¢?) thus functions in the same orbit of I' have the same weight.
Therefore the weight w(F') of an orbit F' of I' is the weight of any function
¢ in F. Let Cy be the number of orbits of weight k. Then the series in the
indeterminate z, C(z) = Y -, Cra®, is called the function counting series.
We will use the following generalisation of the Cauchy-Frobenius lemma:

Lemma 1.2.2 Let I' be a finite group acting on a finite set 2. Let w be a
function from €2 to C which is constant on the orbits of I' on §2. Let Oq,...0;
the orbits of T' on Q and denote by w(0;) = w(«) for all o € O;. Then

1y wo) =3 > w(b)

g€’ peFix(g)

Let us consider ¢ € T' and its decomposition into disjoint cycles, g =
& ... &, including cycles of length one. For each integer k € {1,...,n}, let
Jx(g) be the number of cycles of length & in the disjoint cycle decomposition
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of g. Let us define the cycle index of I as the following polynomial in the
variables sq,... S,:

Z() = Z([T;s1,...5,) = ||~ IZHS
hel k=1

We want to enumerate the non-isomorphic graphs on n vertices by weight.
For each h € I" and k£ € N let

F(h,k) = Fiz(h) N {p € {0,1}" : w(®) = k} and o (h, k) = | F(h, k)|.

Let us apply the lemma above for I' acting on {¢ € {0,1}" : w(¢) = k},
we obtain that Cy = 1/|I'| >, . ¥ (h, k). Therefore

(e e]
) =1/[T1 )Y w(h k)a*
heT k=0
The Pélya’s enumeration theorem gives us another way to express this

series in terms of the cycle index of I' and in our context it can be stated in
the following way.

Theorem 1.2.3 The polynomial C(x) which enumerates graphs of order n by
number of edges is given by

Clz) = Z(S?,1+q)

where

kj2k+1 ]Qk ) (Tat)jrjt
E | | | | Spst s S
n n' Hk]k] [ Sok+1 k 2k k [rt]

r<t

as usual [r,t] denote the l.c.m. and (r,t) the g.c.d.
In this formula Z(Sn ), 1+ z) is an abbreviation for
Z(S,(L),l-i—m,l—i-x oo, L 2™).

We will use this theorem to count (d, |d/2]| + 2)-graphs for d < 7. We find
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it interesting to write the cycle index formulas for S((f) with d < 7:

Z(SP1+2) = 142
Z(8P 14+2) = 1+z+22+2°
Z(SP1+2) = 142+22%+32% + 22" + 25 + 25

Z(S§2), 14+x) = 1+z+ 222+ 423 + 62" + 62° + 62° + 427 + 228+
422 + 10

Z(SP 142) = 1+4z+ 222+ 52% + 9zt + 152° + 212 + 2427 + 2428+

We find it useful for our purposes to draw all non-isomorphic
(d, |d/2] + 2)-graphs for 3 < d < 6.

Non-isomorphic (3, 3)-graphs

Non-isomorphic (4, 4)-graphs
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Non-isomorphic (5, 4)-graphs

N\
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Chapter 2

Graphs and finitely presented
Lie algebras

In his paper [24], Wisliceny shows the asymptotical exactness of the Golod-
Shafarevich bound in the Lie algebras context by constructing a series of finite-
dimensional nilpotent Lie algebras L(d) with d generators, d € N, such that

r(L(d))

d2

lim

d—o0

= 1/4.

The key fact in this proof is the introduction of the concept of
Erhohungsystem der Stufe s, where s € N.

In particular, let L(X) be the free Lie algebra freely generated by X =
{z1,..., x4} with its canonical N-grading, L(X) = @, L.(X).

For each s € N, let B, the canonical basis of Ly(X) whose elements are of
the form [z;,,... ,;,], where (i1,...,45) € {1,...,d}*. The set R C Ly(X) is
called Erhohungsystem der Stufe s if the following holds.

1. Each element of R is a finite sum of elements of By, where in each
summand, which is of the form [z; ,... ,z; ], we have iy < ... <i,.

2. For each a € B, there exists at most one 8 € R which has o as a
summand.

In his paper Wisliceny proves that if R is a Erhdhungsystem then (X|R)
is the presentation of a finite dimensional nilpotent Lie algebra.

Moreover, in his paper [25], the author extends the concept of
Erhohungsystem in the associative algebras context showing as in the previous
case that associative algebras presented employing Erh6hungsysteme are finite-
dimensional nilpotent associative algebras.

In addition, in this latter paper Wisliceny introduces a concept which is
weaker than that defined above. In particular, let A(X) be the free associative
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algebra freely generated by a set X = {z1,..., x4} with its natural N-grading,
A=, A,. We say that the set R C A, is a Quasierhbhungsystem of A
if the following holds.

1. Each element of R has one of the following forms, x;, z;, — x;,x;, With
il S iQ S i3 S i4 or Ty, T4, with ’il S ig.

2. Each product z;z;, with 7 < j appears as a summand of exactly one
element of R.

As the author observes, the Quasierh6hungsysteme do not always present a
finite-dimensional associative algebra even if in many cases they work for this
purpose.

Since we are trying to construct presentations of periodic Lie algebras,
which are in some sense a borderline between finite-dimensional Lie algebras
and infinite-dimensional Lie algebras, we shall use the ideas given by Wisliceny
to construct, in the Lie algebras context, sets of relations which are close to
the concept of Quasierhohungsystem. The aim of this chapter is to investigate
finitely presented Lie algebras, presented by these sets of relations.

2.1 Presentations in class C(d) and graphs
Let d e N, X ={xy,...2q4}, R={r1,...,1},
Md = {[Q:Zax]] : ia .7 € {1’ ad}) Z#]) }7

Ha = {[zi,z;] — [xs, 2] = 0, 4, s, ¢ €{1,...,d}, {3, j,s, t}| >3},

we say that the presentation (X |R) belongs to C(d) if the following conditions
hold:

Al [ =[d*/4] +1,

A2 RC MyzUH,,

A3 for all [z;, z;] € My, one and only one of the following holds:
(a) [zi, ;] € R,
(b) [z, 2] € R,

(c) there exists one and only one [z, x;] € M, such that
[z, xj] — [z5, 2] € RN Hy,

(d) there exists one and only one [z, ;] € M, such that
[x]’l‘l] - [Is;xt] € R M Hd
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Let us remark that we will use the notation (X|R) to indicate either a
presentation or the Lie algebra presented in this way, the meaning will be
clear from context.

Note that C(1) = 0, in fact M; = 0 = H,, so if (X|R) € C(1) then (A.1)
implies that |R| = 1 and, by using (A.2), we get that R = ().

In addition we get that C(2) = (), as in this case My = {[z1, z2], [T2,71] }
and Ho = ), thus, if (X|R) is in C(2) then, by (A.1), we get that |R| = 2, and,
by (A.2), R = M, but this contradicts (A.3).

So in the sequel we will always assume d > 2.

We can prove the following lemma.

Lemma 2.1.1 Let X = {z1,...24}, and R = {ry,...,r}, if (X|R) € C(d)
then [RN Myl = |d/2] +2 and |[RNHy| = |d*/4] — |d/2] — 1.
Proof . Let Ip, := |[RN My, I3y, := |RN Hy| and observe that | = [y, + Ly,
Since R C MyUH4 and MyNHy =0, then by (A.1) we get
| /4] + 1 =g, + o,
Let us consider My = M} U M where
M ={[zi,z] e My 1 i<j}

M, =A{[zi,z;] e Mg : i>7 }.

By using (A.3) we get that |[M}| =y, + 20y, As [MT| =d(d—1)/2, it
follows that d(d — 1)/2 = Iy, + 2l3,. Thus we should solve the following:

lMd + lHd = Ld2/4J +1
Ing, + 213, = d(d — 1)/2

The statement comes easily solving this system. O

We would like to find a way to produce examples of finitely presented Lie
algebras in C(d) with entropy one.

Let us remark that given (X|R), let R' := {r € L(X) : —r € R }, then
(X|R), (X|RUR'), (X|R') are all isomorphic Lie algebras. As a consequence,
if Rpq := RN M, there is no loss of generality assuming that Ry = Rp+.

In order to allow a better understanding of our class of presentations we
find it useful to associate with each presentation a graph in the following way.

Definition 2.1.2 Let X = {x1,... ,z4} be a set and R C L(X) being L(X)
the free Lie algebra freely generated by X. Let G(d, R) be the graph with vertex
set

V(d, R) = {.’,El, e ,.fEd}
and edges set

E(d,R) = {{zi,z;} : [zi,z;] € R or [zj,z;] € R }.
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Note that if (X|R) is in C(d) then G(d, R) = G(d, Ryp) and it is a graph with
|d/2]| + 2 edges.
We can prove the following useful result.

Proposition 2.1.3 Let (X|R) be in C(d) and S C My such that
(SnMH) N {[xi, x5 ¢ zj,z] € SN Mg} =0.
Assume there exists a graph isomorphism ¢ between G(d, R) and G(d, S). Let

T :={[¢(w:), p(;)] — [(xs), d(ad)] : [, 5] — [, 2] € Ray, },
then (X|SUT) is in C(d) and it is isomorphic to (X |R).

Proof. As ¢ is a graph isomorphism, we get that ¢(V (d, R)) = V(d, S) and,
for all [z;, z;] € Rmy, [¢(:), #(x;)] # 0 in L(X). in addition we have that

[xi,xj] € RMd = {xi,.Tj} € E(d, R) <~
= {o(z:), 8(z))} € E(d,S) =
<~ [¢($z)’ QS(JIJ)] € Sa or [¢($J)’¢($z)] €S,

Thus |Ra,| < |S|. Note that, by hypothesis, [z;,z;] € S implies [z}, z;] & S,
as a consequence we get that |[Raq,| = |S|. Note that |T| = |Ry,|, thus
|SUT| = |R| = |d?/4] +1 and (A.1) is satisfied by the presentation (X|SUT).

Let us observe that (A.2) holds for (X|S UT). Indeed, since ¢ is a graph
isomorphism we get that 7" C H4, thus SUT C My U H,.

We shall prove that (A.3) holds for the presentation (X|SUT). Let [z;, z;]
be an arbitrary element of M,.

Let us assume that [z;, ;] is in S, then by hypothesis we get that [z}, z;] &
S. in addition, [z;, z;] € S implies that only one between (A.3)(a) and (A.3)(b)
holds for [¢ '(z;),¢ '(z;)] and Rpq,. As a consequence neither condition
(A.3)(c) nor (A.3)(d) holds for [¢*(z;), ¢ *(z;)]. It follows that neither con-
dition (A.3)(c) nor (A.3)(d) holds for [z;,z;] and T

Furthermore, let us assume that [z;,z;] ¢ S and [z, ;] & S, then we
get that (A.3)(a) and (A.3)(b) do not hold for [¢~*(z;), ¢~ "(z;)] and the set
Rp,. As a consequence we get that one and only one between (A.3)(c) and
(A.3)(d) holds for [¢p~'(z;), ¢ (z;)] and Ry,. Thus we may assume that
there exists a unique [¢p~'(z5), o7 ()] € My such that [~ (x;), ¢~ (z;)] —
[0 (zs), d71(t)] € Ryy,. It follows that [z, 2:] € My is the only element such
that [z;, z;] — [s, 2] € T. Thus (X|SUT) € C(d).

By using Lemma (1.1.3) we can conclude that (X|R) and (X|SUT) are
isomorphic as Lie algebras. a

Let A := {Gi,...,Gn} be the set of all non-isomorphic graphs with d
vertices and |d/2| + 2 edges. By using Proposition 2.1.3 we can restrict our
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analysis to the presentations (X|R) in C(d) such that G(d, Ryr,) € A. Since
we may focus our attention on presentations, (X|R), where Ry, = M
we have exactly n possible choices for Rpq,. Let B := {M;, ..., M,} where
M; C M is the edges set of G;. Let us observe that if (X|M; UT), T C H,,
and (X|M; US), S C Hg, are two Lie algebras in C(d) and there exists a
graph automorphism, ¢, of G; such that 7' = {[¢(z;), ¢(z;)] — [@(z5), p(z:)] -
[%;, z;] — [xs, 2¢] € S }, then by the previous proposition we get that these two
Lie algebras are isomorphic.

We shall prove a result that gives us a lower bound to the entropy of a Lie
algebra (X |R) when Ry has a certain property.

Theorem 2.1.4 Let (X|R) € C(d) where X := {x1,...24}. Let us assume
that there exists [z;, x;] — [xi,xn) € Ry, or [z, x;] — [xn, 2] € Ry, then the
entropy of (X|R) is greater or equal to two.

Proof. Let L(X) = @, L,(X) be the free Lie algebra freely generated by
X with its canonical N-grading. We may assume that [z;, z;] — [2;, 23] € Ry, .
Let YV := {v,w} be a set and let L(Y) be the free Lie algebra freely

generated by Y. Consider the k-homomorphism ¢ : X — L(Y) defined in
the following way.

0 if n¢g{ijh}

O(zp) v ifn=i

w if n€{jh}
By the universal property of free Lie algebras ¢ uniquely extends to a homo-
morphism of Lie algebras ¢ : L(X) — L(Y). Since ¢(X) =Y and Y generates
L(Y) as a Lie algebra we have that ¢ is an epimorphism of Lie algebras.

We shall show that R C ker(¢) as in this case we get that the ideal gener-
ated by R, say S, is contained in ker(¢) and we can build an epimorphism of
Lie algebras between (X|R) = L(X)/S and L(Y).

Let us observe that M\ ker(¢) = {£[z;,z;], £[z;, zn]}. Since (X|R) €
C(d), by using (A.3) we get that [z;,x;] — [z;,2s] € R is the only element of
R containing either [z;, z;] or [z;, zp]. Furthermore, neither [z;, z;] nor [z, z;]
are cointained in any element of R. Let us observe that ¢([x;, ;] — [zi, 74]) =
[v,w] — [v,w] = 0. Thus R C ker(¢).

As a consequence we can build the following epimorphism of Lie algebras.

v L(X)/S — L(Y)

g+S = ¢(9)

Since L(Y') has entropy two (see Corollary 3.2. in [16]) and observing that
it is isomorphic to a quotient (not necessarily a proper quotient) of L(X)/S
we get that H(L(Y)) < H(L(X)/S) (see Corollary 3.1. in [16]). Thus (X|R)
has entropy at least two. O
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Since we are looking for examples of presentations (X|R) € C(d) of Lie
algebras with entropy one, this theorem allows us to consider Ry, C Hy =
{[xi,zj] — [@s,ze] = 4, J, s, t €{1,...,d}, |{s, j,s, t}| =4}

We can also prove a corollary that establishes a connection between the
graph associated with a Lie algebra (X|R) in C(d), and the entropy of (X|R)
for d < 6.

Corollary 2.1.5 Let d € {3, 4, 5}, (X|R) € C(d) and let g¢; the degree
of the vertex x; in G(d,R). If there erists i € {1,...,d}, such that ¢; <
d— |d?/4] + |d/2], then H((X|R)) > 2.

Proof. 'There is no loss of generality assuming that ¢ = 1 and let us recall
that we may assume R, = R+

By hypothesis there exist y,,... 2y, distinct elements of X such that
A= {[r1,70,],- -, [71, 70, ]} C Raqy- Moreover, for all [71,7;] € A (A3)(c)
or (A3)(d) holds.

We want to show that there exists [z, ;] — [z1,zx] in Ry, and use the
previous theorem to reach the conclusion.

Let us assume that there does not exist [z1, z;] — [x1,2%] € Ry, for j,k €
{1,...,d}. Thus [{[z1, 2] — (s, 2¢] : [21,2;] € A} N Ry, | =(d—1) —q1 >
|d?/4] — |d/2] — 1 = |Rs,| but this is a contradiction.

Let us observe that we need the restriction on d. Indeed, if d > 5 we have
d — |d?/4] + |d/2] < 0 so in this case the upper bound on ¢; does not make
any sense. O

Let us recall that we indicate with K 4, the graph on d vertices, {z1,... , 24},
with the following edges set: {{z1,z,} : j =2,...,d}. We can prove another
corollary that links the graph associated with the presentation (X|R) in C(d)
and the entropy of the Lie algebra (X|R).

Corollary 2.1.6 Letd € {4, 5}, (X|R) € C(d) and let us assume that G(d, R)
has a subgraph isomorphic to Ky 4_1, then H((X|R)) > 2.

Proof. Let us observe that |d/2| +2 — (d —1) > 0 if and only if d < 6. As
a consequence, if d > 6 then G(d, R) cannot have a subgraph isomorphic to
K1

There is no loss of generality assuming that K; 4 ; is a subgraph of G(d, R).
Thus [z1, ;] € Ram, for all j € {2,...d}, as a consequence we get that Ry, C
{[zi, ] — [zs, 2] ¢ 4, 5, s, t€{2,...,d}, {3, j, s, t}| =4}

Let us observe that [Ra,| — (d — 1) < 1, so there exists at most one edge
in g(d, RMd)\Kl,d—l-

Since d > 4, there exists a vertex zj € X such that {z|,zx} € E(G(d, R))
and E(G(d,R)) N {{zk,z;} : j€{2,...,d}} = 0. Indeed, if E(G(d, R)) N
{{zk,z;} + j€{2,...,d}} #0, for all z; € X, then we have d(zy) > 2 for
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all k € {2,... ,d} being d(x;) the degree of the vertex x; in the graph G(d, R).
By using the well known formula 2|E(G(d, R))| = S_¢_, d(z) we get that:

o|4/2) +2) > (d— 1) +2(d—1) =
6 >3d—2|d/2] >2d —
3>d.

We want to show that there exist i,7 € {n :n # k, 2 <n < d} such that
[Tk, 2] — [xk, T5] € Ry, or [Tg,x;] — [2i, Tk] € Ry, Let us assume that Ry,
does not contain any element of that kind, so we have that |Rq,| > (d — 2).
Indeed, [z, ;] € Ram, for all j € {2,...d} such that j # k. Thus by (A.3),
[k, x| should be a summand in a polynomial of Ry, for each j # 1, k. By
our hypothesis there exist (d —2) distinct polynomials of Ry, containing these
elements.

If d = 4, then we find a contradiction as |[Ry,| =1 and (d —2) = 2.

If d = 5 then we have that |[Rpy,| =4 = (d—1) so G(5,R) = K;4 and
|Ry,| = 3 = (d —2). Note that Ry, C {[z;,zj] — [zs,ze] : 4, j, s, t €
{2,3,4,5}, {3, 4,s,t}| = 4} thus |Ry,| < 1, and we get a contradiction.

As a consequence there exist i,7 € {n :n # k, 2 < n < d} such that
[Tk, 2] — [Tk, xi] € Ry, or [xk, 2] — [24, k] € Ryy,. By using Theorem (2.1.4)
we reach the conclusion. O

2.2 Lie algebras presented by presentations in
class C(d)

We are now ready to prove some results on Lie algebras (X|R) in C(d) for
d < 6.

Theorem 2.2.1 If (X|R) is a presentation in C(3), then the Lie algebra pre-
sented by (X|R) is the 3-dimensional abelian Lie algebra.

Proof . Let (X|R) € C(3) and assume Ry, = R+ then by Lemma (2.1.1)
we get that |Ra,| = 3 and |Ry,| = 0. As [M3"| = 3 we get that R = Ry, =
M7 = {[z1, 23], [71, 3], [To, T3]} and we are done. O

Theorem 2.2.2 If (X|R) is a presentation in C(4), then (X |R) is either a 5-
dimensional metabelian Lie algebra or a central extension of a free Lie algebra
with two free generators.

Proof . Let us note that if (X|R) € C(4) then |R}, | = 4 and |Ry,| = 1.
Let us recall that there are two non-isomorphic (4, 4)-graphs, G; := G(X, E1)
and G := G(X, Es), where By := {{z1, 22}, {z1, 23}, {z1,24}, {x2,23}} and
Ey = {{z1, 22}, {z1, 23}, {22, 24}, {x3,24}}-
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Let (X|Ry) be in C(4) with G(X,R1) = G; then we may assume that
Rin, = {[az 34] — [z3, 1]}

Let us remark that from Theorem (2.1.4) it follows that (X|R;) has entropy
at least two. in addition, going through the proof of that theorem we can con-
struct a free Lie algebra of rank two which is an epimorphic image of (X|R;).
Indeed, let us consider the following basis on L;(X), Y := {v; := z1, v := x9—
T3,V3 1= 3,04 = T4}. Thus R = {[v1,v2], [v1,vs], [v1,v4], [v2,03], [ve,v4]}
and vy, vy are in the center of (X|R;). Since the ideal of L(X) generated by R
is homogeneous with respect to the canonical N-grading of L(X), then (X|R)
can be seen as a N-graded Lie algebra (X|R) = @, A,. In addition let us
note that (X|R) is generated by the first homogeneous component, hence we
get Ap 1 = [Ay, A;] for all n € N. Let Y7 := ({v1,v2}), and Ys := ({vs, v4})i-
Notice that

A2 = [Al’Al] = [}/1"’41] + [YVQaA?] = [YanAQ] =
= [Yé’Yi] + [YYQ’Yi] = [}/72’}/2] - A2a

and for all n € N we get
An—|—1 = [Am Al] = [Ana Yv?]

Thus we have that (X|R) = Y; & B being B the Lie subalgebra of (X|R)
generated by Y,. We shall show that B is a free Lie algebra freely generated
by {vs,v4}.

Let ¢ : X — L({vs,v4}) be the map that acts as the zero map on Y; and as
the identity map on Y5. As we saw in the proof of Theorem (2.1.4), ¢ uniquely
extends to an epimorphism of Lie algebras ¢ : (X|R) — L({vs,vs4}). Since
Y] C ker(¢) then the restriction of ¢ to B is an epimorphism of Lie algebras
$|B : B — L({vs,v4}). By using the universal property of free Lie algebras and
observing that B is generated by {vs,vs} we get that $| . is an isomorphism
of Lie algebras.

Let (X|Rs) be in C(4) with G(X, Rs) = G, then we may assume that Ry N
Hy = {[z1,24] — [73,22]}. Since Ry C Lo(X), the ideal S in L(X) generated
by R is homogeneous with respect to the canonical N-grading of L(X). Thus
we can consider the induced N-grading on (X|Ry), say (X|Rz) = €D,,cn An-
Let us observe that {[x1,z4]} is a basis of A3 and by using the Jacoby identity
together with the relation [z, z4] — [23, 22] we get that A3 = (0). Thus (X|Ry)
is a 5-dimensional metabelian Lie algebra. O

Theorem 2.2.3 Let (X|R) be a presentation in C(5) and let us assume that
the Lie algebra presented by (X|R) has entropy strictly less than two. Let
G(5, R) the graph associated with (X|R). Then G(5, R) belongs to one of the
three isomorphism classes which have the graphs labelled by (c), (e) and (f) as

32



representatives in the list of non-isomorphic (5,4)-graphs we gave in section
1.2.

Moreover, for each isomorphism class of (5,4)-graphs there are at most 8
choices for the set (X|R) in C(5).

Proof. Since (X|R) is in C(5), by Lemma (2.1.1) we get that |[Ra,| = 4 and
|RH5‘ =3

As we showed in section 1.2 there are six non-isomorphic (5, 4)-graphs.

We shall use all the results proved so far in order to exclude from our
analysis graphs associated to presentations of Lie algebras with entropy greater
or equal to two.

By using Corollary (2.1.5) we can exclude the (5, 4)-graphs labelled as (b)
and (d) in section 1.2 from our analysis. Indeed, in both cases there is a
vertex with degree zero thus if (X|R) is associated with one of these graphs,
then Corollary (2.1.5) ensures that (X|R) has entropy at least two.

We can also exclude the (5,4)-graph labelled by (a). Indeed, it has a
subgraph isomorphic to K 4, thus Corollary (2.1.6) says that if (X|R) is asso-
ciated with this graph, then the Lie algebra presented by (X|R) has entropy
at least two.

Thus we obtain the first part of our statement, let us consider the last part.

Assume that (X|R) is associated with the (5, 4)-graph labelled by (c) and
let us draw it in the following way:

T

2
x3
Ts

x1
m\
where RN My = {[z1,x2], [21,24], [T1,25], [T2, 23]}

Let us observe that {[x3,z1], [z3,%4], [73,25]} is a set of monomials that
appear as summands of polynomials belonging to RN Hj5. If there exist 7, 7 €
{1,4,5} such that [z3,z;] — [z3,2;] € RN M5, then by Theorem (2.1.4) we get
that the Lie algebra presented by (X|R) has entropy at least two. Thus, if
(X|R) is a Lie algebra with entropy less than two, then the three monomials
containing the generator z3 should be summands of distinct polynomials of
RN H5. By using this argument also on z, and x5 we find out that x3, x4
and z5 should appear in each polynomial of R N H5 and none of them should
appear in two monomials which are summands of the same polynomial.

Let us consider the following equivalence relation on the elements of RNH5:
[z, 2] — [xs, z¢] is equivalent to [x,, xp] — [T, 4] if and only if ({7, 5}, {s,t}) =
({a, b}, {c,d}) as elements of (§) x (%)

2)-
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By the observations above we get that the three elements of RNH5 belong
to the following set of distinct equivalence classes:
{({1,3},{4,5)), ({4,3},{5,2}), ({5,3} {4,2})}.

Notice that each equivalence class contains four elements of 5. Moreover,
as we have already observed, nothing change if we replace an element r € R
with —r. Thus for each equivalence class C' we may restrict our choice of
r € C N R to two possibilities. Therefore, given C' = ({a, b}, {c,d}) let us
consider the following two possibilities: either [a,b] — [c,d] or [b,a] — [c,d],
where a < b end ¢ < d.

In addition, we may fix [z, 23] — [z4,25] as an element belonging to R,
obtaining in this way four choices for the other two elements of RNH5. Indeed,
consider the Lie algebra automorphism of L(X) which maps x; in —zy, then
R is mapped in a set R’ which contains [z3,z1] — [z4,25] and L(X)/R is
isomorphic to L(X)/R' as a Lie algebra. Therefore we obtain at most four
choices for (X|R) € C(5) associated with the graph (c).

Assume that (X|R) is associated with the graph (e). Let us draw it as
follows.

X1 T
/ T3
Ty Ts

By using the same arguments used in the previous case we find that the three
elements of RN 5 belong to the following set of distinct equivalence classes:
{({1,3},{a,5}), ({2,3},{b,5}), ({4,3},{c,5})}, wherea € {2,4}, b € {1,4}, c €
{1,2}.

Let us assume that ¢ = 2 thus we get that the three elements of R N Hj5
belong to
{({1,3},{2,5}), ({2,3},{4,5}), ({4,3},{1,5})}.

On the other hand, if a = 4, then the set is
{({1,3},{4,5}), ({2,3},{1,5}), ({4,3},{2,5})}.

Thus we have 8 possible choices for the (X|R) € C(5) associated with the
graph (e).

Let us now consider the last possible case, when (X |R) is associated with
the graph (f) and let us draw it as follows.

1

Z2

AN

X3

Ty

Ts
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As above we obtain that the three elements of RNH; belong to the following
set of distinct equivalence classes:
{({1,3},{2,5}), ({4,3},{1,5}), ({5,3},{4,2})}. Thus we have 4 choices for
(X|R) € C(5) associated with (f). O

Even if we are not able to describe completely C(5), this theorem allows
us to restrict our analysis to 16 presentations. By using computational de-
vices we are able to have some hints that indicate that in C(5) there ex-
ists a presentation of a loop Lie algebra. In particular, let us consider the
following set of relations associated with the graph labelled by (f): R =
{[331, x2]’ [xla 334]7 [x% x3]7 [$47 $5], [‘T3’ $5] - [‘T?’ 1‘4], [$3, ‘Tl] - [3:5’ x2]7 [x?n 324] -
5, 1]}

In the next chapter we shall show that if £ = C then this is the presentation
of the loop Lie algebra of sl3(C).

35



36



Chapter 3

Periodic Lie algebras which are
sly(C)—modules

Our goal in this chapter is showing that the finitely presented Lie C-algebra
(X|R) being X := {x1,...x5} and R := {[x1, 2], [1, 4], [22, 23], [24, T5], [23, 25]—
(o, 4], [23, 1] — [T5, Z2], [23, 4] — [T5, 1]}, is isomorphic to a loop Lie algebra
of sl3(C).

In order to prove this isomorphism we shall use heavily the representation
theory of Lie algebras and in particular the representation theory of the special
linear algebra sly(C).

In the sequel we will use £ to indicate the finitely presented Lie algebra
(X|R) described above.

3.1 Representations of sly(C)

In this section we shall recall some well known results about the representations
of slo(C) and we will point out some technical facts that will be useful in the
sequel. The main references for this section are [8] and [14].

Let us recall that sly(C) is the Lie algebra of 2 x 2-matrices with trace zero,
the Lie bracket is defined as follows: [z,y] := 2y — yz being z,y € sly(C).

Let us begin with giving a basis of sly(C):

10 0 1 0 0
Wo:= [0 —1}’ Wi = [0 0}’ Wor = [1 0}

satisfying

(Wo, Wh] =2W4, [Wo, W_i] = —2W_4, [Wy, W_,] = WA.

Let us note that every finite-dimensional sly(C)-module is completely re-
ducible (see [8], Th. 9.19) and, given m > 1, there is only one isomorphism
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class of irreducible sly(C)-modules of dimension m.

It is useful to describe in details the irreducible representations of sly(C).

Let V be a finite-dimensional irreducible sly (C)-module. Since W is semisim-
ple, we get that its action on V is diagonalisable, (see [8], Th. 9.20). Hence
we get the following decomposition of V, V' = @ .4 Va, where @ is a set of
complex numbers such that for any vector, v € V,,, we have Wy(v) = a-v. We
call @« € ® a weight of Wy (or an eigenvalue for the action of Wy ) in V' and
we call V,, a weight space (or the eigenspace associated to the eigenvalue ).

An easy calculation shows that W1 (V,) C Vaie and W_1(V,) C Vuo. As
a consequence, by using the irreducibility of V', we get that all the complex
numbers in ® must be congruent to one another mod 2.

Moreover, there exists a weight of V', 5 € C, called the highest weight of
V,such that ® = {3, f—2, ...0—2t} and V,, # 0 for all o € ®.

Furthermore, given v € Vj; we get that W (v) = 0 and {v, W_1(v),... , W’ (v)}
is a basis of V'; v is called the highest weight vector of V.

It is useful to write down the matrices that describe the action of Wy, Wy, W_,
on V with respect to this basis. Let p : slo(C) — gl(V) be the irreducible rep-
resentation we are considering, then:

pW1) = (az5) € M(t+1,€) where ay; {Z.(ﬁ_m) T

0 i #
=(a;;) €M 1 her i =

pUTE) = (0] € MU+ O where aig {(5 —2(i—1)) i=1j,
Moreover, by using the fact that V' is an irreducible sly(C)-module we may
show that 3 is a non-negative integer and that the eigenvalues o of Wy on V
form a string of integers differing by 2 and symmetric about the origin in Z.
Let us remark that by symmetry we can construct a basis of V' choosing a
vector v € V such that W_;(v) = 0 and the set {v, W;(v),... WF(v)}, where
k is the smallest integer such that W/ (v) = 0, is a basis of V.

As a consequence we get that there is a unique irreducible representation,
V™ for each non-negative integer n. The sly(C)-module V™ has dimension
(n+ 1) with Wy having eigenvalues n,n —2,...,—n+ 2, —n.

We can point out some more useful facts as corollaries of what we have just
said. In particular, any representation V' of slo(C) such that the eigenvalues of
Wy all have the same parity and occur with multiplicity one (i.e. dim(V,) =1
for all eigenvalues o of Wy) is necessarily irreducible. Moreover, the number
of irreducible factors in an arbitrary representation V' of sly(C) is exactly the
sum of the multiplicities of 0 and 1 as eigenvalues of Wj.

Let us remark that knowing the eigenspace decomposition of given rep-
resentations allows us to construct the eigenspace decomposition of all their
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tensor and alternating products.
Lemma 3.1.1 (Clebsch-Gordan formula)
Ve @ Vim = D Vtm=23)  with q = min{m, n}.

The standard proof of this formula uses the following combinatorial identity
(Do 2™ ) a™ ) = ;I.ZO(ZZ;LS"_Q] ™™= 2"2) in connection with
formal characters associated to representations of semisimple Lie algebras (see
[14], p.126). We shall give a different proof that will be useful in the sequel.
Proof . [Clebsch-Gordan formula] There is no loss of generality assuming n > m
thus ¢ = m.

Let us consider the standard basis of V™, {z, 5 : ¢t € {0,...,n}}, where
Wo(xp_gt) = (n—2t)x,_o forallt € {0,... ,n}. Let {ym-ot : t€{0,...,m}}
be the standard basis of V(™).

Let us recall that for all @ € sly(C) and v @ w € V™ ® V(™ we have
a(v@w) :=alv) @w+v Q a(w).

For all s € {0,...,m} let us consider the following element of V™ @ V(™.

S

z(s) = Z(_l)jx—nﬂj Q Ym+2s-2;-
=0

Let us observe that for s = 0 we get W_1(2(0)) = W_41(z_, ® v_p,) = 0, and
Wos(2(0)) = (—n — m)z(0), thus there exists an irreducible sl,-submodule of
V™ ® V™ isomorphic to V(™™ Let us assume that s # 0 then

W) = Sl 1PW s(2 2y ® Y iz ) =
= 35 (1) (T-n-242) ® Yomi2s—25)+
+ Z;;é(_l)j (T-nt2j @Y -my2s 2 25)] =
= 3o (1) (Ton-242) ® Yomi2s—25)+
+ > (CDF @ prog1) @ Yomtas—ak) =
= 22:1(_1)1'71(—1 + 1) (_pn_242j ® Y_m+2s—2j) = 0.
In addition we get that
Wo(2(5)) = 32501 Wo(T-ni2j @ Y-mzs—2j) =
=i o(=1) (= —m+25)(T ni2j ®Y myas 2j) =
= (—n —m+ 2s)z(s).
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As a consequence we get that for all s € {0,...,m} there exists an irreducible
sly(C)-submodule of V™ ® V(™ isomorphic to V=25 5o @M 1/ (mtn=2s)
is a sly(C)-submodule of V(™ @ V(™).

We reach the conclusion by observing that

dimg (@™, Vm+n=29)
Srom4n—2s+1)=
=(m+1)(m+n+1)-237, 5=
=(m+1)(n+1) =

— dim (VI @ V).

|

In the proof of the previous formula we build basis of the irreducible sl,(C)-
submodules of V(™ ®V (™) Indeed for each s € {0, ... ,min{n, m}} we consider
a vector z(s) € V™ @ V™ with weight —(n + m — 2s) which is the lowest
weight vector of the irreducible component of V(" @ V(™) gl,(C)-isomorphic
to V{"+m=25) e find it useful to build explicitly highest weight vectors of
the irreducible factors of V(™ ® V(™ for all n, m € N.

Lemma 3.1.2 Let B := {y,,... ,y_n} be the standard basis of V™ and C :=
{2m, - s Z_m} the standard basis of V(™. Then, if n > m, for k=0,... ,m,
S(n+m—2k) 15 @ highest weight vector of the irreducible sly(C)-submodule of
V™ @ V™ jsomorphic to V™ =2k) where:

k

S(n+m—2k) = Z /\] (yn—2j 029 Zm—2k+2j)7
=0

where)\o:zlandforeachj>0weput)\j=—)\j_1<(m k+i)k—Jj+ ))

(n—j+1)j

Proof . Let us observe that Wy(spym—2k) = (n+m—2k)Smim—2r)- In addition,
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by observing that B and C are standard basis we get the following equalities.
Wi(Stmem-26) = 250 Aj(n = § 4+ 1)j (Yn-2j42 ® Zm—2k+2)+
+ 3 A (m =k 4§+ 1) (k= ) (Un-2j ® Zmskraj2) =
= 3 A= G+ 1) (Un 252 ® Zmoki2)+
+ Zf;é Aj(m =k +7+1)(k = ) (Yn-2j+2 ® 2m 2k+2j+2) =
= 2521()‘9'(” =7+ 1)7)(Yn-2j42 ® Zm—2k+25)+
+ 35 A m =k + ) (k= 5+ 1)) (Yn-2j12 ® Zm-oks2j) =
=3 A=+ 1)+ N (m— k4 §) (k= § 4 1)) (Yn-2j+2 ® Zmosks2j) =
= 0.
Thus for all £ € {0,...,m} we proved that s(,i1m—or) is a highest weight
vector of the irreducible sl (k)-submodule of V(™ ® V(™) which is isomorphic
to VOrtm—2) O

In the following lemma we show the decomposition of the wedge product
of an irreducible sly(C)-module as a sum of irreducible sly(C)-modules.

Lemma 3.1.3
V(n @V (2n—2— 4]

where ¢ +1 =n/2 if n is even andq—l—lz (n+1)/2 if n is odd.

Proof . Let us first note that dime (V™ A V™) = (";’1) and
dime (@, V2 4)) =

=30 ,(2n—1—4j) =

=(q+1)2n—-1)—-4 =

=(g+1)(2n—1-2q9) = ("}).

Thus it is sufficient to show that there exists a sly(C)-submodule of V™ AV (™)
isomorphic to @7_, V=274,
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Let {&,,Zn_2,...,Z_,} be a standard basis of V(™). For j € {0,..., ¢} let
us consider the following element in V™ A V™) 2(5) := 327 (—1)*2 400 ®
Y_nt2+4j—2k- Observe that for all j € {0,...,q} we get: Wy(2(j)) = (—2n +
2+45)z(j) and W_4(2(j)) = 0.

The conclusion comes easily as in the proof of the previous lemma.

It is worth noting that a basis of the weight space (V(") A V("))O is {Zp_2j A
T_pi2; : 0 < 2j < n}}. Thus the dimension of (V™ A V(”))O as a C-vector
space is n/2 if n is even and (n + 1)/2 if n is odd. Since the weights that
appear in the decomposition of V(™ have all the same parity we get that the
weights that appear in the decomposition of V™ A V(™ are all even. As a
consequence we get that (V™ A V("))1 = (0) and dimc (V™ A V™) , gives
the number of irreducible factors of V(™ A V(™). O

Let us remark that given a sly(C)-module V' (not necessarily irreducible)
we can find the decomposition of V' AV as a direct sum of irreducible sly(C)-
modules using the two lemmas above together with the following well known
fact (see [8], p. 474):

Lemma 3.1.4

/Z\(Vm) @ VM) ~ (/2\(1/(71)) D (V(n) ® V(m)) D (/2\(1/(771)) )
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3.2 Finitely presented Lie algebras which are
sly(C)-modules

Let £ := C. Let M := (X|R) be a finitely presented Lie algebra such that
R C Ly(X) being Ly(X) the second homogeneous component of the free Lie
algebra L(X) with respect to the canonical N-grading on L(X). Let V be the
k-module generated by the set X, as we saw in section 1.1 we may write L(V)
instead of L(X). Let S be the ideal generated by R in L(X). Since R C Ly(X)
we get that S is a graded ideal, S = @,_, S; where S; = (0), S, = (R), and
Sit1 = [L1(V), Si]. Thus M is a graded Lie algebra, M := @, _; M;, where
M; = L;(V)/S;. Let us observe that [My, M;] = M;,1.

Let p : sly(k) — gl(V) be a representation of sly(k). As we have seen in
1.1, L(V) becomes a sly-module with respect to the action defined by p. Let
us assume that S is a sly(k)-submodule of Ly(V). As a consequence we get
that S is a sly(k)-submodule of L(V') and each homogeneous component of S
is a sly(k)-submodule of L(V).

Since k is a field of zero characteristic we have that every sly(k)-module
is completely reducible. Thus we get that L(V) is completely reducible and
for all i € N there exists a sly(k)-complement G; of S; in L;(V). Thus M
is a sly(k)-module and M;~g,)G; for all © € N. In addition we get that

- (M, Gi]
Mier = (M, Milaoq0 Sit1 N [Mi, Gi]
It is useful to prove the following lemma.

Lemma 3.2.1 Let L = .2, L; be a graded Lie algebra. Let us assume that L
is a sla(k)-module where the homogeneous components are finite-dimensional
slo(k)-modules. Then [L;, Lj] is a sly(k)-submodule of Li; and [L;, L;] <g,
Li®Lj, Vi, j.

Proof. Let us consider the following map:

@y = [z,

Let us note that it is a sly(k)-epimorphism as for all z ® y € L; ® L; and for
all w € sly(k) we get:

nw(r®y) =nw)@y+rew(y)) =
= [w(z),y] + [z, w(y)] =

= w([z,y]) = wn(z ®@y)).

As every representation of sly(k) is completely reducible we are done. O
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3.3 Examples

Let us consider &£ :=C

3.3.1 The loop algebra §1(2)(3)
In M(3,k), the algebra of 3 x 3 matrices, let

10 0 010
wy = 00 0 wi= V2[00 1
00 —1 000
000
w_i= —V2| 100
010
00 1 0 —1
Vo = 410 0 0 vu= —/210 01
000 0 00
1 00 0 00
w= 210 =20 voy= —V2[ 1 00
0 01 -1 0
000
vo= 410 0 0
100

If we define the bracket on M (3, k) in the canonical way, then we find out
that {wq, wo,w_1,v; : —2 > i > 2} forms a basis of the split simple Lie algebra
sl3(k). In addition we get that Vj = @ _,,., kw; is isomorphic to sly(k) as

[wiawj] = (] - Z)wH—] V’L,_] € {_]—70) ]-}

Moreover Vi = @?:_2 kv; is an irreducible 5-dimensional Vy-module, indeed

[wi, Uj] = (_] - 22.)’1),‘_}_]', Vi € {0, :l:l}, V_] € {0, :i:l, :i:2}

The vector space

o0

(3) == P*E” @ Vo) @ k(' @ 1))

=1

§Z(2)

becomes a Lie algebra with the bracket:
[t @u,t! @v] =t @ [u,v].
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Moreover, a1 (3) becomes a Vp-module by defining the action as follows:

Yo € Ve, ¥ @ 2 € 517 (3)
vt ®@2) =t ® v, 2]

~ (2
In the sequel we will use the bracket to indicate this action of V4 on a1t )(3).
Furthermore, let 7y the Lie algebras isomorphism between sly (k) and V), we

may consider s (3) as a sly(k) by defining the action as follows:

Ve € sly(k), Vz € s1°(3)
z(2) = 7(z)(2).

Note that [v;,v;] € kw;ij so s (3) is a N-graded Lie algebra where the
homogeneous components of even degree are k(1% ®V}) and those of odd degree
4 ~ (2
are k(t*1 ® V1). Observe that [vg, v1] = 2wy, [vo,v_1] = —2w_1, s0 sl )(3) is
generated as a Lie algebra by the first homogeneous component, k(t ® V7).

It is useful to write down the multiplication table of §l(2)(3):

[ y ] (%) (1 Vo V_1 V_9
() 0 0 0 4w1 16’(1]0
U1 0 0 —2w1 —2’(1]0 4w_1
Vo 0 211]1 0 —2’(1]_1 0
V-1 —4’LU1 2w0 2?1)_1 0 0

V_g | —16wg | —4w_; | 0 0 0

[, ]]w [wy |woy
w1 0 — W1 —2’11)0
Wo w1 0 —W-_1
w_1 | 2wy |w_q |0

[ y ] Vo U1 Vo V-1 V_9
w; |0 —vy | —2v1 | —3vy | —4v_,
Wo 21)2 U1 0 —V_1 —21)_2
w_q 4U1 3’()0 2’1)_1 V_9 0

We shall show that our finitely presented Lie algebra £ is isomorphic to
§l(2)(3). Let us begin with a theorem that shows that a1 (3) is an epimorphic

image of L.

Theorem 3.3.1 Let V be a free k-module with basis X = {x1,... ,x5}. Let
L(X) = @, Ly(X) be the free Lie algebra freely generated by X with its
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canonical N-grading. Consider

Rel ={ [z1, 9], [21,24], [22, 23], [T4, x5],
(23, T5] — [T, T4], [T3, 1] — [25, T2, [23, T4] — [25, 71]}

a subset of Ly(X). Let L = (X|Rel) the factor algebra L(X)/S where S is the

least ideal of L(X) containing Rel. Then a1 (3) is an epimorphic image of
L.

Proof. As we observed we may write L(V') = L(X). We consider the following
new free generating set for the k-module V., Y = {y4, y2, Yo, ¥ 2, ¥y 4} where

Yas = Ty

Yo = 215

Yo = —122¢
Yo = —24x
Y—a = 9629

Note that with this new basis on V' we get
Rel = {[yo, y-a], [yo, ya], [y-1, y—2], [y2, ya], =1/96(2[y—2, yo]+[y—4, yal), 1/288([y—2, yo] —
3/2[y2, y-4]), —1/24([y—2, ya] — [y2,Y0])}. Since Rel C Lo(V'), it follows that S
is a graded ideal in L(V), S = @;-, S; where S; = (0) and S, is the k-module
generated by Rel.
Let us consider V as an irreducible 5-dimensional sly(k)-module with Y as
a standard basis. Thus the action of sly(k) on V' with respect to the basis YV
is described by the following matrices.

400 0 0
020 0 0
Wo= |[000 0 0
000 -2 0
(000 0 —4
[0 400 0]
00600
Wi= (00060
0000 4
| 0000 0|
[0 000 0]
10000
W= [01000
00100
0001 0|




Since V' generates L(V') as a Lie algebra, we can extend this action on V' to
L(V). As a consequence L(V) becomes a sly(k)-module and every homoge-
neous component of L(V) is a finite-dimensional sly(k)-module.
Note that we can consider the following Lie algebras isomorphism between
Vo and sly:
a: slk) — Vo

WO = 2w

W_4 = W-_q

W1 = —Ww

As we observed above, this isomorphism of Lie algebras induces an action

of sly(k) on 51 (3) in the following way:

vz € slo(k), Vz € 51 (3),
z(z) == [a(x), 2].

In the sequel we will use the bracket to indicate this action of sly(k) on s (3).

Notice that V] is a Vp-module so we may define the action of sly(k) on V3
induced by « in the obvious way. Since a(Wj) = 2wg, we may observe that V;
can be decomposed as a direct sum of weight spaces as follows:

Vi=(V1)s® Vi)e® (Vi)o® (Vi)—2® (V1)-4.

Indeed, {v; : i € {£1,0,+2}} is a basis of Vi and Wy(v;) = 2iv; for all
i € {£1,0,+2}. Thus each eigenspace is 1-dimensional, in particular, the
0-eigenspace is 1-dimensional hence V] is an irreducible 5-dimensional sl (k)-
module. Since four is the highest weight and vy is the highest weight vector
of Vi with respect to the action induced by «, we may construct a standard
basis of V; as follows:

fa = Vg,

fa = Wfl(UQ) = 4uy,
fo = W?(v2) = 120,
foo = W2 (vg) = 24v_y4,
f_4 = Will(’l)g) = 241)_2

Hence we have two standard basis for the two sly(k)-modules V and k(t®V;)
and we are ready to construct a sly(k)-isomorphism between V' and k(t ® V1):

6.V = k(oW
Ya = tTQ g
Y2 — 4(t®’01)
Yo — 12(t®’00)
Yy_o — 24(t®@v_y)
—4 24(t®v_2)



Note that the action of sly(k) on k(¢ ® V1) with respect to the standard
basis {&(y4), d(y2), d(yo), d(y_2),d(y_4)} is described by the same matrices
which describe the action of sly(k) on V' with respect to the standard basis
{Y4, Y2, Y0,y 2,y _4}. Thus ¢ is a sly(k)-isomorphism.

Since k(t® V1) generates s (3) as a Lie algebra, it follows that ¢ uniquely

extends to an epimorphism of Lie algebras ¢ : L(V) — s (3) such that
¢|V = ¢

We shall show, by using induction over the degrees of the homogeneous
components, that ¢ is a sly(k)-epimorphism.

Since 5|L1(V) = ¢ we have that the restriction of ¢ to L, (V) is a sly(k)-

homomorphism. Let us assume that for all & < n the restriction of ¢ to
@’: L Ls(V) is a sly(k)-homomorphism, we shall show that this is true also
for @)_ 1L (V). Since L(V) is generated by L;(V) we get that L,(V) =
[L1(V), Ln—1(V)]. Thus it is sufficient to show that for all v € L;(V') and for
all u € Ln_l(V) we get that for all z € sly(k), ¢(x([u,v])) = z(é([u,v])). Let
us observe that, by using the induction hypothesis and the fact that ¢ is a Lie
algebras homomorphism, we get the following equalities:

ea(fu,v])) = é([z(u),v]+ [u,z(v)]) =

Thus ¢ is a sl (k)-epimorphism.
We shall show that the ideal S of L(V) generated by Rel is contained
in ker(¢). Therefore we will be able to construct a Lie algebra epimorphism

between L(V)/S and §l(2)(3) obtaining the desired result.

Since Ly (V) is an irreducible 5-dimensional sly(k)-module and
Lo(V)~g,)L1(V)AL1(V), by using Lemma (3.1.4) we get that Lo (V) ~g, 1)V &
Ve,

Therefore, k(t? ® Vp) is an irreducible 3-dimensional sly(k)-module and
Ly(V) is a direct sum of an irreducible 7-dimensional sly(k)-module and an ir-
reducible 3-dimensional sl (k)-module. As @ is a sl (k)-epimorphism, it follows
that ker(¢) N Ly(V) is an irreducible 7-dimensional sl (k)-module.

As a consequence, if we show that Ss is an irreducible 7-dimensional sl, (k)-
module, then we get that S, C ker ¢. Furthermore, if S, C ker ¢, then, by
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using the fact that ¢ is a Lie algebras homomorphism, we get that the ideal
S of L(V) generated by S, is contained in ker ¢.

In order to see that Sy is a sly(k)-module it is sufficient to show that the
irreducible 7-dimensional sly(k)-module generated by [ys, y4] € S, is contained
in S,.

Observe that Wy([ys, yo]) = 6[ys, yo] and W1 ([y4, y2]) = 0, so [yo, y4] gener-
ates an irreducible 7-dimensional sly-submodule of Ly(V').

Let us consider the standard basis for this sly(k)-module obtained applying
W_ll

a1 = [y2, 4] € S,
ag = [W_1,[y2, yall = [0, ya] + 12, v2] =
= [0, ys] € S,
ag = [W_1, Yo, ya]] = [y-2,ya] + [0, 92] € 5>
ag = [W_, [y—2, yall + Wy, [yo, wl] =
= (Y1, Ya] + [Y-2, v2] + [y-2, y2] + [30, 90| =
= [y-4,9a] + 2[y 2, 92] € 52
as = (Wi, [y—a, ual] + 2[Woy, [y—2, 0] =
= [y-a,92] + 2([y-4, v2] + [y-2, w0]) =
= 3[y-1, y2] + 2[y-2, v0] € 52
ag := 3[W_1, [y-s, y2]] + 2[W_1, [y-2, wol] =
= 3[y—4,%0] + 2[y-4, yo| = 5[y—s, %] € S

ar = S5[W_1, [y—s, yol] = 5ly—4,y—2] € 5>
As a consequence S is an irreducible 7-dimensional sly(k)-module con-

tained in ker ¢ so S C ker ¢ and we get that §l(2)(3) is an epimorphic image of
L. O

Let us remark that in the proof of this theorem we used only the fact that
V is an irreducible 5-dimensional sly(k)-module and that S, is an irreducible
7-dimensional sly(k)-submodule of Ly(V').

We shall show that £ is isomorphic as a Lie algebra to §l(2)(3).
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Theorem 3.3.2 Let V be a 5-dimensional irreducible sly(k)-module and

L(V) = P L(V)

the free Lie algebra generated by V with its canonical N-grading. Let Rel be
a 7-dimensional sly(k)-submodule of Ly(V). Consider L(V) = (V|Rel) the
factor algebra L(V')/S being S the least ideal of L(V') containing Rel. Then

is sly(k)-isomorphic to §l(2)(3) as a Lie algebra.

Proof . Let us remark that as Rel C Lo(V'), it follows that S is a homogeneous
ideal of L(V') and the N-grading of L(V') induces a N-grading on £(V'). Thus
we may write L(V) = @, L, (V).

Let us consider a standard basis on V, Y := {y4, v, Yo, Y_2, Y_a}, Wwhere
y; € Y has weight ¢ with respect to Wj.

By using Lemma (3.1.4) we obtain that

LQ(V)ZSIQ(k)Ll (V) /\ Ll (V):slz(k)v((s) @ V(Z)

Since Rel is a 7T-dimensional sly(k)-submodule of Ly(V') it is irreducible.
Moreover, by using Lemma (3.1.2) we may construct a standard basis of
Rel:

T?Q,ﬁ) = Y2, Yal,

7?2,4) = [vo, Yal,

7(62,2) = [0, ¥2] + [y—2, Y4l
T(62,0) = 2[y—2, Y| + [y-1, y4],
7”?2,—2) = 3[y—1, Y] + 2[y—2, vol,
T§2,74) = 5[y_4, Y2l

T'(2,—6) = 5[y_4, Y-

Note that r‘("’2,j) is the element of weight j that belongs to the standard
basis of the irreducible s-dimensional sly(k)-submodule of Ly(V).

As we showed in the proof of the previous theorem, the following sly(k)-
isomorphism

p: Vo = k(it®W)
Ya = T Uy
Yo > 4t @)
Yo — 12(t® ’UQ)
Yy_o — 24(t®@v_;)
4 24(t® ’U_Q)

[}
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uniquely extends to a sly(k)-epimorphism of Lie algebras ¢ : L(V) — §l(2)(3).
Furthermore, as we observed above, we get the following sly (k)-epimorphism
of Lie algebras.

p: L(V) = s903)
r+S — ¢(2)

We shall show that p is a bijection.
We will divide our proof in the following steps.

Step 1 For each homogeneous component L;(V) of L(V') we construct the standard
basis of an irreducible sly(k)-submodule G;, which is 3-dimensional if 7 is even
and 5-dimensional otherwise.

Step 2 By induction on the degrees of the homogeneous components we will show
that the restriction of ¢ to G; is injective for all 7 > 0.

Step 3 We shall show that £,(V) = G;+.S;, for all i > 0. In particular, this means
that £;(V)~,x) G: and p is an isomorphism.

Step 1.

We shall construct recursively a sequence of k-submodules of L(V'), {G; }ien,
with basis Y;.

Let Y7 =Y, assume we constructed Y; for all s < i.

If 4 is even, then Y := {y42), Y,0), Yi,—2)} Where

Yi,2) = ([y4,y(z 1, 2)] — Y2,y (i— 14)]) = 3([y2,y Y@-1,0 ] - [yo,y(i_m)]),
Zl(zo 2([ys, Yii-1, 4)] — [Y-1,¥ (i—1 4)]) ([y2, y(zfl,72)] — [y-2, y(iq,z)]),
Y@, —2 ([y2, Yi—1,-4 ] - [y 45 Y(i—-1,2) ]) - ([yOa y(ifl,fQ)] - [y72, l/(z>1,o)])-

If 7 is odd, then Y; := {yi4), Y(i.2)> Y(i,0)> Y(i,—2)> Y(i,—4)}, Where:

Yia) = [yZay(z 12]—2[94, Y- 10)]

Yi,2) = [y07y(z 12]—[y2,y(z 10)]—2[y4, Y(i-1, 2)]
(4,0) = [y 25 Y(i— 12]_3[y27y(z 1, 2)]

(i
(i

Q’:@

i,—2) = [Z/ 45 Y(i— 1,2]+ [y 25 Y(i—1,0) ] —3[3/0,3/(1'—1,—2)],
Y,—4) = 2[3/—4, y(i—l,o)] - 2[2/—2, y(i—l,—2)]-
Note that we are considering y 4 :=y; for i € {4, 2, 0, =2, —4}.
We shall show by induction on the degree of the homogeneous components
of L(V) that for all ¢ > 0, G; is an irreducible sly(k)-submodule of L;(V).

Furthermore, we shall prove that the basis given above is a standard basis of
G;, for all i > 0.
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If i = 1 then Gy = V so it is an irreducible 5-dimensional sly(k)-module
and Y] is a standard basis by construction.

Let us assume the claim true for all s < 7, we shall prove it for s = i.

If 7 is even then 7 — 1 is odd and, by induction hypothesis, the basis given
for G;_; is the standard basis for V4. Thus we get

and Gi2512(k)v(2).
If 7 is odd then 7 — 1 is even and we get that:

W_1(y6a) = Y6,2),
W_1(Y6,2)) = Y,0)
W_1(Y,0) = Yii,—2)s
W—1(y(i,—2)) = Y(i,-4)»
W—l(y(i,—4)) =0,

and Gi2312(k)v(4).
Step 2. We shall show, by induction on the degree of the homogeneous
components of L(V'), that for all i > 1 we have:

Syp) = (960)7 (12)7 ¢ ® f; if i is odd,

¢(y(z‘,j)) = (960)

—

(12) Tt ®@g; ifiis even,

(M0

where
fa = V2,
fo = W71(U2) = 4uy,
f() = ng(w) = ]_2’00,
f,Q = Wfl(w) = 24’(),1,
f,4 = W41(1}2) = 24’1),2,
go = w1,
9o ‘= W—1(92) = 2wy,

g-2:= W2,(g2) = 2w_s;
We find it useful to write down the multiplication table of these elements.
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[ ) ] Jo| fo | fo = [ g2 9o g2

f1 01010 969, 192¢g, | O —4f, | =2f
fo 0 | —96g2 | —9690 969 2 |4fs | =2f2 | —2fo
fo 0 —288g 5|0 6fa |0 —2f_5
= 0 0 6fo |2/ 2 | —2f4
J-a 0 A4f 2| 4f-4 |0

92 0 —2g2 | —2g0
90 0 —2g o
g—2 0

For 4 = 1 we proved the statement in the previous theorem.
Let us assume the claim true for all 0 < s < 4, we should show that it is
true for s = 1.
If + > 1 is odd, then ¢ — 1 is even thus we get that:
oY) = Y2, Yi-1,2)] — 2[ya, Yi-1,0)]) =
= &([y2, Yi-1,2)]) — 20([Ys, Yi-1,0)]) =
= (960)F (12)'%" (£ ® [f2, go] — 2t' ® [fu, 90]) =

= (960)F (12) T4 ® f,
As ¢ is a sly(k)-homomorphism we get that:

$(y(i,4_2j)) = ¢( (y(z4 ) = 1¢( 14)) =
= W7, ((960)"+' (12) %" fu) =

(960) (12) 2 ¢ ® fa—2j,

for j =0, 1, 2, 3, 4, and we are done.
If + > 1 is even, then:

dWiz) = 02(Ya Yi1,-2] = [Y-2,¥6-10]) = 3([¥2, Yi-10] = o, yi-1])) =
= (960)"(12) 5" ® (4[f4, f-o] — 6[f2, fo]) =
= (960)2" (12)'3°t! ® (960g,) =
= (960)3(12) 2 ® go.
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As in the previous case this fact allows us to reach the conclusion.

Step 3. Let us observe that if i = 1 then £1(V) = G;.

If i = 2 then Lo(V)~g,5)V A Vo)V @ V. Since Symzg, 1)V, then
Ly(V) = La(V) /S0 V@, hence Lo(V) = G2 + Ss.

We will assume the claim true for all n < 7 and we shall prove it for n =i
with n > 2.

If 7 is odd then 7 —1 is even and, by the induction hypothesis, we have that
Lio1(V)=[L1(V), Lica(V)] = Gimaa, ) V@.

As we showed in the Lemma (3.2.1), £;(V) = [£1(V), L;_1(V)] is a sly(k)-
submodule of £1(V) ® Ei_l(V)’:slz(k)V(G) VW Ve,

We shall show that £;(V)ag, ) V®.

Let us consider

ni: Li®@Lioy — [L1, L]
Ty = [z, ]

the sly(k)-epimorphism we defined in Lemma 3.2.1.

We shall show that ker(n;)~,x) V' ©® & V.

Note that v := yy ® y(;_1,0) generates the sly(k)-submodule of £; ® £; 1
isomorphic to V(® @ V(. Indeed, by using the Lemma (3.1.2) we may obtain
the three highest weight vectors that generate the three irreducible sly(k)-
submodules of £;(V) ® L£; 1(V). In particular we get that:

56) = Y4 @ Y(i-1,2);
5(2) = Y+ @ Yi—1,—2) — 1/2Y2 @ yi—1,0) + 1/6%0 ® Y(i-1,2)-

Notice that we are using the same notation we used in the Lemma (3.1.2)
and s(;) is the highest weight vector of weight j that generates the irreducible
sly(k)-submodule of £;(V) ® L;_1(V) isomorphic to V).

Let us remark that

W3, (se) = W2 (1 @ Yu-1,0 + 12 ® Yu—1,2) =
= W_1(Ys @ Yg-1,-2) + 292 @ Y(i—1,0) + Yo ® Y(i-1.2)) =

= 3y2 @ Y(i-1,-2) + 3Y0 ® Y(i-1,0) T Y—2 @ Y(i—1,2),
and
W_i(s@) = 1/242 @ yg-1,—2) — 1/3y0 ® Yi=1,0) + 1/6y_2 ® Y(i-1,2)-

Hence v := yo Q@ ygi—1,0) = 1/5(W3,(s(6)) — 3W_1(s(2))), thus v generates the
sly(k)-submodule of £1(V) ® L;_1(V) isomorphic to V6 @ V),

Thus, in order to prove that ker(n;)~g,xV® @ V® it is sufficient to show
that n;(v) = 0.
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Let us observe that p(y—1,0)) = 5p([Y4, Y—2,—4)]), indeed:
p([Ys, Y—2-0]) = [p(ya), p(Y(i-2,-1))] =
= (960)7 (12) T4 @ [fa, /] =

= (960)3°(12)F (192)t 1 ® go
and

p(Yi-1,0))) = (960)7 (12) 7 ¢! @ go.

Thus, by the induction hypothesis, we get that y;_1,0) = 5[y, Y(i—2,—4)]- As
a consequence we obtain that:

[Qan(i—l,O)]: 5[vo, [?J4a ]]—
= 5[ys, [yo,y _o)] + 5[Y(i—2,-1) [Ya, yo]] = 0.

If i is even, then £, (V)® L; , (V):slz(k)v@) eVO VWV aVO and
we shall show that ker(n;)~g,)V® @ V® @ VW g VO,
Let us recall the generalised Jacoby identity:

g =3 19 () TR

J A—j

where iterated commutators are left normed so [v,y, z] = [[v, ], z].
Let us observe that a := yo ® y(; 1,4) generates the sly(k)-submodule of
L:(V)® L; 1(V) isomorphic to V® & V) ¢ V®_ Indeed,

b:=W_1(Wi(a)) = 6(y0 ® Yi-1,4) + Y2 ® Y(i-1,2))
c:=W2 (Wi(a)) =24(yo ® Yi-1,4) T 2Y2 @ Y(i—12) + Y12 @ y(i—l,O))

and {a, b, ¢} is a basis for (£1(V)®L;_1(V))4, the weight subspace of £;(V)®
L;—1(V) relative to the weight 4.

As a consequence, in order to prove that the sly(k)-submodule of £1(V) ®
L;_1(V) isomorphic to V® @ V® @ VV® is contained in ker(n;), it is sufficient
to show that 7;(a) = 0.

Let us note that, by using the generalised Jacobi identity, we get the fol-
lowing equation.

0= [y4,§/(2,0), T 20) 2/0] + Z ( )[yﬂay(QO .- ,y(Q,Ol, 114,%/(2,0), e ,2/(2,0)],

~
J
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Observe that, if A = ZT, then we get:

Py y20): - Ye0)) = (60) A @ [fi,go, -, g0) = (-=4)*'" @ fu.

-~

A A

Thus, by the induction hypothesis, there exists 5 # 0 such that

[y4ay(2,o), e ;y(z,o)J] = 53/(1‘—1,4)-

A

In addition let us point out that [yo, y2,0)] = 0 = [yo, ys], thus the equation
(3.1) becomes 0 = [y(;—1,4), Yo)-

It remains to show that the 1-dimensional irreducible sly(k)-submodule of
L1(V)® L;_1(V) is contained in ker(7;).

By using the Lemma (3.1.2) we obtain that the k-module generated by

V=Y aQYi-14) —Y-2@Yi-1,2) T Yo D Y100 — Y2 O Yi-1,-2) + Y1 @ Yi—1,-4)
is the 1-dimensional irreducible sly(k)-submodule of £1(V) ® £L;_1(V).
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Note that:

ni(v) = [W-a Y2, ¥6—22)]] = 2[Y-4, (Y1, Y20+

—[y—2, (W0, Yi—2,2)]] + [Y—2, (Y2, Yi—2,0)]]+
+2[y—2, [Ya, Yi—2,-2)]] + [Y0, [y-2, Y22 ]|+
—3[Yo, [Y2: Yii-2-2)]] — W2, [Y-4, Yi—2,2)|]+
—[y2, [Y—2, Yi—2,0)]] + 3[Y2, [Yo, Y(i—2,-2)]]+
+2[ys, [Y-1, Yi—2,0)]] — 2[y4, [Y-2, Y(i—2,-2)]] =

= (Yo, [Y2, Yi-22)] = [¥2; [Y—1, Yi—2,2) ]|+
=2[y—a; [y2, Y20 + 2[ya, [y—1, Yi-2,0)]]+
—[y-2: [Y0; Yi—22)]] + [Y0, [V—2, Yi—2.2)]]+
Y2, [V, Yi—20)]] — [Y2, [Y-2, Yi-2,0)]]+
+2[y—2, [Ya, Y—2,-2)]] — 2[ya, [y-2, Ya-2,-2]]+
—3[Yo, (Y2, Yii-2,—2)]] + 3[¥2, [Yo, Yi-2,—2)]] =

= [Yi-22), W2, Y—4]] — 2[Yi—2,0)5 (Y2, Y—a]]+
—[Yi-22)[Y0, y—2l] + [Y(i—2,0)[Y2, Y—2]]+
+2[Y(i—2,—2) (Y4, Y—2]] = 3[Y(i—2,~2) (42, Vo] =

= 1/2([yi-2,2), ¥,-2)] — [Wi-2,0)> Y2,0)] + Wi—2,-2), Y2,2)])-

Let us point out that if 4 = 4, then

ns(v) = 1/2([Y2,2), Yeo,—2)] = [Y2,0)5 Yi2,0)) + [Wi2,—2), Y2,2)]) = 0.

. . 1 —
Let us assume that ¢ > 6 and consider A = — > 1, then we have the

o7



following equation.

0= [y@2)> Y20 - -+ > Y(20) Yi2,—2)|+
X

+ Z;\:o(_l)j (;‘) [y(z,—2),g(2,0), cee ,y(2,0l, y(2,2),€/(2,0), cee ,2/(2,0)]-

g v~
J

Let us observe that:

P([y(2,—2);y(2,0), e ,y(2,0)j Y(2,2), y(2,0)]) =

~
J

= (960)7 3246 @ [g_s, g, - - - , 90, G2, Jo] =
—
J
= (960)73%+6 ® (2)7[g_5, g2, go] = .

Note that, if 25 + 6 < 7, then by using the induction hypothesis we get the
following equation.

[?J(2,—2)ag(2,o)a -5 Y(2,0)5 y(2,2),y(2,o)]) = 0.

-

J
As a consequence we get:

0= [y(Q,Q):g(Q,O): -5 Y(2,0)5 y(2,—2)]+

o

A

+(_1))\_1 (,\il) [y(27—2) ; g(Z,O)a ey y(?,Ola Y(2,2), y(2,0)]+

A1

+(_1))‘(§) [9(2,—2),g(2,0), .. 7y(2,0l7 y(2,2)] =
X

= [y(2,2)a§/(2,0)1 -5 Y(2,0)5 y(2,—2)]+

7

-~

A
+(_1))‘71)\[y(2,—2),g(Q,o), - (2,00, Y(2,2) Y(2,0)]+

A—1

+(_1))‘[y(2,—2),y(2,0); -y y(z,ol, Z/(2,2)]-
X
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In addition:

P([Y(2,2), Yi2,0)5 - - - > Y(2,0)]) = (960)M***2 ® [go, go, - - - , go) =

- -’

B¢ A

— (960))\+1t2)\+2 ® (—2))‘92 —

= (=1)*p((6) *y2rs22));

ﬂ([y(z—z)ay(zo)a .. ,y(z,o)ay(2,2)]) = (960)’\+1t2’\+2 & [9—2,90, e ,90,92] =

i

-~

A-1 A=l
= (960)M1222 ® (2) g 4, o] =
_ (960)’\+1t2’\+2 ® (2)/\90 =

= p((6) yeri20);

P[22, Y200 - -+ Y20 = (960)M*22 @ [g_9, g0, ... , 90) =

-

B¢ A

— (960))\+1t2/\+2 ® (2))\972 —

= p((6) *yeri2,-2);

Thus by the induction hypothesis we get that
0= (_1)/\(6)7A[?J(2A+2,2))y(2,—2)]+
+(=1)*A(6) " Myrt2,0) Yz,0)]+

+(=1)M6) Myeat2,-2): Ye2);

as a consequence:

0= [Yerr22) Y,—2)] — AYeri2,0): Y20 + Werte,—2), Ye2)- (3.2)

Let us recall that we showed [y(i—2,—2), Y(2,—2)] = 0, thus we get that:

0 = Wf([y(i—2,—2)ay(2,—2)]): (3.3)
= 4([Yi-22) Y22 + 2[Yi-20) Y0 + [Yi-2.-2): Ye22))-
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Note that 2\ + 2 =i — 2 so by (3.2) and (3.3) we get that

0=(-2- )\)[y(Q/\-F?,O)a y(2,0)]-

Since A > 1, we get
[y(2,\+2,0), y(2,o)] =0,
thus
[Y(i—2,2), Y(2,-2)] — [Y(i-2,0) Y(2,0)] + [Y(i—2,-2), Y2,2)] = 0.
O
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Chapter 4

Further examples

In this final chapter we shall give some examples of finitely presented Lie
algebras with six generators which seem to be periodic.

As we observed in the introduction, our first problem in this work was
the construction of examples of finitely presented periodic Lie algebras with d
generators and d?/4 + 1 relations.

In order to produce presentations which belong to C(d) we used the results
we showed in the second chapter to write down an algorithm which works
under GAP, [19]. We used this algorithm to produces all the presentations in
C(d) for d = 6,7. By using Anu-p-Quotient, [13], we were able to process
all these presentations, then, by employing ad hoc designed Perl scripts, we
were able to single out those Lie algebras that had some probability to be
periodic. It should be noticed that there was no chance to scan by hand the
finitely presented Lie algebras obtained by using Anu-p-Quotient. In fact we
obtained almost 250 Lie algebras for d = 6 and more than 3000 Lie algebras
ford=T.

It should be mentioned that all the softwares written in Perl have been
obtained in collaboration with Giuseppe Jurman.

It should be noted that in general it is hard to prove that a finitely presented
Lie algebra is periodic. Thus in this final chapter we will show examples of
Lie algebras with six generators for which we have computational evidence
of the fact that they are periodic. We shall consider only Lie algebras with
six generators since in this case we have the complete list of the Lie algebras
with a presentation which belongs to C(6). On the other hand, the list of 7-
generated Lie algebras with a presentation in C(7) is not complete because of
memory limits in the hardware we used and probably because the algorithms
we produced are not as efficient as possible.

By using Anu-p-Quotient we processed all the 6-generated Lie algebras
which are likely to be periodic until the 50th homogeneous component, that is
to say we are considering the nilpotent quotient of each Lie algebras L obtained
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by imposing Ls; = (0).

For each Lie algebra L in this list let us consider the following function.

fL: {1,,50} — N
n — dimy(Ly)

While scanning this list of 6-generated Lie algebras we may observe that
for each Lie algebra L, f; is ultimately periodic and the periodic behaviour
begins at least at the 6th step. In addition we may observe that in each case
we have that fr(2k) = fr(2k +2) and fr(2k + 1) = fr.(2k + 3) for all k£ > 4.
Moreover we may notice four different kinds of periodicity. In fact, for each L
in our list, f; is ultimately equal to one of the following functions defined on
the natural numbers.

3 if nis even
5 if nis odd

6 if n is even
10 if n is odd

7 if nis even
10 if n is odd

14 if n is even
20 if nis odd

Even if we have many different examples of presentations of C(6) for each
different periodic behaviour we shall give only one example for each case.

Let us consider the following list of presentations P; = (X|R;) € C(6) with
X :={z1,...,26} as generating set and R; as set of relations:
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R, = { [‘Tl’ xQ]’ [331, ‘753]’ [331, .’134], [$2, 335], [$3a x6]a
(21, 5] — [T2, T4, [T1, T6]| — [T3, T5], [22, T3] — [24, T6],

[xQ’xG] - [$4,$5], [x37 x4] - [x5’x6]};

Ry

Il
——

[Il’ 'TQ]’ [xla I3]7 [1‘1’ .’L'4], [‘T?a 'T5]’ [$27 .”176],
(21, 5] — [3, ], [T1, T6| — [T4, T5], [2, 23] — [24, T6],

[1‘2,3;‘4] - [.%‘3,335], [x3a 1'4] - [x5’$6]};

Ry ={ [z1, 2], [x1, 73], [T1, 4], [T2, 5], [73, Te],
(21, 5] — [Ta, Ta], [T1, T6] — [73, T4], [2, T3] — [75, T6],

[anmﬁ] - [$4’$5]7 [x?n x5] - [x4’$6]};

Ry

Il
—

[xl’ xQ]’ [1‘1, x3]7 [‘Tl’ 1‘4], [an .’L‘3], [3;27 375],
(21, 5] — [T4, 6], [T1, T6] — [73, Ta], [v2, T4] — [75, T6],

[1'2,336] - [$3,$5], ['T?nxﬁ] - [.Z‘4,$5]}.

We may gain computational evidence that each presentation P; gives a Lie
algebra G/(j) such that fg(;) is definitively equal to g;, for j =1,... ,4.

We may obtain this almost-periodic behaviour in another way. In partic-
ular we may consider the k-module W generated by X as a sly(C)-module
isomorphic to V® @ V. Let us consider Y := {44, %o, Y0, Y—2,Y—_4} a stan-
dard basis for the sly(C)-submodule of W which is sly(C)-isomorphic to V®)
and let Z := {2z} be the basis of the sly(C)-submodule of W which is sl (C)-
isomorphic to V(). Let us consider the following presentations (Y U Z|D;),
for j =1, 3.

63



Dy = { [y2,y4] = [20, Yol [Yo, Yal, [¥2, o] + [ya, y—2],
2[y2, Y—a| + [Ya, Y—a], 3[y2, y—a] + 2[yo, y_2],
[yO: y—4] - [?J—2; ZO]; [y—2a y—4]a

[y4, zO]a [y27 ZO]’ [ZO’ y—4]};

D3 = { [yQJ y4]7 [y07 y4]7 [y27 ZO] + [y47 y—2]7
2[y2a y*?] + [y4a y74]a 3[?/2’ y74] + 2[ZOa y*?]a
(Yo, Y—a]s [V—2, Y—4], [Y2, o] — [Y4, 0],

[90, Zo], [y72,y0] - [y,4, Zo]}§

We have computational evidence that f(yuz p,) is definitively equal to g;.
Even if the k-module generated by D, is not a sly-submodule of the second
homogeneous component of the free Lie algebra generated by W, L(W), we
think that it is more useful to consider presentations in this form than in the
previous one. At this stage we are not able to describe completely the two
algebras (YUZ|D;), j = 1,3, but we may prove a partial result for (YUZ|D;).
In particular we prove that the finitely presented loop Lie algebra L£(V') that
we considered in the previous chapter is a homomorphic image of (Y U Z|Dy).

Theorem 4.0.3 Let M := (Y UZ|Dy) be the finitely presented Lie algebra we
described above. There exists a Lie algebras epimorphism of M onto L(V).

Proof. Let us recall that £L(V) = (Y|R) where

R={ [y0,Y-4l; Yo, Ya]; [Y=1,Y—2], (42, Yal,

2[y—2, yo| + [Y—1, Yal, 2[y—2, Yo| — 3[ya, y-a], [y—2, ya] — [¥2, Yol }-

Let us consider the k-module epimorphism of W onto V' which is the iden-
tity map on Y and send z; to zero. This map may be extended to a Lie algebra
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epimorphism y : L(W) — £(V). Let us observe that D; C ker(x), indeed
X([y2, ya] — [20, yol) = [y2, ya] =0,
X([%0, Ya]) = [yo, ya] = 0,
X([y2, Yol + [ya,y—2]) = 0,
X(2[y2, y—2] + [y, y-a]) =0,
X(3[y2,y-4] + 2[y0,y-2]) = 0,
X([y0, y—4] — [y—2, 20]) = [yo, y-4] = 0,
X([y-2,y-4]) =0,

X[y, 20])) = x([y2, 20]) = x([20,y-4]) = 0.

Thus the ideal of L(WW) generated by D;, say D, is contained in ker(x) and
there exists a Lie algebra epimorphism of M = L(W)/D onto £(V') which is
induced by x. O

The last fact we want to point out here is that we have an example of finitely
presented Lie algebra with six generators and ten homogeneous relations which
is finite-dimensional. Indeed, let us consider the presentation with Y U Z as
set of generators and the following set of relations:

F:={ [y2,y4], 20, ¥, [0, 20], W0, Y—al, [y—2, y_4l,
(Y2, Yol + [Ya, y—2], 2[y2, y—2] + [Ys, y_al,

3ly2, Y—a] + 2[20, Y—2); (Y2, 20] = (Y4, Yo|, [Y=2, Vo] — (Y4, 20]}-

This is a nilpotent Lie algebra of dimension 39 as k-module.
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